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In this paper, the FG thin truncated conical shell formulation is developed using the modified couple
stress theory. The material distributions in FG conical shell are assumed to vary continuously along
shell thickness according to volume fraction of constituents based on power law distribution. The gov-
erning equations and boundary conditions are derived using Hamilton’s principle, and, in the special
case, the free vibration of the simply supported FG conical nanoshell is investigated using Galerkin
method. Finally, the effects of parameters such as dimensionless length scale parameter, apex angle,
gradient index and length on the natural frequency are examined. According to the studies conducted,
the modified couple stress theory predicts the stiffness of conical nanoshell with higher accuracy than
the classical continuum theory. Besides, the increasing effect of the length scale parameter on increase in
natural frequency caused by decrease in length and increase in circumferential and axial wave numbers
is investigated as well.

1. Introduction

Compared to homogeneous materials, laminated composite materials are considered as structural ele-
ments in different industries because of their high stiffness-weight and strength-weight ratios and the
ability of changing structural properties to meet specific needs. However, due to discontinuity existing in
material properties in the interfaces between two different materials, the stress concentration resulting in
cracks and delamination phenomenon has rendered the use of these materials difficult [Sahoo and Singh
2014; Xie et al. 2014; Li et al. 2014; Furlotti et al. 2014]. Today, FGMs which are made up two isotropic
materials — e.g., metal and ceramics — and enjoy the benefits of both materials are in demand by many
industries [Tajalli et al. 2013; Khalili et al. 2010; Shahba and Rajasekaran 2012]. The material properties
of FGMs are variable continuously and smoothly along a definite direction from one surface to the next,
solving the delamination problem in composite structures [Jomehzadeh et al. 2009]. The material’s high
toughness, low density and thermal resistance are properties that appeal to industries as varied as the
biomedical, defense and aerospace industries [Kahrobaiyan et al. 2012]. Hence, it is necessary to study
the behavior of FGMs in order to make a correct prediction of their static and dynamic behavior, as
various studies have to date been carried out on them [Tadi Beni et al. 2015a; 2015b; Tornabene and
Viola 2013; Sankar 2001; Aydogdu and Taskin 2007; Tornabene et al. 2015; Ying et al. 2008; Viola et al.
2012]. For example, using Navier’s solution for the rectangular plate and finite element model based on
the third order shear deformation plate theory, Reddy investigated the deformations and stresses under
the influence of material distribution based on the linear third-order theory and the nonlinear first order

Keywords: free vibration, modified couple stress theory, thin shell model, functionally graded material, truncated conical shell,
length scale parameter.

91

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2016.11-2
http://msp.org


92 YAGHOUB TADI BENI AND FAHIMEH MEHRALIAN

theory by using von Karman’s geometric nonlinearity [Reddy 2000]. Li studied the dynamic and static
behaviors of the functionally graded beam by considering rotational inertia and shear deformation [Li
2008]. Using higher order shear and normal deformation theories, Kant et al. [2010] investigated the
displacements and stresses of the functionally graded beams and plates and examined the analytical
formulation of static behavior of simply supported functionally graded beams and plates based on higher
order theories.

Today, FGMs have extensive applications in nano/micro structures such as micro/nano-electromechani-
cal systems (MEMS/NEMS), thin films in the shape of memory alloys and atomic force microscopes
(AFMs) [Craciunescu and Wuttig 2003; Fu et al. 2004; Witvrouw and Mehta 2005]. The classical
continuum theory is used by most of the aforementioned studies to study micro-nanoscale devices [Yoon
et al. 2005; Zhang et al. 2005; Ansari et al. 2010]. However, the results obtained in the nanoscale
reveal a difference between the predictions of the results based on the classical continuum theory and
the experimental results in the nanoscale. For instance, McFarland et al. observed a considerable dif-
ference between the values of stiffness obtained by the classical continuum theory and those obtained
by the bending test of a polypropylene micro cantilever [McFarland and Colton 2005]. Therefore, the
appropriate theory is required to correct investigation of the FGMs behavior in micro-nanodimensions.
On the other hand, obtained experimental results demonstrate that mechanical properties of materials
in the micro-nanoscale are size-dependent; hence, the theories should be able to correctly predict and
investigate size-dependent behavior in micro-nanostructures. It should be noted that some conventional
methods used in the study of micro-nanostructures are: atomistic simulations, molecular dynamics, and
higher order continuum theories such as the modified couple stress theory, the strain gradient theory,
and the nonlocal theory. Using these theories and by considering the size effect, researchers have to
date conducted many studies showing the capabilities of these theories [Tadi Beni 2012; Tadi Beni and
Abadyan 2013; Tadi Beni et al. 2012; Ke et al. 2012; Zeverdejani and Tadi Beni 2013; Abadyan et al.
2011; Sahmani and Ansari 2013; Wang et al. 2013].

