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SOME APPLICATIONS OF OPTIMAL CONTROL
TO INVERSE PROBLEMS IN ELASTOPLASTICITY

CLAUDE STOLZ

The aim of this paper is to present the applications of the optimal control theory to solve several inverse
problems for elastoplastic materials and structures. The optimal control theory permits to determine the
internal state of a body from the knowledge both of the initial and the final, residual, geometry resulting
from an unknown loading history.

1. Introduction

This article presents the applications of the optimal control theory to solve several inverse problems in
non-linear mechanics, more precisely elastoplastic materials. Two decades ago Prof. H. D. Bui presented,
in his book on inverse problems, some solution examples for the Cauchy problem based on control theory.
This work is an extension of the ideas presented in that work [Bui 1993] for the case of structures with
an elastoviscoplastic material behavior.

We shall start with the assumption of known constitutive equations and will only address the question
of the determination of the internal state of the body resulting from an unknown loading history. In order
to complement the missing loading data, we shall further suppose that both the initial and the final shape
of the body are known. This problem setting has several applications ranging from the identification
of causes of accidents to optimization of industrial processes and different solution methods have been
proposed; see for example [Ballard and Constantinescu 1994; Constantinescu and Tardieu 2001; Gao and
Mura 1989]. The solution proposed next is based on the optimal control theory, through the minimization
of a suitably chosen functional cost among a class of admissible loading histories, as briefly discussed
in [Stolz 2008]. It presents the additional advantage of proposing simultaneously an internal state and a
possible loading history.

The paper starts with the introduction of the solution method based on optimal control theory to inverse
problems in linear elasticity. Next a generalisation is presented for elastoplasticty and viscoplasticity. The
final complexity is reached for elastoplastic problems under cyclic loading, where the optimal control
method proved to be a powerfull tool to determine the limit cycle in elastoplasticity [Peigney and Stolz
2001; 2003] or the wear and the consequent the loss of material [Peigney 2004]. The approach is
illustrated by a series of solutions of example problems.

2. Inverse problems in linear elasticity

2A. Setting of the problem. Let us consider a material body occupying in the reference configuration
the volume �. The boundary of the body, denoted by ∂�, is partitioned in two complementary parts 0o
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Figure 1. Left: a non-well posed problem: To and uo are applied on 0o. Right: the
well-posed problem: v on 0i (dashed) and To on 0o are prescribed.

and 0i , (see Figure 1). On the 0o part, both the displacement field uo and the surface traction field To

are known.
The inverse problem, considered next is the determination of both the displacement on the boundary

part 0i and the complete displacement field u over �.
The unknown complete displacement field u should satisfy the following systems of partial differental

equations and boundary conditions:

Compatibility: ε(u)= 1
2(∇u+∇ t u), over �,

Constitutive law: σ = C : ε(u), over �,
Equilibrium: div σ = 0, over �,
Boundary conditions BCu: u = uo, on 0o,
Boundary conditions BCT: n.σ = To, on 0o.

This problem is not well posed in the Hadamard sense [Lions 1968], in the sense that existence and
uniqueness of the solution is generally not insured and that small errors in the input data will conducts to
large errors in the output data, the displacement field u. Several solution methods have been dedicated
to this problem setting: direct integration of Cauchy problem [Bui 1993; Bourgeois 1998], the quasi-
reversibility method [Lions 1968; Bourgeois 1998], etc.

The solution proposed here is focused on the application of optimal control theory. An example of
application is the steady-state heat conduction problem, where optimal control theory has been used to
determine the history of heat sources [Delattre et al. 2002].

2B. A well posed problem. The ill posed character of the initial problem setting can be corrected, by
relaxing the overdetermined data on 0o boundary and proposing data for 0i . For the overall probelm
setting, this means changing the boundary conditions (BCu) with the conditions (BCi) applied on the
complementary boundary 0i :

BCi: u = v, on 0i . (2-1)

As a consequence, boundary condition are complete, defined on complementary parts and the corrected
problem is know well posed. One can recognize, the form of a classical problem in small strain linear
elasticity.

For the optimal control problem setting we shall denote this problem as the primal problem. Moreover,
its solution usol(v, To) is then a linear function of the prescribed values on the surface tractions and
displacements boundaries: To on 0o and v on 0i .
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2C. The idea of control. The prescribed displacement v on the complementary boundary 0i , introduced
before (2-1), will now play the role of a control variable which is optimized in order to satisfy the
following condition: the solution of the primal problem usol(v, To) must match to the displacement field
uo on the boundary 0o. From a mathematical point of view, the optimal displacement v realizes the
minimum of the functional J defined as

J (v)=
∫
0o

1
2‖u(v, To)− uo‖

2 ds+ r
∫
0i

1
2‖v‖

2 ds. (2-2)

2D. The optimization method. A series of operations, adding the variational form of the primal problem
to the functional J and using the boundary conditions, transforms the problem in a new optimization
problem. The solution u of the inverse problem realizes an optimal point for the functional J:

J(u, u∗)=−
∫
�

ε(u) : C : ε(u∗) d�+
∫
0o

u∗.To ds+ h
∫
0o

1
2‖u− uo‖

2 ds+ r
∫
0i

1
2‖u‖

2 ds,

among the set of kinematically admissible fields u∗ such that u∗ = 0 over 0i .

Outline of proof. The optimal point of the functional is characterized by the canceling of its first order
variations. The variations of J are defined by

δJ=−

∫
�

(
σ : ε(δu∗)+ σ ∗ : ε(δu)

)
d�+

∫
0o

δu∗.To ds

+h
∫
0o

(u− uo).δu ds+ r
∫
0i

u.δu ds=
∂J

∂u∗
.δu∗+

∂J

∂u
.δu.

where we have set σ = C : ε(u) and σ ∗ = C : ε(u∗), and δu and δu∗ are free kinematically admissible
with 0 virtual displacements field.

The optimization of the functional J leads to two sets of equations, representing respectively the
primal and the adjoint problem.

