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DYNAMIC CONSERVATION INTEGRALS AS DISSIPATIVE MECHANISMS
IN THE EVOLUTION OF INHOMOGENEITIES

XANTHIPPI MARKENSCOFF AND SHAILENDRA PAL VEER SINGH

By the application of Noether’s theorem, conservation laws in linear elastodynamics are derived by
invariance of the Lagrangian functional under a class of infinitesimal transformations. The recent work
of Gupta and Markenscoff (2012) providing a physical meaning to the dynamic J -integral as the varia-
tion of the Hamiltonian of the system due to an infinitesimal translation of the inhomogeneity if linear
momentum is conserved in the domain, is extended here to the dynamic M- and L-integrals in terms of
the “if” conditions. The variation of the Lagrangian is shown to be equal to the negative of the variation
of the Hamiltonian under the above transformations for inhomogeneities, which provides a physical
meaning to the dynamic J -, L- and M-integrals as dissipative mechanisms in elastodynamics. We prove
that if linear momentum is conserved in the domain, then the total energy loss of the system per unit
scaling under the infinitesimal scaling transformation of the inhomogeneity is equal to the dynamic M-
integral, and if linear and angular momenta are conserved then the total energy loss of the system per
unit rotation under the infinitesimal rotational transformation is equal to the dynamic L-integral.

1. Introduction

Conservation laws can be expressed as dissipative mechanisms related to the variation of the energy of the
system due to infinitesimal configurational variations in the inhomogeneities. Eshelby [1951] used the
energy momentum tensor to define the force on an elastic singularity as a variation of the total energy
of the body due to the infinitesimal displacement of the defect. Furthermore, he provided additional
insights by extending this idea in a series of papers [Eshelby 1956; 1970; 1975] through his ingenious
cutting and rewelding thought experiment. Rice [1968] independently discovered the two-dimensional
path-independent J -integral for a crack. Günther [1962] and Knowles and Sternberg [1972] derived two
additional nontrivial conservation laws (M- and L-integrals) by applying Noether’s theorem [Noether
1918] in linear elastostatics. Rice and Drucker [1967] calculated the energy changes during the growth
of voids and cracks. Budiansky and Rice [1973] interpreted these new laws as energy release rates
associated with the expansion and the rotation rates of a cavity or a crack. Rice [1985] provided further
applications of these integrals to the defects.

Fletcher [1976] extended the application of Noether’s theorem to derive the conservation laws in
linear elastodynamics, and established the completeness of the corresponding conservation laws under a
certain group of the infinitesimal transformations. Hermann [1981; 1982] presented a unified formulation
to recover the conservations laws by employing different vector calculus operations on the Lagrangian
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density. Eischen and Herrmann [1987] extended this formulation to account for material inhomogeneity
temperature gradients, anisotropy, and body forces. Herrmann and Kienzler [1999] represented these
balance laws of continuum mechanics by 4× 4 tensors.

Markenscoff [2006] expressed the conservation integrals as a variation of the total energy of the system
by extending Eshelby’s thought experiment to elastodynamics. In elastostatics, Gupta and Markenscoff
[2008] showed that the total energy dissipation due to material translation of the inhomogeneity equals
the configurational force (J -integral) times the infinitesimal displacement of the inhomogeneity, if and
only if equilibrium is preserved in the domain. They extended the proof to elastodynamics [Gupta and
Markenscoff 2012], where the variation of the Lagrangian or the Hamiltonian is equal to the dynamic
J -integral if and only if the linear momentum is conserved in the domain.

In elastodynamics, Fletcher [1976] proved that the Lagrangian functional was invariant under a certain
group of infinitesimal transformations; Kienzler and Herrmann [2000, p. 66] also have a detailed proof for
elastostatics, which we extend to elastodynamics. We impose the scaling transformation to derive the M-
integral, and for infinitesimal rotational transformation we derive the dynamic L-integral. Furthermore,
we also relate the variation of the Lagrangian to the variation of the Hamiltonian for scaling and rotation of
the inhomogeneity. This allows us to give an energy dissipative meaning to the above “if” statements and
to the dynamic J -, L-, and M-integrals as dissipated energy by mechanisms not considered in elasticity
theory [Eshelby 1951, p. 108].

2. Mathematical framework

We briefly present the mathematical framework of the derivation of the conservation integrals from
Noether’s theorem in linear elastodynamics.

Consider the Lagrangian functional [Gelfand et al. 2000; Fletcher 1976]

5L
=

∫
R

L(xα, ui , uixα
) dx1 dx2 dx3 dx4, i = 1, 2, 3, α = 1, 2, 3, 4, (1)

where R is the region of integration. In elastodynamics, the independent variables are the material
coordinates x1, x2, x3 and x4 is the time variable, and the dependent variable ui is the displacement field.
For the infinitesimal transformations on the independent and the dependent variables,

x∗α = xα + εφα(xβ, ui , ui,β)+O(ε2), i = 1, 2, 3, α, β = 1, 2, 3, 4, (2a)

u∗j = u j + εψ j (xβ, ui , ui,β)+O(ε2), i, j = 1, 2, 3, β = 1, 2, 3, 4, (2b)

where ε is the infinitesimal transformation parameter. The variation of the functional (1) is written as

δ5L
=

∫
R∗

L(x∗α, u∗i , u∗ix∗α
) dx∗1 dx∗2 dx∗3 dx∗4 −

∫
R

L(xα, ui , uixα
) dx1 dx2 dx3 dx4, (3)

where R∗ is a new region of integration. In view of equations (2a)–(2b), Equation (3) can be further
written as [Gelfand et al. 2000, p. 176]

δ5L
=

∫
R

{
∂L
∂u j
−

∂

∂xα
∂L
∂u j,α

}
δu j dx1 dx2 dx3 dx4+

∫
R

∂

∂xα

{
∂L
∂u j,α

δu j +Lδxα
}

dx1 dx2 dx3 dx4, (4)
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where (see also [Gelfand et al. 2000, Figure 10, p. 171])

δu j = u∗j (x
∗

α)−u j (xα)= {u∗j (x
∗

α)−u∗j (xα)}+{u
∗

j (xα)−u j (xα)} ≈
∂u∗j
∂xα

δxα+δu j ≈
∂u j

∂xα
δxα+δu j (5)

or
δu j = δu j − u j,αδxα. (6)

Furthermore, in terms of the transformations φα and ψ j , (4) becomes

δ5L
= ε

∫
R

{
∂L
∂u j
−

∂

∂xα
∂L
∂u j,α

}
ψ j dx1 dx2 dx3 dx4+ ε

∫
R

∂

∂xα

{
∂L
∂u j,α

ψ j +Lφα

}
dx1 dx2 dx3 dx4, (7)

where, from relation (6),
ψ j = ψ j − u j,αφα. (8)

Note that, above and in the sequel, the partial derivatives with respect to xi and t , for any A(x j , u j , u̇ j , u j,k),
are defined as