The couple stress theory, as a nonclassical continuum theory containing higher order stresses is initially
introduced by Toupin [1962], Mindlin and Tiersten [1962], Mindlin [1964] and Koiter [1964a; 1964b].
This theory which contains four material parameters, two lame constants and two higher order material
constants is employed by researchers such as Anthoine [2000] in an attempt to investigate beam bending.
Using moments of couples equilibrium equation as well as forces and moments of forces equilibrium
equations, the modified couple stress theory is introduced by Yang et al. [2002]. Many studies are
carried out using this theory which contains only one higher order material parameter [Roque et al. 2013;
Sahmani et al. 2013; Şimşek et al. 2013; Şimşek and Reddy 2013]. For example, using the modified
couple stress theory, Abbasnejad et al. [2013] examined the dynamic and static pull-in voltage of a FGM
microbeam under electrostatic load and demonstrated the effect of the distribution of materials in beam’s
thickness on the pull-in voltage. Tadi Beni et al. [2014] employed the modified couple stress theory
to examine the pull-in instability of rotational nano-mirror and to demonstrate the effect of the Casimir
force on size-dependent pull-in instability. By considering nonlinear geometry and using the modified
couple stress theory, Ansari et al. [2014] studied the dynamic behavior of functionally graded rectangular
Mindlin microplate and discussed the effects of parameters such as length scale parameter and boundary
conditions on the rectangular microplate. Based on the modified couple stress theory, Zeighampour et al.
[2014b] investigated vibration and instability of double-walled carbon nanotube conveying fluid using
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Donnell’s shell model. They found that the effects of parameters such as length and length scale parameter
are more considerable in the modified couple stress theory than in the classical continuum theory.

Since using an appropriate model is essential for studying the behavior of structures, the investiga-
tion of the nanoscaled structure requires an appropriate model. So far, many studies are carried out
to investigate the mechanical behavior of nanostructures using the beam model [Ansari et al. 2013;
Mohammad Abadi and Daneshmehr 2014; Şimşek 2010]. However, it should be noted that in these
investigations, nanoelements such as CNTs are also usually modeled as beams. Considering the geometry
of many nanostructure elements, which are conical or cylindrical, usage the shell model will certainly
results in correct prediction of the behavior of such structures. Thus, researchers are induced to investigate
the mechanical and static behavior of conical shell, which is one of the appealing structural elements to
many researchers due to its unique geometric properties and numerous applications [Dung et al. 2013;
Sofiyev 2009; Viola et al. 2014; Su et al. 2014]. Many studies, such as [Zhao and Liew 2011; Malekzadeh
and Daraie 2014], investigated the free vibration and dynamic behavior of functionally graded conical
shell panels and truncated conical shell respectively, have to date conducted on conical shell. Therefore,
today, considering the increasing growth of nanoscience and the high potentials of the shell model due to
its unique characteristics, it is highly essential to investigate static and dynamic behaviors of the conical
nanoshell. For that reason, researchers such as Zeighampour and Tadi Beni [2014a; 2015] examined the
behavior of single-walled carbon nanocones (SWCNC) using the modified couple stress theory.

