
Journal of

Mechanics of
Materials and Structures

A POSITION-AWARE LINEAR SOLID CONSTITUTIVE MODEL
FOR PERIDYNAMICS

John A. Mitchell, Stewart A. Silling and David J. Littlewood

Volume 10, No. 5 December 2015

msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 10, No. 5, 2015

dx.doi.org/10.2140/jomms.2015.10.539 msp

A POSITION-AWARE LINEAR SOLID CONSTITUTIVE MODEL
FOR PERIDYNAMICS

JOHN A. MITCHELL, STEWART A. SILLING AND DAVID J. LITTLEWOOD

A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic
solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such
as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. Im-
proved model behavior in the vicinity of free surfaces is achieved through the application of two influence
functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. The
model is position-aware in that the influence functions vary over the body and reflect the proximity of
each material point to free surfaces. Demonstration calculations on simple benchmark problems show a
sharp reduction in error relative to the LPS model.

1. Introduction

The peridynamic theory of solid mechanics allows for great flexibility in the development of constitutive
models. In contrast to classical, local models, which rely on a kinematic description of material defor-
mation at a point such as the deformation gradient, material models in the peridynamic theory determine
pairwise force densities based on the deformations of a nonlocal family of neighboring material points
[Silling 2000; Silling and Lehoucq 2010; Madenci and Oterkus 2014]. This enrichment of kinematic
information greatly expands the range of possible constitutive laws. Peridynamic material models de-
veloped to date fall into one of three categories: bond-based, ordinary state-based, and non-ordinary
state-based. Bond-based peridynamic models determine the pairwise force density that acts between
two material points based only on the histories of those points (e.g., initial and current positions). The
prototype microelastic brittle material model was the first peridynamic constitutive law to appear in the
literature [Silling 2000]. This model served as the foundation for a subsequently developed bond-based
plasticity model [Macek and Silling 2007]. The state-based theory for peridynamic constitutive models
represents a significant generalization of the bond-based approach [Silling et al. 2007]. The theory
of peridynamic states allows for constitutive models in which pairwise force densities are functions
of not only the material points in question, but also the full set of material points within the nonlocal
neighborhoods of those material points. State-based constitutive models in which pairwise force densities
act in the direction of the corresponding bond in the deformed configuration are referred to as ordinary
state-based models. Examples include the linear peridynamic solid (LPS) [Silling et al. 2007] and the
plasticity and viscoelasticity models developed by Mitchell [2011a; 2011b]. The third class of material
models, non-ordinary state-based, is comprised of constitutive models in which pairwise force densities
are not restricted to act in the bond direction. The correspondence model approach, in which classical
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(local) constitutive models are adapted for use within peridynamics, falls into this category [Silling et al.
2007; Foster et al. 2010; Tupek and Radovitzky 2014].

This study concerns the development of an ordinary, state-based constitutive model that improves upon
the performance of the material models currently available in the literature. The primary motivation is
the undesirable behavior of certain peridynamic material models in the vicinity of free surfaces. This
difficulty appears, for example, in a peridynamic simulation of a uniaxial tension test, illustrated in
Figure 1, using the LPS constitutive model and the mesh-free discretization approach of Silling and
Askari [2005]. In this simulation, the displacements at the end portions of the bar are prescribed, and the
forces on the grips, G y , are computed, along with the engineering strain in the gauge, ε. The Young’s
modulus may then be computed as

E = G y/Agε,

where Ag is the undeformed cross-sectional area of the bar in the vicinity of the gauge. The expected
value of Young’s modulus is the slope of the green curve in Figure 2. Modern three-dimensional finite
element codes can accurately reproduce the Young’s modulus in a simulation of the uniaxial tension
test for a linear elastic material. However, a typical three-dimensional peridynamic simulation using the
LPS material model predicts the red curve in Figure 2. The difference in slope between the two curves
shows that the peridynamic model under-predicts the load on the grips for a given value of strain. The
LPS material parameters are calibrated for points in the interior of a body and do not take into account
whether a point is near a boundary [Silling et al. 2007]. Due to the nonlocality of the peridynamic
equations, the LPS material model becomes inaccurate at points near a free surface. Here, some of
the peridynamic bonds that would be present in the interior are missing (Figure 3). Because bonds are
missing, they do not contribute to the net force on the cross-section of the gauge, hence the total force
is under-predicted. While this effect manifests for a number of constitutive models, it is not present for
all models; correspondence models are an exception because missing bonds are compensated for by the
shape tensor K .