The condition ∂J/∂u∗ = 0 corresponds to the equations of the already defined primal problem:

div σ = 0, σ = C : ε(u) over �, σ .n= To on 0o. (2-3)

The variations ∂J/∂u = 0 corresponds to the equations of the so-called adjoint problem (2-4). This
set is satisfied by the adjoint displacement field u∗ and the condition of optimality (2-5):

0= div σ ∗ over �, σ ∗.n= h(u− u0) on 0o, u∗ = 0 on 0i , (2-4)

r u = n.σ ∗ on 0i . (2-5)

One can further remark that the adjoint problem has the same structure as the primal problem, i.e.
linear elasticity and small strain. However, the physical dimensions of the fields depend on the choice
of the cost functional. This is a direct mathematical consequence of the fact that linearized elasticity is
a self-adjoint problem.

In the next section, we now extend this method for solving inverse problems in the case of viscoplastic
and elastoplastic materials.
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3. Examples of inverse problem in elastoplasticity

Consider a body � with a known local material behaviour. Starting from the initial known shape of the
body and an unknown loading history, the body occupies a different residual shape. The inverse problem
studied next should estimate both the internal state governed by the plastic strain and a loading history
compatible with the measured residual geometry.

The solution method of this inverse problem in elastoplasticity rests on several general assumptions:

• The loading history is given by the surface tractions: T (x, t f )= To, t ∈ (0, t f ) on 0o belonging to
a class of possible loading histories.

• The elastoplastic evolution problem is solved and consequently the plastic strain ε p(x, t) is an direct
output of this evolution problem.

• The optimal loading history T op is chosen among the given class of admissible loading histories,
such that the final shape, defined by the displacement field corresponding to the final time step,
i.e. u(x, t f ) matches the measured residual displacement uo. This condition is expressed by the
minimum of the cost functional J defined by

J (T , ε p, t f )=

∫
0o

r
2
‖u(t f )− uo‖

2 ds, (3-1)

which measures the mismatch between the two displacement fields.

These assumptions will permit to estimate the loading history and the internal state from the given data
uo, To. The natural control variables introduced in this problem are the histories of the surface traction
T (x, t) and the plastic strain field ε p(x, t).

To illustrate the solution of the elastoplastic inverse problem using the proposed method, let us consider
the following examples: (i) a three-bar lattice under traction, (ii) the bending of a beam in plane strain
and (iii) a hollow sphere under pressure.

In a first step, on these examples a particular solution of the direct problem is obtained in order to
define a final residual shape. In the second step, starting from this final shape as given data, the optimal
control theory provides the solution of the inverse elastoplastic problem.

3A. A three-bar lattice under traction. Let us consider the problem of an elastoplastic lattice, consisting
of three bars of lengths L1 = L , L2 = L3 = L

√
2, as depicted in Figure 2. The displacement of the point

O is denoted by u = ve1+ he2.

A B C

O

2
1

3

e1

e2

v0

h0

2
1

3

Figure 2. Three elastoplastic bars: initial (left) and residual configuration (right).
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Figure 3. The constitutive law.

In the initial state the bars are stress free. After an unknown loading and unloading history, the lattice
is in a final configuration, exhibiting a residual global displacement uo = (vo, ho). This final shape is
depending on the internal plastic strains δi

p.
Let us assume that the material behaves as an elastoplastic medium with linear hardening law as

depicted in Figure 3. The material parameters of the model are: E is the Young’s modulus, S is the
section of the bar the hardening modulus co. One defines ce = Eco/(E + co).

Under an external loading, characterized by the force (V, H) applied in O with an increasing and
decreasing amplitude the bars recover the static equilibrium in the absence of external forces and the
final position of the point O is now (vo, ho). Let us assume that the distribution of plastic stretches is
(δ p

i , i = 1, 3) in the bars.
The equilibrium state of the system in terms of displacement, stretches and normal tractions must

satisfy the set of equations:

• Compatibility:

δ1 = v, δ2 =
v+ h
√

2
, δ3 =

v− h
√

2
. (3-2)

• Constitutive behaviour:

δ1 = K N1+ δ
p
1 , δ2 = K

√
2 N2+ δ

p
2 , δ3 = K

√
2 N3+ δ

p
3 . (3-3)

• Equilibrium:

V = N1+
N2+ N3
√

2
, H =

N2− N3
√

2
. (3-4)

• Domain of reversibility:
|Ni − ciδ

p
i | ≤ Nc. (3-5)

Here c1 = S co
L
= c, c2 = c3 =

c
√

2
and K = L

E S
, Ni = Sσi , εi L i = δi , ε

p
i L i = δ

p
i .

3A1. The direct problem. For a given loading history (V (t), H(t), t ∈ [0, t f ]), one can compute the
evolution of the system taking into account the elastoplastic constitutive law. The stresses Ni , i = 1, 3,
lie in the convex set of reversibility, (3-5). The evolution of the plastic stretches is governed by the
normality rule described as

|Ni − ciδ
p
i | ≤ Nc, λi ≥ 0, δ̇

p
i = λi

Ni − ciδ
p
i

Nc
= λi ni , λi (|Ni − ciδ

p
i | − Nc)= 0. (3-6)
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In the initial configuration there is no external loads and no prestresses, therefore the lattice is consid-
ered stress free. As a consequence, the plastic stretches are identically to zero until one of the normal
traction Ni reaches the critical yield value ±Nc. The initial domain of reversibility, corresponding to the
initial elastic domain of the lattice, in terms of external loads (V, H) is obtained by solving the system
consisting of (3-2), (3-3), (3-4) with vanishing plastic stretches δ p

i = 0 and the imposing the inequations
|Ni | − Nc ≤ 0:

|N1| =

∣∣∣∣ 2V

2+
√

2

∣∣∣∣≤ Nc, |N2| =

∣∣∣∣ V

2+
√

2
+

H
√

2

∣∣∣∣≤ Nc, |N3| =

∣∣∣∣ V

2+
√

2
−

H
√

2

∣∣∣∣≤ Nc.

If the applied load (V, H) leaves the reversibility domain, plasticity occurs. In this case, after a loading-
unloading cycle a distribution of plastic stretches δ p

i is obtained in the bars of the lattice. Therefore, when
the applied stresses (V, H) return to (0, 0), the lattice will not be stress free and will exhibit a residual
shape (v p, h p). Let us denote, the residual stresses, i.e. tractions in the bars, N r

i .
For the application of an external load, starting from this state, a new equilibrium of tractions in each

bar Ni is obtained satisfying the equalities

N1 =
2V

2+
√

2
+ N r

1 , N2 =
V

2+
√

2
+

H
√

2
+ N r

2 , N3 =
V

2+
√

2
−

H
√

2
+ N r

3 . (3-7)

Again this state has to be compatible with the actual domain of reversibility, which takes into account
the existence of residual stresses: |Ni − ciδ

p
i | − Nc ≤ 0.

