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VARIABLE HORIZON IN A PERIDYNAMIC MEDIUM

STEWART A. SILLING, DAVID J. LITTLEWOOD AND PABLO SELESON

A notion of material homogeneity is proposed for peridynamic bodies with variable horizon but constant
bulk properties. A relation is derived that scales the force state according to the position-dependent
horizon while keeping the bulk properties unchanged. Using this scaling relation, if the horizon depends
on position, artifacts called ghost forces may arise in a body under a homogeneous deformation. These
artifacts depend on the second derivative of the horizon and can be reduced by employing a modified
equilibrium equation using a new quantity called the partial stress. Bodies with piecewise constant
horizon can be modeled without ghost forces by using a simpler technique called a splice. As a limiting
case of zero horizon, both the partial stress and splice techniques can be used to achieve local–nonlocal
coupling. Computational examples, including dynamic fracture in a one-dimensional model with local–
nonlocal coupling, illustrate the methods.

1. Introduction

The peridynamic theory is a strongly nonlocal formulation of solid mechanics, based on long-range forces,
that is adapted to the study of continuous bodies with evolving discontinuities, including cracks [Silling
2000; Silling et al. 2007; Silling and Lehoucq 2010]. Each material point x in the reference configuration
of a body B interacts through the material model with other material points within a distance δ(x) of
itself. The maximum interaction distance δ(x) is called the horizon of x. The material points within the
horizon of x comprise a set called the material family of x:

Fx = {q ∈ B : 0< |q− x| ≤ δ(x)},

where | · | denotes the Euclidean norm. The vector from x to any neighboring material point q ∈ Fx ,
ξ = q − x, is called a bond. The set of bonds from x to its neighbors within its horizon is called the
family of x, denoted Hx :

Hx = {ξ ∈ R3
: x+ ξ ∈ Fx}.

In an elastic peridynamic solid, the strain energy density W (x) is determined by the collective deforma-
tion of Fx . To express this collective deformation, it is convenient to define the function

Y [x, t]〈 · 〉 :Hx→ R3

that maps bonds into their images under the deformation y. For any material point q ∈ Fx at time t ≥ 0,
let

Y [x, t]〈q− x〉 = y(q, t)− y(x, t). (1-1)
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The function Y [x, t]〈 · 〉 is an example of a state, which is a mapping with domain Hx . By convention, the
bond ξ ∈Hx that a state operates on is written in angle brackets, i.e., 〈ξ〉. The state Y [x, t] is called the
deformation state at x and at time t . The deformation state is the basic kinematical quantity for purposes
of material modeling, and, in this role, it is analogous to the deformation gradient in the classical theory
of continuum mechanics, F = ∂ y/∂x.

In the present discussion, for convenience, we will adopt the generalization that a state operating on
a bond vector outside of the family of a given point x is defined, but its value is zero:

|ξ |> δ(x)=⇒ A[x]〈ξ〉 = 0.

The inner product of two states A and B is defined by

A • B =
∫
H

A〈ξ〉 · B〈ξ〉 dVξ . (1-2)

In (1-2) and the rest of this paper, we use the symbol H instead of Hx when it is not necessary to refer
to a specific x ∈ B. The norm of a state A is defined by

‖A‖ =
√

A • A.

In an elastic material, the strain energy density W (x) depends through the material model on the
deformation state, and this dependence is written as

W (x)= Ŵ (Y [x]).

When manipulating functions of states such as W , it is helpful to introduce the Fréchet derivative. Given
the function Ŵ (Y), its Fréchet derivative ŴY is a functional derivative with the property that if δY is a
small increment in the deformation state, then

Ŵ (Y + δY)= Ŵ (Y)+ ŴY (Y) • δY + o(‖δY‖). (1-3)

Note that ŴY is a state-valued function even though Ŵ is scalar-valued.
Let 8 y denote the total potential energy in a bounded elastic body B under external force density field

b, subjected to the deformation y:

8 y =

∫
B
(W (x)− b(x) · y(x)) dVx . (1-4)

To derive the Euler–Lagrange equation corresponding to stationary values of this functional, set the first
variation of (1-4) to zero. Combining (1-1), (1-3), and (1-4), and neglecting higher-order terms in the
small increment in the deformation state, leads to

0= δ8 y =

∫
B
(δW (x)− b(x) · δ y(x)) dVx

=

∫
B
(ŴY (Y [x]) • δY [x] − b(x) · δ y(x)) dVx

=

∫
B

(∫
B

ŴY (Y [x])〈q− x〉 · (δ y(q)− δ y(x)) dVq − b(x) · δ y(x)
)

dVx .
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Using the change of dummy variables q↔ x to eliminate δ y(q), we obtain

0=
∫
B

(∫
B
(ŴY (Y [q])〈x− q〉− ŴY (Y [x])〈q− x〉) dVq − b(x)

)
· δ y(x) dVx .