∂(A)
∂xi
=
∂(A)
∂xi

∣∣∣
exp
+
∂(A)
∂ul

ul,i +
∂(A)
∂ u̇l

u̇l,i +
∂(A)
∂ul,m

ul,mi (9a)

and
∂(A)
∂t
=
∂(A)
∂t

∣∣∣
exp
+
∂(A)
∂ul

u̇l +
∂(A)
∂ u̇l

ül +
∂(A)
∂ul,m

u̇l,m . (9b)

Under the infinitesimal transformations (2a)–(2b), the functional 5L is said to be invariant at u if

δ5L
= 0. (10)

Furthermore, if u satisfies the Euler–Lagrange equations [Gelfand et al. 2000]

∂L
∂u j
−

∂

∂xα
∂L
∂u j,α

= 0, (11)

then the first term in (7) vanishes, and it yields∫
R

∂

∂xα

{
∂L
∂u j,α

ψ j +Lφα

}
dx1 dx2 dx3 dx4 = 0. (12)

Let � be a region in three-dimensional space occupied by a linearly elastic solid, undergoing small
deformations and containing an inhomogeneity which is a surface of discontinuity in the strain and
velocity. Let u j (xi , t) denote the displacement, εi j the small strains, Ci jkl the components of the elasticity
tensor, ρ the density — which in linear elasticity is assumed constant, independent of time — and ( · ) the
time derivative, and denote the Cauchy stress by σi j = Ci jklεkl . The Lagrange density is defined as

L= T −W (13)

where the strain energy density is

W = 1
2Ci jklεi jεkl =

1
2Ci jklui, j uk,l, (14)

and the specific kinetic energy is
T = 1

2ρu̇i u̇i . (15)
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We write the total Lagrangian functional for � ⊂ R3 and [0, t] ⊂ R, and assume further L ∈ C∞,
so that L possesses continuous partial derivatives of all orders with respect to the element of its matrix
arguments on its domain of definition:

5L(ui, j , u̇i )=

∫ t

0

∫
�

L(ui, j , u̇i ) dV dt =
∫ t

0

∫
�

{T (u̇i )−W (ui, j )} dV dt. (16)

For L= T −W , the Euler–Lagrange equations (11) give

∂σi j

∂xi
−
∂(ρu̇ j )

∂t
= 0, (17)

which represents the conservation of the linear momentum. If the Euler–Lagrange equations (11) are
satisfied, then (12) should be satisfied in order for the Lagrangian functional 5L to be invariant under the
transformations (2a)–(2b). This will give the equations to derive the families φα and ψ j of infinitesimal
transformations.

Equation (12) is expanded in space and time variables as∫ t

0

∫
�

[
∂

∂xi

{
∂L
∂u j,i

ψ j +Lφi

}
+
∂

∂t

{
∂L
∂ u̇ j

ψ j +Lφ4

}]
dV dt = 0. (18)

Using (13), (18) is written∫ t

0

∫
�

[
∂

∂xi
{−σi jψ j +Lφi }+

∂

∂t
{ρu̇ jψ j +Lφ4}

]
dV dt = 0. (19)

The above relation applied to infinitesimal transformations given by equations (2a)–(2b) provides the
corresponding conservation laws for translation, scaling and rotation of the inhomogeneities (under which
the Lagrangian remains invariant), which are additional field equations and are derived in the following
section.

3. Family of infinitesimal transformations and dynamic conservation laws

In this section we extend the work of Kienzler and Herrmann [2000, p. 66] to elastodynamics in order
to obtain the family of infinite transformations under which the Lagrangian remains invariant. In this
section, for the sake of notational simplicity, we define and use

d
dxi
≡

∂

∂xi
, (20a)

d
dt
≡
∂

∂t
, (20b)

where the partial derivatives with respect to xi and t are taken as in equations (9a)–(9b), respectively.
Equation (19) is true for any arbitrary volume � and any arbitrary time interval, so we can write

d
dxi
{−σi jψ j +Lφi }+

d
dt
{ρu̇ jψ j +Lφ4} = 0. (21)
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Next, using ψ j from (8), expanded in space and time variables ψ j = ψ j − u j,lφl − u̇ jφ4, we rewrite
(21) as

d
dxi
{−σi j (ψ j − u j,lφl − u̇ jφ4)+Lφi }+

d
dt
{ρu̇ j (ψ j − u j,lφl − u̇ jφ4)+Lφ4} = 0, (22)

and we employ linear momentum balance to obtain

−σi j
d

dxi
(ψ j − u j,lφl − u̇ jφ4)+

d
dxi
(Lφl)δil + ρu̇ j

d
dt
(ψ j − u j,lφl − u̇ jφ4)+

d
dt
(Lφ4)= 0. (23)

Differentiating explicitly the terms on the left-hand side of (23) with the derivatives

dL

dxi
=
∂L

∂xi
+

∂L

∂uk, j

∂uk, j

∂xi
+
∂L

∂ u̇k

∂ u̇k

∂xi
=−σ jkuk, j i + ρu̇k u̇k,i , (24a)

dL

dt
=
∂L

∂t
+

∂L

∂uk, j

∂uk, j

∂t
+
∂L

∂ u̇k

∂ u̇k

∂t
=−σ jk u̇k, j + ρu̇k ük, (24b)

dφ j

dxi
=
∂φ j

∂xi
+
∂φ j

∂uk
uk,i ,

dφ4

dxi
=
∂φ4

∂xi
+
∂φ4

∂uk
uk,i , (24c)

dφ j

dt
=
∂φ j

∂t
+
∂φ j

∂uk
u̇k,

dφ4

dt
=
∂φ4

∂t
+
∂φ4

∂uk
u̇k, (24d)

dψ j

dxi
=
∂ψ j

∂xi
+
∂ψ j

∂uk
uk,i

dψ j

dt
=
∂ψ j

∂t
+
∂ψ j

∂uk
u̇k . (24e)

Therefore, (23) becomes

− σi j

(
∂ψ j

∂xi
+
∂ψ j

∂uk
uk,i

)
+ σi j u j,l

(
∂φl

∂xi
+
∂φl

∂uk
uk,i

)
+φlσi j u j,li + σi j u̇ j

(
∂φ4

∂xi
+
∂φ4

∂uk
uk,i

)
+φ4σi j u̇ j,i +L

(
∂φl

∂xi
+
∂φl

∂uk
uk,i

)
δil +φlδil(−σ jkuk, j i + ρu̇k u̇k,i )+ ρu̇ j

(
∂ψ j

∂t
+
∂ψ j

∂uk
u̇k

)
− ρu̇ j u j,l

(
∂φl

∂t
+
∂φl

∂uk
u̇k

)
−φlρu̇ j u̇ j,l − ρu̇ j u̇ j

(
∂φ4

∂t
+
∂φ4

∂uk
u̇k

)
−φ4ρu̇ j ü j

+L

(
∂φ4

∂t
+
∂φ4

∂uk
u̇k

)
+φ4(−σ jk u̇k, j + ρu̇k ük)= 0. (25)

