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FRACTURE DEVELOPMENT ON A WEAK INTERFACE NEAR A WEDGE

ALEXANDER N. GALYBIN, ROBERT V. GOLDSTEIN AND KONSTANTIN B. USTINOV

Formation of a fracture consisting in shear-opening delamination and Coulomb’s frictional sliding zones
along a weak interface in an elastic isotropic homogeneous plane subjected to wedging and external com-
pression is studied. The shear-opening delamination is modelled by a mixed-mode crack; the frictional
sliding zones are modelled by pure shear cracks. The interface is assumed to be much weaker than the
material of the plane, so that only interface cracks are considered. The wedge is modelled by a pair
of edge dislocations. Two particular cases have been considered: far-field and near-field asymptotics,
corresponding to the cases of large and small ratios of the distance between the wedge and the interface
and the distance between two dislocations modelling the wedge, respectively.

The possibility of formation of finite sliding zones ahead of the delamination on the weak interface
is demonstrated. It is shown that, depending on the combination of external parameters (ratio of the
dislocation burgers vector and elastic modulus, distance from the dislocation to the interface, magnitude
of applied compression, cohesion and friction angle of the interface), two configurations of cracks may
be observed: one mixed-mode crack, and three cracks — one central mixed mode crack and two external
symmetrical shear cracks. The central part of the sliding zone is also open.

1. Introduction

Delamination occurring on a part of a weak interface ahead of an approaching fracture is explained
by the presence of the tensile stress component parallel to the fracture; see [Cook et al. 1964]. This
phenomenon is observed in various materials in lab experiments as well as in nature; e.g., dyke-sill
transformations; see [Gudmundsson 2011]. It is widely accepted (see the references above) that the
delamination can affect the crack propagation throughout the interface or serve as a barrier for crack
arrest. Besides crack growth, there are other situations that may also lead to interface destruction, such
as, for instance, wedging due to thermal expansion or rockmass fracturing near excavations. It should
be understood that, in addition to tensile stresses, the interface is also subjected to shear stresses that can
be high enough to affect the fracture processes developing on the interface. Experiments [Goldstein and
Osipenko 2012; 2015] have shown that the appearance of sliding zones over the interface is capable of
initiating secondary cracks perpendicular to the interface. Somewhat similar mechanisms are reported
in [Zhou et al. 2010] for hydrofracture modelling.

There are numerical studies of fracture development on weak interfaces; e.g., [Cooke and Underwood
2001; Akulich and Zvyagin 2008]. These studies model both delamination and slip on the interface
without employing any fracture characteristics (e.g., stress intensity factors or energy release rate) that
control fracture, which is a serious drawback. Early work by Galybin [1997] takes into account fracture
characteristics for the determination of the length of the sliding zones but do not consider delamination.

Keywords: mixed-mode interface crack, edge dislocation, delamination, sliding, singular integral equations.
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Figure 1. Geometry and loads.

Cracks at the interface of Coulomb’s friction type between elastic and rigid bodies were considered in
works by Bui and Oueslati [2004; 2005] and Bui [2006] with and without delamination. They obtained
analytical solutions, with the emphasis on possible nonuniqueness arising from nonlinearity of the fric-
tional contact crack problem and dependency of the solution on the (unspecified) loading history. The
nonuniqueness and path dependence of the solution for problems involving Coulomb’s friction contact
was also emphasised in works of Dundurs and Comninou [1981; 1983] and Mendelsohn and Whang
[1988].

In this study we model both delamination (as combined mode I-mode II cracks) and sliding zones
(mode II cracks) caused by a wedge (modelled by edge dislocations) in a compressed elastic plane with
a weak interface (which is considered as a plane of reduced strength). The sizes of opening and sliding
zones are found from the solution. The back influence of the interface cracks on the dislocations is not
taken into account, which allows one to apply the method suggested in [Galybin and Mukhamediev 2012;
2014] for estimation of the size of the delamination and the length of the pure sliding zones. The case
with both opening and shear zones along the interface was studied before, for example by Gorbatikh et al.
[2001]. Their work deals with the case when a part of the contour is traction-free under compressive
normal loads at infinity, and the size of this traction-free zone is prescribed by the geometry of the
problem. Such a formulation makes sense when a narrow cavity of certain special form is cut out from
the plane.

