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The paper presents an application of the method of fundamental solutions to model auxetic materials.
The utility of the method has been illustrated by solution of basic elastostatic problem of searching
displacements distribution for materials with different auxetic properties. Some remarks on most often
difficulties occurring during computational process are also included. The presented numerical examples
show that the method of fundamental solutions could be effective numerical tool for researching various
properties of auxetic materials.

1. Introduction

Solving many modern engineering problems it requires to use more and more advanced computational
methods. Due to high progress in developing those methods in recent years, it was possible to take into
account many important and complex problems especially in the field of mechanics, bioengineering or
material science. In that domain, where the real problems could be described by differential equations,
the main numerical tool to provide computer simulation is the finite element method (FEM) [Zienkiewicz
and Taylor 2000]. That method is also most commonly used for describing materials of new properties
and their nontrivial behaviors.

In this paper an alternative numerical method has been used to solve elastostatic problems for mate-
rials with negative Poisson’s ratio as isotropic auxetic materials. The presented method, called Method
of Fundamental Solutions (FMS), is a numerical method for solving boundary problems of differen-
tial equations, which belongs to the group of meshless methods. That method has been developed by
Kupradze and Alexidze [Kupradze 1967; Kupradze and Aleksidze 1964]. Till now, MFS was successfully
applied to solve mechanical problems [Bogomolny 1985; Fairweather et al. 2003; Goldberg 1995; Kita
2003; Mathon and Johnston 1977; Poullikkas et al. 2001], and also the elastic ones [Karageorghis and
Fairweather 2000; de Medeiros et al. 2004; Poullikkas 1998; Poullikkas et al. 2002]. The main advantage
of MFS is a possibility to obtain (with the help of numerical approximation) analytical solution of the
problem in the entire considered region. One can obtain the solution by solving just one system of
linear equations. That fact simplifies the numerical procedures and calculations and gives a possibility
to control the approximation errors on the linear algebra level.

Some papers show that even in three-dimensional cases, the method could be effective and really
fast [Maruszewski et al. 2014]. Despite advantages of presented method it is still not commonly used
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in material science field. In a recent authors’ publication they proved, that it could be useful tool for
searching and modeling of modern materials [Walczak et al. 2014].

In this paper authors focused on modeling the group of materials of unusual mechanical proper-
ties, which Poisson’s ratio (PR) [Landau and Lifshitz 1986; Alderson et al. 2014] is negative. For
common materials PR is positive and if PR is negative, the body shrinks/expands transversally when
compressed/stretched. Such kind of materials we call auxetics and they were taken under considerations
already in eighties last century [Almgren 1985; Lakes 1987], although their properties [Gilat and Aboudi
2013; Lim 2004; Yang et al. 2013] and structures [Gaspar et al. 2011; Wojciechowski 2003; Chen et al.
2009] are still under intensive studies. In this context, developing of new numerical methods to simulate
them and to investigate various models seem to be important and are in particular interest.

The aim of the present paper is to show utility of described method as an excellent tool to investigate
uncommon behavior of materials with auxetic properties. It is continuation of authors’ study on devel-
oping of the MFS [Walczak et al. 2014] and to the best of their knowledge, the MFS method is used in
this paper for the first time in such investigations.

The structure of the paper is as follows. Mathematical model with governing equations for the studied
model is presented in Section 2. In Section 3 the MFS is briefly sketched, and the fundamental solu-
tions for the basic differential equations of the given problems are presented. Computer simulations are
discussed in Section 4, where the utility of the method is illustrated by solving the basic elastostatic
problem of searching displacement distribution in materials with different auxetic properties. Moreover,
a comparison to existing investigations and method used to consider the above problem has been also
presented. Summary and conclusions are presented in Section 5.