Rearranging this equation as in [Kienzler and Herrmann 2000, p. 64] leads to

0=
∂φl

∂uk
[σi j u j,luk,l −W uk,iδil] [∼ u3

i,l] (26a)

+
∂φl

∂uk
[T uk,iδil − ρu̇ j u̇ku j,l] [∼ u j,l u̇2

k] (26b)

+
∂φ4

∂uk
[σi j u̇ j uk,l −W u̇k] [∼ u2

i, j u̇k] (26c)

+
∂φ4

∂uk
[T u̇k − ρu̇ j u̇ j u̇k] [∼ u̇3

k] (26d)

+
∂ψ j

∂uk
[−uk,iσi j ] +

∂φl

∂xi
[σi j u j,l −Wδil] +

∂φ4

∂t
[−W ] [∼ u2

j,k] (26e)
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+
∂ψ j

∂uk
[ρu̇ j u̇k] +

∂φl

∂xi
[T δil] +

∂φ4

∂t
[−ρu̇ j u̇ j + T ] [∼ u̇2

k] (26f)

+
∂φl

∂t
[−ρu̇ j u j,l] +

∂φ4

∂xi
[σi j u̇ j ] [∼ u j,l u̇ j ] (26g)

+
∂ψ j

∂xi
[σi j ] [∼ ui, j ] (26h)

+
∂ψ j

∂t
[−ρu̇ j ]. [∼ u̇ j ] (26i)

Setting all the coefficients equal to zero leads to the requirement that the functions φl , φ4 and ψ j satisfy
an overdetermined system of linear differential equations.

From (26a) it follows that φl must not be a function of u j . Thus,

φl = φl(xk, t); (27)

with this, part (26b) is also satisfied. From (26c) it follows that φ4 must not be a function of uk . Thus,

φ4 = φ4(xk, t); (28)

with this, part (26d) is also satisfied. From (26i) it follows that ψ j must not be a function of t . Thus,

ψ j = ψ j (xk, ul). (29)

Using relations (27)–(29), from (26e) or (26f) it follows that

∂ψ j

∂uk
= h jk(xl), (30)

that is,
ψ j = h jk(xl)uk + g j (xl). (31)

From (26h) it follows that the functions h jk(xl) are actually constants, and, due to the symmetry of the
stress tensor, the terms ∂g j/∂xi form a skew-symmetric constant matrix. Thus,

ψ j = α jkuk +�kεkil xi + r j . (32)

Because ∂ψ j/∂uk is matrix of constant coefficients, from (26e) or (26f), we further conclude that φl

must not be a function of t as well; thus,

φl = φl(xk); (33)

furthermore, φ4 must not be a function of xi as well; thus,

φ4 = φ4(t). (34)

With this, (26g) is also satisfied. Therefore, we can write

ψ j = α jkuk +�kεkil xi + r j , (35a)

φ j = β jk xk + a j , (35b)

φ4 = l0t + t0. (35c)
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Now we split the constant matrices αi j and βi j into symmetric and antisymmetric parts and, further, the
symmetric parts into spherical and deviatoric parts, as follows:

β j i = lδi j +β
′

j i +mnεni j , (36a)

α jk = lγ δk j +α
′

jk +ωnεnk j , (36b)

with l, γ , mn , ωn , β ′j i , α
′

jk being constant parameters or matrices of constant coefficients, satisfying

β ′j i = β
′

i j , α′jk = α
′

k j , β ′j j = α
′

j j = 0. (37)

With this, using (26e) and (26f) we obtain

(lγ δk j+α
′

jk+ωnεnk j )[−uk,iσi j+ρu̇ j u̇k]+(lδil+β
′

li+mnεnil)[σi j u j,l+Lδil]+l0[−ρu̇ j u̇ j+L]=0; (38)

after rearranging, we can write

l(−γ δk j uk,iσi j + γ δk jρu̇ j u̇k + δilσi j u j,l + δilLδil)+ l0(−2T +L)+ωnεnk j (−uk,iσi j + ρu̇ j u̇k)

+mnεnil(σi j u j,l +Lδil)+α
′

jk(−uk,iσi j + ρu̇ j u̇k)+β
′

il(σi j u j,l +Lδil)= 0, (39)

and we further simplify to write

l[−γ 2W + γ 2T + 2W + n(T −W )] + l0(−2T +L) (40a)

+ εnpqσi p(ωnuq,i +mnui,q) (40b)

+ (β ′ilσi j u j,l −α
′

jkuk,iσi j )+α
′

jkρu̇ j u̇k = 0, (40c)

where n = δi i is the number of space dimensions. If l0 = l, then, for the first term (40a) to vanish, we have

−2γW + 2γ T + 2W + n(T −W )− 2T + T −W = 0 =⇒ γ = 1
2(1− n), (41)

and the second term (40b) vanishes if
mn = ωn, (42)

provided that the material is isotropic, i.e., εnpqσi p[uq,i + ui,q ] = 0 [Eshelby 1975]. The third term (40c)
vanishes only if α′jk = β

′

il = 0, which means that

β j i = lδi j +ωnεni j , α j i =
1
2 l(1− n)δi j +ωnεni j and φ4 = lt + t0. (43)

Hence, we state the suitable infinitesimal transformations

φ j = ωnεni j xi + lx j + a j , (44a)

φ4 = lt + t0, (44b)

ψ j = ωnεni j ui +
1
2 l(1− n)u j +�nεni j xi + r j , (44c)

or

x∗j = x j + ε(ωnεni j xi + lx j + a j ), (45a)

t∗ = t + ε(lt + t0), (45b)
u∗j = u j + ε

(
ωnεni j ui +

1
2 l(1− n)u j +�nεni j xi + r j

)
, (45c)
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where l, t0 are constant parameters and ωn, a j , �n, r j are vectors with constant components. The vec-
tors r j and �n describe a rigid-body translation and rotation, respectively, while a j and ωn describe
material translation (coordinate translation) and material rotation (coordinate rotation), respectively, and
the parameter l represents the scaling. The above family of transformations agrees with [Fletcher 1976]
in three dimensions (n = 3). Applying the transformations indicated by equations (45a)–(45c) for the
material translation, scaling and rotation separately to (19), the conservation laws for elastodynamics are
derived in the following subsections.

3.1. Invariance of the Lagrangian under translation. For the infinitesimal translation of the material,
we utilize the transformation [Fletcher 1976] such that the new coordinates are x∗i = xi + εai and the new
time and displacement field remain invariant (t∗ = t , u∗i = ui ), where εai is the infinitesimal translation.
After comparing the transformation with equations (45) and (44), we have

φi = ai , φ4 = 0, and ψ j = 0; (46)

therefore, from (8),

ψ j =−u j,kak . (47)

Inserting the above transformation in (19) to obtain the conservation law for translation, we obtain∫ t

0

∫
�

[
∂

∂xi
{(Lδik + σi j u j,k)ak}−

∂

∂t
{ρu̇ j u j,kak}

]
dV dt = 0. (48)

The relation is true for any ak ; therefore, we get∫ t

0

∫
�

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV dt = 0. (49)

Equation (49) holds true for any arbitrary volume � and any arbitrary time interval, so we have

∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k} = 0, (50)

which is in agreement with [Fletcher 1976, Equation 3.4]. Equation (50) is an additional field equation
valid anywhere in the domain of analyticity. Ni and Markenscoff [2009] have used (50) as a field equation
to obtain the logarithmic singularity of the near field of an accelerating (generally moving) dislocation
rather than by singular asymptotics of the full solution [Callias and Markenscoff 1988].