The under-prediction of force at material points near a free surface is often referred to as the surface
effect in peridynamics. This effect presents a practical difficulty in applying bond-based models and
ordinary state-based models such as the LPS. Approaches for mitigating the surface effect have been
proposed by Kilic, Macek and Silling, and Mitchell. Following a bond-based approach, Kilic [2008] pro-
posed a position-aware correction that is computed iteratively for each material point. Macek and Silling
[2007] developed a position-aware force normalization that scales the stiffness of points near a surface
using a ratio of eigenvalues from local 3× 3 stiffness matrices, where eigenvalues are computed (with the
same material properties) for points near a free surface and on the interior. Mitchell [2013] developed a
position-aware scaling of moduli for the LPS model, but its efficacy was found to be somewhat sensitive
to complex surface geometries.

The present study proposes an alternative approach to peridynamic constitutive modeling in which
model parameters at a point reflect the point’s location within the body, removing the need for auxiliary
surface correction techniques. This position-aware approach is a significant departure from previously
developed constitutive models in that the constitutive model parameters are linked directly with the
geometry of the body. The position-aware linear solid (PALS) model presented herein is an extension
of the LPS model that substantially reduces the surface effect. This is accomplished by introducing
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Figure 1. Uniaxial tension test schematic.

influence functions that are calibrated according to the bulk elastic properties at each material point,
resulting in influence functions that differ for points near a free surface and points on the interior of the
body. Identification of the influence functions for each point in the body is accomplished by solving
a constrained minimization problem. Determination of the influence functions within a computational
simulation does not require an iterative process and is instead achieved through the solution of a linear
system of equations.

The present work is unique with respect to the construction and use of position-aware influence func-
tions. As very recently pointed out by Bessa, Foster, Belytschko and Liu [Bessa et al. 2014], only
constant-valued influence functions have been studied. Apparently, the two exceptions are the study by
Seleson and Parks [2011] and the approach for incorporating classical damage models into state-based
peridynamics by Tupek, Rimoli, and Radovitzky [Tupek et al. 2013]. Seleson and Parks used influence
functions to establish relationships between bond-based and state based peridynamics models and did not
consider position-aware influence functions. Influence functions developed by Tupek et al. are a product
of a Gaussian and a binary valued function (0 or 1) depending upon the state of damage between two
points defining a bond; this is somewhat position-aware but not in a way related to the present work.

An outline of the paper is as follows. An overview of peridynamic theory and the LPS model are
given in Section 2, including calibration of the LPS parameters in the interior of a body. The influence
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Figure 2. The LPS model under-predicts the Young’s modulus in a model of the uniaxial
tension test.
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Figure 3. Schematic of missing peridynamic bonds.

functions used in the PALS model are derived in Section 3, followed by the formulation of the PALS
force state in Section 4. The selection and usage of matching deformations required by the PALS model
are discussed in Section 5. Section 6 presents example calculations demonstrating the efficacy of the
PALS model in reducing the surface effect. Results and conclusions are given in Section 7.

2. Introduction to peridynamics and the LPS model

The peridynamic theory of solid mechanics [Silling 2000; Silling et al. 2007; Silling and Lehoucq 2010]
is an extension of classical continuum mechanics theory [Bonet and Wood 1997]. The peridynamics
extension permits discontinuities in displacements by replacing the stress divergence in the momentum
equation with a volume integral

ρ(x) ÿ(x, t)=
∫

B
f (x′, x, t) dVx′ + b(x, t), (1)

where y(x) is the current position vector of a material point x at time t , ρ is mass density in the unde-
formed body B, f is a pairwise bond force density per unit volume, b is the usual body force density,
and x′ is an arbitrary material point within the neighborhood Hx of the point x. In this section, the state-
based theory of peridynamics [Silling 2000; Silling et al. 2007; Silling and Lehoucq 2010] is reviewed
with emphasis on ordinary state-based constitutive models of relevance to this paper.

A bond vector is defined by
ξ = x′− x, 0< |ξ | ≤ δ,

where δ is the horizon of the material. Conceptually, δ is a relevant length scale and defines a spherical
neighborhood Hx ; it represents the maximum distance for nonlocal interactions in the material model.
Material points within the neighborhood Hx are referred to as the family of x. It will be assumed
throughout this paper that δ is independent of x.

In formulating peridynamic material models, it is convenient to use mathematical objects called states,
which are mappings from bonds in a family to some other quantity. Vector states map bonds to vectors,
and scalar states map bonds to scalars. An example of the notation used for states is as follows. The
value of a vector state A, at the material point x and time t , operating on a bond ξ , is given by

A[x, t]〈ξ〉, x ∈B, ξ ∈Hx .
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The deformed image of a bond ξ = x′− x is given by the deformation state Y :

Y [x, t]〈ξ〉 = y(x′, t)− y(x, t)

= (x′+ u(x′, t))− (x+ u(x, t)), (2)

where u is the displacement field. Further information on peridynamic states is given in [Silling et al.
2007].