Therefore, this study attempts to gain a better understanding of conical nanoshells by examining the
dynamic behavior of FGM conical nanoshells using the modified couple stress theory. In this paper, the
equations of the FG conical nanoshell are developed using Love’s thin shell theory and the modified
couple stress theory, proposing considerable advantages in the modeling of nanostructures. These advan-
tages include modeling the size effect with only one higher order material constant using the modified
couple stress theory for nanoscale calculations; modeling FGMs which expands the formulation to the
FG conical nanoshell and which can be extended for isotropic materials in special cases; and the ability to
obtain more precise results using the shell model for structure behavior in the nanoscale. To achieve this
goal, considering the above discussion, in this paper the modified couple stress theory and the thin shell
model are used to investigate the free vibration of FG truncated conical nanoshell. Using the Hamilton’s
principle, the governing equations and the boundary conditions are derived, and, the free vibration of
the simply supported FGM conical thin shell are studied in the special case using the Galerkin method.
Finally, the effects of parameters such as length, dimensionless length scale parameter and apex angle
on the vibration of this nanostructure are investigated as well.

2. Governing equations

Figure 1 illustrates an FG truncated conical shell of length L , radius R1, thickness h, and apex angle 2α,
and the coordinate system (x, θ, z) is located on the middle surface of the conical shell.

Based on the power law distribution, the material properties of the FG conical shell are assumed to
make up a mixture of metal and ceramic, are variable along shell thickness, and, based on the volume
fraction of elements, these properties are considered continuously variable from the inner shell surface
to outer one. The volume fraction of FG components is

Vm = (z̃/h)N , Vc = 1− Vm, (1)
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Figure 1. Schematic view of truncated conical shell.

where N is defined as the power index whose variation takes place in the 0 ≤ N ≤ ∞ interval and
according to Figure 1, z̃ is the distance of an arbitrary surface from the inner one of the conical shell.
Therefore, the material properties of the conical shell are defined as

E(z̃)= (Em − Ec)

(
z̃
h

)N

+ Ec,

ρ(z̃)= (ρm − ρc)

(
z̃
h

)N

+ ρc,

ν(z̃)= (νm − νc)

(
z̃
h

)N

+ νc,

(2)

where Ec, ρc and νc respectively represent Young’s modulus, density, and Poisson’s ratio of ceramics
when z̃ = 0, and, Em , ρm and νm represent Young’s modulus, density, and Poisson’s ratio of metals,
respectively, when z̃ = h.

According to the modified couple stress theory introduced by Yang et al. [2002], the strain energy is
expressed as a function of strain tensor and curvature tensor as

U = 1
2

∫
�

(σ : ε+m : χ) dV, (3)

where ε stands for the strain tensor, σ represents the Cauchy stress tensor, χ is the symmetric curvature
tensor and m is the deviatoric part of couple stress tensor, and, the components of the introduced tensors



FREE VIBRATION OF FUNCTIONALLY GRADED TRUNCATED CONICAL SHELLS 95

are defined as

εi j =
1
2(ui, j + u j,i ), (4)

χi j =
1
4(ei pqη j pq + e j pqηi pq), (5)

σi j = Ci jklεkl, (6)

mi j = 2l2µ(z̃)χi j , (7)

where ui , ei pq and ηi pq are the components of the displacement vector, permutation symbol and deviatoric
stretch gradient tensor, respectively, and l stands for the material length scale parameter. It should be
noted that this study is ignored the variation of parameter l with material coordinates, and the value of l
in the whole of the FG material is considered constant.