Analogously to statics, for linear elastodynamics we define the dynamic J -integral as [Bui 1978;
Maugin 1993; Markenscoff 2006]

J dyn
k ≡−

∫
�

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV . (51)

The dynamic J -integral would be zero if the region � excludes the inhomogeneity, but it would be
nonzero if the volume � includes it. The above expression for the dynamic J -integral agrees in the static
case with [Eshelby 1959; Günther 1962; Rice 1968; Knowles and Sternberg 1972].
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3.1.1. Relation of J dyn
k with the energy release rate. If � is a region of analyticity excluding the inho-

mogeneity then, from (50), using relation (13), we can write∫
�

[
∂

∂xi
{(T −W )δik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV = 0, (52)

which, equivalently, is written as∫
�

[
∂

∂xi
{(W + T )δik − σi j u j,k}− 2 ∂T

∂xk
+
∂

∂t
{ρu̇ j u j,k}

]
dV = 0. (53)

We may write this in a form similar to [Gupta and Markenscoff 2012, Equation 10], as∫
�

∂

∂xi
{(W + T )δik − σi j u j,k} dV +

∫
�

[ρü j u j,k − ρu̇i u̇i,k] dV = 0. (54)

By considering the region of analyticity � as �=�2−�1, i.e., as the difference between two regions �2

and �1 (with �1 ⊂�2) that include the inhomogeneity, and by using the divergence theorem to convert
the first volume integral into a surface integral, we have∫

S1+S2

{(W + T )nk − σi j u j,kni } dS+
∫
�2−�1

[ρü j u j,k − ρu̇i u̇i,k] dV = 0, (55)

where ni is the outward unit normal vector to the surface S1+ S2. It follows that∫
S1

{(W + T )nk − σi j u j,kni } dS+
∫
�1

[ρü j u j,k − ρu̇i u̇i,k] dV

=

∫
S2

{(W + T )nk − σi j u j,kni } dS+
∫
�2

[ρü j u j,k − ρu̇i u̇i,k] dV = J dyn
k . (56)

We now consider the volume �1 to shrink to zero as the contour S1 shrinks onto the moving inhomo-
geneity and moves with it. As the volume �1 shrinks to zero, in view of the fact that “the elastic field
in the immediate vicinity of the moving inhomogeneity at any instant is indistinguishable from the local
field of an appropriate steady state moving inhomogeneity, for which ∂/∂t =−v∂/∂x” [Freund 1972],
the volume integral in the region �1 vanishes, so that (55) yields the expression for J dyn

k as

J dyn
k = lim

S1→0

∫
S1

{(W + T )nk − σi j u j,kni } dS, (57)

where S1 is an arbitrary surface surrounding the inhomogeneity, moving with it and shrinking upon it.
The above relation of J dyn

k agrees with [Freund 1990, p. 269] and [Markenscoff 2006, Equation 14].
This expression will relate J dyn

k to the energy release rate for the moving inhomogeneity, as treated in
Section 5.1 (see (116)).

3.2. Invariance of the Lagrangian under scaling. For the self-similar expansion of the material, con-
sider the smooth scaling such that the new coordinates and time are x∗i = xi + εlxi and t∗ = t + εlt ,
respectively, and the new displacement field is u∗i = ui +

1
2(1− n)εlui , where l is the scaling parame-

ter and n is the number of space dimensions. After comparing the transformation with equations (45)
and (44), we have

φi = lxi , φ4 = lt and ψ j =
1
2(1− n)lu j ; (58)
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therefore, from (8),
ψ j = l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
. (59)

Substituting the above transformation in (19) to obtain the conservation law for scaling, we write∫ t

0

∫
�

[
∂

∂xi

{
−σi j l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
+Llxi

}
+
∂

∂t
{
ρu̇ j l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
+Llt

}]
dV dt = 0. (60)

The relation is true for any scaling parameter l, therefore we get∫ t

0

∫
�

[
∂

∂xi

{
Lxi + σi j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
+
∂

∂t
{
tL− ρu̇ j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}]
dV dt = 0. (61)

Equation (61) holds true for any arbitrary volume � and any arbitrary time interval, so we have

∂

∂xi

{
Lxi + σi j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
+
∂

∂t
{
tL− ρu̇ j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
= 0. (62)

Equation (62) is compared to [Fletcher 1976, Equation 3.5] for a three-dimensional case (n = 3) and it
is an additional field equation valid anywhere in the domain of analyticity.

Analogously to statics, for linear elastodynamics we define the dynamic M-integral as

Mdyn
≡−

∫
�

[
∂

∂xi

{
Lxi + σi j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
+
∂

∂t
{
tL− ρu̇ j

(1
2(n− 1)u j + u j,k xk + t u̇ j

)}]
dV . (63)

The dynamic M-integral would be zero if the region � excludes the inhomogeneity, but it would be
nonzero if the volume � includes the inhomogeneity. The above expression for the dynamic M-integral
agrees in the static case with [Günther 1962; Knowles and Sternberg 1972]. After further rearrangements,
we may write the M-integral as

Mdyn
=−

∫
�

xα
[
∂

∂xi
{Lδiα + σi j u j,α}−

∂

∂t
{ρu̇ j u j,α}

]
dV, (64)

where the xi are the material coordinates for i = 1, 2, 3, and x4 = t (time variable).

3.3. Invariance of the Lagrangian under rotation. From the family of transformations we have two
types of rotation: one is rigid-body rotation (�n) and the other is material rotation (ωn). By choosing
nonzero physical rotation in equations (45) and (44) we obtain the angular momentum balance law, and
by choosing nonzero material rotation we obtain the expression for the dynamic L-integral.

3.3.1. Rigid-body rotation: �n 6= 0, ωn = 0. In the case of a rigid-body rotation of the material, consider
the smooth transformation in xi and ui such that the coordinates and the time variable remain unchanged
(x∗i = xi , t∗ = t), and the new displacement field is u∗i = ui + εilmε�m xl , where ε�m is the infinitesimal
physical rotation. After comparing the transformation with equations (45) and (44), we have

φi = 0, φ4 = 0 and ψ j = ε jlm�m xl; (65)
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therefore, from (8),
ψ j =�mε jlm xl . (66)

Inserting the above transformation in (19) to obtain the conservation law for rotation, we obtain∫ t

0

∫
�

[
∂

∂t
{ρu̇ j�mε jlm xl}+

∂

∂xi
{−σi j�mε jlm xl}

]
dV dt = 0. (67)

The relation is true for any �m ; therefore, the expression for the conservation of angular momentum is

ε jlm

∫ t

0

∫
�

[
∂

∂t
(ρu̇ j xl)−

∂

∂xi
(σi j xl)

]
dV dt = 0. (68)

The above equation holds true for any arbitrary volume � and arbitrary time interval, so we have

∂

∂t
(ε jlmρu̇ j xl)−

∂

∂xi
(ε jlmσi j xl)= 0, (69)

which is the field equation for the angular momentum balance.