At the final unloaded state, when the external loads are (H, V )= (0, 0), the global displacement is
(v p, h p) and the local stretches δi = δ

ir
i of the final residual configuration satisfy the equations (3-2),

(3-3), (3-4). Let us now remark, that the internal residual stresses N r
i depend only of the incompatibility

of the plastic stretches δin =
√

2δ p
1 − δ

p
2 − δ

p
3 and

N r
1 =−

δin

K (2+
√

2)
, N r

2

√
2= N r

3

√
2=

δin

K (2+
√

2)
. (3-8)

Moreover, the residual shape satisfies

v p
=

2

2+
√

2
(δ

p
1 +

1
2(δ

p
2 + δ

p
3 )), h p

√
2= δ p

2 − δ
p
3 . (3-9)

3A2. The solution for a loading history with H = 0. Consider a loading-unloading process with H = 0.
In this case, N2 = N3 and h = 0. The phase of increasing V will be decomposed in three steps as a
function of the maximum value of Vm .

• Elastic step. For increasing V , the first part of the loading corresponds to a linear elastic response
of the lattice

v = K N1 = 2K N2, N1+
√

2N2 = V . (3-10)

This occurs under the condition Vm ≤ V1:

v =
K
√

2

1+
√

2
V, V ≤ V1

1+
√

2
√

2
Nc. (3-11)



OPTIMAL CONTROL AND INVERSE PROBLEMS IN ELASTOPLASTICITY 417

• Plasticity of bar 1. In the case when Vm ≥ V1, bar 1 is deformed plastically, starting with the
assumption δ p

2 = δ
p
3 = 0, one obtains

N1 = Nc+ cδ p
1 , K N1 = v− δ

p
1 , (3-12)

then

δ
p
1 =

v− K Nc

1+ K c
, V =

Nc

1+ K c
+

( c
1+K c

+
1

K
√

2

)
v. (3-13)

Let us consider a state δ p
1 , and a variation of the external loading V̇ > 0, then δ̇ p

1 ≥ 0 and the solution
satisfies the normality rule. This solution is valid if and only if |N2|−Nc ≤ 0. The inequality implies
that Vm ≤ V2 where V2 is given by

V2 = (1+
√

2)Nc+
K c

1+ K c
Nc. (3-14)

• Plasticity of the whole system. When Vm > V2 the three bars are deformed plastically. The system
consisting of (3-2), (3-4), (3-3) is rewritten with h = 0, δ p

2 = δ
p
3 , and the condition of plasticity:

N1 = Nc+ cδ p
1 , N2 = Nc+

c
√

2
δ

p
2 . (3-15)

Using (3-3) and (3-4), we have

v = K Nc+ (1+ K c)δ p
1 = 2K Nc+

√
2(1+ K c)δ p

2 , (3-16)

V = Nc(1+
√

2)+
cK

1+ K c
Nc+

c
1+ K c

1+
√

2
√

2
(v− 2K Nc). (3-17)

The residual displacement is obtained as

1+
√

2
√

2
v p
= δ

p
1 + δ

p
2 . (3-18)

3A3. Inverse problems. Let us assume that the residual shape is given by the displacement uo = (vo, uo).
We shall determine the best history of loading (H(t), V (t), t ∈ [0, t f ]) given by the problem of optimiza-
tion based on the functional

J = 1
2(v(t f )− vo)

2
+

1
2(h(t f )− ho)

2
=

1
2

∥∥u(δi
p)(t f )− uo

∥∥2
, (3-19)

According to this mathematical definition, the solution (v(t f ), h(t f )) of the direct problem obtained from
the optimal history is close to the measured displacement (vo, ho). Generally, the solution of this problem
is not unique, there are several local minima and some restrictions on the history and on the plastic strain
must be added to obtain a unique solution.

There are two classes of inverse problems which can be illustrated by the simple example. Class 1
consists in estimating the internal state without determining a loading history, taking as control variables
the plastic stretches. Class 2 addresses the determination of a complete history of the loading and of the
internal state.
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Class 1: Estimation of the plastic strain. In this case, the plastic stretches are the control variables and
we consider only the residual state. We seek to optimize the internal state such that the functional Jo(δ

p
i )

is minimum, where Jo is

Jo =
1
2r(v− vo)

2
+

1
2r(h− ho)

2
=

r
2

∥∥u(δi
p)− uo

∥∥2
. (3-20)

In this functional, we must solve the system satisfied by the residual state only. Eliminating the equa-
tions of compatibility, we can introduce an adjoint state (h∗, v∗) to take the equilibrium into account

simultaneously with the local constitutive law. Introducing the rigidities C1 =
1
K

, C2 = C3 =
1

K
√

2
of

each bar and the functional L, given by

L(u∗, u, δ p
i )=−v

∗C1(v− δ
p
1 )−

v∗+ h∗
√

2
C2

(
v+ h
√

2
− δ

p
2

)
−
v∗− h∗
√

2
C3

(
v− h
√

2
− δ

p
3

)
, (3-21)

the equilibrium satisfies the variational formulation

∂L

∂u∗
= 0, ∀u∗ = (h∗, v∗). (3-22)

Now the inverse problem is solved by minimization of the functional

Ĵ (u, u∗, δ p
i )= Jo+L. (3-23)

In general the functional Ĵ posseses many minima and the addition of constraints is then necessary to
ensure uniqueness.

For example we can minimize simultaneously a norm of the plastic stretches D = Nc
∑

i
1
2 L i (δ

i
p)

2,
and the functional takes the form:

J (δi
p)=

r
2
‖u(δi

p)− ur‖
2
−L+ q Nc

∑
i

1
2 L i (δ

i
p)

2.

