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HARMONIC SHAPES IN ISOTROPIC LAMINATED PLATES

XU WANG AND PETER SCHIAVONE

Harmonic shapes are known to minimize stress disturbance when introduced into an elastic body as either
holes or inclusions. This paper is concerned with the design of harmonic shapes in an isotropic laminated
plate. Specifically, we require that the harmonic shape does not disturb the sum of the two normal
membrane stress resultants and that of the two normal bending moments when inserted into a uniformly
loaded laminated plate. Using complex variable methods, we demonstrate how a single harmonic shape
(hole or rigid inclusion) and two interacting harmonic shapes can be successfully designed to meet our
requirements. In our discussion, the two interacting harmonic shapes include (i) two interacting harmonic
holes, (ii) two interacting harmonic rigid inclusions, and (iii) one harmonic hole interacting with another
harmonic rigid inclusion.

1. Introduction

The minimization of stress concentrations in composite materials remains a priority among researchers
and practitioners alike. To date, various criteria have been proposed and successfully applied to the
design of the shape of holes or inclusions which produce minimum stress concentrations when inserted
into an elastic body (see for example [Mansfield 1953; Cherepanov 1974; Bjorkman and Richards 1976]).
The design of such optimal structural shapes inevitably leads to the solution of an inverse problem in
elasticity [Bui 1993; Bonnet and Constantinescu 2005]. The “neutral condition” proposed by Mansfield
[1953] and further developed by Ru [1998] and Milton and Serkov [2001] is the most stringent yet most
difficult to realize since it requires that the introduction of the corresponding neutral hole or inclusion
leaves the stress distribution in the original uncut body completely undisturbed. The “equal strength
condition” introduced by Cherepanov [1974] requires that the hoop stress be constant along the boundary
of the hole or inclusion. The “harmonic field condition” advanced by Bjorkman and Richards [1976;
1979a] and further developed by Ru [1999a; 1999b] and Wang et al. [2005] requires that the introduction
of the harmonic hole or inclusion does not alter the first invariant of the stress field anywhere in the
surrounding elastic body. This design condition has many implications: (i) the Laplacian component
of the stress field remains unchanged; (ii) there is no change in volume energy; (iii) there is no elastic
rotation; (iv) harmonic holes or rigid inclusions produce minimum stress concentrations in constant fields.
Interestingly, Bjorkman and Richards [1976; 1979b] observed that, under constant applied fields, the
harmonic field condition and the equal strength condition are essentially equivalent in that they produce
the same result.

Even though the analysis of bending and stretching deformations of thin plates in the presence of
various defects such as dislocations, holes, cracks, anti-cracks and inhomogeneities has received consid-
erable attention (see, for example, [Sih and Rice 1964; Zakharov and Becker 2000; Hasebe and Wang

Keywords: harmonic shape, stress concentration, inverse problem, isotropic laminated plate, conformal mapping.

433

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2015.10-3
http://msp.org


434 XU WANG AND PETER SCHIAVONE

2000; 2002; Wang and Hasebe 2000a; 2000b; 2001; Cheng and Reddy 2002, 2003; 2004b; 2004a; Yin
2005a; 2005b; Wang and Schiavone 2013; Wang and Zhou 2013], the design of optimal hole shapes
to minimize stress concentrations in laminated plates has, in contrast, been investigated by only a few
researchers (see, for example, [Vellaichamy et al. 1990; Budiansky et al. 1993; Senocak and Waas 1995].
In this paper, we continue the work in this area by extending Bjorkman and Richards’ harmonic field
condition for linear plane elasticity to isotropic laminated plates. To achieve our design objective, we
make use of the complex variable formulation proposed by Beom and Earmme [1998] and developed
recently by Wang and Zhou [2014] for the analysis of isotropic laminated plates.

2. Formulation

Consider an undeformed plate of uniform thickness h in a Cartesian coordinate system {xi } (i = 1, 2, 3)
in which x3 = 0 is on the main plane. The plate is composed of an isotropic, linearly elastic material
that can be inhomogeneous and/or laminated in the thickness direction. Repeated Greek indices imply
summation over the range of the index from 1 to 2.

The displacement field in the Kirchhoff plate theory takes the form

ũα = uα + x3ϑα, ũ3 = w, (1)

where the in-plane displacements uα, deflection w, and the slopes ϑα =−w,α on the main plane are all
independent of x3.