3.3.2. Material or coordinate rotation: �n = 0, ωn 6= 0. In case of the material or coordinate rotation
of an isotropic material, consider the smooth transformation in xi and ui such that the new coordinates
are x∗i = xi + εilmεωm xl , new time remains unchanged (t∗ = t), and the new displacement field is
u∗i = ui+εilmεωmul , where εωm is the infinitesimal material rotation. After comparing the transformation
with equations (45) and (44), we have

φi = εilmωm xl, φ4 = 0 and ψ j = ε jlmωmul; (70)

therefore, from (8),
ψ j = ωm(ε jlmul − εklmu j,k xl). (71)

Inserting the above transformation in (19) to obtain the conservation law for rotation, we obtain∫ t

0

∫
�

[
∂

∂t
{
ρu̇ jωm(ε jlmul − εklmu j,k xl)

}
+

∂

∂xi

{
−σi jωm(ε jlmul − εklmu j,k xl)+Lεilmωm xl

}]
dV dt = 0. (72)

The relation is true for any ωm ; therefore we get∫ t

0

∫
�

[
∂

∂xi

(
εml j ulσi j + εmkl xlu j,kσi j − εmli xlL

)
+
∂

∂t
(
ρεmjlul u̇ j + ρεmlk xl u̇ j u j,k

)]
dV dt = 0. (73)

Equation (73) holds true for any arbitrary volume � and any arbitrary time interval, so we have

∂

∂xi

(
εml j ulσi j + εmkl xlu j,kσi j − εmli xlL

)
+
∂

∂t
(
ρεmjlul u̇ j + ρεmlk xl u̇ j u j,k

)
= 0. (74)

Equation (74) is compared to [Fletcher 1976, Equation 3.6]; however, Fletcher’s expression has a negative
sign in front of the second term of the first integrand on the left-hand side. In addition to equations
(50) and (62), (74) is an additional field equation of elastodynamics valid anywhere in the domain of
analyticity.
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Analogously to statics, for linear elastodynamics we define the dynamic L-integral as

Ldyn
m ≡−

∫
�

[
∂

∂xi

(
εml j ulσi j + εmkl xlu j,kσi j − εmli xlL

)
+
∂

∂t
(
ρεmjlul u̇ j + ρεmlk xl u̇ j u j,k

)]
dV . (75)

The dynamic L-integral would be zero if the region � excludes the inhomogeneity, but it would be
nonzero if the volume � includes the inhomogeneity. The above expression for the dynamic L-integral
agrees in the static case with [Günther 1962; Knowles and Sternberg 1972]. After further rearrangements,
for an isotropic material, we may write the L-integral as

Ldyn
m =−

∫
�

εmkl xl

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV . (76)

In the next section, we present these conservation laws as dissipative mechanisms for the correspond-
ing infinitesimal transformations of translation, scaling and rotation of the inhomogeneities.

4. Conservation integrals as dissipative mechanisms

With the objective of relating the conservation integrals J , M and L to the corresponding energy loss of
the system, in this section we express the variation of the Lagrangian in terms of balance laws of linear
and angular momenta and the “conserved” integrals. Subsequently, the variation of the Lagrangian will
be related to the variation of the Hamiltonian, which, in term, will be related to the total energy loss of
the system.

Equation (7) is written, after expanding in space and time variables,

δ5L
= ε

∫ t

0

∫
�

{
∂L
∂u j
−

∂

∂xi

∂L
∂u j,i

−
∂

∂t
∂L
∂ u̇ j

}
ψ j dV dt

+ ε

∫ t

0

∫
�

[
∂

∂xi

{
∂L
∂u j,i

ψ j +Lφi

}
+
∂

∂t

{
∂L
∂ u̇ j

ψ j +Lφ4

}]
dV dt, (77)

In view of equations (13)–(15), the term ∂L/∂u j vanishes, ∂L/∂u j,i = −σi j , and ∂L/∂ u̇ j = ρu̇ j ;
therefore, (77) can be written as

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt

+ ε

∫ t

0

∫
�

[
∂

∂xi
{−σi jψ j +Lφi }+

∂

∂t
{ρu̇ jψ j +Lφ4}

]
dV dt. (78)

Next, (78) is applied to the infinitesimal transformations φ and ψ corresponding to translation, scaling
and rotation of the inhomogeneities.

4.1. Translation of the inhomogeneity. For translation of the inhomogeneity, we utilize the transforma-
tion [Fletcher 1976] such that the new coordinates are x∗i = xi + εai and the new time and displacement
field remain invariant (u∗i = ui ), where εai is the infinitesimal translation of the inhomogeneity. After
comparing the transformation with equations (45) and (44), we have

φi = ai , φ4 = 0 and ψ j = 0; (79)
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therefore, from (8),
ψ j = ψ j − u j,αφα =−u j,kak . (80)

Substituting the above transformation in (78) gives [Gupta and Markenscoff 2012]

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
(−u j,kak) dV dt

+ ε

∫ t

0

∫
�

[
∂

∂xi
{(Lδik + σi j u j,k)ak}+

∂

∂t
{−ρu̇ j u j,kak}

]
dV dt. (81)

Taking the translation vector ak out of the second integral of the right-hand side, we write

δ5L
=−ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV dt

+ εak

∫ t

0

∫
�

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV dt. (82)

Taking the time derivative of the above equation, we obtain

˙δ5L =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV + εak

∫
�

[
∂

∂xi
{Lδik + σi j u j,k}−

∂

∂t
{ρu̇ j u j,k}

]
dV . (83)

From (51), the integral in the second term of the right-hand side of (83) is −J dyn
k , so we can rewrite

(83) as

˙δ5L =−

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV − εak J dyn

k . (84)

In (84), the term in the curly brackets in the integrand is the linear momentum balance expression
(Equation (17)), which vanishes by the Euler–Lagrange equations applied to the Lagrangian.

4.2. Scaling of the inhomogeneity. For the self-similar expansion, consider the smooth scaling such that
the new coordinates and time are x∗i = xi + εlxi and t∗ = t + εlt , respectively, and the new displacement
field is u∗i = ui +

1
2(1−n)εlui , where l is the scaling parameter and n is the number of space dimensions.