Outline of proof. The variations with respect to u∗ ensure the equilibrium equations

N1+
1
√

2
(N2+ N3)= 0,

1
√

2
(N2− N3)= 0, (3-24)

and the constitutive law

N1 = C1(v− δ
p
1 ), N2 = C2

(
v+ h
√

2
− δ

p
2

)
, N3 = C3

(
v− h
√

2
− δ

p
2

)
. (3-25)

Denoting the adjoint stresses by

N ∗1 = C1v
∗, N ∗2 = C2

v∗+ h∗
√

2
, N ∗3 = C3

v∗− h∗
√

2
. (3-26)

From the variations with respect to u = (h, v), we obtain the equations of the adjoint state:

N ∗1 +
1
√

2
(N ∗2 + N ∗3 )= r(v− vo),

1
√

2
(N ∗2 − N ∗3 )= r(h− ho). (3-27)
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Finally the variations with respect to δ p
i give the conditions of optimality

N ∗i + q Nc L iδ
p
i = 0. (3-28)

The system is complete and has a unique solution depending on the choice of r , q .
However, if the norm D is changed into the internal stored energy W in the residual tension N r

i ,

W = 1
2 L
(
(N r

1 )
2
+
√

2(N r
2 )

2
+
√

2(N r
3 )

2), (3-29)

this energy is convex in δin but not in δ p
i , the resulting functional is not convex in δi

p and the uniqueness
is not guaranteed.

Class 2: Estimation of the loading history.
In order to obtain information about the history of loading the direct problem of evolution must be

solved for a class of loading.
For example, consider the family of radial loading given by (H, V )= µ(t)(Ho, Vo), if we assume that

during the unloading step no plasticity occurs, then the loading is characterized by the maximum of µ
and the direction (Ho, Vo).

From the given residual shape (vo, ho), we apply a loading (V, H) and assuming that the answer is
purely elastic, we can define (vm, hm) by

vm = vo+
K
√

2

1+
√

2
V, hm = ho+ K

√
2H. (3-30)

For an estimation δ p
i of the plastic stretches, the domain of reversibility is known and (V, H) must be

inside this domain. We propose to find δ p
i and (V, H) such that the displacement (v, h), satisfying the

problem of equilibrium and the domain of reversibility, is close to the displacement (vm, hm). For that
purpose we introduce the functional

J(u, u∗, δ p
i , V, H)=

r
2
‖u− um‖

2
+L+

∑
i

αi L i

2
(|Ni − ciδ

p
i | − Nc)

2. (3-31)

In this expression, the tractions Ni satisfy the constitutive law (3-3). The three constants αi are chosen
as αi = α > 0 or αi = 0 depending or whether the bar i has been deformed plastically or not.

Denoting the adjoint traction by N ∗i as in (3-26), it is easy to prove that the optimality conditions on

J with respect to u∗, that is
∂J

∂u∗
= 0 give exactly the equations (3-4), (3-3). The conditions with respect

to u:
∂J

∂u
= 0 are equivalent to the adjoint problem (ni being defined as in (3-6)):

r(v− vm)=−

3∑
i=1

niαi L i Ci (|Ni − ciδ
p
i | − Nc)+ N ∗1 +

N ∗2 + N ∗3
√

2
, (3-32)

r(h− hm)=−

3∑
i=2

niαi L i Ci (|Ni − ciδ
p
i | − Nc)+

N ∗2 − N ∗3
√

2
. (3-33)
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The optimization with respect to δ p
i gives

N ∗i −αi ni (|Ni − ciδ
p
i | − Nc)

1+ K c
K
= 0, (3-34)

and finally the optimization with respect to the loading (V, H) defines the adjoint displacement

v∗ = r(v− vm)
K
√

2

1+
√

2
, u∗ = r(h− hm)K

√
2. (3-35)

The system is complete. For a given residual shape, we must choose the αi a priori. For a solution of the
optimization, we must verify that the inequalities (3-5) are satisfied.

3A4. Inverse problem when ho = 0. In this case, it is natural to consider that δir
2 = δ

ir
3 and then H = 0,

N2 = N3 and δ2 = δ3.
We consider V ≥ 0, then ni = 1. For vo 6= 0, we consider first that the plasticity occured only in bar 1,

then α2 = α3 = 0 and δ p
2 = δ

p
3 = 0. Then, N ∗2 = N ∗3 = 0, this implies that v∗ = 0 and |N1−cδ p

1 |−Nc = 0
simultaneously with v = vm . We deduce immediatly that

v =
2K

2+
√

2
V +

2

2+
√

2
δ

p
1 , δ

p
1 =

2

2+
√

2
vo, (3-36)

V = (1+
√

2)Nc+
c

1+ K c
(v− K Nc)+

K
√

2
v. (3-37)

This is the solution if the traction in the bars (2 and 3) are in the domain of reversibility (N2 ≤ Nc). This
condition implies v = 2K N2 < 2K Nc that is equivalent to V ≤ V2. If this condition is not fulfilled, we
consider that α2 = α3 = α and u∗ = 0. The equilibrium implies that

V =
v

K
1+
√

2
√

2
−
δ

p
1 + δ

p
2

K
, v p

=

√
2

1+
√

2
(δ

p
1 + δ

p
2 ). (3-38)

Using the definition of the adjoint stresses (3-26), the optimisation with respect to δ p
i two relations and

the optimisation with respect to v we obtain

v∗ = α(N1− cδ p
1 − Nc)(1+ K c), (3-39)

v∗ = 2α
(

N2−
c
√

2
δ

p
2 − Nc

)
(1+ K c), (3-40)

r(v p
− vo)=−

1+
√

2

K
√

2
v∗+

1+ 2
√

2
K (1+ K c)

v∗. (3-41)

The optimality condition (3-35), after the elimination of v, implies that v∗ = 0 and v p
= vo. The value

of V is recovered.
For the given residual state obtained from a radial loading-unloading history, we recover the maximum

loading and the internal state using the optimal control theory.

3B. Study of an elastoplastic beam in plane motion. The beam is initially rectilinear. After an unknown
vertical distribution of loading, the beam takes a residual shape due to plastic strain.
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Po.x/

L

M.up; vp/

2h

xp L � xp

ex

ey

y D ˙m.x/

�p

�p

Figure 4. The initial state and final state (- -) of the beam. The geometry and the plastic
zone �p.

The goal of the inverse problem is to estimate a plastic strain distribution with an associated loading
which is compatible with this residual shape.

The plane motion of the beam is characterized by the displacement u along ex and a vertical displace-
ment v in direction ey . We consider that u(0, t)= v(0, t)= v(L , t)= 0. We assume that the stress and
the total strain are uniaxial:

σ = σ ex ⊗ ex , ε = (u′+ yv′′)ex ⊗ ex , (3-42)

and the plastic strain is described by the function α(x, y):

ε p = α(x, y)ex ⊗ ex . (3-43)

Then the free energy is given by

w(u, v, α)= 1
2 E(u′+ yv′′−α)2+ 1

2 Hα2. (3-44)

The thermodynamical force A associated to the plastic strain must be within the domain of reversibility

A = σ − Hα, f (A)= ‖A‖− k ≤ 0, (3-45)

and the evolution of the plastic strain inside the beam is given by the normality rule.