With the assumption of plane stress, the stress-strain equations for the FGM are defined as

σxx =
E(z̃)

1− ν2(z̃)
(εxx + ν(z̃)εθθ ), σθθ =

E(z̃)
1− ν2(z̃)

(εθθ + ν(z̃)εxx), σxθ = 2µ(z̃)εxθ , (8)

where µ(z̃) is the shear modulus and E(z̃) and ν(z̃) are Young’s modulus and Poisson’s ratio, respec-
tively. The displacement field of the conical shell based on Love’s thin shell along x, θ, z represented
respectively by u, v, w is defined [Leissa 1993] as

u(x, θ, z, t)=U (x, θ, t)− z
∂W (x, θ, t)

∂x
,

v(x, θ, z, t)= V (x, θ, t)−
z

x sinα

(
∂W (x, θ, t)

∂θ
− V (x, θ, t) cosα

)
,

w(x, θ, z, t)=W (x, θ, t),

(9)

where U (x, θ, t), V (x, θ, t), and W (x, θ, t) are neutral surface displacement of the conical shell, and the
position of this plate (z̃c) is determined by using the equilibrium of longitudinal forces [Barber 2011] as∫

A
σxx d A =

∫
A

E(z̃)
1− ν2(z̃)

(
z
∂2w

∂x2

)
d A = 0, (10)

where

z = z̃− z̃c. (11)

By substituting (11) into (10), we obtain

z̃c =

∫
A

E(z̃)
1− ν2(z̃)

z̃ d A

∫
A

E(z̃)
1− ν2(z̃)

d A

. (12)

The classic and nonclassical strain tensors in orthogonal coordinate system are obtained by using the
equations [Eringen 1980; Zhao and Pedroso 2008]
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ε
(i)
( j) = ε

i
j

√
gi i

g j j
=

1
2

√
gi i

g j j

[((
u(i)
√

gi i

)
, j
+0i

m j
u(m)
√

gmm

)
+ gnj gim

((
u(n)
√

gnn

)
,m
+0n

qm
u(q)
√

gqq

)]
, (13)

η
(k)
(i)( j) = η

k
i j

√
gkk

gi i g j j
=

1
2

√
gkk

gi i g j j
(uk
|i j + uk

| j i ), (14)

uk
|lm =

(
u(k)
√

gkk

)
,lm
+0k

ql

(
u(q)
√

gqq

)
,m
+0k

qm

(
u(q)
√

gqq

)
,l
−0

q
ml

(
u(k)
√

gkk

)
,q

+
(
(0k

lp),m +0
k
qm0

q
pl −0

k
pq0

q
ml

)( u(p)
√

gpp

)
, (15)

where u(i), ε(i)( j) and η(k)(i)( j) are the physical components of displacement vector ui , displacement gradient
εi j and higher-order displacement gradient ηk

i j , and gi i and 0i
jk stand for components of the metric

tensor and Christoffel symbols of the second kind. Underscores placed under the indices indicate lack of
addition on them. In the cylindrical coordinate system, the components of metric tensor and Christoffel
symbol are expressed as

gxx = 1, gθθ = (x sinα(1+ z/x tanα))2,

gzz = 1, gkl = 0 (k 6= l),

0θzθ = 0
θ
θ z =

1
x tanα(1+ z/x tanα)

,

0z
θθ =−x sinα cosα(1+ z/x tanα),

0θxθ = 0
θ
θx =

1
x(1+ z/x tanα)

,

0x
θθ =−x sin2 α(1+ z/x tanα).

(16)

Classical strain tensors components are obtained by substituting (16) into (13) as

εzz =
∂w

∂z
, εθθ =

1
x sinα(1+ z/x tanα)

[
∂v

∂θ
+ u sinα+w cosα

]
, εxx =

∂u
∂x
,

εxθ = εθx =
1

2x sinα(1+ z/x tanα)

[
∂u
∂θ
+ x sinα(1+ z/x tanα)

∂v

∂x
− v sinα

]
,

εθ z = εzθ =
1

2x sinα(1+ z/x tanα)

[
∂w

∂θ
+ x sinα(1+ z/x tanα)

∂v

∂z
− v cosα

]
,

εzx = εxz =
1
2

[
∂w

∂x
+
∂u
∂z

]
,

(17)

and the components of the deviatoric stretch gradient tensor are obtained by substituting (15) and (16)
into (14) as