2. Mathematical model of the problem

In the paper a three-dimensional problem of equilibrium of a solid has been solved numerically using the
method of fundamental solutions (MFS). The body is assumed as homogeneous, isotropic and linearly
elastic one. The last assumption, in practice, is satisfied only when small deformations are taken into
account. Moreover, we assume that the material properties are constant (i.e., they do not depend on
time for instance). The mechanical response of such a solid due to a given loading is unambiguously
determined by two material constants. In continuum mechanics the Lamé constants λ and µ are usually
used. In literature devoted to the various engineering applications in the role of the two necessary material
constants appear rather Young’s modulus E and Poisson’s ratio (PR) ν. The relationship between those
material constants are as follows so:

λ=
νE

(1+ ν)(1− 2ν)
, µ=

E
2(1+ ν)

. (1)

The modulus of elasticity E and the constant µ (i.e., the shear modulus) are always positive. However
Poisson’s ratio and the Lamé constant λ may be negative, although for most solids they are also positive.
In the branch of physics dedicated to auxetic materials, which develops recently rapidly, more popular
is associating special features of auxetic solids with the negative values of PR.

Let us denote by � the region in space occupied by the body. It is bounded by a surface ∂� which
should be piecewise smooth. According to all previously mentioned assumptions, the equilibrium of the
considered solid is described by the Cauchy–Navier equations. In the absence of external body forces,
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they take the homogeneous form [Poullikkas 1998; Poullikkas et al. 2002]:

µ∇ · (∇u)+ (λ+µ)∇(∇ · u)= 0, (2)

where u is the displacement vector at the point x = (x1, x2, x3), and x ∈�.
On the surface ∂� we postulate the boundary conditions of mixed type. Let ∂�I be a part of ∂�, on

which the Dirichlet boundary conditions are given. Therefore, we can write:

u(x B)= f (x B), (3)

where xB ∈ ∂�I, and f (x B) is a known vector function.
On the other part of ∂�, which we denote by ∂�II, the Neumann boundary conditions are postulated.

We write them as follows:
t(x B)= g(x B), (4)

where x B
∈ ∂�II, t is the stress vector, and g(x B) is a known vector function describing external traction.

It should be noted, that due to existence and uniqueness of the solution of the formulated boundary
problem the following relation is required:

∂�I ∪ ∂�II = ∂�, ∂�I ∩ ∂�II =∅. (5)

3. Method of fundamental solutions

The equation of equilibrium (2) together with the boundary conditions (3) and (4) form the boundary
value problem. The fundamental solutions of this system are in the form

Gi j (x, z)=
(3− 4ν)|x− z|2δi j + (xi − zi )(x j − z j )

16πµ(1− ν)|x− z|3
, (6)

where |x− z| is the distance between the points x and z. One can observe that

Gi j (x, z)= G j i (x, z). (7)

The solutions given by (6) satisfy the differential equation (2) at each point of the space, except for one
point at which it is not defined. Each fundamental solution represents the displacements at the point x,
that are caused by an unit force acting at the source point z, namely the displacement at the point x in
the direction of the axis x j which has been caused by the i-th component of the force is equal to the
fundamental solution given by (6) [Poullikkas 1998].

Let us consider N source points zk, k = 1, 2, . . . , N placed outside the considered body. Then, one can
write the solution of the boundary value problem as the linear combination of the fundamental solutions

ui (x)=
N∑

k=1

ak j Gi j (x, zk), i = 1, 2, 3, (8)

where x ∈�∪ ∂�, z ∈ E3
− (�∪ ∂�), ak j are unknown coefficients. One can easily see, that since the

singularities of solutions are placed outside the body, any function of the form (8) satisfies the differential
equation (2) in the region �. However, it should be noticed, that the boundary conditions (3) and (4) may
be satisfied only approximately. To do that, one should define the set of collocation points placed on the
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surface ∂�, which satisfy the boundary conditions. Let us choose M collocation points. Introducing the
linear combinations (8) into the boundary conditions we obtain the system of linear equations with 3N
unknown coefficients ak j :

B · A= F, (9)

where A is the 3N-dimensional vector of unknown coefficients ak j , F is the 3M-dimensional vector
containing the values of known functions fi at each collocation point. 3M×3N-dimensional matrix B
consists of the terms which, after a suitable ordering each of the boundary conditions, are multipliers of
the unknown coefficients ak j .