The configuration shown in Figure 1 is studied. The ends of the delamination zone (−L0, L0) are
determined from the condition KI = 0, and the ends of the pure sliding zones (−L , L) (“shear crack” in
the figure) from the condition KII = 0, where KI and KII are the stress intensity factors for opening and
transverse shear modes, respectively. Moreover, a more general case is considered, for which the shear
zones appear also on two symmetric intervals outside the interval (−L , L). For this case a system of
three nonlinear equations will be examined.
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2. Wedge in elastic plane

The complex potentials that characterise the stress field of an isotropic elastic plane with an edge dislo-
cation of magnitude h = hx + ih y whose core is placed at a point z0 have the form [Muskhelishvili 1977]

8(z)=
H

z− z0
, 9(z)=

H̄
z− z0

+
z̄0 H

(z− z0)2
, (1)

where, for the condition of plane strain, one has

H =−
iG(hx + ih y)

π(1+ κ)
, κ = 3− 4ν, (2)

where G is the shear modulus of the plane and ν is Poisson’s ratio. Note that the minus sign in (2) is due
to the assumption that the cut is made to the left from the core, which can be directly checked by using
the Kolosov–Muskhelishvili formulas for the displacements.

Let us assume that z0 = a, hx = 0 and h y = h > 0; this also means that H = H̄ > 0, which results in
the following expressions for the complex potentials:

81(z)=
H

z− a
, 91(z)=−z8′1(z)=

zH
(z− a)2

. (3)

Let us introduce the second dislocation, with the core at the point z0 =−a and with magnitude hx = 0
and h y = −h > 0 (thus, H in (3) should be replaced by −H ); then the previous expressions for the
complex potentials yield

82(z)=
−H
z+ a

, 92(z)=−z8′2(z)=
−zH
(z+ a)2

. (4)

The superposition of the stress fields (3) and (4) gives

8wedge(z)=
S

z2− a2 , 9wedge(z)=−z8′wedge(z)=
2z2S

(z2− a2)2
, S = 2aH. (5)

The complex potentials in (5) give the solution for the wedge of finite length inserted into the elastic
plane. Here S is a parameter that has dimension of force, and it is proportional to the area of the wedge
penetrated into the plane. We further assume this value to be a constant.

By using the Kolosov–Muskhelishvili formulas one obtains the following expressions for the mean
stresses P = 0.5(σx + σy) and for the complex stress deviator function D = 0.5(σy − σx)+ iσxy :

P(z, z̄)=8+ 8̄=
S

z2− a2 +
S

z̄2− a2 , D(z, z̄)= z̄8′+9 = (z̄− z)8′ =
2z(z− z̄)S
(z2− a2)2

. (6)

The normal (σnn) and shear (σnt ) stresses acting on an inclined plane (at an angle θ0 to the x-axis) are
given by

σn − iσt = P(z, z̄)+ e2iθ0 D(z, z̄)= 2S
[

Re
1

z2− a2 + e2iθ0
z(z− z̄)
(z2− a2)2

]
. (7)

Let us assume that a weak interface is located on a line (see Figure 1) specified by

z = a+w, w = d + reiθ , θ = const, (8)
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where the value of r = 0 corresponds to the point of intersection of the interface with the continuation
of the wedge line, the point z = a+ d in Figure 1.

Then the stresses on the interface can be presented in the form

σn − iσt =
2S

(a+ d)2

[
Re

1
(1+ ρeiθ )2− δ2 +

2iρ sin θe2iθ (1+ ρeiθ )

((1+ ρeiθ )2− δ2)2

]
, ρ =

r
a+ d

, δ =
a

a+ d
. (9)

Hereafter, σn and σt are the normal and shear components of stress along the interface.
We consider two configurations:

Configuration 1 (far field asymptotics). Assume that a � |w| (a � d). Then the complex potentials
in (5) become

8wedge(z)=
S
z2 , 9wedge(z)=−z8′wedge(z)=

2S
z2 , S = const . (10)

This asymptotic behavior coincides with the far field asymptotics for a mode I crack of length 2a and
average opening S/G.

The stresses on the interface are found from (9) to be

σn − iσt =
2S
d2

[
Re

1
(1+ ρeiθ )2

+
2iρ sin θe2iθ

(1+ ρeiθ )3

]
, ρ =

r
d
. (11)

The expression in brackets in (11) represents dimensionless stresses (normalised by 2S/d2) acting on
the interface far from the wedge. They are shown in Figure 2 as functions of ρ for different interface
inclinations.