After comparing the transformation with equations (45) and (44), we have

φi = lxi , φ4 = lt and ψ j =
1
2(1− n)lu j ; (85)

therefore, from (8), we have

ψ j = ψ j − u j,αφα = l
( 1

2(1− n)u j − u j,k xk − t u̇ j
)
. (86)

Substituting the above transformation in (78) to obtain the variation of the Lagrangian for scaling of the
inhomogeneity, we write

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

[
∂

∂xi

{
−σi j l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
+Llxi

}
+
∂

∂t

{
ρu̇ j l

( 1
2(1− n)u j − u j,k xk − t u̇ j

)
+Llt

}]
dV dt . (87)



344 XANTHIPPI MARKENSCOFF AND SHAILENDRA PAL VEER SINGH

Taking the scaling parameter l out of the second integral on the right-hand side, we write

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt+εl

∫ t

0

∫
�

[
∂

∂xi

{
Lxi+σi j

(1
2(n−1)u j+u j,k xk+t u̇ j

)}
+
∂

∂t

{
tL− ρu̇ j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}]
dV dt. (88)

Taking the time derivative of the above equation, we write

˙δ5L = ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV + εl

∫
�

[
∂

∂xi

{
Lxi + σi j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}
+
∂

∂t

{
tL− ρu̇ j

( 1
2(n− 1)u j + u j,k xk + t u̇ j

)}]
dV . (89)

From (63), the integral in the second term of the right-hand side of (89) is −Mdyn, so we can rewrite
(89) as

˙δ5L =

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV − εl Mdyn. (90)

In (90), the term in the curly brackets in the integrand is the linear momentum balance expression
(Equation (17)), which vanishes by the Euler–Lagrange equations applied to the Lagrangian.

4.3. Rotation of the inhomogeneity. Following the lever arm (ul + xl) described by Eshelby [1956,
p. 106], and taking �n = ωn in (45) for the rotation of the inhomogeneity in an isotropic material, we
consider the smooth transformation in xi and ui such that the new coordinates are x∗i = xi + εilmεωm xl ,
new time remains unchanged (t∗ = t), and the new displacement field is u∗i = ui + εilmεωm(ul + xl),
where ωm is the rotation vector. After comparing the transformation with equations (45) and (44), we have

φi = εilmωm xl, φ4 = 0 and ψ j = ε jlmωm(ul + xl); (91)

therefore, from (8), we have

ψ j = ψ j − u j,kφk = ωm
(
ε jlm(ul + xl)− εklmu j,k xl

)
. (92)

Substituting the above transformation into (78) to obtain the variation of the Lagrangian for rotation of
the inhomogeneity, we write

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

[
∂

∂t

{
ρu̇ jωm(ε jlm(ul + xl)− εklmu j,k xl)

}
+

∂

∂xi

{
−σi jωm(ε jlm(ul + xl)− εklmu j,k xl)+Lεilmωm xl

}]
dV dt, (93)

after collecting the angular momentum balance terms, we write

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt−εωm

∫ t

0

∫
�

[
∂

∂xi
(ε jlm xlσi j )−

∂

∂t
(ρε jlm xl u̇ j )

]
dV dt

+εωm

∫ t

0

∫
�

[
∂

∂xi
(−ε jlmulσi j+εklm xlu j,kσi j+εilm xlL)+

∂

∂t
(ρε jlmul u̇ j−ρεklm xl u̇ j u j,k)

]
dV dt, (94)
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after further rearrangements we obtain

δ5L
= ε

∫ t

0

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt−εωm

∫ t

0

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV dt

+εωm

∫ t

0

∫
�

[
∂

∂xi
(εml j ulσi j+εmkl xlu j,kσi j−εmli xlL)+

∂

∂t
(ρεmjlul u̇ j+ρεmlk xl u̇ j u j,k)

]
dV dt. (95)

Taking the time derivative of the above equation, we write

˙δ5L = ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV − εωm

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV

+ εωm

∫
�

[
∂

∂xi
(εml j ulσi j + εmkl xlu j,kσi j − εmli xlL)+

∂

∂t
(ρεmjlul u̇ j + ρεmlk xl u̇ j u j,k)

]
dV . (96)

From (75), the integral in the third term of the right-hand side of (96) is −Ldyn
m , so we can rewrite (96) as

˙δ5L= ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV −εωm

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV −εωm Ldyn

m . (97)

In (97), the term in the curly brackets in the first integrand is the linear momentum balance expression
(Equation (17)) and the second integrand on the right-hand side is the angular momentum expression
(Equation (69)).

It may be noted that we obtain both the expression for the angular moment balance and the dynamic L-
integral from the variation of the Lagrangian functional because the rigid-body rotation (Equation (65))
and the material rotation (Equation (70)) are both considered. The transformation of rigid-body rota-
tion (Section 3.3.1) by itself leads to the expression for the angular momentum balance [Fletcher 1976,
Equation 3.3], and the transformation of material rotation (Section 3.3.2) leads to the expression for the
dynamic L-integral [Fletcher 1976, Equation 3.6]. By using both together we are able to obtain the
dissipative statement (97), as further discussed in the following sections.

5. Relation of the variations of the Lagrangian and Hamiltonian under the transformations of
translation, scaling and rotation of inhomogeneities

In the previous sections, Noether’s theorem was applied to the Lagrangian functional of the system from
which the conservation of linear momentum is derived as the Euler–Lagrange equations (11). In this
section, we relate the variation of the Lagrangian to the variation of the Hamiltonian under translation,
scaling and rotation of the inhomogeneities so that we can explicitly relate the conservation integrals
with energy release rates ([Gupta and Markenscoff 2012]; and private communication with Gupta).

The Hamiltonian density is defined as

H= T +W, (98)

where the strain energy density is W = 1
2Ci jklεi jεkl =

1
2Ci jklui, j uk,l and the specific kinetic energy is

T = 1
2ρu̇i u̇i . We consider the total Hamiltonian functional for �⊂ R3 and [0, t] ⊂ R:

5H(ui, j , u̇i )=

∫ t

0

∫
�

H(ui, j , u̇i ) dV dt =
∫ t

0

∫
�

{T (u̇i )+W (ui, j )} dV dt. (99)
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The functional (99) represents the total mechanical energy stored in an arbitrary part � of the body during
the time interval [0, t]. Applying (7) to the Hamiltonian (98) and expanding in space and time variables,
we write (similarly to (77) for the Lagrangian L= T −W ) the variation of the Hamiltonian functional
(99) under the infinitesimal transformation (2a)–(2b) as

δ5H
= ε

∫ t

0

∫
�

{
∂H

∂u j
−

∂

∂xi

∂H

∂u j,i
−
∂

∂t
∂H

∂ u̇ j

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi

{
∂H

∂u j,i
ψ j +Hφi

}
dV dt

+ ε

∫ t

0

∫
�

∂

∂t

{
∂H

∂ u̇ j
ψ j +Hφ4

}
dV dt. (100)

In view of equations (98), (14) and (15), the term ∂H/∂u j vanishes and ∂H/∂u j,i = σi j , and ∂H/∂ u̇ j =

ρu̇ j ; therefore, the above equation can be written as

δ5H
= ε

∫ t

0

∫
�

{
−
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi
{σi jψ j + (W + T )φi } dV dt