Important advantage of the method of fundamental solutions is that the approximate solutions are
differentiable. The accuracy of obtained solutions strongly depends on geometry of the problem and
location of source points and collocation points. It is well known that in the case of elliptic differential
equations, the biggest errors in approximate solutions of the given boundary value problem occur on
the boundary of the considered region [Poullikkas et al. 2001; Karageorghis and Fairweather 2000;
de Medeiros et al. 2004; Poullikkas 1998; Poullikkas et al. 2002]. It implies that to find the most
accurate solution one should place the sets of the collocation points and the source points, respectively
to minimize those errors. Also number of points in those sets is the important method parameter. To
find some interesting remarks see [Poullikkas 1998; Poullikkas et al. 2002; Maruszewski et al. 2014;
Walczak et al. 2014].

4. Numerical simulations

Let us consider a boundary value problem with the mixed boundary conditions. The solid in the shape
of a cube with length of the edge 0.1 m, which is shown in Figure 1, is fixed on its one wall x1 = 0.
On the opposite wall there is applied the pressure p = 100 MPa. The remaining four walls are free of
loadings. It means that considered body is stretched in the direction of x1 axis. Therefore the boundary
value problem can be written as

µui,kk + (λ+µ)uk,ik = 0, i = 1, 2, 3, x ∈�, (10)
u(x)= 0, x ∈ ∂�1, (11)
t(x)= 0, x ∈ ∂�3 ∪�4 ∪�5 ∪�6, (12)
t(x)= pe1, x ∈�2, (13)

where e1 denotes the unit vector of the x1 axis and �= (0, 0.1)× (0, 0.1)× (0, 0.1),

∂�1 = {x : x1 = 0, 0≤ x2 ≤ 0.1, 0≤ x3 ≤ 0.1},
∂�2 = {x : x1 = 0.1, 0≤ x2 ≤ 0.1, 0≤ x3 ≤ 0.1},
∂�3 = {x : x2 = 0, 0≤ x1 ≤ 0.1, 0≤ x3 ≤ 0.1},
∂�4 = {x : x2 = 0.1, 0≤ x1 ≤ 0.1, 0≤ x3 ≤ 0.1},
∂�5 = {x : x3 = 0, 0≤ x1 ≤ 0.1, 0≤ x2 ≤ 0.1},
∂�6 = {x : x3 = 0.1, 0≤ x1 ≤ 0.1, 0≤ x2 ≤ 0.1}.

The subject of the numerical experiments is a set of the cubes, which are made of auxetic materials of
which Poisson’s ratio is from range ν = 〈−0.9,−0.3〉. The original software written in FORTRAN 95
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Figure 1. Loads and boundary conditions of considered body.
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Figure 2. The component u1 of the displacement vector on the x3 = 0.05 cross-section
for the material with ν =−0.3 (left), ν =−0.5 (right).

with implemented MFS was used to simulate behavior of considered group of materials. For each simula-
tion exactly the same number of nodes (collocation points and source points) has been used. One should
also notice, that number of applied source points was equal to number of collocation points and was
equal to 864 in each considered case. That approach leads always to square main matrix of the system,
and authors’ experiences show that for mixed boundary conditions it gives the most accurate results.

Often considered problem where MFS is applied is a shape of the surface where the source points
are placed. Generally one can find two approaches: one when those points are located on the sphere
with the center placed in the middle of considered body having respectively big radius, and the other
one when the source points are placed on the surface which shape and distance is very close to that of
the considered body. Of course, it is placed outside of the body. In this paper the second way has been
applied to all computer simulations (see [Maruszewski et al. 2014]).

In Figure 2 the component u1 of the displacement vector on the plane x3 = 0.05 is shown for two
auxetic materials with ν =−0.3 (left) and ν =−0.5 (right). The observed symmetrical distribution of
displacements is consistent with the symmetry of the boundary conditions as well as the load. Fixing
only one wall results in the largest displacements close to the opposite one.
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Figure 3. The component u1 of the displacement vector on the x3 = 0.05 cross-section
for the material with ν =−0.7 (left), ν =−0.9 (right).