α̇ = λA/‖A‖, λ f = 0, λ≥ 0, f ≤ 0. (3-46)

For a given distribution of α and a given pressure on the beam, the displacement (u, v) minimizes the
potential energy of the beam

E(u, v, α)=
∫ L

0

∫ h

−h
w dy dx +

∫ L

0
p(x)v(x) dx . (3-47)

The traction N and the moment M are defined as

N = E S(u′−< α >), M = E Iv′′− E S〈yα〉, (3-48)
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where S = 2h, I = 2
3 h3, 〈 f 〉 =

1
2h

∫ h

−h
f dy. With these notations, the equilibrium of the beam satisfies

N,x = 0, M,xx + p = 0, N (L)= 0, M(0)= M(L)= 0. (3-49)

Then the thermodynamical force A is

A =
N
S
+ E〈α〉+ y

(
M
I
+

E S
I
〈yα〉

)
− (E + H)α. (3-50)

The norm of A does not exceed k.

3B1. The direct problem for a loading-unloading process. For a distribution of pressure p(x)=µ(t)Po(x)
with µ(t)= qt for t ∈ [0, tm] and µ(t)= q(tm − t) for t ∈ [tm, 2tm], we solve the direct problem.

We consider that the plastic zone �p is symmetric with respect to ex , then α(x, y, t)= α(x,−y, t).
The value of the thermodynamical force A determines the form of α(x, y):

α(x, y, t)= αo(x, t)+ yα1(x, t). (3-51)

The evolution of the beam follows three phases: a response purely elastic, an evolution with plasticity,
and a purely elastic unloading.
• Elastic phase: For the proposed loading, the response of the beam is linear elastic when f (A)≤

0,∀(x, y) and
α(x, y)= 0 for t < tc.

At t = tc some points of the beam are such that f (A)= 0. After this critical time (t > tc), the plasticity
develops inside the beam, the boundary of the plastic zone �p is the plane curve y =±m(x, t).
• Phase of loading in plasticity: In the plastic zone �p

�p = {(x, y) ∈�/ y ≤−m(x, t), y ≥ m(x, t), x ∈]x p(t), L − x p(t)[ }, (3-52)

the thermodynamical force A(x, y) satisfies A = k, this implies that

αo =−
k

E + H
, 〈yα〉 =

1
2h

∫ m

−h
yα dy. (3-53)

And we obtain
M
I
+

k E
I (E + H)

(h2
−m2)−

2E
3I

m3α1− Hα1 = 0. (3-54)

The plastic strain is then determined if we know the equation of the curve y =±m(x, t).
In the complementary domain, namely, −m(x, t)≥ y ≥ m(x, t) for x ∈ [x p(t), L − x p(t)], the local

response is purely elastic:

A =
My
I
+

2Ey
I

k
2(E + H)

(h2
−m2)+

2Ey
3I

α1(h3
−m3). (3-55)

On the boundary of this domain, the continuity of A determines the equation of the boundary y =
−m(x, t):

−k =
Mm

I
+

2Em
I

k
2(E + H)

(h2
−m2)+

2Em
3I

α1(h3
−m3). (3-56)
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In the complementary domain, namely for x ∈ ]0, x p[ ∪ ]x p, L[, we have

A =
My
I
. (3-57)

For the sake of simplificity, we consider now the case of perfect plasticity, H = 0, for which an explicit
equation for the boundary is obtained:

m(x, t)=

√
3
(

h2+
M(x, t)

k

)
. (3-58)

The local fields satisfy the equations

u(x, t)= 0, (3-59)

v′′(x, t)=
k

Em
if x ∈ [x p(t), L − x p(t)], (3-60)

v′′(x, t)=−
M
E I

otherwise, (3-61)

and the plastic strain is

α(x, y)= k
E

(
sign(y)− y

m

)
. (3-62)

These equations are true for t ∈ [0, tm]. At t = tm the moment M is maximum Mm .
• Phase of unloading: From t ≥ tm the loading decreases. Let us assume that the loading rests within

the domain of reversibility, then λ(x, y)= 0 and the unloading is purely elastic and that we obtain the
value M(x, 2tm)= Mm(x) at t = 2tm then the solution satisfies:

• In the plastic zone, namely for x ∈ [x p(tm), L − x p(tm)],

v′′f (x)= v
′′(x, 2tm)=

k

E

√
3
(

h2+
Mm(x)

k

) + Mm(x)
E I

= ψ(Mm). (3-63)

• In the complementary part,
v′′f (x)= 0= ψ(Mm). (3-64)

This solution determines the residual shape if the condition of elastic unloading is satisfied that is
M(x, t)≤− 2

3 kh2.
The distribution of the moment Mm depends only on Po(x) and then the residual shape is governed

by the equations

M ′′m = Po, v′′ = ψ(Mm), Mm(0)= Mm(L)= 0, v(0)= v(L)= 0. (3-65)

3B2. The inverse problem. We assume that the residual displacement vo is given, and we try to determine
the best process p of loading-unloading which gives a displacement v(p) as close as possible to vo by
solving the direct problem. The loading p is controlled such that the functional

J (p)= 1
2

∫ L

0
(v(p)− vo)

2 dx + 1
2

r
∫ L

0
p2 dx . (3-66)
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For a given family p(x, t) we can solve the direct problem, and then optimize J . The equations of the
direct problem are equivalent to the variational form by introducing the functional L, which depends on
adjoint fields:

L=

∫ L

0

(
M∗(p−M ′′)+ v∗(ψ(M)− v′′)

)
dx . (3-67)

The solution of the inverse problem is obtained as optimization of J = J +L, the variations for the
adjoint fields give rise to the equations of the direct problem, and the condition of optimality is obtained
as a boundary condition:

0=
∫ L

0
(M∗+ r p) p∗ dx . (3-68)

Assume that vo(x) is the solution of the elastoplastic problem with Po(x)= po. The goal of the inverse
problem is to find the best p(x, t) for which the displacement v(p) is close to vo.