Configuration 2 (near field asymptotics). Let us assume that |w| � a (d � a). Then the stress functions
in (6) take the form

P(w, w̄)=
S

2a
w+ w̄

ww̄
, D(w, w̄)=

S
2a
w− w̄

w2 . (12)

It should be noted that these functions correspond to the case of a single dislocation with the core at the
origin (they can also be found from (3) by assuming that a = 0, because 2aH = S). The stresses on the
interface are obtained from (12) in the form

σn − iσt =
S

ad

[
Re

1
1+ ρeiθ +

iρe2iθ sin θ
(1+ ρeiθ )2

]
, ρ =

r
d
. (13)

The dimensionless (normalised by S/(ad)) stresses on the interface located close to the right end of the
wedge are shown in Figure 3 for various interface inclinations as functions of ρ.

Comparing the stress profiles in Figures 2 and 3, one can notice that the stress distributions look
qualitatively similar to each other. For the general configuration they differ only quantitatively from
those depicted in Figures 2 and 3 for the full range of the parameters a, d and R. It should be noted
that the dimensional magnitudes of the stresses near the wedge are much greater than their values far
from the wedge. Thus, interface fracturing due to the stresses induced by the wedge is most likely to
occur close to the wedge. Therefore, we further restrict our consideration to Configuration 2, which also
allows one to reduce the number of parameters controlling the stress field.
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Figure 2. Profiles of dimensionless stresses caused by the wedge on the interface in-
clined at (a) θ = π/2, (b) θ = π/3, (c) θ = π/4, (d) θ = π/6 for Configuration 1 as
functions of the parameter ρ; solid lines are normal stresses, dashed lines are shear
stresses.

The total stresses should also reflect the remote loads, which create the following stresses on the
interface:

σ 0
n − iσ 0

t =
σ∞yy + σ

∞
xx

2
+ e2iθ σ

∞
yy − σ

∞
xx

2
= σ∞yy cos2 θ + σ∞xx sin2 θ + i(σ∞yy − σ

∞

xx ) cos θ sin θ. (14)

It is evident from (14) that, for the case of compressive loads at infinity, the shear stresses on the interface
can be of any sign depending on the difference of principal stresses at infinity, while the normal stress is
always negative. The latter means that the external stress can compensate for the tensile normal stresses
on the interface caused by the wedge. However, when the distance d is small, the stress magnitudes are
unbounded, which indicates that the remote stresses cannot compensate for the stress concentration near
the wedge, and hence a delamination zone should appear on the interface regardless of compression at
infinity. The position of this zone depends on the interface inclination angle. As is evident from the
profiles of normal stresses in Figure 3, for steep angles the delamination zone has to appear close to the
point z = a+d , while for shallow angles the middle of this zone should be shifted to the left and down as
shown in Figure 1. This delamination zone is also subjected to shear stresses that induce relative slip of
the delamination surfaces. The direction of the slip is defined by the sign of the total shear stress, which
can alternate. If the shear stresses due to remote loads are negative (vertical compression dominates) then
the slip in the leftward direction should dominate (as the peak of the shear stresses caused by the wedge
is also negative). In general, the slip zone can be longer than the delamination zone, and includes some
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Figure 3. Profiles of dimensionless stresses caused by the wedge on the interface in-
clined at (a) θ = π/2, (b) θ = π/3, (c) θ = π/4, (d) θ = π/6 for Configuration 2 as
functions of the parameter ρ; solid lines are normal stresses, dashed lines are shear
stresses.

parts with pure slip, as shown in Figure 1. Therefore one arrives at the problem, in which the opening
zone is placed within the shear zone.

We further model the delamination zone as a combined mode I–mode II crack (contour 00) and the
pure slip zones as mode II cracks (contour 01). In the latter case there is no crack opening, which means
that the normal displacement un is continuous across the crack contour 01. For simplicity we assume
that the slip is subjected to the Mohr–Coulomb criteria. The boundary conditions of the problem can be
presented in terms of total stresses as follows:

σn − iσt = 0 on 00,

|σt | = C − σn tanφ, σn < 0, u+n = u−n on 01,

σi j → σ∞i j at infinity.

(15)

Here C is cohesion and φ is the friction angle along the weak interface; plus and minus stand for the
upper and lower surfaces of the crack, respectively.

For simplicity we will further study the symmetric case of the perpendicular interface θ = π/2; in
this case the centre of the crack is placed at the point z = d + i0 and the contours are represented by the
symmetric intervals 00 = (−L0, L0) and 01 = (−L ,−L0)∪ (L0, L) of the range of the dimensionless
parameter ρ. The total contour is further denoted as 0 = 00 ∪01 = (−L , L).
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By introducing the dimensionless parameter

H̃ =
1

π(1+ κ)
G
|σ∞xx |

h y

d
, (16)

one can present the dimensionless stresses (normalised by σ∞xx ) on the interface as

σ̃xx(ρ)= 2H̃
1− ρ2

(1+ ρ2)2
, σ̃xy(ρ)= 2H̃

ρ(1− ρ2)

(1+ ρ2)2
, −∞< ρ <+∞. (17)

Later on, the tilde sign over the dimensionless stresses and parameters is removed. The remote vertical
compression does not play any role in symmetric arrangement, therefore σ∞yy = 0.