One can see that these two maps of displacements are similar. The values of the displacement u1 along
the left edge of each half of Figure 2 are zero, which is a consequence of fixing the wall. Positive values
of displacements u1 on the right hand side at both graphs are observed. Stretching state in the direction
of x1 axis and only little difference between values of displacement can also be observed. The situation
changes, when we take into account the lower value of Poisson’s ratio. In Figure 3 the component
u1 of the displacement vector on the plane x3 = 0.05 is shown for another two auxetic materials with
ν = −0.7 (left) and ν = −0.9 (right). One can observe, that there are some irregularities in those
distributions occurring near the left corners (close to the fixed wall). Especially, that is visible in the
Figure 3 (right), where the regions with different values of displacement component u1 could be seen.
That is not numerical effect, but it corresponds to auxetic nature of the considered body. In classical
material this effect doesn’t occur.

From the other hand, comparing the map included in Figure 2 to the map in Figure 3 we can observe,
that maximal values of the displacement u1 decrease with decreasing of PR value for considered materials.
It should also be noticed, that the lines of the constant displacements are more curved with decreasing
of PR value. Analyzing presented maps, one can see, that those lines are less perpendicular to x1 axis in
the case of material with the ν =−0.9 than in the other cases. To visualize in better way the situation,
the additional maps were drawn for all cases. In Figure 4 the component u1 of the displacement vector
is shown for materials with ν =−0.3 (left), ν =−0.5 (right), but this time cross-section of the cube was
made by the plane x1 = x3.

Left edge of this map represents the edge of the cube, that is placed along x2 axis and the right
edge is placed along the straight x2 = x3 = 0.1. One can see that these two maps of displacements are
similar to each other. The effect of bending of the lines of constant displacements is also visible what was
mentioned earlier, when material has lower value of PR. As can be also seen, the values of displacements
u1 on the fixed walls, are close to zero. Stretching in the direction of x1 axis, gives positive values of
displacements u1 in whole region of the both graphs. In Figure 5 the component u1 of the displacement
vector is presented for materials with ν− 0.7 (left), ν− 0.9 (right), in cross-section of the cube, that was
made by the plane x1 = x3.
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Figure 4. The component u1 of the displacement vector on the x1 = x3 cross-section
for the material with ν =−0.3 (left), ν =−0.5 (right).
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Figure 5. The component u1 of the displacement vector on the x1 = x3 cross-section
for the material with ν =−0.7 (left), ν =−0.9 (right).

One can see very close similarity between distributions presented in Figure 5 to distributions of dis-
placements shown in Figure 3. For auxetic material with Poisson’s ratio ν = −0.7 and especially for
material with ν =−0.9, exactly the same irregularities occur near left boundary. Because cross-section
used for creating maps presented in Figure 4 and Figure 5 is diagonal plane for considered cube, it
could be seen that the strongest irregularities occur near the cube corners. In comparison to the auxetic
materials the classical ones don’t have irregularities in their corners, what one can observe in Figure 6
and Figure 7.

We can also see in Figure 6 and Figure 7 that the isolines representing displacements u1 for both each
of the classical materials are getting parallel with the growth of a distance from fixed walls. The auxetic
materials, what is well visible, behave differently.

Generally we can conclude that some interesting effects in auxetics materials could be seen only for
lower value of negative Poisson’s ratio (close to −1).
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Figure 6. The component u1 of the displacement vector on the x3 = 0.05 cross-section
for the material with ν = 0.2 (left), ν = 0.4 (right).
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Figure 7. The component u1 of the displacement vector on the x1 = x3 cross-section
for the material with ν = 0.2 (left), ν = 0.4 (right).

An analysis of the results presented in Figures 2–7 allows us to draw additional important conclusions.

• The results obtained with the help of the fundamental solutions method applied to the basic equations of
elasticity (11) of the auxetic continua are practically the same as those obtained by Lakes [1992] who has
analyzed de Saint-Venant’s principle applied to auxetic elastic materials. It proves that the both methods
are equivalent each other. That equivalence results also from the fact that both models do not go beyond
the irreversible thermodynamics of continua for normal and auxetic materials. That fact has been shown
by Landau and Lifshitz [1986]. Considering the sufficient conditions for a minimum of the Helmholtz
free energy in the state of thermodynamic equilibrium, they proved that the value of Poisson’s ratio of
isotropic materials belongs to the interval (−1; 0, 5).