ηxxx =
∂2u
∂x2 , ηzzz =

∂2w

∂z2 , ηxxθ =
∂2v

∂x2 , ηzzθ =
∂2v

∂z2 ,
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ηxθθ = ηθxθ =

∂2v

∂x ∂θ
−

1
x(1+ z/x tanα)

∂v

∂θ
−

u sinα+w cosα
x(1+ z/x tanα)

+ cosα
∂w

∂x
+ sinα

∂u
∂x

x sinα(1+ z/x tanα)
,

ηzθθ = ηθ zθ =

∂2v

∂z ∂θ
−

1
x tanα(1+ z/x tanα)

∂v

∂θ
−

w cosα+ u sinα
x tanα(1+ z/x tanα)

+ cosα
∂w

∂z
+ sinα

∂u
∂z

x sinα(1+ z/x tanα)
,

ηθxx = ηxθx =

∂2u
∂x ∂θ

−
1

x(1+ z/x tanα)
∂u
∂θ
− sinα

∂v

∂x
+

v sinα
x(1+ z/x tanα)

x sinα(1+ z/x tanα)
,

ηθ zz = ηzθ z =

∂2w

∂z ∂θ
−

1
x tanα(1+ z/x tanα)

∂w

∂θ
− cosα

∂v

∂z
+

v cosα
x tanα(1+ z/x tanα)

x sinα(1+ z/x tanα)
,

ηθθx =

∂2u
∂θ2 − u sin2 α−w sinα cosα− 2 sinα

∂v

∂θ
+ x sinα(1+ z/x tanα)

(
cosα

∂u
∂z
+ sinα

∂u
∂x

)
(x sinα(1+ z/x tanα))2

,

ηθθ z =

∂2w

∂θ2 −w cos2 α− u sinα cosα− 2 cosα
∂v

∂θ
+ x sinα(1+ z/x tanα)

(
cosα

∂w

∂z
+ sinα

∂w

∂x

)
(x sinα(1+ z/x tanα))2

,

ηθθθ =

∂2v

∂θ2 − v+ x sin2 α(1+ z/x tanα)
∂v

∂x
+ 2 sinα

∂u
∂θ
+ 2 cosα

∂w

∂θ
+ x cosα sinα(1+ z/x tanα)

∂v

∂z
(x sinα(1+ z/x tanα))2

,

ηxθ z = ηθxz =

∂2w

∂x ∂θ
−

1
x(1+ z/x tanα)

∂w

∂θ
− cosα

∂v

∂x
+

v cosα
x(1+ z/x tanα)

x sinα(1+ z/x tanα)
,

ηzθx = ηθ zx =

∂2u
∂z ∂θ

−
1

x tanα(1+ z/x tanα)
∂u
∂θ
− sinα

∂v

∂z
+

v cosα
x(1+ z/x tanα)

x sinα(1+ z/x tanα)
,

ηxxz =
∂2w

∂x2 , ηzzx =
∂2u
∂z2 , ηzxθ = ηxzθ =

∂2v

∂x ∂z
.

(18)

Now, by substituting the displacement field according to (9) into (17) and (18) and using (5) and the
assumptions of Love’s thin shell theory as (1± z/x tanα) ≈ 1 and (z/x tanα)2 ≈ 0, the classical and
nonclassical nonzero strain components are respectively obtained as

εxx =
∂U
∂x
− z

∂2W
∂x2 ,

εθθ =
1

x sinα

[
∂V
∂θ
+U sinα+W cosα−

z
x sinα

∂2W
∂θ2 − z sinα

∂W
∂x

]
,

εxθ = εθx =
1

2x sinα

[
∂U
∂θ
+ x sinα

∂V
∂x
− V sinα− 2z

∂2W
∂x ∂θ

+
2z
x
∂W
∂θ

]
,

(19)