The following scalar states are useful in material modeling:

• The undeformed bond length state x :

x〈ξ〉 = |ξ |.

• The deformed bond length state |Y |:

|Y |〈ξ〉 = |Y 〈ξ〉|. (3)

• The extension state e:
e〈ξ〉 = |Y |〈ξ〉− x〈ξ〉. (4)

In this paper, scalar states are underlined and written using italics, such as e; vector states are written
using bold and underlined, as in Y .

This paper is concerned with state-based constitutive models in which the pairwise bond force density
per unit volume f (x′, x, t) in (1) is given by

f (x′, x, t)= T [x, t]〈x′− x〉− T [x′, t]〈x− x′〉. (5)

The vector state T [x] is called the force state. In (5), f contains contributions from the force states at
both x and x′ (that is, both T [x, t] and T [x′, t]).

In ordinary state-based constitutive models, the vector force state is always parallel to the deformed
bond vector and written as

T 〈ξ〉 = t〈ξ〉M〈ξ〉, (6)

where t is a scalar state called the scalar force state, and M is a vector state that produces unit vectors
parallel to the deformed bond:

M〈ξ〉 =
Y 〈ξ〉
|Y |〈ξ〉

. (7)

It is assumed that deformed material points do not overlap, that is, Y 〈ξ〉 6= 0 for all ξ .
A simple material model in state-based peridynamics gives the force state as a function of the defor-

mation state and is written T (Y , x). The x in this expression accounts for possible heterogeneity. All
the material models considered in this paper are simple. The PALS model is inherently heterogeneous
since its parameters depend on position, in particular the proximity to a free surface.

In an ordinary state-based material model, the direction of the bond force is always given by (7).
Therefore, the material model is fully specified by scalar force state: t(Y , x).

The LPS model, which serves as the foundation for development of the PALS model, is summarized
below.
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Define the dot product of two scalar states a and b by

a • b =
∫

Hx

a〈ξ〉 b〈ξ〉 dVξ .

Let D = 1, 2, 3 be the number of dimensions. The weighted volume m and the dilatation θ are scalars
used in the decomposition of the extension state e into volumetric and deviatoric parts:

m = (ωx) • x, (8)

θ =
D
m
(ωx) • e, (9)

where ω is a scalar state called the influence function [Silling et al. 2007]. A key element of the consti-
tutive model developed in this paper is the additive decomposition of the scalar extension state (4) into
spherical and deviatoric parts given by

e = ei
+ ε, (10)

where the spherical extension state ei is defined by

ei
= θx/D. (11)

Using the above quantities, the deviatoric extension state ε is constructed as

ε = e− θx/D. (12)

All of the above quantities are dependent on x and Y , but these dependencies are omitted from the
notation for simplicity.

The scalar force state for the LPS model is derived from an elastic energy functional W of the form

W (θ, ε)= 1
2κθ

2
+

1
2αε •ωε, (13)

where κ is the bulk modulus and α is a constant. This implies that t is decomposed into scalar volumetric
and deviatoric force states:

t = t i
+ td , (14)

where
t i
=
∂W
∂θ

∂θ

∂ei , td
=
∂W
∂ε

. (15)

Here, the notation ∂/∂a, where a is a state, refers to the Fréchet derivative [Silling et al. 2007]. The
Fréchet derivative of a scalar-valued function ψ of a state a has the property that, for a differential
change da,

dψ =
∂ψ

∂a
• da. (16)

Although geometrically nonlinear, the LPS model is a peridynamic analogue of Hooke’s law for isotropic
materials. For points x in the interior of the body, equating the elastic energy density from the LPS
material with the strain energy density from the local theory leads to the calibration (for D = 3)

α = 15µ/m,
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where µ is the conventional shear modulus from the local theory and m is given by (8). The above
relation for α is inaccurate for points near a free surface. Experience with the LPS model in complex
geometries suggests that a simple correction to α near free surfaces [Mitchell 2013] is not general enough,
motivating the PALS model.

Using (15), the scalar force state for the LPS model takes the form

t = Dκθ
m

ωx +αωε. (17)

Observe that the scalar force state contains independent terms that depend on either the isotropic or
deviatoric part of the extension state.

An important side note relates to the use of (9) and (12) for cases when D = 1 or 2; conditions of
uniaxial stress and plane stress are local concepts which do not precisely exist in peridynamics, although
practical and useful analogies exist. In particular, (9) and (12) remain valid for these and other conditions
although care must be taken with respect to the choice of material parameters. The correct parameters
are found by assuming appropriate homogeneous deformations and equating the local energy density
with the peridynamic energy density.