• From Figures 2–5 it can be seen that if the negative Poisson’s ratio is lower, the values of the component
u1,1 of the displacement gradient are generally smaller.
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• Comparing the displacement distribution in the auxetic material to that in the classical one (Figure 5
versus Figure 6 and Figure 7) we see that auxetic occurs faster stiff than normal material if Poisson’s
ratio decreases.

5. Conclusions

The presented method is effective and fast numerical tool for researching material behavior with different
mechanical properties. The biggest advantage of presented method in comparison to FEM is that in the
MFS there is no need to define classical mesh of considered body. Numerical procedures used for the
mesh generation processes are usually time-consuming ones. In the meshless method one can define
only the two sets of points that are not connected to each other. One may also treat it as two clouds of
points where one of them is applied to define boundary conditions (collocation points) and the second one
should be located just outside the considered body. What is also important (see Section 3) the obtained
results have analytical character — of course they are obtained in numerical way, but after solution of
just one linear system of equations (9), it is possible to find the displacements field in any point of
considered region only using relation (8) and without any additional approximation. It implies the much
more effective algorithm to providing numerical simulations especially in three-dimensional cases. Let
us underline that all computer simulations have been done during a relative short time (few minutes).

The only problems occurring during the use of the method of fundamental solutions are connected with
optimization of parameters like number of collocation points, number of source points or with the choice
how source points should be located outside the considered body. It is nontrivial task and it is especially
difficult, when one takes into account the boundary value problem with mixed boundary conditions (like
in presented example in this paper). Those problems were considered in some publications [Poullikkas
1998; Poullikkas et al. 2002; Maruszewski et al. 2014; Walczak et al. 2014], where authors have tested
MFS for such mechanical problems, for which the analytical solutions were known. However, one should
notice that the MFS is still under development.

Appendix

To determine the solution of any boundary value problem defined by relations (2)–(4) with use of MFS
one should write the system of linear algebraic equations (see (9)). We have assumed the displacement
vector in each point x ∈�∪ ∂� as a linear combination defined by (8). To applied Dirichlet’s boundary
conditions we can rewrite them in the form

u1(A, Z, x)=
N∑

k=1

ak1G11(x, zk)+

N∑
k=1

ak2G12(x, zk)+

N∑
k=1

ak3G13(x, zk),

u2(A, Z, x)=
N∑

k=1

ak1G21(x, zk)+

N∑
k=1

ak2G22(x, zk)+

N∑
k=1

ak3G23(x, zk),

u3(A, Z, x)=
N∑

k=1

ak1G31(x, zk)+

N∑
k=1

ak2G32(x, zk)+

N∑
k=1

ak3G33(x, zk),

where G are fundamental solutions (see (6)), the 3N-dimensional vector Z = [z1, z2, . . . , zN ] contains
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coordinates of N source points z j = [x
j
1 , x j

2 , x j
3 ] ∈�∪∂�, j = 1, . . . , N and 3N-dimensional vector A=

[a11, a21, . . . , aN1, a12, a22, . . . , aN2, a13, a23, . . . , aN3] contains unknown coefficients. If Neumann’s
boundary conditions have been postulated we can write the stress vector components in the form

t1(A, Z, x)=
N∑

k=1

ak1T11(x, zk)+

N∑
k=1

ak2T12(x, zk)+

N∑
k=1

ak3T13(x, zk),

t2(A, Z, x)=
N∑

k=1

ak1T21(x, zk)+

N∑
k=1

ak2T22(x, zk)+

N∑
k=1

ak3T23(x, zk),

t3(A, Z, x)=
N∑

k=1

ak1T31(x, zk)+

N∑
k=1

ak2T32(x, zk)+

N∑
k=1

ak3T33(x, zk),

where T (x, z) are functions analogous to the functions G(x, z) and should be defined as

T11(x, z)=
2µ

1−2ν

[
(1−ν)

∂G11

∂x1
+ν

∂G21

∂x2
+ν

∂G31

∂x3

]
n1+µ

(
∂G11

∂x2
+
∂G21

∂x1

)
n2+µ

(
∂G11

∂x3
+
∂G31

∂x1

)
n3,

T12(x, z)=
2µ

1−2ν

[
(1−ν)