+ ε

∫ t

0

∫
�

∂

∂t
{ρu̇ jψ j + (W + T )φ4} dV dt. (101)

Note that the first term on the right-hand side of the above equation is not the same as the first term of
the variation of the Lagrangian (Equation (78)), which is the linear momentum balance term. Next, we
rearrange the terms so as to produce the linear momentum balance expression in the first integrand and
make a connection to the variation of the Lagrangian:

δ5H
= ε

∫ t

0

∫
�

{
−
∂σi j

∂xi
+
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi
{σi jψ j + (W + T )φi } dV dt

+ ε

∫ t

0

∫
�

{
−ψ j

∂

∂t
(ρu̇ j )+ ρu̇ j

∂

∂t
ψ j +

∂

∂t
[(W + T )φ4]

}
dV dt. (102)

We further rearrange as to produce terms with (W − T ) in the remaining terms on the right-hand side:

δ5H
= ε

∫ t

0

∫
�

{
−
∂σi j

∂xi
+
∂(ρu̇ j )

∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi
{σi jψ j + (W − T )φi } dV dt

+ ε

∫ t

0

∫
�

{
−ψ j

∂

∂t
(ρu̇ j )− ρu̇ j

∂

∂t
ψ j +

∂

∂t
[(W − T )φ4]

}
dV dt

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(Tφi )+

∂

∂t
(Tφ4)+ ρu̇ j

∂

∂t
ψ j

}
dV dt. (103)

We further rewrite this expression using (13), so that the expression in the variation of the Hamiltonian
involves the Lagrangian:

δ5H
= ε

∫ t

0

∫
�

{
−
∂σi j

∂xi
+
∂(ρu̇ j )

∂∂t

}
ψ j dV dt + ε

∫ t

0

∫
�

∂

∂xi
{σi jψ j −Lφi } dV dt

+ ε

∫ t

0

∫
�

d
dt
{−ρu̇ jψ j −Lφ4} dV dt + 2ε

∫ t

0

∫
�

{
∂

∂xi
(Tφi )+

∂

∂t
(Tφ4)+ ρu̇ j

∂

∂t
ψ j

}
dV dt. (104)
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Using (78), which is the expression for the variation of the Lagrangian, we have

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(Tφi )+

∂

∂t
(Tφ4)+ ρu̇ j

∂

∂t
ψ j

}
dV dt, (105)

which can be written, using (8), as

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(Tφi )+

∂

∂t
(Tφ4)+ ρu̇ j

∂

∂t
(ψ j − u j,iφi − u̇ jφ4)

}
dV dt, (106)

Now we employ the relation (106) of the variations of the Lagrangian and Hamiltonian to the correspond-
ing infinitesimal transformations of translation, rotation, and scaling of the inhomogeneity.

5.1. Translation of the inhomogeneity. In this case we use the transformation such that φi = ai , φ4 = 0
and ψ j = 0, i.e., translation of the inhomogeneity. Inserting it in (106) gives

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(T ai )+ ρu̇ j

∂

∂t
(−u j,i ai )

}
dV dt

=−δ5L
+ 2ε

∫ t

0

∫
�

{ρu̇k u̇k,i ai − ρu̇ j u̇ j,i ai } dV dt

=−δ5L. (107)

Thus, under an infinitesimal translation of the inhomogeneity, the variation of the Lagrangian is equal to
the negative variation of the Hamiltonian, which was already shown by Gupta and Markenscoff [2012].
Taking the time derivative of (107), we can write

˙δ5H =− ˙δ5L, (108)

which, using (84), can be written as

˙δ5H =− ˙δ5L = ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV + εak J dyn

k , (109)

where J dyn
k is defined by (51). Considering the definition of the Hamiltonian 5H(ui, j , u̇i ) according to

(99), we define δEtot as
δEtot
≡ ˙δ5H, (110)

where δEtot is the change of the total energy in the volume � under the infinitesimal transformations of
(45), evaluated at time t . The external forces are assumed to be absent. Now, from equations (110) and
(109) we can write

δEtot
= ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
u j,kak dV + εak J dyn

k . (111)

In (111), the term in the curly brackets in the integrand is the linear momentum balance expression
(Equation (17)), which will vanish due to conservation of linear momentum. So, if linear momentum is
conserved in the whole domain, then (111) can be written as

δEtot
= εak J dyn

k . (112)
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Moreover, as shown in [Gupta and Markenscoff 2012], if δEtot
= εak J dyn

k then the first term on the
right-hand side of (111) will vanish, and, if u j,k is invertible, then the term in the curly brackets (linear
momentum balance expression) will vanish since the integral is valid for any arbitrary volume �. There-
fore, (111) can be stated as the proposition that, under an infinitesimal translation of the inhomogeneity
(transformation (79)), the change of the total energy of the system per unit infinitesimal translation of
the inhomogeneity is equal to the dynamic J -integral if and only if linear momentum is conserved in the
whole domain [Gupta and Markenscoff 2012], provided that u j,k is invertible.

If the inhomogeneity is moving with the velocity ˙εak ≡ vk , then we can write the rate of the total
energy change ˙δEtot as

˙δEtot = vk J dyn
k . (113)

The above equation agrees in the static case with [Budiansky and Rice 1973; Lubarda and Markenscoff
2007]. With the expression for J dyn

k given in (57), Equation (113) yields

˙δEtot = lim
Sd→0

∫
Sd

{
(W + T )nkvk − σi j u j,knivk

}
dS, (114)

where Sd is an arbitrary surface surrounds the inhomogeneity, moving with it and shrinking on it, and
the nk are the components of the unit outward normal n to the surface Sd . Furthermore, near the core
of the moving inhomogeneity, leading-order terms of the fields satisfy the relation ∂/∂t = −vk∂/∂xk

[Freund 1972], so we can write u j,kvk =−u̇ j in (114) to obtain

˙δEtot = lim
Sd→0

∫
Sd

{
(W + T )vn + σi j u̇ j ni

}
dS, (115)

where vn is the component of the velocity of the inhomogeneity in the direction of the outward normal n
to the surface Sd . In agreement with the expression for the energy release rate into the core of the moving
inhomogeneity as given by Eshelby [1970, Equation 78] we define the energy release rate G by

vG≡ ˙δEtot = lim
Sd→0

∫
Sd

{
(W + T )vn + σi j u̇ j ni

}
dS, (116)

which represents rate of energy loss of the system flowing into the inhomogeneity under translation.
Equation (116) is in agreement with the energy release for a moving crack by [Atkinson and Eshelby 1968,
Equation 9; Freund 1972, Equation 13; Freund 1990, p. 262], for dislocations [Clifton and Markenscoff
1981] and moving phase boundaries [Markenscoff and Ni 2010; Ni and Markenscoff 2015]. As proven
in [Freund 1972], the above expression is path-independent for a crack, and will also be now for an
inhomogeneity, since it is a weaker singularity.
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5.2. Scaling of the inhomogeneity. In this case we use the transformation such that φi = lxi , φ4 = lt
and ψ j =