An integral operator is first introduced as follows: Q( · )=
∫ h−h0
−h0

( · ) dx3, with h0 being the distance be-
tween the main plane and the lower surface of the plate. Then the constitutive equations of the laminated
isotropic plate are [Beom and Earmme 1998]

Nαβ = Aαβωρεωρ + Bαβωρκωρ,

Mαβ = Bαβωρεωρ + Dαβωρκωρ,
(2)

where Nαβ and Mαβ are, respectively, the membrane stress resultants and bending moments defined by
Nαβ = Qσαβ and Mαβ = Qx3σαβ , with σαβ being the stresses; εαβ and καβ are the main plane strains
and curvatures, defined as εαβ = 1

2(uα,β + uβ,α) and καβ = −w,αβ ; Aαβωρ , Bαβωρ and Dαβωρ are the
extensional, coupling and bending stiffness tensors, given by

Aαβωρ = A12δαβδωρ +
1
2(A11− A12)(δαωδβρ + δαρδβω),

Bαβωρ = B12δαβδωρ −
1
2 B12(δαωδβρ + δαρδβω),

Dαβωρ = D12δαβδωρ +
1
2(D11− D12)(δαωδβρ + δαρδβω),

(3)

with δαβ being the Kronecker delta, Ai j = QCi j , Bi j = Qx3Ci j , and Di j = Qx2
3Ci j (i j = 11, 12). In

addition, C11 and C12 can be expressed in terms of the Young’s modulus E = E(x3) and Poisson’s ratio
ν = ν(x3) of the plate as C11 = E/(1− ν2) and C12 = νE/(1− ν2). Expression (3) implies that the main
plane is chosen such that B11 = 0. Consequently, it is found that

h0 =

∫ h
0 X3C11 dX3∫ h

0 C11 dX3
,



HARMONIC SHAPES IN ISOTROPIC LAMINATED PLATES 435

with X3 = x3+ h0 being the vertical coordinate of the given point from the lowest surface of the plate.
In the absence of external loads on the top and bottom surfaces of the plate, the equilibrium equations

are given by
Nαβ,β = 0, Rβ,β = 0, (4)

where Rβ = Mαβ,α are the transverse shearing forces.
Substitution of (2) into (4) yields the decoupled equations

(A11+ A12)uβ,βα + (A11− A12)uα,ββ = 0, w,ααββ = 0. (5)

By considering (5), the membrane stress resultants, bending moments, transverse shearing forces, in-
plane displacements, deflection and slopes on the main plane of the plate, and the four stress functions ϕα
and ηα can be expressed in terms of four analytic functions φ(z), ψ(z), 8(z) and 9(z) of the complex
variable z = x1+ ix2 as [Beom and Earmme 1998; Cheng and Reddy 2002; Wang and Zhou 2014]

N11+ N22 = 4 Re{φ′(z)+ B8′(z)},

N22− N11+ 2iN12 = 2
(
z̄φ′′(z)+ψ ′(z)+ Bz̄8′′(z)+ B9 ′(z)

)
,

(6)

M11+M22 = 4D(1+ νD)Re{8′(z)}+ B(κ A
−1)
µ

Re{φ′(z)},

M22−M11+ 2iM12 =−2D(1− νD)
(
z̄8′′(z)+9 ′(z)

)
−

B
µ

(
z̄φ′′(z)+ψ ′(z)

)
,

R1− iR2 = 4D8′′(z)+ B(κ A
+1)

2µ
φ′′(z),

(7)

2µ(u1+ iu2)= κ
Aφ(z)− zφ′(z)−ψ(z),

ϑ1+ iϑ2 =8(z)+ z8′(z)+9(z), w =−Re{z̄8(z)+χ(z)},

ϕ1+ iϕ2 = i
(
φ(z)+ zφ′(z)+ψ(z)

)
+ iB

(
8(z)+ z8′(z)+9(z)

)
,

η1+ iη2 = iD(1− νD)
(
κD8(z)− z8′(z)−9(z)

)
+ i B

2µ
(
κ Aφ(z)− zφ′(z)−ψ(z)

)
,

(8)

where 9(z)= χ ′(z), and

µ= 1
2(A11− A12), B = B12, D = D11, νA

=
A12

A11
, νD

=
D12

D11
,

κ A
=

3A11− A12

A11+ A12
=

3− νA

1+ νA , κD
=

3D11+ D12

D11− D12
=

3+ νD

1− νD .