It follows from (17) that the normal stresses due to the wedge are tensile on the interval (−1, 1),
with the maximum at ρ = 0, while the shear stresses change sign three times when crossing the points
corresponding the values of the parameter ρ =−1, 0, 1; they have extrema of the same magnitudes at
the points specified by the values ρ =±

√
2± 1. The profiles of (17) are shown in Figure 3a for H = 1.

As mentioned, the maximum normal stresses on the interface are unbounded when d tends to zero. In
the meantime, the size of the zone with tensile stresses also tends to zero when d tends to zero.

3. Singular integral equations for the cracks on the interface

Since the interface is subjected to tension and shear, it is possible that a combined open-shear crack
appears in the central part and pure shear cracks at the periphery. These cracks can be considered
separately because the normal opening does not induce shear stresses on the interface and the jump of
the tangential displacement does not cause normal stresses.

The boundary conditions for the determination of the dimensionless normal stresses caused by crack
opening, σ crack

xx , on the interval (−L0, L0) have the form

σ crack
xx (y)− 1+ 2H

1− y2

(1+ y2)2
= 0, |y|< L0. (18)

The second boundary condition in (15) for the determination of the dimensionless shear stresses caused
by the crack opening, σ crack

xy , on the interval (−L , L) can be expressed in the piecewise form

σ crack
xy (y)+ 2H

y(1− y2)

(1+ y2)2
= 0, |y|< L0,∣∣∣σ crack

xy (y)+ 2H
y(1− y2)

(1+ y2)2

∣∣∣= C − kσ total
xx (y), σ total

xx (y) < 0, |y|> L0, y ∈ 0,

(19)

where k = tanφ is the friction coefficient and we have introduced the notation

σ total
xx (y)= σ crack

xx (y)− 1+ 2H
1− y2

(1+ y2)2
, |y|> L0. (20)

A singular integral equation (SIE) for the problem in (18) has the form

1
π

∫ L0

−L0

u(t)
t − y

dt = 1− 2H
1− y2

(1+ y2)2
, |y|< L0. (21)
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Here u(t) is a sought function proportional to the density of the normal displacement discontinuity on
(−L0, L0) that satisfies the condition of single-valuedness of the normal displacements∫ L0

−L0

u(t) dt = 0. (22)

When deriving the SIE for the boundary value problem (19), one has to remove the absolute value sign
in the left-hand side of the second equation in (19). This can be done by examining the directions of the
total shear stresses. The shear stresses caused by the shear crack should have the opposite signs as those
caused by the wedge in order to compensate for the excess in the left-hand side of the second formula
in (19). Thus, the absolute value sign can be removed by introducing the step-like function

χ(y)=
{

0 |y|< L0,

sgn[y(1− y2)] |y|> L0.
(23)

As the result, the SIE for the problem specified by (19) takes the form

1
π

∫
0

v(t)
t − y

dt =−2H
y(1− y2)

(1+ y2)2
+χ(y)(C − kσ total

xx (y)), y ∈ 0. (24)

Here v(t) is a sought function proportional to the density of the tangential displacement discontinuity
on (−L , L) that satisfies the condition of single-valuedness of the tangential displacements. The form
of this condition depends on the number of pure slip zones of the entire contour. It is obvious that, due
to the lack of friction on the central part, on the interval (−L0, L0) the shear crack in the centre always
has length greater than the length of the open zone. We further assume that the slip is on (−L , L) and
L0 < L .

If the resistance to shear stresses is small, then the slip can also grow outside (−L , L), where the
intensity of the shear stresses is the same as in the middle, but they decay slowly (see Figure 3a). Let us
further assume that the slip develops on the intervals A < |y|< B, such that the inequalities

0< L0 < L ≤ A ≤ B (25)

hold and the entire contour 0 is given by

0 = (−B,−A)∪ (−L , L)∪ (A, B). (26)

Then the conditions of single-valuedness for the SIE (24) take the form∫
−A

−B
v(t) dt = 0,

∫ L

−L
v(t) dt = 0,

∫ B

A
v(t) dt = 0. (27)