Since this must hold for every choice of the variation δ y, the Euler–Lagrange equation, which is the
peridynamic equilibrium equation, is given by

Lpd(x)+ b(x)= 0 (1-5)

for all x ∈ B. In (1-5), the peridynamic internal force density at x is given by

Lpd(x) :=
∫
B
{T [x]〈q− x〉− T [q]〈x− q〉} dVq, (1-6)

where T [x] is the force state at x, which is related to the strain energy density by

T [x] = ŴY (Y [x]). (1-7)

The pairwise bond force density f on a point x due to its interaction with any point q ∈ Fx is given by

f (q, x)= T [x]〈q− x〉− T [q]〈x− q〉. (1-8)

The peridynamic internal force density (1-6) may be written more succinctly in terms of the pairwise
bond force density as

Lpd(x)=
∫
B

f (q, x) dVq . (1-9)

In general,
T [x] = T̂ (Y [x]) and T [q] = T̂ (Y [q]),

where T̂ is the material model expressed in terms of the force state.
By invoking d’Alembert’s principle, the dynamic form of the balance of linear momentum is found

from (1-5) to be
ρ(x) ÿ(x, t)= Lpd(x, t)+ b(x, t) (1-10)

for all x ∈ B and for any t ≥ 0, where ρ is the mass density.
The mechanical interpretation of the force state is that T [x]〈q− x〉 represents a bond force density

on x due to its interaction with q. More general material models, whether elastic or not, may be written
in the form

T [x] = T̂ (Y [x], . . . , x),

where T̂ is the material model, which may depend on additional variables besides Y . The dimensions of
T and f are force per unit volume squared. The dimensions of W are the same as in the classical theory,
i.e., energy per unit volume.

If at any x, T depends only on Y and x (but not additional variables such as loading history), then the
material model is simple, and we write

T [x] = T̂ (Y [x], x).

All elastic materials are simple.
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If T̂ has no explicit dependence on x, then the body is homogeneous. If it is simple and homogeneous,
we write

T [x] = T̂ (Y [x]).

Since δ is in effect a material property, any homogeneous body has constant δ.
If δ is constant in B, then the region of integration in (1-6) and (1-9) may be changed from B to Fx .

The vast majority of applications of peridynamics to date assume constant horizon.

2. The peridynamic stress tensor

As shown in [Lehoucq and Silling 2008], given a continuously differentiable pairwise bond force density
f with asymptotic second-order decay with the bond length, the peridynamic internal force density can
be expressed as

Lpd
=∇ · νpd in B,

where νpd is the peridynamic stress tensor field defined for any x by

νpd(x) :=
1
2

∫
S

∫
∞

0

∫
∞

0
(v+w)2 f (x+ vm, x−wm)⊗m dw dv d�m, (2-1)

where S is the unit sphere, d�m is a differential solid angle in the direction of the unit vector m, and f
is given by (1-8).

Suppose the deformation is continuously differentiable, and let F be the classical deformation gradient
tensor field,

F =∇ y in B.

Define the deformation gradient state field F by

F[x]〈ξ〉 = F(x)ξ for all x ∈ B and ξ ∈Hx . (2-2)

An equivalent statement to (2-2) is

F = FX in B,

where X is the identity state defined by

X〈ξ〉 = ξ for all ξ ∈Hx .

Suppose the deformation is such that there is a tensor F∗ such that

y(x+ ξ)− y(x)= F∗ξ for all x ∈ B and ξ ∈Hx .

Then the deformation is called uniform. In this case,

Y = F in B and F[x]〈ξ〉 = F∗ξ for all x ∈ B and ξ ∈Hx . (2-3)
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If the body is homogeneous and the deformation is uniform, then the peridynamic stress tensor is easily
computed making use of the change of variables z = v+w:

νpd
=

∫
S

∫
∞

0

∫
∞

v

z2T̂ (F)〈zm〉⊗m dz dv d�m

=

∫
S

∫
∞

0

∫ z

0
z2T̂ (F)〈zm〉⊗m dv dz d�m

=

∫
S

∫
∞

0
z3T̂ (F)〈zm〉⊗m dz d�m

=

∫
S

∫
∞

0
T̂ (F)〈zm〉⊗ (zm)(z2 dz d�m)

= ν0, (2-4)

where ν0 is the collapsed stress tensor defined by

ν0
:=

∫
H

T̂ (F)〈ξ〉⊗ ξ dVξ . (2-5)

Also define the collapsed internal force density field by

L0
:= ∇ · ν0 in B. (2-6)

As discussed in [Silling and Lehoucq 2008], the collapsed stress tensor is an admissible first Piola–
Kirchhoff stress tensor whose constitutive model depends on the local deformation gradient tensor
through (2-5). The collapsed internal force density field provides the “local limit of peridynamics” in
the sense that as δ→ 0,

Lpd
→ L0,

provided that the deformation is twice continuously differentiable and T̂ obeys the scaling relation de-
rived in the next section.

3. Rescaling a material model at a point

The remainder of this paper concerns methods for allowing changes in the horizon as a function of
position such that the “bulk properties” are invariant to this change. The first step is to specify what this
required invariance means.

Suppose an elastic material model is given for a particular value of horizon (without loss of generality,
we will assume that this horizon has the value 1), and denote the corresponding strain energy density
function by Ŵ1. Now consider a different value of horizon, δ, and denote the corresponding strain energy
density function by Ŵ . As a physical requirement, the strain energy density for any uniform deformation
must be invariant with respect to changes in δ. By reasoning similar to that in [Silling and Lehoucq 2008],
it is assumed that for any deformation state Y ,

Ŵ (Y)= Ŵ1(Y 1), (3-1)
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where Y 1 is the reference deformation state defined by

Y 1〈n〉 := δ−1Y 〈δn〉 for all n ∈H1, (3-2)

where H1 is the family of x with horizon 1. In the remainder of this paper, the symbols n or m will
generally be used instead of ξ to denote bonds in H1. To derive the force state T , observe that (3-1)
implies

ŴY • dY = (Ŵ1)Y 1
• dY 1.