(9)

Moreover, the membrane stress resultants, bending moments, transverse shearing forces, and modified
Kirchhoff transverse shearing forces V1 = R1+M12,2 and V2 = R2+M21,1 can be expressed in terms of
the four stress functions ϕα and ηα as [Cheng and Reddy 2002]

Nαβ =−εβωϕα,ω, Mαβ =−εβωηα,ω−
1
2εαβηω,ω, Rα =− 1

2εαβηω,ωβ, Vα =−εαωηω,ωω, (10)

where εαβ are the components of the two-dimensional permutation tensor.
Now we consider a laminated plate subjected to remote uniform membrane stress resultants N∞αβ and

bending moments M∞αβ . The asymptotic behaviors of φ(z), ψ(z), 8(z) and 9(z) at infinity can then be
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simply derived as

φ(z)∼= δ1z+ O(1), ψ(z)∼= δ2z+ O(1), 8(z)∼= γ1z+ O(1), 9(z)∼= γ2z+ O(1), (11)

where the two real constants δ1, γ1 and the two complex constants δ2, γ2 are related to the remote uniform
loading through

δ1 =
µD(1+ νD)(N∞11 + N∞22 )− Bµ(M∞11 +M∞22 )

4µD(1+ νD)− B2(κ A− 1)
,

γ1 =
4µ(M∞11 +M∞22 )− B(κ A

− 1)(N∞11 + N∞22 )

16µD(1+ νD)− 4B2(κ A− 1)
,

δ2 =
µD(1− νD)(N∞22 − N∞11 + 2iN∞12 )+ Bµ(M∞22 −M∞11 + 2iM∞12 )

2µD(1− νD)− B2 ,

γ2 =
−2µ(M∞22 −M∞11 + 2iM∞12 )− B(N∞22 − N∞11 + 2iN∞12 )

4µD(1− νD)− 2B2 .

(12)

In the context of an isotropic laminated plate, Bjorkman and Richards’ harmonic field conditions now
become that the two sums N11+ N22 and M11+M22 remain unchanged everywhere in the surrounding
laminated plate after the introduction of the harmonic hole or inclusion. It is further deduced from (6)1

and (7)1 that φ(z) and 8(z) must take the following form in order to ensure that the shape is harmonic:

φ(z)= δ1z, 8(z)= γ1z. (13)

In the next two sections we will address in detail a single harmonic hole or rigid inclusion and two
interacting harmonic shapes.

3. A single harmonic hole or rigid inclusion

The single harmonic hole or rigid inclusion forms a simply connected bounded domain with Lipschitz
boundary. As such, we consider the conformal mapping function [Kantorovich and Krylov 1950]

z = ω(ξ)= R
(
ξ +

a1
ξ
+

a2
ξ 2 + · · ·

)
, ξ(z)= ω−1(z), |ξ | ≥ 1, (14)

where R is a real scaling constant and ai (i = 1, 2, . . . ) are complex constants. This function conformally
maps the exterior of the hole or the rigid inclusion in the z-plane onto the exterior of the unit circle |ξ | = 1
in the ξ -plane. For convenience, we write ψ(z)= ψ(ω(ξ))= ψ(ξ) and 9(z)=9(ω(ξ))=9(ξ).

3.1. A single harmonic hole. In this case, ϕ1=ϕ2=η1=η2= 0 along the edge of the hole. By enforcing
this free edge boundary condition on |ξ | = 1, we arrive at these expressions for ψ(ξ) and 9(ξ):

ψ(ξ)=
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2 R
(1
ξ
+ ā1ξ + ā2ξ

2
+ · · ·

)
,

9(ξ)=
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2 R
(1
ξ
+ ā1ξ + ā2ξ

2
+ · · ·

)
.

(15)
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By satisfying the asymptotic conditions for ψ(z) and 9(z) in the second and fourth expressions of (11),
we obtain

a2 = a3 = · · · = 0, (16)

which implies that the harmonic hole must be of elliptical shape, and

δ2 =
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2 ā1,

γ2 =
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2 ā1.