Note that if A = B then it is necessary to satisfy the second condition in (27) only.
The mode I–mode II crack length can be estimated from a criterion of crack growth, in particular by

knowing fracture toughness of the interface material, which requires calculation of the stress intensity
factors (KI, KII), respectively, at the ends of all cracks. For the estimation of the maximum L0 one
can use the condition KI = 0, otherwise the Mohr–Coulomb friction condition cannot be satisfied in the
vicinity of the mode I crack end due to unbounded tensile normal stresses, which violates the inequality
σ total

xx (y) < 0 in the second condition in (19).
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For the determination of the ends of the slip zones it is also reasonable to use the condition KII = 0,
which allows one to determine the maximum possible lengths of all slip zones. As the stress intensity
factors (SIFs) can be determined from the asymptotics of the sought function at the crack ends, one can
employ the following conditions that address KI = 0 and KII = 0:

U (L0)= 0, V (L)= 0, V (A)= 0, V (B)= 0, (28)

where
U (t)= u(t)

√
L2

0− t2, V (t)= v(t)
√
(L2− t2)(t2− B2)(t2− A2). (29)

In the next section we find analytical expressions for the SIFs in both problems (21)–(22) and (24), (27).

4. Solution for the delamination zone

The solution of the SIE (21) unbounded at the ends and satisfying (22) is given by the formula (see for
example [Muskhelishvili 1977])

u(t)=
−1

π
√

L2
0− t2

∫ L0

−L0

√
L2

0− x2

x − t

(
1− 2H

1− x2

(1+ x2)2

)
dx, |t |< L0. (30)

The integral in the right-hand side of (30) can be evaluated analytically; the solution assumes the form

u(t)=
t√

L2
0− t2

(
1+

2H√
L2

0+ 1

t2
− 2L2

0− 1
(t2+ 1)2

)
. (31)

The mode I SIF obtained from (31) has the form

KI

σ∞xx
√
πL0
= 1− 2H(L2

0+ 1)−3/2. (32)

The length of the crack is determined from the condition KI = 0. This leads to the following relationships
between the half-length L0 and the parameter H :

2H = (L2
0+ 1)3/2, L0 =

√
(2H)2/3− 1. (33)

One of these parameters can be considered as independent; let it be L0 from now on.
Then the solution bounded at both ends is given by the formula

u(t)=−t
t2
+ 2L2

0+ 3
(t2+ 1)2

√
L2

0− t2. (34)

Note that this solution exists for 2H > 1, which holds if

1
2π(1− ν)

G
|σ∞x |

>
d
h y
. (35)

It is evident from (35) that the solution does not exist only if the distance between the wedge and the
interface is essentially greater than the wedge magnitude, i.e., if the shear modulus is greater than the
remote compression.
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Figure 4. The stresses on the interface after delamination for L0 = 0.5, 1, 2; dots are
normal stress for L0 = 0.5, solid line is normal stress for L0 = 1, dashed line is normal
stress for L0 = 2, dash-dotted line is shear stress.

The crack growth is stable if d KI/d L0 < 0 and unstable if d KI/d L0 > 0. This derivative is always
positive, because

d KI

d L0
= σ∞x

d
d L0

[(
1− 2H(L2

0+ 1)−3/2)√πL0
]
= 3σ∞x

√
π

L0

L2
0

L2
0+ 1

> 0. (36)

This indicates that the growth is unstable.
The normal stresses on the interface caused by the mode I crack are found from the solution (34) by

means of the integral

σ crack
xx (y)=

1
π

∫ L0

−L0

u(t)
t − y

dt =
−1
π

∫ L0

−L0

t
t − y

t2
+ 2L2

0+ 3
(t2+ 1)2

√
L2

0− t2 dt. (37)

Evaluation of the integral in the right-hand side of (37) yields

σ crack
xx (y)=

−1
(1+ y2)2

[
(1− (2L2

0+ 1)y2)
(√

L2
0+ 1− 1

)
+ L2

0

√
L2

0+ 1(1+ y2)

+ (2L2
0+ 3+ y2)

(√
1− L2

0/y2
− 1

)]
, |y|> L0. (38)

The total stresses on the interfaces are found by substitution of (38) into (20) followed by simplifications:

σ total
xx (y)=

−y2(y2
+ 2L2

0+ 3)
(1+ y2)2

√
1− L2

0/y2, |y|> L0. (39)

Figure 4 shows the profiles of the dimensionless (divided by 2H ) shear (dash-dotted curve) and normal
stresses after appearance of the delamination zone for L0 = 0.5, 1, 2.