3. PALS model and selection of influence functions

The PALS concept proposed in this paper is a kinematic correction to the dilatation and deviatoric exten-
sion states and circumvents the surface effect under a wide range of conditions. It also helps to reduce
errors introduced by spatial discretizations.

The basic idea is to introduce a set of constraints and associated Lagrange multipliers which force
the dilatation and deviatoric extension states to reproduce a set of predetermined deformations called
matching deformations. Using this set of matching deformations, two linear problems (one for dilatation
and one for deviatoric extension) are defined for each point; the solution to these linear problems gives
two sets of Lagrange multipliers that determine the influence functions ω(ξ) and σ(ξ). In general, these
influence functions are unique for each material point within the body; they determine the dilatation and
deviatoric extension state for any deformation; importantly, they reflect the position and proximity of the
point to free surfaces. Both ω and σ depend on x, although this dependence is omitted from the notation
in the following discussion.

In the remainder of this article, the following linear approximation to the extension state will be used:

e〈ξ〉 =
ξ ·U〈ξ〉
|ξ |

, U〈ξ〉 = Y 〈ξ〉− ξ for all ξ ∈Hx . (18)

The vector state U is called the displacement state.
In the PALS model, the elastic energy density at a point x is defined by

W (θ, ε)= 1
2κθ

2
+µ(σε) • ε, (19)

where µ is the shear modulus and ε is defined in (12); σ is a new influence function called the deviatoric
influence function. The dilatation θ is defined using the extension state e by

θ = (ωx) • e, (20)
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where ω is normalized such that the weighted volume m used in the LPS is not needed (that is, m = D).
The new influence function ω is constructed starting from a given influence function ω0 which is arbitrary.
Typically, one assumes that ω0 follows some convenient dependence on bond length such as a constant
or a Gaussian.

Assume that a set of displacement gradient tensors H1, H2, . . . , H K are given — these are the match-
ing deformations. The new influence function ω is constructed as a best approximation to ω0 subject to
constraints which ensure the dilatation for each of the matching deformations is reproduced exactly; ω is
determined such that the dilatation induced by each Hk and evaluated using (18) and (20) equals the trace
of the matching deformation Hk . Note that there are no symmetry requirements on the matching defor-
mations; this will become even more apparent in the construction of the deviatoric influence function.

Assume that a scalar state ω0 is given, and let λ1, λ2, . . . , λK be Lagrange multipliers — one for each
matching deformation Hk . To find ω, define a functional I by

I (ω, λ1, . . . , λK )= 1
2(ω−ω

0) • (ω−ω0)−

K∑
k=1

λk
[(ωx) • ek

− trace Hk
], (21)

where the linear extension states ek (see (18)) are defined using the matching deformations Hk by

ek
〈ξ〉 =

ξ · (Hkξ)

|ξ |
for all ξ ∈Hx . (22)

It is required that I be stationary with respect to ω and λ1, . . . , λK . Taking the first variation of I leads to

δ I =
∂I
∂ω
• δω+

K∑
k=1

∂I
∂λk

δλk, (23)

where ∂I/∂ω denotes the Fréchet derivative of I with respect to ω. Observe that, for a given k, 1≤ k ≤ K ,

∂I
∂λk = 0 =⇒ (ωx) • ek

= trace Hk, (24)

which means the state ω exactly reproduces the dilatations in the matching deformations. Furthermore,
referring to the first term on the right-hand side of (21), this ω approximates the desired ω0 in the least
squares sense. Evaluating the Fréchet derivative of the right-hand side of (21) with respect to ω gives

∂I
∂ω
= 0 =⇒ ω = ω0

+

K∑
k=1

λk xek . (25)

This relation reveals the structure of ω: it differs from ω0 by a linear combination of the states xek , k =
1, 2, . . . , K . To evaluate the λk explicitly, impose the K requirements from the matching deformations
using (25):

trace Hk
= (ωx) • ek

=

[(
ω0
+

K∑
n=1

λnxen
)

x
]
• ek

= (ω0x) • ek
+

K∑
n=1

λn(xen) • (xek), k = 1, 2, . . . , K . (26)
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This is a nonhomogeneous linear algebraic system with unknowns λ1, λ2, . . . , λK . The solution to this
system, together with (25), provides the desired influence function ω within a constant scale factor c.
For consistency with the decomposition of the extension state (see (10)–(12)) c is chosen so that

(cωx) • x = D. (27)