Hence, using (1-7),
T • dY = T 1 • dY 1.

Combining this with (1-2), (1-3), and (3-2) leads to the following scaling relation for peridynamic mate-
rial models in three dimensions:

T̂ (Y)〈ξ〉 = δ−4T̂ 1(Y 1)〈δ
−1ξ〉 for all ξ ∈H

for any deformation state Y on H. Repeating the above derivation for one- or two-dimensional models
leads to

T̂ (Y)〈ξ〉 = δ−(1+D)T̂ 1(Y 1)〈δ
−1ξ〉 for all ξ ∈H, (3-3)

where D is the number of dimensions and Y 1 is given by (3-2). The state T̂ 1 is called the reference
material model.

From (2-2) and (3-2), the deformation gradient state has the following invariance with respect to
changes in δ:

F1〈n〉 = δ−1 F〈δn〉 = δ−1 Fδn= Fn= F〈n〉 for all n ∈H1.

Hence,
F1 = F in H∩H1, (3-4)

which is a result that could be anticipated owing to the fact that F is dimensionless. From (2-5), (3-2)
and (3-3),

ν0
=

∫
H

T̂ (F)〈ξ〉⊗ ξ dVξ

=

∫
H1

δ−(1+D)T̂ 1(F1)〈n〉⊗ (δn)(δDdVn)

=

∫
H1

T̂ 1(F1)〈n〉⊗ n dVn, (3-5)

which shows that the collapsed stress tensor is also invariant with respect to changes in δ. Note that this
invariance does not require the body to be homogeneous.

4. Variable scale homogeneous bodies

Recall from Section 1 that any homogeneous body necessarily has constant horizon. Therefore, it is
necessary to define a relaxed concept of homogeneity that captures the meaning of having a peridynamic
body with constant “bulk properties” without adhering to the strict definition of homogeneity. The refer-
ence material model defined in Section 3 provides a way to do this.
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Definition. Suppose a reference material model T̂ 1 is given in B, independent of position. In addition,
let the horizon δ(x) be prescribed as a function of position. If, at any x ∈ B,

T̂ (Y [x], x)〈ξ〉 =
1

(δ(x))1+D T̂ 1(Y 1[x])
〈

ξ

δ(x)

〉
for all ξ ∈Hx, (4-1)

then B is a variable scale homogeneous (VSH) body. Note that a homogeneous body is a VSH body
with constant horizon.

By the results of Section 3, an elastic VSH body under uniform deformation has constant W . However,
it does not necessarily have constant νpd and is therefore not necessarily in equilibrium in the absence
of body forces. (Recall that (2-4) applies only to homogeneous bodies, and homogeneity implies that δ
is constant.) As shown in the next section, nonconstant δ in a VSH body leads to ghost forces at points
where the horizon changes.

5. Ghost forces

We demonstrate that in the absence of body forces, a uniform deformation of a VSH body is not nec-
essarily in equilibrium. To see this, assume a uniform deformation, take δ to be twice continuously
differentiable, and compute the net internal force density Lpd(x). Extending the integration domain in
(1-6) to the entire space for convenience, and using (4-1), we obtain, for any x,

Lpd(x)=
∫

R3
{T [x]〈q− x〉− T [q]〈x− q〉} dVq

=

∫
R3

{
δ−(1+D)(x)T 1〈m〉− δ−(1+D)(q)T 1〈n〉

}
dVq , (5-1)

where

m =
q− x
δ(x)

and n=
x− q
δ(q)

. (5-2)

Holding x fixed,

dVq =

∣∣∣∣det
(
∂m
∂q

)∣∣∣∣−1

dVm = δ
D(x)dVm, (5-3)

dVq =

∣∣∣∣det
(
∂n
∂q

)∣∣∣∣−1

dVn =
δD(q)

1+ n · ∇δ(q)+ O(|∇δ|2)
dVn. (5-4)

From (5-1)–(5-4), it follows that

Lpd(x)=
∫

R3

T 1〈m〉
δ(x)

dVm−

∫
R3

T 1〈n〉
δ(q)

(
1

1+ n · ∇δ(q)+ O(|∇δ|2)

)
dVn

=

∫
R3
ε(x, q)T 1〈m〉 dVm, (5-5)
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where

ε(x, q)=
1
δ(x)
−

1
δ(q)

(
1

1+ n · ∇δ(q)+ O(|∇δ|2)

)
=

1
δ(x)
−

1
δ(q)+∇δ(q) · (x− q)+ O(δ|∇δ|2)

. (5-6)

Now approximate δ(x) by the first three terms of a Taylor expansion around q, that is,

δ(x)= δ(q)+∇δ(q) · (x− q)+ 1
2∇∇δ(q)(ξ ⊗ ξ)+ · · · ,

where ξ = q−x. Using this to eliminate the term∇δ(q)·(x−q) in (5-6) leads, after further straightforward
manipulations, to

ε(x, q)=
1
δ(x)
−

1

δ(x)− 1
2∇∇δ(q)(ξ ⊗ ξ)+ · · ·

= −
1
2∇∇δ(q)m⊗m+ · · · ,

where m is given by (5-2). From this result and (5-5), the peridynamic internal force density at x is
estimated from

Lpd(x)=−
1
2

∫
R3
∇∇δ(q)(m⊗m)T 1〈m〉 dVm+ · · · .