(17)

Consequently, the remote uniform loading should satisfy the restrictions

N∞11 − N∞22 − 2iN∞12

N∞11 + N∞22
=

M∞11 −M∞22 − 2iM∞12

M∞11 +M∞22
= ā1. (18)

The hoop membrane stress resultant Nθθ and hoop bending moment Mθθ are both constant along the
boundary of the elliptic hole:

Nθθ = N∞11 + N∞22 , Mθθ = M∞11 +M∞22 . (19)

Similar to the argument by Bjorkman and Richards [1976], the harmonic hole simultaneously produces
minimum values of Nθθ and Mθθ , and thus is optimal. We note that (18) and (19) are in agreement with
the corresponding results in [ibid.] for a harmonic hole in an isotropic and homogeneous plate subjected
to in-plane loading.

3.2. A single harmonic rigid inclusion. In this case, u1 = u2 = ϑ1 = ϑ2 = 0 along the edge of the rigid
inclusion. By enforcing this boundary condition for a rigidly clamped edge on |ξ | = 1, we arrive at these
expressions for ψ(ξ) and 9(ξ):

ψ(ξ)= (κ A
− 1)δ1 R

(1
ξ
+ ā1ξ + ā2ξ

2
+ · · ·

)
,

9(ξ)=−2γ1 R
(1
ξ
+ ā1ξ + ā2ξ

2
+ · · ·

)
.

(20)

By satisfying the asymptotic conditions on ψ(z) and 9(z) in the second and fourth expressions of (11),
we obtain

a2 = a3 = · · · = 0, (21)

which implies that the harmonic rigid inclusion must be elliptical and

δ2 = (κ
A
− 1)δ1ā1, γ2 =−2γ1ā1. (22)

Thus, the remote uniform loading should satisfy the restrictions(
4µD(1+ νD)− B2(κ A

− 1)
)
(N∞22 − N∞11 + 2iN∞12 )(

2µD(1+ νD)+ B2
)
(κ A− 1)(N∞11 + N∞22 )− 2Bµ(κ A+ 1)(M∞11 +M∞22 )

=

(
4µD(1+ νD)− B2(κ A

− 1)
)
(M∞22 −M∞11 + 2iM∞12 )(

4µD(1− νD)+ B2(κ A− 1)
)
(M∞11 +M∞22 )− 2B D(κ A− 1)(N∞11 + N∞22 )

= ā1. (23)
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The interfacial normal membrane stress resultant Nρρ and interfacial normal bending moment Mρρ

are uniformly distributed along the inclusion/matrix interface as

Nρρ = (κ A
+ 1)δ1, Mρρ = 4Dγ1, (24)

where δ1, γ1 are as in (12).
The hoop membrane stress resultant and hoop bending moment are both constant along the inclu-

sion/matrix interface on the matrix side and are given by

Nθθ =

(
µD(1+ νD)(3− κ A)− B2(κ A

− 1)
)
(N∞11 + N∞22 )+ Bµ(κ A

+ 1)(M∞11 +M∞22 )

4µD(1+ νD)− B2(κ A− 1)
,

Mθθ =

(
4µDνD

− B2(κ A
− 1)

)
(M∞11 +M∞22 )+ B D(κ A

− 1)(N∞11 + N∞22 )

4µD(1+ νD)− B2(κ A− 1)
.

(25)

When B = 0, (23)–(25) reduce to

2(N∞22 − N∞11 + 2iN∞12 )

(κ A− 1)(N∞11 + N∞22 )
= ā1, Nρρ =

κ A
+ 1
4

(N∞11 + N∞22 ), Nθθ =
3− κ A

4
(N∞11 + N∞22 ), (26)

(1+ νD)(M∞22 −M∞11 + 2iM∞12 )

(1− νD)(M∞11 +M∞22 )
= ā1, Mρρ =

M∞11 +M∞22

1+ νD , Mθθ =
νD(M∞11 +M∞22 )

1+ νD . (27)

The results in (26) agree with those in [Bjorkman and Richards 1979b] for a harmonic rigid inclusion
in an isotropic and homogeneous plate under in-plane loads.