The analysis with uniform p(x, t) gives the exact solution. It is obvious because the solution of
the direct problem with uniform p satisfies the equations of the inverse problem and the condition of
optimality determines the value of p.

Other profiles for P(x) can be used. For example, the choice of a triangular shape or a sinus shape
for Po(x) gives a very close plastic zone. This can be shown numerically. The error on the shape does
not exceed 1%.

4. Estimation of the internal state in elastoplasticity.

Consider now a body �. The body is submitted to an increasing loading, but the history of the loading
is not known. Only the final shape uo and the final loading To on the boundary 0o are known.

For an elastoplastic material, the stress satisfies the constitutive law

σ = C : (ε(u)− ε p), f (σ , ε p)≤ 0, (4-1)

where the domain of reversibility f (σ , ε p)≤ 0, is defined by the convex function f .
These stresses are in equilibrium with given boundary conditions (To on 0o) and are divergence free

if there is no body force:

div σ = 0 over �, n.σ = To over 0o. (4-2)

The plastic strain is isochoric:
Tr ε p = 0. (4-3)

To estimate the internal state, from the known residual shape, we can solve a problem of linear elasticity
controlled by ε p: find the displacement v satisfying the following conditions:

• Compatibility: 2ε(u)=∇u+∇ t u,
• Constitutive law: σ = C : (ε− ε p),

• Boundary condition: n.σ = To over 0o, u = 0 over 0i .

The best estimation of ε p must be such that on 0o the displacement solution of the direct problem
vsol(ε p) is close to uo on 0o.
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Previously, we proposed to solve the problem of evolution for an elastoplastic material for a given
class of loading history, but this is a tedious task, because we must solve the direct problem many times
to determine the optimal state. We propose to consider another way to estimate the elastoplastic state.

To obtain a solution of the optimization close to a problem of elastoplasticity, we decompose the body
� into two domains, one where ε p = 0 and a plastic zone �p where the stresses are close to the domain
of reversibility.

These constraints are prescribed during the optimization process by introducing new terms in the
functional to minimize:

J (u, ε p, �p)=
1
2

∫
0o

h‖u− uo‖
2 d�+ β

2

∫
�p

(
f (σ (u, ε p), ε p)

)2 d�. (4-4)

The yielding function f (σ , ε p) is rewritten in terms of the local behaviour:

f (σ (u, ε p), ε p)= Y(ε(u), ε p). (4-5)

To satisfy the problem of equilibrium, we introduce an adjoint state such that∫
�

∇u∗ : C : (∇u− ε p) d�−
∫
0o

u∗.To ds= 0 for all u∗ satisfying u∗ = 0 over 0i , (4-6)

where the constitutive law has been taken into account. The displacement u and the adjoint displacement
u∗ are continuous along the boundary of the plastic zone.

Then, the functional to be optimized is reduced to

J(
?u, u, ε p, �p)=

1
2

∫
0o

h‖u− uo‖
2 d�+

β

2

∫
�p

(Y(ε(u), ε p))
2 d�,

−

∫
�

∇
?u : C : (∇u− ε p) d�+

∫
0o

?u.To ds.

4A. Elements of proof. The displacements u and ?u are continuous on the boundary of the plastic zone
0p, therefore their variations satisfy Hadamard conditions of continuity along 0p. When the position of
0p is moved by its normal velocity δφ, the variations of the displacement satisfy

|[δu]| + δφ|[∇u]|.n= 0, |[δ ?u]| + δφ|[∇ ?u]|.n= 0. (4-7)

• Variations with respect to ?u (∂J/∂
?u = 0) are equivalent to the equations of the direct problem for a

given distribution of ε p

σ = C : (ε(u)− ε p), div σ = 0, σn= To over 0o, |[σ ]|.n= 0 over 0p. (4-8)

• The variations with respect to u (∂J/∂u = 0) determine the adjoint state:

?
σ = C : ε(

?u)−βY
∂Y
∂ε

over �p,

?
σ = C : ε(

?u) over �/�p,

div ?
σ = 0,

?
σ .n= h(u− uo) over 0o,
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|[
?
σ ]|.n= βY

∂Y
∂ε
.n over 0p.

• The condition of optimality with respect to ε p determines the plastic strain

dev(C : ∇ ?u)+βY
∂Y
∂ε p
= 0, (4-9)

where dev(a)= a− tr(a)I/3.

• Variation with respect to the domain �p. Finally, the condition of optimality on the plastic zone
gives an equation of continuity of the energy

−
∣∣[ε( ?u) : C : (ε(u)− ε p)]

∣∣+ σ : ∣∣[∇ ?u]∣∣+ ?
σ− :

∣∣[∇u]
∣∣+ 1

2βY2
= 0. (4-10)

This optimization permits the determination of a plastic zone with an evaluation of the plastic strain.
The quality of the solution depends on the choice of the coefficients α, β, k. That can be investigated

through analytical solutions for elastoplastic materials on simple geometries such as cylinders or spheres.
Consider the solution of a direct problem of an increasing loading process. The final state is a distribu-

tion of ε p, such that along the boundary of the plastic zone, the plastic strain is ε p = 0, and f = 0. Then
it is obvious that the solution of the evolution problem satisfies the minimum of the proposed functional.
It can be noticed that the condition of optimality (4-10) is verified, because the plastic strain vanishes on
0p and Y= 0, the other contributions are identically zero because the elastic moduli are continuous, the
displacements u, the traction σ .n are continuous and ?

σ = 0, ?u = 0.

4B. Case of a hollow sphere. The solution of a hollow sphere under radial tension is well known for an
elasto perfectly-plastic material. The external radius of the sphere is Re, the radius of the void is Ri and
the porosity is c = R3

i /R3
e (see Figure 5). For an increasing loading the internal state is determined and

is used for the boundary conditions applied to Re for the inverse problem.

4B1. Solution of the direct problem. The plastic zone �p is the spherical domain r ∈ [Ri , Rp], where
p = R3

p/R3
e . The solution is purely radial: u = u(r)er . The Cauchy stress is given by

σ = σrr (r)er ⊗ er + σt t(r)(eθ ⊗ eθ + eφ ⊗ eφ), (4-11)

Re

Ri

Rp

T D 0

u D ERe

Rp?