We thus obtain

|Lpd(x)| ≤
1
2

∫
R3

max
Hx
{|∇∇δ|}|m⊗m||T 1〈m〉| dVm+ · · · .

Since, by assumption, δ is twice continuously differentiable, and since |m| ≤ 1, this result implies

Lpd(x)= O(|∇∇δ|)O(‖T 1‖). (5-7)

The departure from equilibrium represented by nonzero values of Lpd is called ghost force and is an
artifact of the position dependence of the horizon. Observe that the leading term in the ghost force
depends on the second derivative of δ. In fact, it can be shown directly that if δ is a linear function of
position, then the ghost force vanishes.

An illustration of the effect of ghost force in a VSH bar in equilibrium is shown in Figure 1. The
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Figure 1. Ghost strain in a VSH body in equilibrium. Left: horizon as a function of
position. Right: strain as a function of position.
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peridynamic reference material model T̂ 1 is a bond-based model [Silling 2000] with a nominal Young’s
modulus of 1. The horizon in the bar depends on position as shown in the left figure. The numerical
approximation method is discussed in the Appendix. Two cases are considered for the spatial dependence
of the horizon: piecewise linear (“not smoothed”) and cubic spline (“smoothed”). The ends of the bar
have prescribed displacements corresponding to a nominal strain in the bar of 1. The strain (defined as
du/dx) in equilibrium for the two cases is shown in the right figure. The strain is computed numerically
using a central finite difference formula. If there were no ghost forces, the strain would be constant and
equal to 1. Because of ghost forces, anomalies in strain (“ghost strains”) appear that equilibrate the ghost
forces. The smoothed δ(x) has lower ghost strains than the nonsmoothed one. This result is consistent
with (5-7), which predicts that ghost forces are proportional to the second derivative of δ(x).

In this example, the anomalies in strain are less than 2%, even for the nonsmoothed case. This depar-
ture from constant strain could be acceptable in many applications. Ghost forces in a VSH peridynamic
body are always self-equilibrated, that is, they do not exert a net force on the body. This follows from the
fact that the peridynamic equilibrium equation always conserves linear momentum, even if the material
model depends on position. To address applications in which these ghost forces are not acceptable, or it
is desired to have a jump in δ(x), we will introduce two methods, partial stress and splice, that exhibit
zero ghost forces in a uniform deformation of a VSH body.

6. The partial stress field

We investigate a modified form of the momentum balance that eliminates ghost forces in a VSH body
under a uniform deformation. The momentum balance is expressed in terms of a new field called the
“partial stress” tensor field.

Consider a peridynamic body B and let its force state field T be given. Let the partial stress tensor
field νps be defined by

νps(x) :=
∫
Hx

T [x]〈ξ〉⊗ ξ dVξ for all x ∈ B. (6-1)

Also define the partial internal force density by

Lps(x) := ∇ · νps(x) for all x ∈ B. (6-2)

If the material model is simple, the partial stress can be expressed in the form

νps(x)= ˆνps(Y [x]) for all x ∈ B,

where

ˆνps(Y)=
∫
H

T̂ (Y)〈ξ〉⊗ ξ dVξ . (6-3)

Note the similarity between νps and ν0 defined by (2-5). The difference is that νps depends on the
(nonlocal) deformation state Y , while ν0 depends on the (local) deformation gradient tensor. In the
special case of a uniform deformation of a homogeneous body (which implies δ = constant and Y = F),
clearly νps

≡ ν0.
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By repeating the manipulations leading to (3-5), it is easily shown that in a VSH body with reference
material model T̂ 1,

νps(x)=
∫
H1

T̂ 1(Y 1[x])〈n〉⊗ n dVn for all x ∈ B, (6-4)

where Y 1 is given by (3-2). Since, in a uniform deformation, Y 1 is constant (and equal to F), it follows
from (2-3), (2-6), (3-4), (3-5), (6-2), and (6-4) that in a VSH body under a uniform deformation,

νps
≡ ν0 and Lps

≡ L0
≡ 0. (6-5)

This establishes that, for a VSH body under a uniform deformation, ghost forces are absent in the partial
stress formulation of the momentum balance equation, regardless of the spatial dependence of horizon.
This observation motivates the use of this modified momentum balance in the transition region of the
horizon.

7. The partial stress as an approximation to peridynamics

With the intent of modeling some parts of a body using the partial internal force density (6-2) and
other parts using the peridynamic internal force density (1-6), the relation between the two will now be
investigated. Since the plan is to make a transition between Lps and Lpd where the horizon is constant,
we investigate the way these fields approximate each other under this assumption.

Proposition 1. Let B be a homogeneous body (which implies constant δ). Let a twice continuously
differentiable deformation y of B be prescribed. Then

νpd
− νps

= O(δ)O(‖∇T 1‖) in B (7-1)

and

Lpd
− Lps

= O(δ)O(‖∇∇T 1‖) in B. (7-2)

Proof of (7-1). Let x ∈ B be fixed. Combining (1-8), (2-1), and (4-1) leads to

νpd(x)=
∫
S

∫
∞

0

∫
∞

0
(v+w)2T [x−wm]〈(v+w)m〉⊗m dw dv d�m

=

∫
S

∫
∞

0

∫
∞

0
(v1+w1)

2T 1[x− δw1m]〈(v1+w1)m〉⊗m dw1 dv1 d�m,

where v = δv1 and w = δw1. A Taylor expansion for T 1 yields

T 1[x− δw1m] = T 1[x] − δw1∇T 1[x]m+ · · · .