The normal stress attains its minimum at the point

ymin =

√√√√3L4
0+ 5L2

0+ 3+
√

9L4
0+ 6L2

0+ 9(L2
0+ 1)

3L2
0+ 2

. (40)

The minimal values of the normal stresses, σmin, are shown in Figure 5 as a function of the half-length
of the delamination zone, L0. Note that ymin =

√
3 at L0 = 0, hence min σ total

xx =−
9
8 .
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Figure 5. Minimum of normal stresses on the interface as a function of the half-length
of the delamination L0.

5. Solution for the slip zones

Let us introduce the function
F(y)= |σxy(y)| + kσ total

xx (y)−C, (41)

where σxy(y)=−(L2
0+1)3/2 y(1− y2)(1+ y2)−2 is the dimensionless shear stress on the interface caused

by the wedge with the delamination zone of the length determined with the use of (33).
The function F(y) in (41) is actually the right-hand side of the SIE in (24). It should be positive

(F(y) > 0) at least at one point in order for slip zones to appear over the interface. Three situations are
shown in Figure 6 (L0 = 0.5, 1, 2) to illustrate possible profiles of the function F(y) for the strength
parameters k = tan 15◦ and C = 0.

As is evident from Figure 6, up to three sliding zones can be formed. For instance, at L0 = 0.5 (dotted
line), F(y) < 0 outside the central part, i.e., resistance to slip at the periphery is higher than the shear
stress, thus one can expect the appearance of a single shear zone. At L0 = 1 (solid line), two symmetric
intervals exist where F(y) > 0, which indicates a possibility of three nonconnecting shear zones. When
L0 = 2 (dashed line), F(y) > 0, which corresponds to the case in which three pure shear cracks may
coalesce into one (the slip directions could be different in different parts of this zone).

Let us consider the most typical cases.
It is seen from the figures above that the slip resistance depends on the half-length L0 essentially.

Thus, at L0 > 2 one observes that min |σ total
xx |< 0.12, which, taking into account the friction coefficient

�� �� �� �� ��

����

���

���

����

� � � � � y

F(y)

Figure 6. The function in (41) for the cases L0 = 0.5, 1, 2 at k = tan 15◦ and C =
0.1; dashed line corresponds to L0 = 2, solid line corresponds to L0 = 1, dotted line
corresponds to L0 = 0.5.
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in the Mohr–Coulomb criterion, makes the term kσ total
xx insignificant as compared to the shear stresses,

which vary within the range 0.18< |σxy|< 0.25 for 2< y < 5. If the remote compression is greater than
cohesion then the term C in the SIE (24) is also small. Then the slip zones are mostly defined by the
magnitudes of the shear stresses caused by the wedge; hence, the second term in (24) can be neglected.
This means that the slip occurs over the interval (−L , L), L > L0 > 2, and L = B; see (25)–(26).

The mode II SIF at the right end of the slip zone can be found analytically as follows:

KII

|σ∞x |
√
πL
= 2H

∫ L

−L

√
L + y
L − y

y(1− y2)

(1+ y2)2
dy =−2Hπ

(
1−

2L2
+ 1

(L2+ 1)3/2

)
. (42)

The right-hand side of (42) is zero at

L∗ =
√

1
2(1+

√
5)≈ 1.272,

which indicates that for the range L > 2 one has KII < 0, i.e., the theoretical length of the sliding zone
obtained by the condition KII = 0 is infinite. In practice it can essentially exceed the length of the
delamination zone provided that the latter is greater than the distance from the wedge to the interface.

One should note that the value L∗ = 1.272 is the maximum possible half-length of the central mode II
crack in the absence of friction and cohesion. In principle, it is possible that L∗ = L0 = 1.272 and
simultaneously that KI = KII = 0, which is true if H = 2.118.

Let us analyse another limiting case, when the shear resistance on A< |y|< B is greater than the shear
stresses. Then the slip can occur only in the middle part (−L , L). Moreover, on the interval (−L0, L0),
shear resistance is absent due to delamination. The dimensionless mode II SIF at the right end in this
case is found by substituting (24) into the integral in (42):

K̃II =
KII

|σ∞x |
√
πL
= 2H

∫ L

−L

√
L + y
L − y

y(1− y2)

(1+ y2)2
dy−

∫ L

−L

√
L + y
L − y

χ(y)(C − kσ total
xx (y)) dy. (43)

Since the function χ(y) is odd (see (23)) and the term in the brackets is even, one can present the second
integral in (43) in the form

∫ L

−L

√
L + y
L − y

χ(y)(C − kσ total
xx (y)) dy = 2

∫ L

L0

y(C − kσ total
xx (y))√

L2− y2
dy. (44)

The single shear crack can propagate inside different zones; for example, for L0 = 0.5 in Figure 6 the slip
can begin within the interval (−1, 1), where the shear stress changes its direction at the origin. However,
it is also possible that the slip could take place over the large zone including the interval (−1, 1), as
is shown, for example, for the case L0 = 1.5, k = tan 15◦, C = 0.2 in Figure 7. In this case the slip
directions will be different on opposite sides of the points y =−1,+1.