Now consider the deviatoric part of the strain energy. In the PALS model, as in the LPS model, this
is treated by summing the energies in the deviatoric bond extensions. Motivated by the stored elastic
energy density function in (19), it is convenient to express the deviatoric contribution in terms of the
total shear defined by

γ = (σε) • ε, (28)
thus, from (19),

W = 1
2κθ

2
+µγ. (29)

Recall that, in the classical theory, for any displacement gradient H ,

W = 1
2κθ

2
+µ trace[dev sym H]T [dev sym H]. (30)

The deviatoric tensor in this expression is the deviatoric strain tensor:

εd
= dev sym H, εd

i j =
1
2(Hi j + H j i )−

Hkkδi j

D
. (31)

Combining (28)–(30) provides the requirement on σ that, for any of the matching deformations Hk ,

(σεk) • εk
= trace[dev sym Hk

]
T
[dev sym Hk

]. (32)

Suppose a reference influence function σ 0 is given. Proceeding as with the dilatational contribution,
define a functional N (σ , τ 1, . . . , τ K ) by

N (σ , τ 1, . . . , τ K )= 1
2(σ − σ

0) • (σ − σ 0)−

K∑
k=1

τ k
[(σεk) • εk

− γ k
], (33)

where τ 1, τ 2, . . . , τ K are Lagrange multipliers,

γ k
:= trace[dev sym Hk

]
T
[dev sym Hk

], (34)
and

εk
= ek
− (trace Hk)x/D. (35)

The influence function σ and the associated Lagrange multipliers are found by taking the first variation
of (33):

δN = ∂N
∂σ
• δσ +

K∑
k=1

∂N
∂τk

δτk . (36)

Requiring N to be stationary,
∂N
∂τ k = 0 =⇒ (σεk) • εk

= γ k (37)

and
∂N
∂σ
= 0 =⇒ σ = σ 0

+

K∑
k=1

τ kεkεk . (38)
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This leads to the following nonhomogeneous linear algebraic system with unknowns τ k :

γ k
= (σ 0εk) • εk

+

K∑
n=1

τ n(εnεn) • (εkεk), k = 1, 2, . . . , K . (39)

When taken with (38), the τ n values that solve this system give the σ states for the PALS model at a
given point x.

Except for the interior of the body, where the neighborhood Hx does not intersect with the free surface,
λn and τ n depend on x. Because this calibration varies from point to point, the model is position aware.
In summary, the PALS model is calibrated at each x by the following steps:

(1) Define initial guesses for ω0 and σ 0.

(2) Choose K linearly independent displacement gradient tensors H1, . . . , H K . (In three dimensions,
we choose K = 6 because there are at most 6 linearly independent strain tensors.)

(3) Solve the K × K linear algebraic system given by (26) for λ1, . . . , λK .

(4) Find ω from (25) and normalize according to (27).

(5) Solve the K × K linear algebraic system given by (39) for τ 1, . . . , τ K .

(6) Find σ from (38).

In general, values of ω〈ξ〉 and σ 〈ξ〉 may be negative for some bonds in the family. This is acceptable
and does not lead to material instability, since it does not necessarily imply imaginary wave speeds
[Silling and Lehoucq 2010].

In a computational implementation, it is sufficient to evaluate and store the 2K Lagrange multipliers
(for each node in the discretization) at the start of a run and, on the fly, compute influence functions
as they are needed. This uses less memory (but requires more floating point operations) than saving
influence function values on each bond for every point. The cost of evaluating one of the two PALS
model influence functions is very similar to the cost of evaluating the LPS model influence function,
although it requires retrieval and use of K Lagrange multiplier values for each point.

The cost/benefit analysis of using the PALS model is problem-dependent and relates to the domain
geometry and the ratio of surface area to volume. Since peridynamics is fundamentally oriented towards
fracture, it is likely that surface effects increase as new surfaces are created with each fracture. If bonds
are broken during a simulation, the PALS model influence functions should be recomputed subject to a
cost/benefit analysis which is beyond the scope of this paper. Simple engineering demonstration calcu-
lations later in this paper were chosen which highlight the degree to which surface effects can degrade
the LPS model; in these cases the PALS model substantially reduces the surface effect.

4. PALS scalar force state

In the preceding section, the influence functions ω and σ were determined. Now we evaluate the bond
forces using these influence functions. Recall that the strain energy density is given by (19).