After repeating the manipulations leading up to (2-4), and after evaluating the triple integral, the first
term in this Taylor expansion gives the partial stress defined by (6-1). Thus

νpd
= νps

+ O(δ)O(‖∇T 1‖),

proving (7-1).
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Proof of (7-2). Let x ∈ B be fixed. Applying a Taylor expansion to T [q] around x and setting ξ = q− x
leads to

T [q] = T [x] +∇T [x]ξ + 1
2∇∇T [x](ξ ⊗ ξ)+ · · · .

Combining this with (1-6), we find

Lpd(x)=
∫
Hx

{T [x]〈ξ〉− T [q]〈−ξ〉} dVξ

=

∫
Hx

{
T [x]〈ξ〉−

(
T [x]〈−ξ〉+∇T [x]〈−ξ〉ξ + 1

2∇∇T [x]〈−ξ〉(ξ ⊗ ξ)+ · · ·
)}

dVξ .

Replacing ξ by −ξ , the first two terms in the integrand cancel. Bringing the gradient operator in the
third term of the integrand outside the integral yields

Lpd(x)=∇ ·
∫
Hx

T [x]〈ξ〉⊗ ξ dVξ −
1
2

∫
Hx

∇∇T [x]〈ξ〉(ξ ⊗ ξ) dVξ + · · ·

= Lps(x)−
1
2

∫
Hx

∇∇T [x]〈ξ〉(ξ ⊗ ξ) dVξ + · · · .

Using (3-3) to express the remainder in terms of the reference force state, and setting ξ = δm, this implies

Lpd(x)= Lps(x)−
δ

2

∫
H1

∇∇T 1[x]〈m〉(m⊗m) dVm+ · · · .

Since |m| ≤ 1, this proves (7-2). �

Because of (7-2), it follows that at the interface between subregions where Lps and Lpd are used in
the momentum balance, there are no ghost forces if the deformation is uniform (since T 1 is constant in
B).

In Figure 2, we present an example of the propagation of a stress pulse in a VSH bar. The horizon
increases from 0.1 on the left to 1.0 on the right through a transition region of thickness 0.1. The
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Figure 2. Stress pulse in a VSH bar: horizon as a function of position.
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Figure 3. Stress pulse in a VSH bar: time history of displacement at x =−10. The two
curves are for a fully peridynamic (PD) model, and for peridynamic with a partial stress
(PS) region surrounding the transition in δ. The PS curve has a different reflection than
the PD model.

numerical approximation method is discussed in the Appendix. An incident wave pulse is applied on the
left boundary. The total thickness of the pulse is 4.0, which is thin enough that we expect to see some
effect of nonlocality as the pulse moves into the high-δ region. Two cases are considered: (1) the full
peridynamic equation applied throughout the domain, and (2) the partial stress model applied in a region
containing and surrounding the transition region with the full peridynamic equation applied everywhere
else. In case (2), the total width of the partial stress region is 10. Figure 3 compares the time history of
the displacement at the point x =−10 for the two cases, showing both the incident and reflected pulses.
Evidently, the use of the partial stress model in the transition region reduces the reflections. Figure 4
shows the comparison at the point x = 10, showing the transmitted pulses, which are essentially the
same for both models. The change in shape of the transmitted pulse compared with the incident pulse
is primarily due to nonlocality: as δ increases, short wavelength components of the pulse experience a
lower wave speed. This effect of nonlocality on wave speed is reflected in the dependence on the horizon
of dispersion curves for linear waves [Silling and Lehoucq 2010; Seleson and Parks 2011].

This example illustrates that it is hopeless to try to find a coupling method that transmits waves without
reflection between regions with different horizons. However, as the example demonstrates, different
coupling methods can have different transmission and reflection properties that may be more or less
desirable for different applications.

8. Partial stress as an approximation to the local theory

In Section 7, the relationship between the partial stress and the full peridynamic versions of the internal
force density were discussed. Here, we investigate the approximate relationship between the partial stress
formulation and the local theory. The appropriate material model in the local theory uses the collapsed
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Figure 4. Stress pulse in a VSH bar: time history of displacement at x = 10. The
transmitted pulses are similar between the two models, with the primary effect being the
nonlocality of the material model.

stress tensor defined by (2-5), because, as shown in (6-5), it coincides with the partial stress for uniform
deformations.

Proposition 2. Let B be a homogeneous body (which implies constant δ). Let the reference material
model T̂ 1 be a continuously differentiable function (of the reference deformation state). Let y be twice
continuously differentiable in B. Then

νps
− ν0
= O(δ)O(‖∇T 1‖) in B, (8-1)

where νps and ν0 are defined by (6-1) and (2-5), and

Lps
− L0

= O(δ)O(‖∇∇T 1‖) in B, (8-2)

where Lps and L0 are defined by (6-2) and (2-6).