Therefore, the following three scenarios are possible:
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Figure 7. The function (41) for L0 = 1.5 at k = tan 15◦ and C = 0.2.

(1) If L0 > 1, then χ(y)=−1 and (44) takes the form∫ L

−L

√
L + y
L − y

χ(y)(C − kσ total
xx (y)) dy =−

∫ L

L0

2y(C − kσ total
xx (y))√

L2− y2
dy

=−2C
√

L2
− L2

0+ kG1(L0, L), (45)

where

G1(L0, L)=
2

(1+ L2
0)

3/2

∫ L

L0

√
y2
− L2

0√
L2− y2

y2(y2
+ 2L2

0+ 3)
(y2+ 1)2

dy. (46)

In this case the final expression for KII can be presented in the form

K̃II =−π(L2
0+ 1)3/2

(
1−

2L2
+ 1

(L2+ 1)3/2

)
+ 2C

√
L2
− L2

0+ kG1(L0, L). (47)

(2) If L0 < L < 1, then χ(y)= 1 and (44) has a form similar to (45) but with the opposite sign, hence
the expression for KII takes the form

K̃II =−π(L2
0+ 1)3/2

(
1−

2L2
+ 1

(L2+ 1)3/2

)
− 2C

√
L2
− L2

0− kG1(L0, L). (48)

(3) If L0 < 1, then χ(y) can alter its sign, and if L > 1, then it is necessary to consider two integrals,
hence (44) takes the form∫ L

−L

√
L + y
L − y

χ(y)(C − kσ total
xx (y)) dy

=

∫ 1

L0

2y(C − kσ total
xx (y))√

L2− y2
dy−

∫ L

1

2y(C − kσ total
xx (y))√

L2− y2
dy

=

∫ L

L0

2y(C − kσ total
xx (y))√

L2− y2
dy− 2

∫ L

1

2y(C − kσ total
xx (y))√

L2− y2
dy

= 2C
(√

L2
− L2

0− 2
√

L2− 1
)
− k(G1(L0, L)− 2G2(L0, L)), (49)
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Figure 8. The integrals Gk(L0, L) as functions of L (solid curve for G1, dashed curve
for G2). Left: L0 = 0.1. Right: L0 = 0.5.

where

G2(L0, L)=
2

(1+ L2
0)

3/2

∫ 1

L0

√
y2
− L2

0√
L2− y2

y2(y2
+ 2L2

0+ 3)
(y2+ 1)2

dy. (50)

If L0 < 1 and L > 1, then the final expression for KII is

K̃II =−π(L2
0+ 1)3/2

(
1−

2L2
+ 1

(L2+ 1)3/2

)
− 2C

(√
L2
− L2

0− 2
√

L2− 1
)

− k(G1(L0, L)− 2G2(L0, L)). (51)

The integrals Gk(L0, L), k = 1, 2, can be expressed as elliptical integrals or computed numerically. Their
typical behaviour is illustrated in Figure 8.

The dependence of KII on L is shown in Figures 9–11 for the various strength parameters (cohesion
and friction coefficient) at L0 = 0.5.

The nearest root of the equation that comes from the condition KII = 0 should be selected for the
determination of the mode II crack length. It is evident from the figure that for L0 = 0.5 the sliding zone
length is usually less than one, apart from the case when the shear resistance is absent (solid curve in
Figure 9, left) or cohesion is negligible for low friction angles (solid curve in Figure 9, right). In the
latter case the length of the zone is greater than L∗ = 1.252.

The half-length of the sliding zones determined by the condition KII = 0 are shown in Figure 11 for
various lengths of the delamination zones, for k = tan 30◦.

0 0.5 1

1.272

2 2.51.5

1

−1

−2

KII

L 0 0.5

1

−1

−2

1.272

2 2.51.51

KII

L

Figure 9. Dependence of dimensionless KII on L for various values of the friction angle
(left) and the cohesion (right), for L0 = 0.5 and C = 0; dash-dotted line corresponds to
ρ = 0◦, dashed line to ρ = 15◦, solid line to ρ = 30◦.
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Figure 10. Dependence of dimensionless KII on L for various combinations of the fric-
tion angles and cohesion for L0 = 0.5; dash-dotted line corresponds to ρ = 0◦, dashed
line corresponds to ρ = 15◦, solid line corresponds to ρ = 30◦.