The scalar force state t is found from the Fréchet derivative of W with respect to e:

t = ∂W
∂e
.
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To evaluate t explicitly, consider a change in the elastic energy density due to a small change 1e in the
extension state and use (16):

∂W
∂e
•1e = t •1e. (40)

Using (12), (19), and (20) for the PALS stored elastic energy density W , the change 1W is explicitly
evaluated as

t •1e =1W = κθωx •1e+ 2µσε •
(
1e−

1θx
D

)
=

[(
κθ −

2µ
D
σε • x

)
ωx + 2µσε

]
•1e. (41)

From this, the scalar force state t is directly identified as

t =
(
κθ −

2µ
D
(σ x) • ε

)
ωx + 2µσε. (42)

The term involving (σ x) • ε appears because different influence functions ω and σ are used for the
dilatational and deviatoric terms in the elastic energy density. If ω ≡ σ , then this term vanishes, as in the
LPS model. The (vector) force state is found from (6).

5. Matching deformations

The PALS model development in Section 3 was generic with respect to the use of specific matching
deformations H1, H2, . . . , H K . In this section, a sample set of matching deformations is provided. The
matching deformations provided here were used in the example problems described in the next section;
they are expected to provide good results in general, although alternative choices are possible. When
D = 3 (three dimensions), the local theory strain tensor has 6 independent components, hence we choose
K = 6 matching deformations. The strain components will be denoted XX, YY, ZZ , XY, XZ , YZ . The
matching deformations (shown below) represent three deformations for uniaxial strain and three for
simple shear:

H1
=

XX 0 0
0 0 0
0 0 0

 , H2
=

0 0 0
0 YY 0
0 0 0

 , H3
=

0 0 0
0 0 0
0 0 ZZ

 , (43)

H4
=

 0 XY 0
XY 0 0
0 0 0

 , H5
=

 0 0 XZ
0 0 0

XZ 0 0

 , H6
=

0 0 0
0 0 YZ
0 YZ 0

 . (44)

Let (a, b, c) be components of a bond vector ξ and let |ξ | denote its length. It is convenient to set
the magnitudes of the strain components XX, . . . , YZ all equal to the same small positive number 1.
Using (18), the extension states ek are computed, one for each matching deformation:

e1
=
1a2

|ξ |
, e2

=
1b2

|ξ |
, e3

=
1c2

|ξ |
, e4

=
2ab1
|ξ |

, e5
=

2ac1
|ξ |

, e6
=

2bc1
|ξ |

. (45)

These extension states are used to form the symmetric 6× 6 matrix associated with the linear problems
defined in (26) and (39). Entries in the matrix are evaluated using a quadrature scheme that is consistent
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with the discretized form of the momentum equation. For example, if the mesh-free approach of Silling
and Askari [2005] is employed, then dot products between state a and b are approximated by

a • b =
∫

Hx

a〈ξ〉 b〈ξ〉 dVξ ≈

∑
j

a j b j V j ,

where j is a node number, V j is its associated volume in the undeformed configuration, and a j and b j

denote the value of the states a and b acting on the j-th bond (associated with node j).
In the remainder of this section, specific details are given for dilatation and shear. For the matching

deformations given above, components of the right-hand side vector associated with the linear problems
are given. It is shown that the Lagrange multipliers, λk and τ k are independent of 1 (magnitude of the
strain components implied by the matching deformations).

5.1. Dilatation influence function. As a starting point for computing the dilatation influence function ω
at a point, a reference influence function ω0 is assumed to be given. Then, using the definitions for en

defined in (45), it is helpful to define a scaled set of states ên as

en
=
1 ên

|ξ |
. (46)

Using this expression for the matching states, the linear problem defined in (26) is written as

12
K∑

k=1

(ên
• êk

)λk
= trace(Hn)−1ω0

• ên
, (47)

where K = 6 equations are generated by n = 1, 2, . . . , K . Because each Hn is proportional to the applied
deformation 1, the Lagrange multipliers λn are inversely proportional to 1. The linear problem in (47)
can be rewritten as

12
[Kλ]{λ} =1{R̂}, (48)

where [Kλ] denotes the 6× 6 matrix implied by (26) and (47), {λ} denotes the unknown array of six
Lagrange multiplier values, and {R̂} denotes the right-hand side array of components defined in (47).
Solving the scaled system gives the Lagrange multipliers as

{λ} = {λ̂}/1,

where {λ̂} = [Kλ]
−1
{R̂}. Based upon the matching deformations ((43) and (44)) and the corresponding

extension states given in (45), the dilatation influence function takes the form

ω = ω0
+

K∑
k=1

λ̂k êk
= ω0

+ λ̂1a2
+ λ̂2b2

+ λ̂3c2
+ 2λ̂4ab+ 2λ̂5ac+ 2λ̂6bc. (49)

As a final step, the above influence function is normalized according to (27).
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5.2. Deviatoric influence function. The procedure used to compute the deviatoric Lagrange multipliers
is analogous to the procedure for computing the dilatation Lagrange multipliers. The deviatoric Lagrange
multipliers are computed using the linear problem defined in (39). Using the matching deformations
provided in this section, the deviatoric extension states εk defined in (35) take the following specific form:

ε1
= e1
−

1
31|ξ |, ε2

= e2
−

1
31|ξ |, ε3

= e3
−

1
31|ξ |, ε4

= e4, ε5
= e5, ε6

= e6. (50)

Observe that the matching deviatoric extension states vary linearly with1 so that a set of scaled deviatoric
extension states can be defined as εk

=1ε̂
k . The linear problem in (39) can be rewritten as

14
[Kτ ]{τ } =1

2
{R̂}. (51)

Solving the scaled system gives the Lagrange multipliers as

{τ } = {τ̂ }/12,

where {τ̂ } = [Kτ ]
−1
{R̂}. Based upon the matching deformations ((43) and (44)) and the corresponding

extension states given in (50), the deviatoric influence function takes the form

σ = σ 0
+

K∑
k=1

τ̂ k ε̂
k
ε̂

k
, (52)

where σ 0 is the given reference influence function.

6. Demonstration calculations

Computational simulation results are presented below for the purpose of comparing the performance of
the PALS model against the LPS model. Results for a beam in tension, a hollow cylinder subjected to
torsional loading, and a tensile test simulation for material characterization are given. The simulations
were carried out using the Peridigm [Parks et al. 2012; Peridigm 2014] code following the mesh-free
method of Silling and Askari [2005]. All demonstration calculations are three-dimensional and results
were obtained by solving the momentum equation under conditions of static equilibrium. The Cubit
code [Cubit 2014] was utilized to generate the discretization, and the Paraview code [ParaView 2014]
was used for visualization of results. For further discussion of the numerical solution procedure, see
[Silling and Askari 2005] and [Littlewood ≥ 2015].

6.1. Square beam in tension. This demonstration calculation is a simpler version of the tensile test
described in the introduction (Section 1). A known/measured value for Young’s modulus E is given and
a simple peridynamics calculation is conducted to recover E and verify the efficacy of the PALS model.
In this calculation (schematic shown in Figure 4), one end of the beam is fixed while the other end has a
prescribed small displacement u0; Dirichlet boundary conditions are applied to the end sections (shown
in green) as u(z) = zu0/L , where z is an axial coordinate with an origin z = 0 centered in one of the
green sections. The equilibrium solution for the displacement field is computed and reaction forces P
are calculated as a post-processing step. From elementary mechanics of materials, the reaction force is
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Figure 4. Schematic of square beam for verification of Young’s modulus.

related to the applied displacement and geometric properties of the beam:

P = AE
L

u0, (53)

where A= b2 denotes the cross-sectional area of the beam, and L denotes the length of the beam. Material
and geometric properties used for these calculations are given in Tables 1 and 2. The horizon parameter
δ= 3.1h was used, where h= b/n is the mesh spacing, and n is the number of nodes along one axis of the
cross-section. Graphical results for these calculations are shown in Figure 5. Error in the effective value
of Young’s modulus (slope of the stress-strain curve) is shown in Table 3 for a few different numerical
mesh discretizations. The table gives results for two types of initial influence functions:

• Constant:
ω0
〈ξ〉 = σ 0

〈ξ〉 = 1.

• Gaussian:
ω0
〈ξ〉 = σ 0

〈ξ〉 = G(δ, ξ)= e−|ξ |
2/δ2
.

Although oscillations are observed in the PALS results shown, the PALS model errors are substantially
less than those of the LPS model for all discretizations.

6.2. Twist test. The focus of this example is on recovering the shear modulus µ. In this calculation, µ is
estimated by applying an angle of twist φ to a circular hollow cylinder. A schematic of the cylinder is de-
picted in Figure 6; material and geometric properties used in the calculations are given in Tables 1 and 4.

Under the assumptions that every cross-section of the cylinder remains plane and undistorted and
that the material remains linearly elastic, the relationship between the angle of twist φ and the applied

Property Value Units

Bulk modulus: k 1.5× 1012 dyne/cm2

Shear modulus: µ 6.923× 1011 dyne/cm2

Table 1. Isotropic elastic material properties.

Property Value Units
Edge length: b 0.5 cm
Length: L 5.0 cm

Table 2. Square beam geometric properties. See Figure 4.
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Figure 5. Computed stress-strain curves for the square beam in tension (Figure 4). The
slope represents the effective Young’s modulus in the computational model.

torque T is
T = µJφ/L , (54)

where J is the area polar moment of inertia of the cross-section, and L is the length of the cylinder.
Dirichlet boundary conditions are applied on points depicted in green (see Figure 6). The angles of twist
applied at the ends are

φ(0)= 0, φ(L)= φL .