Proof of (8-1). Let x ∈ B be fixed. From (3-2) and a Taylor expansion of y around x,

Y 1[x]〈n〉 = δ−1( y(x+ δn)− y(x))

= δ−1(( y(x)+ δF(x)n+ 1
2δ

2
∇F(x)(n⊗ n)+ . . . )− y(x)

)
.

= F(x)n+ 1
2δ∇F(x)(n⊗ n)+ · · · .

Hence,

Y 1 = F+ O(δ)O(‖∇F‖), (8-3)

and similarly

∇Y 1 =∇F+ O(δ)O(‖∇∇F‖). (8-4)
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By the chain rule for Fréchet derivatives and (8-4),

∇T 1 = K •∇Y 1

= K • (∇F+ O(δ)O(‖∇∇F‖)), (8-5)

where K = (T̂ 1)Y 1 , that is, the Fréchet derivative of T̂ 1 (also known as the micromodulus double state
[Silling 2010]). From (8-5), it is immediate that

O(‖∇T 1‖)= O(‖∇F‖). (8-6)

From (8-3), (8-6), and a Taylor expansion of T̂ 1 near Y 1, it follows that

T̂ 1(Y 1)= T̂ 1(F)+K • (Y 1− F)+ · · ·

= T̂ 1(F)+ O(δ)O(‖∇F‖)

= T̂ 1(F)+ O(δ)O(‖∇T 1‖).

(8-7)

From (2-5), (6-4), and (8-7),

νps(x)=
∫
H1

T̂ 1(Y 1[x])〈n〉⊗ n dVn

=

∫
H1

(T̂ 1(F[x])〈n〉+ O(δ)O(‖∇T 1‖))⊗ n dVn

=

∫
H1

T̂ 1(F[x])〈n〉⊗ n dVn+ O(δ)O(‖∇T 1‖)

= ν0(x)+ O(δ)O(‖∇T 1‖),

which proves (8-1).
The proof of (8-2) is similar to that of (8-1), making use of the relations Lps

=∇ ·νps and L0
=∇ ·ν0.

�

Since T̂ 1 is constant in a VSH body under a uniform deformation, (8-1) and (8-2) imply (6-5), provided
the conditions of Proposition 2 are satisfied.

Comparing (7-1) with (8-1), and comparing (7-2) with (8-2), it follows that under the conditions of
Proposition 2 (which are stronger than those of Proposition 1),

νpd
− ν0
= O(δ)O(‖∇T 1‖) in B, (8-8)

Lpd
− L0

= O(δ)O(‖∇∇T 1‖) in B. (8-9)

This result is consistent with the conclusion in [Silling and Lehoucq 2008] that the collapsed internal
force density is the “local limit of peridynamics”.

9. A splice between two peridynamic subregions

Let two values of horizon be denoted by δ+ and δ−, and assume δ− ≤ δ+. Let a reference material model
T̂ 1 be given. Suppose, for a given deformation, two force state fields are computed everywhere using
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(3-3). For any x ∈ B, define

T+[x]〈ξ〉 :=
1

δ1+D
+

T̂ 1(Y 1[x])
〈

ξ

δ+

〉
and T−[x]〈ξ〉 :=

1

δ1+D
−

T̂ 1(Y 1[x])
〈

ξ

δ−

〉
.

Further suppose that B is divided into two disjoint subregions, B+ and B−, and assume that the internal
force density at any x ∈ B is given by

L(x)= Lsplice(x) :=

{∫
B{T+[x]〈q− x〉− T+[q]〈x− q〉} dVq if x ∈ B+,∫
B{T−[x]〈q− x〉− T−[q]〈x− q〉} dVq if x ∈ B−.

The resulting model of B is called a splice of the subregions B+ and B−.

Remark. A splice is not the same as a VSH body with δ(x) prescribed as a step function. The difference
is that in a splice, a point x near the interface “sees” the force states on the other side of the interface
corresponding to the same value of horizon as itself, δ(x). In contrast, in a VSH body, each point is
assigned a unique value of horizon, and the force state at each point is uniquely computed according to
that horizon.

In many applications, a splice provides a viable and convenient way to model a VSH body that has
piecewise constant values of horizon. It is immediate that a splice model has zero internal force density
under a homogeneous deformation, since the values of T+ and T− are constant throughout B+ and B−,
respectively. This implies that a splice model produces no ghost forces under a uniform deformation.
This is the main advantage of a splice over a VSH body. The splice is similar to an adaptivity concept
for 1D bond-based peridynamics proposed by Bobaru et al. [2009] and in 2D by Bobaru and Ha [2011].
A related approach has been used in the context of atomistic-to-continuum coupling by Seleson and
Gunzburger [2010].

It follows from Proposition 2 that in a splice, recalling that δ− ≤ δ+,

ν
pd
+ − ν

pd
− = O(δ+)O(‖∇T 1‖) on B

and
Lpd
+ − Lpd

− = O(δ+)O(‖∇∇T 1‖) on B,

provided that the conditions of Proposition 2 are satisfied.