98 YAGHOUB TADI BENI AND FAHIMEH MEHRALIAN

and

χzz =
1

2x2 sin2 α

[
cosα

∂U
∂θ
+ x sinα cosα

[
∂V
∂x
−

V
x

]
− 2z cosα

∂2W
∂x ∂θ

+
2z cosα

x
∂W
∂θ

]
,

χxx =
1

x sinα

[
cosα

[
V
x
−
∂V
∂x

]
+
∂2W
∂x ∂θ

−
1
x
∂W
∂θ

]
,

χθθ =
1

2x sinα

[
cosα

[
∂V
∂x
−

V
x

]
−

1
x tanα

∂U
∂θ
− 2

∂2W
∂x ∂θ

+
2
x
∂W
∂θ

]
,

χxθ = χθx =
1

2x2 sin2 α

[
∂2W
∂θ2 − x2 sin2 α

∂2W
∂x2 + x sin2 α

∂W
∂x
− cosα

∂V
∂θ

]
,

χzθ = χθ z =
1

4x2 sin2 α

[
x sinα

∂2V
∂x ∂θ

+ sinα
∂V
∂θ
−
∂2U
∂θ2 + 2x sinα cosα

∂W
∂x

]
,

χxz = χzx =
1
4

[
1
x
∂V
∂x
+
∂2V
∂x2 −

V
x2 +

1
x sinα

[
1
x
∂U
∂θ
−
∂2U
∂x ∂θ

]]
. (20)

Now, by substituting Equations (19) and (20) into Equations (6) and (7) and determining the components
of classical and nonclassical stresses, the strain energy of the conical shell is obtained using (3) as

Us =
1
2

∫ 2π

0

∫ x0+L

x0

[
[Nxx ]

∂U
∂x
+

[
Nxθ

x sinα
−

Yθθ cosα

2x2 sin2 α
+

Yzz cosα

2x2 sin2 α
+

Yxz

2x2 sinα

]
∂U
∂θ

−

[
Yzθ

2x2 sin2 α

]
∂2U
∂θ2 −

[
Yzx

2x sinα

]
∂2U
∂x ∂θ

+

[
Nθθ
x
−

Nxx

x

]
U +

[
Yzθ

2x sinα

]
∂2V
∂x ∂θ

+

[
Yzx

2

]
∂2V
∂x2 +

[
Nxθ −

Yxx

x tanα
+

Yzz

2x tanα
+

Yθθ
2x tanα

+
Yxz

2x

]
∂V
∂x

+

[
Nθθ

x sinα
−

Yxθ cosα

x2 sin2 α
+

Yzθ

2x2 sinα

]
∂V
∂θ

+

[
−

Nxθ

x
+

Yxx

x2 tanα
−

Yzz

2x2 tanα
−

Yθθ
2x2 tanα

−
Yxz

2x2

]
V

+

[
2Mxx

x
−

Mθθ

x
+

Yzθ

x tanα
+

Yxθ

2x

]
∂W
∂x
− [Mxx + Yxθ ]

∂2W
∂x2 +

[
Nθθ

x tanα

]
W

−

[
Mθθ

x2 sin2 α
−

Yxθ

x2 sin2 α

]
∂2W
∂θ2 +

[
2Mxθ

x2 sinα
−

Yxx

x2 sinα
+

Yθθ
x2 sinα

+
Tzz cosα

x3 sin2 α

]
∂W
∂θ

−

[
2Mxθ

x sinα
−

Yxx

x sinα
+

Yθθ
x sinα

+
Tzz cosα

x2 sin2 α

]
∂2W
∂x ∂θ

]
x sinα dx dθ, (21)
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where the classical and nonclassical force and momentum are expressed as

Ni j =

∫ h−z̃c

−z̃c

σi j dz, Mi j =

∫ h−z̃c

−z̃c

σi j z dz, Yi j =

∫ h−z̃c

−z̃c

mi j dz, Ti j =

∫ h−z̃c

−z̃c

mi j z dz, (22)

and the kinetic energy of the conical thin shell is defined as

T = 1
2

∫
�

ρ(z̃)
[(
∂U
∂t

)2

+

(
∂V
∂t

)2

+

(
∂W
∂t

)2]
x sinα dx dθ dz, (23)

where ρ(z̃) stands for the density of the conical shell.
Also, the work done by external forces acting on the conical shell is expressed as