4. Two interacting harmonic shapes

In order to obtain two interacting harmonic shapes (which include three typical cases: (i) two interacting
harmonic holes, (ii) two interacting harmonic rigid inclusions, and (iii) one harmonic hole interacting
with another harmonic rigid inclusion), we first introduce the conformal mapping function [Wang 2012]

z = ω(ξ)= R
(

1
ξ − λ

+
a

ξ − λ−1 +
3−1a

ρξ − λ−1 +

∞∑
n=1

(anξ
n
+ a−nξ

−n)

)
,

ξ(z)= ω−1(z), 1≤ |ξ | ≤ ρ−1/2, (28)

where R is a real scaling constant, λ is a real constant with 1 < |λ| < ρ−1/2, a and 3 are complex
constants, and an , a−n are complex constants to be determined. In (28), the first-order pole at ξ = λ is
located within the annulus 1≤|ξ |≤ρ−1/2, whereas the two first-order poles at ξ =λ−1 and ξ = (ρλ)−1 are
both located outside the annulus. The function (28) will conformally map the matrix region (excluding
the two harmonic shapes) in the z-plane onto an annulus 1≤ |ξ | ≤ ρ−1/2 in the ξ -plane, and the left and
right interfaces L1 and L2 formed between the two harmonic shapes and the matrix are mapped onto
two coaxial circles with radii 1 and ρ−1/2, respectively, in the ξ -plane. It is also apparent that each of
the two interacting shapes will be nonelliptical [Wang 2012].
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4.1. Two interacting harmonic holes. By enforcing the free edge boundary condition on the inner circle
|ξ | = 1, we obtain these expressions for ψ(ξ) and 9(ξ):

ψ(ξ)=
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2

× R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
,

9(ξ)=
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2

× R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
.

(29)

Similarly, by enforcing the free-edge boundary condition on the outer circle |ξ | = ρ−1/2, we obtain
another set of expressions for ψ(ξ) and 9(ξ):

ψ(ξ)=
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2

× R
(

λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
,

9(ξ)=
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2

× R
(

λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
.

(30)

The two expressions for ψ(ξ) and 9(ξ) obtained in (29) and (30) must coincide. As a result, the
unknown parameters in (28) are given by

3= 3̄= 1, an =
λ−n−1

+ aρnλn+1

1− ρ−n , a−n =
λn−1
+ aλ−n+1

ρ−n − 1
, n = 1, 2, . . . . (31)

Remark. The interacting harmonic shapes can now be uniquely determined using (28) for given real
numbers 3, ρ, λ and a given complex number a.

In addition, the satisfaction of the remote boundary conditions on ψ(z) and 9(z) in the second and
fourth expressions of (11) will yield

δ2 =−
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2 āλ2,

γ2 =−
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2 āλ2.

(32)
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Thus, the remote uniform loading should satisfy the restrictions

N∞11 − N∞22 − 2iN∞12

N∞11 + N∞22
=

M∞11 −M∞22 − 2iM∞12

M∞11 +M∞22
=−āλ2. (33)

The hoop membrane stress resultant and hoop bending moment are both uniformly distributed along
the boundary of the two harmonic holes as

Nθθ = N∞11 + N∞22 , Mθθ = M∞11 +M∞22 , z ∈ L1 ∪ L2. (34)

4.2. Two interacting harmonic rigid inclusions. By enforcing the boundary condition for a rigidly
clamped edge on the inner circle |ξ | = 1, we obtain these expressions for ψ(ξ) and 9(ξ):

ψ(ξ)= (κ A
− 1)δ1 R

(
1

ξ−1− λ
−

āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
,

9(ξ)=−2γ1 R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
.

(35)

Similarly, by enforcing the boundary condition for a rigidly clamped edge on the outer circle |ξ |=ρ−1/2,
we again obtain a second set of expressions for ψ(ξ) and 9(ξ):

ψ(ξ)= (κ A
− 1)δ1 R

(
λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
,

9(ξ)=−2γ1 R
(

λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
.

(36)

Equating the two expression for ψ(ξ) and 9(ξ), we obtain 3 = 1; an and a−n in (28) can also be
determined from (31).