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 L0

L

Figure 11. The half-length of the sliding zone L as a function of the half-length of the
delamination zone L0 for various cohesions at k = tan 30◦; dash-dotted line corresponds
to C = 0.5, dashed line corresponds to C = 0.1, solid line corresponds to C = 0.5.

6. Three sliding zones

In order to find the length of the sliding zones one can employ the solution presented in [Gakhov 1966]
for the inversion of the Cauchy integrals on m open contours:

1
π

∫
0

ϕ(t)
t − τ

dt = f (τ ). (52)

The solution bounded at all ends has the form

ϕ(t)=−R(t)
1
π

∫
0

f (τ )
R(τ )

dτ
τ − t

. (53)

This is possible if the following conditions are satisfied:∫
0

f (τ )
R(τ )

τ j−1 dτ = 0, j = 1, . . . ,m, (54)

where R(z) is a complex-valued function defined by

R(z)=
m∏

k=1

√
(z− ak)(z− bk). (55)
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In the case considered it is possible that three symmetric slip zones can appear on a straight line; therefore
formula (55) takes the form

R(t)=
√
(t2− A2)(t2− B2)(L2− t2), Im t = 0. (56)

The right-hand side of (24) should be used as the function f (t) in (54). The conditions in (54) are
automatically satisfied for j = 1, 3 due to the odd right-hand side in (33). The rest take the form∫ L

0

h(y)
R(y)

y dy+
∫ B

A

h(y)
R(y)

y dy = 0, (57)

where we denote

h(y)= 1
2( f (y)− f (−y))=−(L2

0+ 1)3/2
y(1− y2)

(1+ y2)2
+χ(y)(C − kσ total

xx (y)). (58)

The conditions for single-valuedness of the tangential displacements should also be satisfied. Since the
right-hand side in (24) is odd, the solution of (53) is even, i.e., can be presented in the form

ϕ(t)=−R(t)
1
π

∫
0

h(y)y
R(y)

dy
y2− t2 . (59)

Therefore in (27) only two independent conditions remain, namely∫ L

0
ϕ(t) dt = 0,

∫ B

A
ϕ(t) dt = 0. (60)

Substitution of (59) in (60) leads to the following system of equations:∫ L

0
R(t)

∫ L

0

h(y)y
R(y)

dy
y2− t2 dt +

∫ L

0
R(t)

∫ B

A

h(y)y
R(y)

dy
y2− t2 dt = 0,∫ B

A
R(t)

∫ L

0

h(y)y
R(y)

dy
y2− t2 dt +

∫ B

A
R(t)

∫ B

A

h(y)y
R(y)

dy
y2− t2 dt = 0.

(61)

Therefore one has three nonlinear equations (equations (57) and (61)) for the determination of the three
unknowns L , A, B. The solution obviously depends on the parameters L0, C and k = tan ρ. The form
of the right-hand side indicates that some solutions may exist; however, the uniqueness is not obvious.
The solution of the system has been obtained numerically. Figure 12 shows the results for L0 = 0.8. In
particular, it is seen from Figure 12 that the length of the internal shear zone L is rather weakly influenced
by the values of cohesion and friction, while the influence of these parameters on the positions of the
tips of the external shear zone is much stronger, especially the influence on the position of the external
tip of the zone. It is seen that for given values of L0 and k = tan ρ the sizes of the external shear zones
decrease with increasing cohesion (which is predictable), and at some critical value of cohesion these
zones vanish. However, the numerical procedure became extremely unstable for values approaching
these critical points.
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Figure 12. Equilibrium positions of the crack tips depending on relative cohesion C
for various k: solid lines correspond to k = 0; dashed lines correspond to k = 0.1;
dash-dotted lines correspond to k = 0.33.

7. Conclusion

The problem of wedging of an elastic isotropic homogeneous plane with a weak interface has been solved
analytically. The wedge has been modelled by a pair of edge dislocations. The possibility of appearance
of either one or three sliding zones (modelled by pure shear cracks) and a delamination zone (combined
open-shear crack) along the weak interface has been demonstrated. The positions of the tips of the sliding
zones depend on the stresses due to the dislocation, external stress field and the length of the delamination
zone, which in turn is determined by the externally applied stress and stresses induced by the dislocation.
The positions of the tips of the sliding zones have been computed for a specific configuration.
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