we = wd +wb, (24)

wd =

∫
θ

∫
x
( fxU + fθV + fzW )x sinα dx dθ, (25)

wb =

∫
θ

[
N u

xU + N v
x V + Nw

x W + P̂vh
x
∂V
∂x
+Mw

x
∂W
∂x

]
x sinα dθ

∣∣x0+L
x0

,

+

∫
x

[
N u
θU + N v

θV + Nw
θ W + P̂uh

θ

∂U
∂θ
+Mw

θ

∂W
∂θ

]
x sinα dx

∣∣θ0

0 , (26)

where fx , fθ and fz represent volume distributed forces and N u
x , N v

x , Nw
x , P̂vh

x , Mw
x , N u

θ , N v
θ , Nw

θ ,
P̂uh
θ , Mw

θ are the classical and nonclassical force and momentum applied to typical (x = constant) and
(θ = constant) lines and edge.

Now, the Hamilton’s principle is ∫ t2

t1
(δT − δUs + δWe) dt = 0. (27)

By substituting the work done by external forces applied as well as strain energy and kinetic energy of the
shell in Hamilton’s principle, and using variations method and performing direct, lengthy mathematical
calculations, the governing equations and boundary conditions are derived as

δU : −
D1,0

x
∂U
∂x
+

D1,0

x2 U − D1,0
∂2U
∂x2 +

D5,0

x2 sin2 α

[
−1+

l2

4x2 −
l2

x2 tan2 α

]
∂2U
∂θ2 −

D5,0l2

4x3 sin2 α

∂3U
∂x ∂θ2

+
D5,0l2

4x4 sin4 α

∂4U
∂θ4 +

D5,0l2

4x2 sin2 α

∂4U
∂x2∂θ2 +

1
x2 sinα

[
D1,0+ D5,0

[
1−

l2

4x2

]]
∂V
∂θ
−

D5,0l2

2x2 sinα
∂3V
∂x2∂θ

−
1

x sinα

[
D3,0+ D5,0

[
1−

l2

4x2

]]
∂2V
∂x ∂θ

−
D5,0l2

4x3 sin3 α

∂4V
∂x ∂θ3 −

D5,0l2

4x sinα
∂4V
∂x3∂θ

−
D5,0l2

4x4 sin3 α

∂3V
∂θ3

+
1

x3 sin2 α

[
D5,0l2

x tanα
− D1,1− 2D5,1−

D5,1l2

x2 tan2 α
− D3,1

]
∂2W
∂θ2 +

D1,0

x2 tanα
W −

1
x

[
D3,0

tanα
+

D1,1

x

]
∂W
∂x

−
1

x2 sin2 α

[
3D5,0l2

2x tanα
− D3,1− 2D5,1−

D5,1l2

x2 tan2 α

]
∂3W
∂x ∂θ2 + D1,1

∂3W
∂x3 +

D1,1

x
∂2W
∂x2 − fx + I1,0

∂2U
∂t2 = 0,

(28)