In addition, the satisfaction of the remote boundary conditions on ψ(z) and 9(z) in the second and
fourth expressions of (11) yields

δ2 =−(κ
A
− 1)δ1āλ2, γ2 = 2γ1āλ2. (37)

Thus, the remote uniform loading is constrained by the equations(
4µD(1+ νD)− B2(κ A

− 1)
)
(N∞22 − N∞11 + 2iN∞12 )(

2µD(1+ νD)+ B2
)
(κ A− 1)(N∞11 + N∞22 )− 2Bµ(κ A+ 1)(M∞11 +M∞22 )

=

(
4µD(1+ νD)− B2(κ A

− 1)
)
(M∞22 −M∞11 + 2iM∞12 )(

4µD(1− νD)+ B2(κ A− 1)
)
(M∞11 +M∞22 )− 2B D(κ A− 1)(N∞11 + N∞22 )

=−āλ2. (38)

The interfacial normal membrane stress resultant and interfacial normal bending moment are uniformly
distributed along the two inclusion/matrix interfaces as

Nρρ = (κ A
+ 1)δ1, Mρρ = 4Dγ1, z ∈ L1 ∪ L2. (39)
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The hoop membrane stress resultant and hoop bending moment are both constant along the two inclu-
sion/matrix interfaces on the matrix side and are given by

Nθθ =

(
µD(1+ νD)(3− κ A)− B2(κ A

− 1)
)
(N∞11 + N∞22 )+ Bµ(κ A

+ 1)(M∞11 +M∞22 )

4µD(1+ νD)− B2(κ A− 1)
,

Mθθ =

(
4µDνD

− B2(κ A
− 1)

)
(M∞11 +M∞22 )+ B D(κ A

− 1)(N∞11 + N∞22 )

4µD(1+ νD)− B2(κ A− 1)
, z ∈ L1 ∪ L2.

(40)

4.3. A harmonic hole interacting with a harmonic rigid inclusion. Without loss of generality, we as-
sume that the left-hand shape is a hole, whilst the right-hand shape is a rigid inclusion. By enforcing the
free edge boundary condition on the inner circle |ξ | = 1, we obtain these expressions for ψ(ξ) and 9(ξ):

ψ(ξ)=
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2

× R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
,

9(ξ)=
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2

× R
(

1
ξ−1− λ

−
āλ2

ξ − λ
+

3̄−1ā
ρξ−1− λ−1 +

∞∑
n=1

(ānξ
−n
+ ā−nξ

n)

)
.

(41)

By enforcing the boundary condition for a rigidly clamped edge on the outer circle |ξ | = ρ−1/2, we
obtain a second set of expressions for ψ(ξ) and 9(ξ):

ψ(ξ)= (κ A
− 1)δ1 R

(
λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
,

9(ξ)=−2γ1 R
(

λ−1

1− ρλξ
+

ā
ρ−1ξ−1− λ−1 −

3̄−1āλ2

ξ − λ
+

∞∑
n=1

(ānρ
−nξ−n

+ ā−nρ
nξ n)

)
.

(42)

Equating the two expressions for each of ψ(ξ) and 9(ξ), we obtain the expressions

3= 3̄=−
(κ A
− 1)

(
2µD(1− νD)− B2

)
δ1(

4µD(1− νD)+ B2(κ A− 1)
)
δ1+ 8BµDγ1

=−
2
(
2µD(1− νD)− B2

)
γ1

B(κ A+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

(43)

for the unknown parameters in (28), and

an =
λ−n−1

+ a3−1ρnλn+1

1−3ρ−n , a−n =
λn−1
+ aλ−n+1

3−1ρ−n − 1
, n = 1, 2, . . . . (44)
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It can be further deduced from (43) that the two sums N∞11 + N∞22 and M∞11 + M∞22 cannot be set
arbitrarily, and should satisfy the restriction

B(N∞11 + N∞22 )

µ(M∞11 +M∞22 )
= α, (45)

where

α =
νA
− νD

±
√
(νA− νD)2+ 2β(1− νA)

1− νA , β =
B2

µD
> 0. (46)

As a result, the parameter 3 in (43) can be more explicitly determined as

3=−
(κ A
− 1)

(
2(1− νD)−β

)(
2+ νA

+ νD
−
√
(νA− νD)2+ 2β(1− νA)

)(
4(1+ νD)−β(κ A− 1)

)(
2− νA− νD +

√
(νA− νD)2+ 2β(1− νA)

) (47)

if the plus sign is chosen in (46), and

3=−
(κ A
− 1)

(
2(1− νD)−β

)(
2+ νA

+ νD
+
√
(νA− νD)2+ 2β(1− νA)

)(
4(1+ νD)−β(κ A− 1)

)(
2− νA− νD −

√
(νA− νD)2+ 2β(1− νA)

) (48)

if the minus sign is chosen in (46). Equations (47) and (48) suggest that there are two distinct values
of 3 for given material parameters νA, νD and β.