∂G12

∂x1
+ν

∂G22

∂x2
+ν

∂G32

∂x3

]
n1+µ

(
∂G12

∂x2
+
∂G22

∂x1

)
n2+µ

(
∂G12

∂x3
+
∂G32

∂x1

)
n3

= T21(x, z),

T13(x, z)=
2µ

1−2ν

[
(1−ν)

∂G13

∂x1
+ν

∂G23

∂x2
+ν

∂G33

∂x3

]
n1+µ

(
∂G13

∂x2
+
∂G23

∂x1

)
n2+µ

(
∂G13

∂x3
+
∂G33

∂x1

)
n3

= T31(x, z),

T22(x, z)=
2µ

1−2ν

[
ν
∂G12

∂x1
+(1−ν)

∂G22

∂x2
+ν

∂G32

∂x3

]
n2+µ

(
∂G22

∂x1
+
∂G12

∂x2

)
n1+µ

(
∂G22

∂x3
+
∂G32

∂x2

)
n3,

T23(x, z)=
2µ

1−2ν

[
ν
∂G13

∂x1
+(1−ν)

∂G23

∂x2
+ν

∂G33

∂x3

]
n2+µ

(
∂G23

∂x3
+
∂G33

∂x2

)
n3+µ

(
∂G23

∂x1
+
∂G13

∂x2

)
n1

= T32(x, z),

T33(x, z)=
2µ

1−2ν

[
ν
∂G13

∂x1
+ν

∂G23

∂x2
+(1−ν)

∂G33

∂x3

]
n3+µ

(
∂G33

∂x2
+
∂G23

∂x3

)
n3+µ

(
∂G33

∂x1
+
∂G13

∂x3

)
n1,

where n1, n2, n3 denote the components of the unit vector normal to the surface ∂�.
Finally to find the solution of considered problem we should write the linear system of algebraic

equations (9) in the following form:
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G11(x1, z1) · · · G11(x1, zN ) G12(x1, z1) · · · G12(x1, zN ) G13(x1, z1) · · · G13(x1, zN )

G21(x1, z1) · · · G21(x1, zN ) G22(x1, z1) · · · G22(x1, zN ) G23(x1, z1) · · · G23(x1, zN )

G31(x1, z1) · · · G31(x1, zN ) G32(x1, z1) · · · G32(x1, zN ) G33(x1, z1) · · · G33(x1, zN )

...
...

...
...

...
...

G11(xM, z1) · · ·G11(xM, zN ) G12(xM, z1) · · ·G12(xM, zN ) G13(xM, z1) · · · G13(x1, zN )

G21(xM, z1) · · ·G21(xM, zN ) G22(xM, z1) · · ·G22(xM, zN ) G23(xM, z1) · · ·G23(xM, zN )

G31(xM, z1) · · ·G31(xM, zN ) G32(xM, z1) · · ·G32(xM, zN ) G33(xM, z1) · · ·G33(xM, zN )


×



a11
...

aN1

a12
...

a1N

a13
...

aN3



=



a11
...

aN1

a12
...

a1N

a13
...

aN3



,

where vector F= [ f 1
1, f 1

2, f 1
3, . . . , f M

1 , f M
2 , f M

3 ] contains the value of displacement vector or stress vector
components applied in M collocation points. If in any point the Neumann boundary condition is applied,
we only have to replace all functions G to the function T , respectively in three rows of the matrix which
are written for considered point. If the number of collocation points M is equal to the number of source
points N , we obtain square system of 3M = 3N equations. It is possible to define more collocation
points than sources (M > N ). In that case, one should find the approximate solution in the least square
sense.

After solving of the system and obtaining the vector of coefficients A we can easily determine the
displacement vector in each point of the considered body with the help of (8).
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BOGDAN T. MARUSZEWSKI: bogdan.maruszewski@put.poznan.pl
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Laminar flow of a power-law fluid between corrugated plates
JAKUB KRZYSZTOF GRABSKI and JAN ADAM KOŁODZIEJ 23

A study of elastic-plastic deformation in the plate with the incremental theory and
the meshless methods

MALGORZATA A. JANKOWSKA and JAN ADAM KOŁODZIEJ 41
Implementation of HAM and meshless method for torsion of functionally graded
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