1
2(1− n)lu j , i.e., scaling of the inhomogeneity. Inserting it in (106) gives

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(T lxi )+

∂

∂t
(T lt)+ ρu̇ j

∂

∂t
( 1

2(1− n)lu j − u j,i lxi − u̇ j lt
)}

dV dt

=−δ5L
+ 2ε

∫ t

0

∫
�

{
lxiρu̇k u̇k,i + nlT + ltρu̇k ük + T l + 1

2(1− n)lρu̇ j u̇ j − lxiρu̇ j u̇ j,i

− ltρu̇ j ü j − lρu̇ j u̇ j
}

dV dt

=−δ5L
+ 2ε

∫ t

0

∫
�

{
nT l + T l + (1− n)T l − 2T l

}
dV dt

=−δ5L, (117)

where n is equal to number of spatial dimensions.
Thus, under an infinitesimal scaling of the inhomogeneity, the variation of the Lagrangian is equal to

the negative variation of the Hamiltonian. Taking the time derivative of (117), we can write

˙δ5H =− ˙δ5L, (118)

which, using (90), can be written as

˙δ5H =− ˙δ5L =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV + εl Mdyn, (119)

where Mdyn is defined by (63). Now, from (99) and (119), we can define

δEtot
≡ ˙δ5H =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV + εl Mdyn, (120)

where δEtot is the change of the total energy in the volume � due to the scaling of the inhomogene-
ity evaluated at time t . In (120), the term in the curly brackets in the integrand is the linear mo-
mentum balance expression (Equation (17)). Therefore, (120) can be stated as the proposition that if
linear momentum is conserved in the whole domain, then the change of the total energy of the sys-
tem per unit infinitesimal scaling εl, under the scaling transformation (85), is equal to the dynamic
M-integral.

5.3. Rotation of the inhomogeneity. In this case we use the transformation such that φi = εilmωm xl ,
φ4 = 0 and ψ j = ε jlmωm(ul + xl), i.e., rotation of the inhomogeneity. Inserting it in (106) gives

δ5H
=−δ5L

+ 2ε
∫ t

0

∫
�

{
∂

∂xi
(T εilmωm xl)+ ρu̇ j

∂

∂t
(ε jlmωm(ul + xl)− u j,iεilmωm xl)

}
dV dt

=−δ5L
+ 2ε

∫ t

0

∫
�

{
εilmωm xlρu̇k u̇k,i + T εilmωmδil

+ ρu̇ jε jlmωm u̇l − ρu̇ j u̇ j,iεilmωm xl
}

dV dt. (121)

The first term of the integrand on the right-hand side cancels with the fourth term, the second term is
zero because δil is symmetric in i and l but εilm is skew-symmetric in i and l, and similarly the third
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term is also zero because u̇ j u̇l is symmetric in j and l but ε jlm is skew-symmetric in j and l. Hence,
we obtain

δ5H
=−δ5L. (122)

Thus, under an infinitesimal rotation of the inhomogeneity, for an isotropic material the variation of the
Lagrangian is equal to the negative variation of the Hamiltonian. Taking the time derivative of (122), we
can write

˙δ5H =− ˙δ5L, (123)

which, using (97), can be written as

˙δ5H =− ˙δ5L =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV

+ εωm

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV + εωm Ldyn

m , (124)

where Ldyn
m is defined by (75). Now, from (99) and (124), we can define

δEtot
≡ ˙δ5H =−ε

∫
�

{
∂σi j

∂xi
−
∂(ρu̇ j )

∂t

}
ψ j dV

+ εωm

∫
�

[
∂

∂t
(ρεml j xl u̇ j )−

∂

∂xi
(εml j xlσi j )

]
dV + εωm Ldyn

m , (125)

where δEtot is the change of the total energy in the volume � due to the rotation of the inhomogeneity
evaluated at time t . In (125), the term in the curly brackets in the first integrand is the linear momen-
tum balance expression (Equation (17)) and the second integrand on the right hand side is the angular
momentum expression (Equation (69)). Therefore, (125) can be stated as the proposition that, for an
isotropic material, if linear and angular momenta are conserved in the whole domain, then the change of
the total energy of the system per unit infinitesimal rotation εωm , under the rotation transformation (91)
with “lever arm xi + ui ” is equal to the dynamic L-integral.

6. Dissipative propositions

6.1. Translation of the inhomogeneity. From relation (111), we state the following proposition:

Proposition 1 [Gupta and Markenscoff 2012]. Under the translation transformation of Equation (79),
the total energy loss of the system per unit infinitesimal translation is equal to the dynamic J -integral if
and only if linear momentum is conserved in the domain, provided that ui, j is invertible.

This proposition extends to elastodynamics the earlier proposition for the static J -integral [Gupta and
Markenscoff 2008].

6.2. Scaling of the inhomogeneity. From relation (120), we state the following proposition:

Proposition 2. If linear momentum is conserved in the domain, under the scaling transformation of
Equation (85) the total energy loss of the system per unit infinitesimal scaling parameter is equal to the
dynamic M-integral.

This proposition is immediately extended to elastostatics for the static M-integral.
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6.3. Rotation of the inhomogeneity. From relation (125), we state the following proposition:

Proposition 3. If linear and angular momenta are conserved in the domain, for an isotropic material un-
der the rotation transformation of Equation (91) the total energy loss of the system per unit infinitesimal
rotation is equal to the dynamic L-integral.

This proposition is immediately extended to elastostatics for the static L-integral.
These propositions express the fact that, when analyticity is lost due to the inhomogeneity (inhomo-

geneities create discontinuities in the stress), the classical energy conservation of elasticity theory is not
valid any longer. Extending his famous result (force on an elastic singularity) to the other transformations,
we quote here Eshelby [1951, p. 108]: “When all sources of internal stress and inhomogeneity within 6
are given a small displacement δξl , the energy Flδξl is available for conversion into kinetic energy or
dissipation by some process not considered in the elastic theory.”

7. Conclusions

By applying Noether’s theorem, we derived the group of infinitesimal transformations of translation,
scaling and rotation in elastodynamics under which the Lagrangian functional remains invariant and
obtained the corresponding conservation laws. For inhomogeneities, we demonstrated that, under these
transformations, the variation of the Lagrangian is equal to the negative of the variation of the Hamil-
tonian, and this provide the relations between the conservation integrals and the total energy loss of the
system due to these transformations. This leads to the propositions that, under scaling of the inhomo-
geneity, if linear momentum is conserved in the domain, then the total energy loss of the system per
unit infinitesimal scaling is equal to the dynamic M-integral, and under rotation, if linear and angular
momenta are conserved in the domain, then the total energy loss of the system per unit infinitesimal
rotation is equal to the dynamic L-integral. Thus, the propositions are physically interpreted as dissi-
pative mechanisms for the loss of the Hamiltonian energy due to translation, scaling or rotation of the
inhomogeneity; these propositions extend the static counterparts [Budiansky and Rice 1973] to elastody-
namics.
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