The expected angle of twist on any cross-section with axial position z is φ(z)= zφL/L . The computa-
tional model finds a resultant torque T from which µ is recovered using (54). A relative error for recovery
of the shear modulus µ is computed. This error is calculated as (µ̂−µ)/µ, where µ̂ was estimated from
the PALS or LPS models using (54), and µ is the input value given in Table 1. For these calculations,
the horizon parameter δ = 3.1h was used, where h = (ro− ri )/n, and n is the number of nodes through
the thickness of the cylinder.

Mesh PALS LPS

n ω0
=σ 0
=1 ω0

=σ 0
=G(δ, ξ) ω0

=1 ω0
=G(δ, ξ)

3 0.00621 0.00621 0.649 0.649
5 0.000686 0.000685 0.173 0.173
7 0.00820 0.0082 0.0723 0.0723
9 0.00595 0.00595 0.0201 0.0201

Table 3. Relative error in the computed Young’s modulus for a beam under uniaxial tension.
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Figure 6. Schematic of twist test for verification of shear modulus.

Numerical results of demonstration calculations are given in Table 5 for a few different mesh discretiza-
tions. This is a particularly challenging problem because the expected solution is not a homogeneous
(affine) deformation since the shear strain depends on the radial coordinate; relatedly, the local elastic
energy density is independent of the axial coordinate z and varies quadratically as a function of the radial
coordinate; this is shown in Figure 7 for the finest discretization, n = 9, as listed Table 5. The PALS
model influence functions were computed at each point using affine matching deformations, so good
results are not guaranteed by this particular choice of matching deformations. Nevertheless, the PALS
model continues to show a significant reduction in error with respect to the LPS model. Better accuracy
with the PALS model would be expected for thinner walled tubes, since the deformation would more
closely approximate simple shear.

Several additional points are made with respect to Figure 7. This plot shows the spatial variation of
the elastic energy density for any cross-section along the axis of the cylinder. Each color bar is scaled
using the local analytic minimum and maximum values. Tick labels on color bars for LPS and PALS are
the minimum and maximum values computed while tick labels for the local analytic calculation are the

Property Value Units

Inner radius: ri 0.667 cm
Outer radius: ro 1.0 cm
Length L 5.0 cm

Table 4. Twist test geometric parameters.

Mesh PALS LPS

n ω0
=σ 0
=1 ω0

=σ 0
=G(δ, ξ) ω0

=1 ω0
=G(δ, ξ)

3 0.097 0.097 0.303 0.276
5 0.056 0.056 0.168 0.158
7 0.040 0.040 0.131 0.121
9 0.026 0.026 0.117 0.107

Table 5. Relative error in the computed shear modulus µ for the twist test example.
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Figure 7. Elastic energy density for twist test calculation using LPS and PALS; ω0
=

σ 0
= G(δ, ξ).

exact minimum and maximum values. As shown, the PALS model resolves the spatial variation of the
energy density better than the LPS model. As previously mentioned, these calculations were done using
Peridigm [Parks et al. 2012; Peridigm 2014]; in preparation for running Peridigm, the geometry of the
domain is first discretized (in this case with hexahedra); for each hexahedron an equivalent peridynamic
nodal volume is created and located at its centroid; although the plots in Figure 7 show a quadrilat-
eral discretization (which corresponds to a cross-sectional view of hexahedra), this is only for plotting
convenience. All calculations were fully 3D using the mesh-free method [Silling and Askari 2005].

6.3. Tension test. As a final demonstration calculation, the PALS model is applied to the motivation
problem described in Section 1 (see Figure 1). A full three-dimensional model of the specimen was used.
Improved accuracy in reproducing E using the PALS model, compared with the LPS model, is shown
in Figure 8.
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Figure 8. Stress-strain curve for a full 3D peridynamic model of the uniaxial tension
test with PALS and LPS; both on the same discretization.
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7. Summary and conclusions

A new position aware linear solid (PALS) model for peridynamics was introduced. The PALS model is
an ordinary-state-based peridynamics constitutive model that addresses inaccuracies in previous models,
most notably the linear peridynamic solid (LPS) [Silling et al. 2007], due to the surface effect [Mitchell
2013]. The PALS model addresses problems that arise due to missing bonds (see Figure 3) near the
surface of a peridynamic body. Using this new model, simple benchmark calculations demonstrate large
reductions in the surface effect. Although the development given in the present paper is for linear elastic
materials, work currently in progress suggests that previously developed plasticity and viscoelasticity
models [Mitchell 2011a; 2011b] can be extended to include some aspects of the PALS approach.
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