10. Local-nonlocal coupling

The situation frequently arises that we wish to model most of a body using the classical (local) theory,
and only a small portion (such as in the vicinity of a growing crack) with peridynamics. A method
for achieving the transition between the two is referred to as local–nonlocal coupling. Methods that
have been proposed for local–nonlocal coupling include Arlequin [Han and Lubineau 2012], morphing
[Lubineau et al. 2012; Azdoud et al. 2013; 2014], and blending [Seleson et al. 2013a; 2015]. Liu and
Hong [2012] proposed a coupling method using interface elements. Methods that achieve coupling by
treating peridynamic bonds as finite elements are described in [Macek and Silling 2007] and [Oterkus
et al. 2012], which contains additional references. Related issues in nonlocal diffusion were investigated
by Seleson, Gunzburger, and Parks [2013b]. Wu [2014] investigated a local–nonlocal coupling method
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for correspondence materials in state-based peridynamics. An adaptive method for coupling peridynamic
and local regions is discussed by Wildman and Gazonas [2014].

One option for local–nonlocal coupling is to use the partial stress field as a bridge between local and
peridynamic subregions. In this approach, B is divided into three disjoint subregions B0, Bps, and Bpd.
To avoid ghost forces under a uniform deformation, δ > 0 is assumed to be constant in Bpd. Changes in
δ occur entirely within Bps, such that δ is continuous in B. (Recall from (6-5) that νps

≡ ν0 and Lps
≡ L0

where δ ≡ 0.) The internal force density is given by

L(x)=


Lpd(x) if x ∈ Bpd,

Lps(x) if x ∈ Bps,

L0(x) if x ∈ B0.

(10-1)

The convergence properties of this method are given by (7-2) and (8-2).
Another option for local–nonlocal coupling is to use the idea of a splice described in Section 9. The

body is divided into two disjoint subregions B0 and Bpd that use the local model and the full peridynamic
model (constant δ > 0), respectively. The internal force density in the splice model is given by

L(x)=
{

Lpd(x) if x ∈ Bpd,

L0(x) if x ∈ B0.
(10-2)

The convergence properties of such a splice model are given by (8-9).
These two options for local–nonlocal coupling differ primarily in the way they transmit waves whose

wavelength is smaller than or on the order of δ. As illustrated in the example in Section 7, the transition
from a local region to a nonlocal region involves a change in the dispersion properties of the material,
resulting in reflections of waves. However, because the partial stress coupling method (10-1) allows a
gradual change in length scale, it can be used to reduce wave reflections compared to the splice approach
(10-2). As discussed in the Appendix, numerical computation of Lps requires the suppression of zero
energy mode oscillations, similar to correspondence material models [Littlewood 2010; 2011; Breitenfeld
et al. 2014]. The root cause of these oscillations is the noninvertibility of ˆνps(Y), that is, there are many
possible deformations of the family that result in the same partial stress tensor.

As an example, we apply these two methods for local–nonlocal coupling to the problem of spall
initiated by the impact of two brittle elastic plates. The impactor has half the thickness of the target and
strikes the target from the left side. As shown in the wave diagram in Figure 5, the compressive waves
that issue from the contact surface between the impactor and the target eventually intersect each other
at the midplane of the target plate. When this happens, the waves, which by that time are both tensile,
reinforce each other to create a thin region where the stress is strongly tensile. Within this tensile region,
the strength of the material is exceeded and a crack forms. The formation of this crack creates release
pulses that move in both directions. The velocity induced by the rightward-moving release pulse as it
reflects from the free surface of the target bar can be measured using VISAR or other techniques [Field
et al. 2004]. With the help of analysis or computational modeling, the exact characteristics of the crack
release (or “pullback”) pulse can be interpreted using suitable data processing techniques to reveal the
dynamic strength properties of materials under strong tension (spall).

In the computational model of this spall experiment, the impactor and target plates have thicknesses
of 20 and 40, respectively. The numerical solution method is described in the Appendix. The impact
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Figure 5. Wave diagram for the impact of a plate (from the left) on a target plate. Waves
reinforce at the midplane of the target plate to cause fracture. Numbers in italics represent
particle velocity.

velocity is 0.1. The elastic modulus and density of both plates are 1. The reference material model T̂ 1
is chosen to be the bond-based prototype microelastic brittle (PMB) material model [Silling and Askari
2005] with a critical bond strain for failure of 0.04. The entire region is discretized into 1000 nodes.
The objective is to model the relatively small part of the body where damage can occur using the full
peridynamic equations. This peridynamic region is coupled to local regions using either of the following
two methods:

• Partial stress: a peridynamic region of thickness 10, centered at the midpoint of the target plate, is
enclosed by layers of thickness 4 where the partial stress method is applied. Beyond this, the local
equations are used. In the peridynamic and partial stress regions, the horizon is δ = 0.13.

• Splice: a peridynamic region of thickness 10 and horizon δ = 0.13, centered at the midpoint of the
target plate, is spliced to local regions.

For comparison, results using the full peridynamic model in the entire domain (δ = 0.13 throughout) are
also computed.

The computed velocity profile at time t = 70, using the splice method for local–nonlocal coupling,
is shown in Figure 6. Comparing this figure with the wave diagram in Figure 5, a number of salient
features may be seen. The crack appears as a sharp jump in velocity as a function of position at x = 40.
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Figure 6. Velocity as a function of position at t = 70 in the spall example problem using
the splice method for local–nonlocal coupling. There are no significant artifacts from
the local–nonlocal transitions, which are located at x = 37 and x = 43.
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Figure 7. Velocity history at the free (right) surface of the target plate, showing the
release pulse from the dynamic fracture occurring in the interior of the target bar. The
three curves are for fully peridynamic (PD), local–nonlocal coupling using partial stress
(PS), and local–nonlocal coupling using a splice.