T D 0
u D EmRe

�rr D †m

Figure 5. The hollow sphere. Left: the direct problem. Right; the inverse problem under
given boundary conditions on Re. On the dashed circle the displacement is prescribed,
on the solid-line circle the traction is given.
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and the domain of reversibility is determined by Y = σt t − σrr − σo ≤ 0 where σo is a constant. The
plastic strain has the form

ε p = εp(2er ⊗ er − eθ ⊗ eθ − eφ ⊗ eφ), εp =
3κ + 4µ

18κµ
σo

(
1−

R3
p

r3

)
. (4-12)

For an increasing imposed E the global response of the sphere is

6 = 3K (c)(E − E p)= σrr (Re), K (c)= (1− c)
4κµ

3κc+ 4µ
, (4-13)

E =
u
r
(Re), E p =

3κ + 4µ
18µκ

σo

1− c

(
p− c− c ln

p
c

)
. (4-14)

During the loading process,

E = 2σo
3

( p
4µ
+

1
3κ

(
1+ ln p

c

))
, 6 =

2
3
σo

(
1− p+ ln p

c

)
, σrr = 2σo ln r

Ri
over �p.

We remark that the radius Rp of the plastic zone is a increasing function with E .

4B2. The inverse problem. We assume that the measurement on the external boundary of the sphere is
the strain Em and the tension 6m . We consider that the fields depend only upon r and ε p is isochoric,
then the function J is

J(u, ?u, εp, Rp)=
1
2

h R2
e

(
u(Re)

Re
− Em

)2

+
β

2

∫ Rp

Ri

Y2r2 dr −
∫ Re

Ri

∇
?u : C : (∇u− ε p) r2 dr + R2

e 6m u∗(Re), (4-15)

where Y is evaluated in terms of u(r) and εp:

Y= 2µ
(u

r
−

du
dr

)
+ 6µεp − σo.

The plastic domain is controlled by Rp. The plastic zone must be optimized. The variations with
respect to εp give

4µ
(

du∗

dr
−

u∗

r

)
− 6βµY= 0. (4-16)

The variations with respect to u(r) furnish the equations of the adjoint state:

0=
dσ ∗rr

dr
+

2
r
(σ ∗rr − σ

∗

t t) if r ≥ Rp, (4-17)

0=
dσ ∗rr

dr
+

2
r
(σ ∗rr − σ

∗

t t)− 2µβ
(

dY
dr
+

3
r

Y
)

if r ≤ Rp, (4-18)

where the local constitutive law ?
σ = C : ε(

?u) has been taken into account. Then the adjoint displacement
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?u satisfies

u∗ =
{

aer + Be/r2 if r ≥ Rp,

u∗ = apr + Bp/r2 if r ≤ Rp,
(4-19)

and the local function Y is then deduced:

Y=− 2
3α

r d
dr

(u∗

r

)
=

2Bp

βr3 . (4-20)

Having determined Y, the stresses in �p are obtained by integration of local equations of equilibrium
resulting from the variations of J with respect to ?u:

σrr = 2σo ln
r
Ri
+

4Bp

3β

(
1
r3 −

1
R3

i

)
. (4-21)

We also know σt t from Y and 3Tr(ε)= σrr + 2σt t gives the displacement in �p:

3κ(r2u− R2
i ui )= 2σor3 log

r
Ri
+

4Bp

3R3
i β
(r3
− R3

i ). (4-22)

Along r = Rp we obtain

3κ
(

p
u p

Rp
− c

ui

Ri

)
=

2σo

3
p log

p
c
+ (p− c)

4Bp

3βR3
i

. (4-23)

Finally the problem of optimization is reduced to the system (Bp = bp R3
p, Be = be R3

p)

6m = 3κa− 4µb p,

σ ∗rr (Re)= 3κae− 4µbe p = h Re(a+ bp− Em),

ae+ be = ap + bp,

3κap − 4µbp p/c = 2µα f (Ri )=−
4µp

c
bp,

3κ(ae− ap)− 4µ(be− bp)= 4µbp,

3κa− 4µb = 2σo ln
p
c
+

4
3β

bp

(
1−

p
c

)
.

It is obvious that ap = 0. For a given Rp this system has an unique solution.
To this system, we must add the condition (4-10), corresponding to the variation of the functional with

respect to Rp.
Assuming that (Em, 6m) is a solution of the direct problem (E, 6), the solution of inverse problem

is obtained taking bp = 0 and the adjoint field ?u = 0. Along r = Rp, we have Y= 0. As a consequence,
we can now recover the solution of the direct problem.

However for boundary conditions, 6m = 6 +16 and Em = E +1E , where the 6m, Em is not a
solution of a direct problem under radial loading, the solution of the inverse problem is the sum of the
solution of the direct problem and of that of the gap between it and the solution at Rp. It is easy to show
that the solution is unique, especially the radius Rp is close to the radius obtained by the direct problem
if the measured strain Em is close to E .
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This analysis can be extended to the case of elastoplasticity with linear hardening, and the final con-
clusions of such an extension are quite similar to the present case. The problem for elastoplastic material
is not always regular, and the proposed variational approach is not general.

Next, the case of viscoplasticity is investigated as a regularisation of the elastoplastic problem.

5. Boundary control and extension in viscoplasticity

Let � be a domain with external boundary ∂�. The body has an elastoviscoplastic behaviour. The
state of the body is defined by the value of the strain ε and internal parameters α. The local behaviour
is defined by a free energy w(ε, α) and we assume that the internal state has an evolution satisfying
the normality rule defined by a potential of dissipation 8. The free energy is defined classically as a
reversible part due to elasticity and energy embedded in the residual stresses and hardening

w(ε, α)= 1
2(ε−α) : C : (ε−α)+W (α). (5-1)

The state equations are given by

σ =
∂w

∂ε
= C : (ε−α), A =−

∂w

∂α
, (5-2)

and the evolution of the internal state satisfies

α̇ =
∂8

∂A
. (5-3)

We seek an estimation of the loading history along a part 0T knowing both the initial state of the body
and the final position at final time t f of 0T .

In linearized elasticity, the problem is easy to solve. Assuming that we know the displacement of
the boundary, it is easy to determine the resulting traction on the boundary. Here the problem is more
difficult because the final state depends in a fundamental the history of the loading, and this loading path
is unknown.

The optimal control theory is used to give some possible answers to the problem of estimating the
internal state, while simultaneously providing an optimal loading history compatible with the given
residual shape.