For example, if we set νA
=

1
4 , νD

= 0.3, β = 0.2, then α = 0.6667 and 3=−0.2903, or α =−0.8
and 3=−1.

In addition, the satisfaction of the remote boundary conditions for ψ(z) and 9(z) in the second and
fourth expressions of (11) yields

δ2 =−
−
(
4µD(1− νD)+ B2(κ A

− 1)
)
δ1− 8BµDγ1

2µD(1− νD)− B2 āλ2,

γ2 =−
B(κ A

+ 1)δ1+
(
4µD(1+ νD)+ 2B2

)
γ1

2µD(1− νD)− B2 āλ2.

(49)

Thus, in addition to condition (45), the remote uniform loading should also satisfy the restrictions

N∞11 − N∞22 − 2iN∞12

N∞11 + N∞22
=

M∞11 −M∞22 − 2iM∞12

M∞11 +M∞22
=−āλ2. (50)

The hoop membrane stress resultant and hoop bending moment are both uniformly distributed along
the boundary of the left harmonic hole as

Nθθ = N∞11 + N∞22 , Mθθ = M∞11 +M∞22 , z ∈ L1. (51)

Meanwhile, the interfacial normal membrane stress resultant and interfacial normal bending moment
are uniformly distributed along the right inclusion/matrix interface as

Nρρ =
(κ A
+ 1)(1+ νD

−
β

α
)

4(1+ νD)−β(κ A− 1)
(N∞11 + N∞22 ),

Mρρ =
4−α(κ A

− 1)
4(1+ νD)−β(κ A− 1)

(M∞11 +M∞22 ), z ∈ L2.

(52)
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The hoop membrane stress resultant and hoop bending moment are both constant along the right
inclusion/matrix interface on the matrix side, and are given by

Nθθ =
(1+ νD)(3− κ A)+

β

α
(κ A
+ 1)−β(κ A

− 1)
4(1+ νD)−β(κ A− 1)

(N∞11 + N∞22 ),

Mθθ =
4νD
+ (α−β)(κ A

− 1)
4(1+ νD)−β(κ A− 1)

(M∞11 +M∞22 ), z ∈ L2.

(53)

5. Conclusions

We have proposed a new harmonic condition in the context of isotropic laminated plates. By imposing
this condition and by using the complex variable formulation for a laminated plate [Beom and Earmme
1998; Wang and Zhou 2014], we have successfully obtained (i) a single harmonic hole, (ii) a single har-
monic rigid inclusion, (iii) two interacting harmonic holes, (iv) two interacting harmonic rigid inclusions,
and (v) a harmonic hole interacting with another harmonic rigid inclusion when the laminated plate is
subjected to remote uniform membrane stress resultants and bending moments. It is shown that a single
harmonic hole or rigid inclusion must be elliptical in shape and that the remote uniform loading should
satisfy (18) for a harmonic hole, or (23) for a harmonic rigid inclusion. Our results in Section 4 show
that it is permissible to obtain two interacting nonelliptical harmonic shapes composed of (i) two holes,
(ii) two rigid inclusions, or (iii) one hole near another rigid inclusion. For the case of two interacting
harmonic holes or two interacting harmonic rigid inclusions, 3≡ 1 in (28); for the case of one harmonic
hole interacting with another harmonic rigid inclusion, 3 is determined by Equations (47) and (48).
The remote loading condition (33) for two interacting harmonic holes is identical in form to (18) for a
single harmonic hole, the remote loading condition (38) for two interacting harmonic rigid inclusions is
identical in form to (23) for a single harmonic rigid inclusion, whereas the remote loading conditions (45)
and (50) for a harmonic hole interacting with another harmonic rigid inclusion are more stringent. It is
observed that for all the cases discussed, the hoop membrane stress resultant and hoop bending moments
are always constant along any existing boundary and interface (see (19), (25), (34), (40), (51) and (53)).
Thus, the obtained harmonic shapes also satisfy the equal strength condition.
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