The two release (pullback) pulses move away from the crack at the wave velocity, which is c = 1.0. In
Figure 5, the particle velocities are indicated with italic numbers. The computed velocity history at the
free surface is shown in Figure 7 for the two local–nonlocal coupling methods, partial stress (PS) and
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splice, along with the full peridynamic model. The dips in velocity represent the crack release pulse
created in the interior of the target due to spall.

As demonstrated in Figure 7, the three methods give nearly the same results in this example. However,
a fully peridynamic model in multiple dimensions would require a much higher computational cost than
either of the proposed local–nonlocal coupling methods, due to the large number of nonlocal interactions
required to discretize the material model. So, in multiple dimensions, in problems where damage is con-
fined to a small subregion, the splice or partial stress methods potentially offer a significant reduction in
computational cost, while avoiding ghost forces. This anticipated cost reduction is a primary motivation
for development of local–nonlocal coupling methods.

11. Discussion

In this paper, we proposed a notion of a homogeneous body (a “variable scale homogeneous” body) that
characterizes a peridynamic medium with variable horizon but constant bulk material properties. We
analyzed the origin and effect of ghost forces due to changes in the horizon in the full peridynamic model.
The importance of these ghost forces depends on the application; they may or may not be acceptable in a
computational simulation. These anomalies can be reduced by making δ(x) a smoothly varying function.

If the ghost forces under a uniform deformation are not acceptable, the partial stress field can be
used to effect a transition between regions with different horizons. The partial stress field appears in a
modified form of the equilibrium equation. The partial stress approaches the collapsed stress in the limit
of zero horizon, if the deformation is continuously differentiable. The collapsed stress, ν̂0(F), provides
a material model for the first Piola–Kirchhoff stress in the local formulation.

The partial stress formulation is not thermodynamically consistent in the sense that along a cyclic
loading path of a family in an elastic material, nonzero net work may appear:

∮
ˆνps(Y) · d F 6= 0. (11-1)

(An exception to this is a uniform deformation, in which case Y = F.) The root cause of this inconsistency,
which is evident in (11-1), is that the partial stress concept mixes local and nonlocal kinematics. The
partial stress is therefore not suitable as a basis for a general theory of continuum mechanics. The full
peridynamic theory, like the local theory, is thermodynamically consistent [Silling and Lehoucq 2010;
Oterkus et al. 2014a; 2014b], that is,∮

T̂ (Y) • dY = 0 and
∮
ν̂0(F) · d F = 0.

To connect subregions with constant δ to each other, or to achieve local–nonlocal coupling, subregions
can be connected using a splice. This method allows the peridynamic material model in each subregion
to “see” force states in the other subregion with the same horizon as itself. The methods proposed in this
paper may provide a means to reduce the computational cost of modeling a crack with peridynamics by
connecting it to a larger surrounding region that is modeled with the local theory.
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Appendix: Computational details

All the numerical examples in this paper involving nonlocal models used the method described in [Silling
and Askari 2005]. This method uses a midpoint quadrature rule in a Lagrangian discretization of the body.
The approximation in one dimension for the peridynamic internal force density is

Lpd
i =

∑
j∈Fi

(Ti j − T j i )V j ,

where i and j are node numbers, V j is the volume of node j , Fi is the set of nodes in the material family
of i , and

Ti j = T̂ (Y [xi ], xi )〈x j − xi 〉, T j i = T̂ (Y [x j ], x j )〈xi − x j 〉,

Y [xi ]〈x j − xi 〉 = y j − yi , Y [x j ]〈xi − x j 〉 = yi − y j .

The partial stress is computed as
ν

ps
i =

∑
j∈Fi

Ti j (x j − xi )V j .

The partial stress internal force density is approximated by

Lps
i =

ν
ps
i+1− ν

ps
i−1

21x
,

where 1x is the mesh spacing. For computations involving the PDEs of the local theory, the Piola
(collapsed) stress is approximated by the finite difference formula

ν0
i+1/2 = ν̂

0(Fi+1/2) with Fi+1/2 =
yi+1− yi

1x
.

where ν̂0 is the material model for the Piola stress. The internal force density in the local model is
approximated by

L0
i =

ν0
i+1/2− ν

0
i−1/2

1x
.

For dynamics, time integration is performed using explicit central differencing:

v
n+1/2
i − v

n−1/2
i = an

i 1t,

yn+1
i − yn

i = v
n+1/2
i 1t,

where 1t is the time step size. At time step n, the acceleration is computed from

ρan
i = Ln

i + bn
i + η

n
i ,

where L is either Lpd, Lps, or L0, ρ is mass density, b is a prescribed body force density, and η is a linear
artificial viscosity:

ηn
i = αρc1x(vn

i+1− 2vn
i + v

n
i−1),

where c is the wave speed and α is a dimensionless constant on the order of 1/4. The linear artificial vis-
cosity is effective in reducing zero energy mode oscillations that can appear due to the noninvertibility of
the partial stress tensor and, when a correspondence material model is used, of the peridynamic force state.
Other methods for controlling zero energy mode oscillations are described by Breitenfeld et al. [2014]
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and by Littlewood [2010; 2011]. The artificial viscosity ηn
i is not applied if the bonds from i to i + 1 or

i to i − 1 are damaged according to the material damage model at time step n. Otherwise, the artificial
viscosity would create nonphysical forces across a crack surface.
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