Consider that the initial state is naturally u(x, to)= 0, α(x, to)= 0,∀x ∈�. On 0u the displacement
is prescribed u(x, t)= 0. The final state u(x, t f )= uo(x) is known along the complementary part 0T of
the boundary. We seek the best history of the loading To(x, t) applied on 0T and the internal state α(x, t)
such that the resulting displacement along 0T is close to the measured displacement uo at time t f .

For a given history To(x, t) imposed on 0T we determine the solution u(x, t), α(x, t) satisfying the
primal problem of evolution corresponding to the set of equations

• Compatibility: 2ε(u)=∇u+∇ t u over �, u = 0 along 0u .

• Equilibrium: div σ = 0 ove r�, n.σ = To along 0T .

• Constitutive law: σ =
∂w

∂ε
= C : (ε−α), A =−

∂w

∂α
, α̇ =

∂8

∂A
.

For this behaviour, the displacement u, the local state ε, α and the stresses σ are functions of position
and time.
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In particular, the solution of the problem of evolution at t f defines the displacement u(x, t f ) along 0T .
The best history To(x, t) is determined by an optimality condition. The function to optimize is chosen
as

J (u, To)=

∫
0T

1
2 k‖u(x, t f )− uo(x)‖2 ds+

∫ t f

0

∫
0T

1
2 Ṫo.H.Ṫo ds dt. (5-4)

To solve the problem, we adopt a variational form of the primal problem of evolution by introducing
the functional L:

L=−

∫ t f

0

∫
�

(ε̇, α̇)t .W.(ε∗, α∗) d� dt+
∫ t f

0

∫
0T

Ṫo.u∗ ds dt+
∫ t f

0

∫
�

(
A∗.
(
− α̇+

∂8

∂A

)
−α∗. Ȧ

)
d� dt.

where W is related to the second derivative of the free energy

[
σ̇

− Ȧ

]
=

 ∂2w

∂ε ∂ε

∂2w

∂ε ∂α

∂2w

∂α ∂ε

∂2w

∂α ∂α

.[ε̇
α̇

]
=W(ε, α).

[
ε̇

α̇

]
. (5-5)

Let us introduce the notation[
σ̇

Ḃ

]
=W(ε, α).

[
ε̇

α̇

]
,

[
σ ∗

B∗
]
=W(ε, α).

[
ε∗

α∗

]
. (5-6)

The variations of L are

δL=−

∫ t f

0

∫
�

(
δε̇ : σ ∗+ δα̇B∗+ δε∗σ̇ + δα∗ Ḃ

)
d� dt+

∫ t f

0

∫
0T

(δṪo.u∗+ Ṫo.δu∗) ds dt

+

∫ t f

0

∫
�

(
δA∗.

(
− α̇+

∂8

∂A

)
+ A∗

(
− δα̇+

∂28

∂A ∂A
δA
)
− δα∗ Ȧ−α∗δ Ȧ

)
d� dt.

Due to the integration over the history t ∈ [0, t f ], the variations of the functional give the rate equations
of the quantities and conditions at final time t f . It is obvious that the variation with respect to u∗ gives
directly that σ̇ is statically admissible with the prescribed history loading on 0T :

div σ̇ = 0, n.σ̇ = Ṫo. (5-7)

The variation with respect to A∗ implies the evolution of the internal state α, and the variation with
respect to α∗ implies the constitutive law: Ȧ+ Ḃ = 0. Conversely the variations with respect to u, α lead
to the adjoint problem:

• Equilibrium:

div σ̇ ∗ = 0, n.σ̇ ∗ = 0 on 0T .

• Boundary condition:

u̇∗(x, t)= 0, u∗(x, t f )= 0 along 0u .
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• Constitutive law:

A∗+ B∗ = 0, α̇∗ =−
∂28

∂A ∂A
A∗, α∗(t f )= 0,

σ ∗(x, t f )= C : ε∗(x, t f ) over �.

To ensure the existence of a solution, the two potentials w,8 must have regular second derivative.
To obtain an estimation of the loading history and of the internal state compatible with the measured

displacement uo over 0T at time t f the functional to optimize is J = J + L and the conditions of
optimality are then

0= u∗+ H.Ṫo on 0T , (5-8)

0= n.σ ∗(t f )+ k(u(t f )− uo) on 0T , (5-9)

where the first condition gives the boundary condition on 0T for the adjoint displacement and the second
one is imposed by the variation with respect to u(t f ).

It can be noticed that the adjoint problem is a viscoelastic problem, whose modulus of viscosity
depends on the primal solution. The viscoplastic potential of dissipation must be regular. Due to the
dependance of time in viscoplasticity, the inverse problem must be solved numerically. The solution
depends on the duration and the solution is obtained by a optimization with respect to t f .

5A. Cyclic loading. The extension of the presented solution method for cyclic loading has been per-
formed to determine the cyclic asymptotic answer of viscoplastic structures with applications to fatigue.
In this case the functional L is not changed, and the cost function J is chosen as a measure of the gap
on periodicity on the generalized stress space A= (σ , A). Such a cost functional is, for example,

J (A)=
∫
�

1
2(A(T )−A(0)).H.(A(T )−A(0)) d�. (5-10)

The solution is obtained by a resolution of a problem of minimization, the uniqueness is proved in
[Peigney and Stolz 2003].

6. Conclusion

This article proposed a general method for resolution of inverse problems in elastoplasticity. The for-
mulation is based on the definition of the control variables: the plastic strain and the history of loading.
For each class of inverse problems, an appropriate functional is chosen. The solution stems from the
introduction of an adjoint state solution of the adjoint problem. In elasticity, the adjoint problem has
the same form than the primal problem. Applications on bars and on a beam have been presented with
analytical resolutions. They give the main ideas developed in this article and are illustrations of the
method based on optimal control. In elastoplasticity, for the estimation of the plastic strain and the
plastic zone, the solution of the inverse problem for the given examples is the sum of the solution of the
primal one and of an elastic one given by the adjoint state which measures the discrepancy with respect
to the exact solution.

A general formulation is obtained in elastoviscoplasticity. In this case the solution is given by the
introduction of an adjoint state, which is the solution of a viscoelastic problem whose characteristics are
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given by the primal solution. In this general case, the problem to solve is dependent upon the history of
the local fields. Other applications and examples can be found in [Bourgeois 1998].
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