100 YAGHOUB TADI BENI AND FAHIMEH MEHRALIAN

δV : −
1

x2 sinα

[
D1,0+ D5,0

[
1−

3l2

4x2

]]
∂U
∂θ
−

1
x sinα

[
D3,0+ D5,0

[
1+

3l2

4x2

]]
∂2U
∂x ∂θ

+
D5,0l2

2x2 sinα
∂3U
∂x2∂θ

+
3D5,0l2

4x4 sin3 α

∂3U
∂θ3 −

D5,0l2

4x sinα
∂4U
∂x3∂θ

−
D5,0l2

4x3 sin3 α

∂4U
∂x ∂θ3

+
D5,0

x2

[
1−

3l2

x2 tan2 α
−

3l2

4x2

]
V −

D5,0

x

[
1−

3l2

x2 tan2 α
−

3l2

4x2

]
∂V
∂x
+

D5,0l2

2x
∂3V
∂x3

− D5,0

[
1+

3l2

x2 tan2 α
+

3l2

4x2

]
∂2V
∂x2 +

D5,0l2

4
∂4V
∂x4 −

1
x2 sin2 α

[
D1,0+

D5,0l2

x2

[
1

tan2 α
+

3
4

]]
∂2V
∂θ2

−
D5,0l2

4x3 sin2 α

∂3V
∂x ∂θ2 +

D5,0l2

4x2 sin2 α

∂4V
∂x2∂θ2 −

1
x2 sinα

[
3D5,0l2

x tanα
− D1,1+

2D5,1l2

x2 tan2 α

]
∂2W
∂x ∂θ

+
1

x3 sin3 α

[
D5,0l2

x tanα
+ D1,1

]
∂3W
∂θ3 −

1
x2 sin2 α

[
D1,0 cosα−

3D5,0l2 cosα
x2

]
∂W
∂θ

+
1

x sinα

[
5D5,0l2

2x tanα
+ D3,1+ 2D5,1+

D5,1l2

x2 tan2 α

]
∂3W
∂x2∂θ

− fθ + I1,0
∂2V
∂t2 = 0, (29)

δW :
1
x

[
D3,0

tanα
+

D1,1

x

]
∂U
∂x
+

1
x2

[
D1,0

tanα
−

D1,1

x

]
U −

1
x3 sin2 α

[
2D5,0l2

x tanα
−

2D5,1l2

x2 tan2 α
+ D1,1

]
∂2U
∂θ2

+
1

x2 sin2 α

[
3D5,0l2

2x tanα
−

D5,1l2

x2 tan2 α
− D3,1− 2D5,1

]
∂3U
∂x ∂θ2 − D1,1

∂3U
∂x3 −

2D1,1

x
∂2U
∂x2

+
1

x2 sinα

[
D1,0

tanα
−

2D5,0l2

x2 tanα
+

2D5,1

x
−

2D5,1l2

x3 tan2 α
−

D1,1

x
−

2D3,1

x

]
∂V
∂θ
−

1
x sinα

[
5D5,0l2

2x tanα

+
D5,1l2

x2 tan2 α
+ D3,1+ 2D5,1

]
∂3V
∂x2∂θ

−
1

x3 sin3 α

[
D5,0l2

x tanα
+ D1,1

]
∂3V
∂θ3

+
1

x2 sinα

[
2D5,0l2

x tanα
+

2D5,1l2

x2 tan2 α
+ D1,1

]
∂2V
∂x ∂θ

+
1

x2 tanα

[
D1,0

tanα
−

D1,1

x

]
W

+
1

x2 sin2 α

[
2D5,2l2

x2 tan2 α
+ 2D3,2+ 4D5,2+ 2D5,0l2

]
∂4W
∂x2∂θ2 +

2
x
[D1,2+ D5,0l2

]
∂3W
∂x3

+
1

x3 sin2 α

[
2D1,2

x
+

2D3,2

x
+

4D5,2

x
+

4D5,0l2

x
+

6D5,2l2

x3 tan2 α
−

2D1,1

tanα

]
∂2W
∂θ2

−
1

x3 sin2 α

[
6D5,2l2

x2 tan2 α
+ 2D3,2+ 4D5,2+ 2D5,0l2

]
∂3W
∂x ∂θ2 +

1
x3

[
D1,2+ D5,0l2

[
1+

1
tan2 α

]]
∂W
∂x

−
1
x

[
D1,2

x
+

D5,0l2

x

[
1+

1
tan2 α

]
+

2D3,1

tanα

]
∂2W
∂x2 + [D1,2+ D5,0l2

]
∂4W
∂x4

+
1

x4 sin4 α
[D1,2+ D5,0l2

]
∂4W
∂θ4 − fw + I1,0

∂2W
∂t2 = 0. (30)
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And the boundary conditions for x = constant are obtained as∫
θ

[
Nxx +

∂

∂θ

[
Yzx

2x sinα

]
+ N u

x

]
x sinα dθ |x = 0 or δU |x = 0, (31)

∫
θ

[[
Nxθ −

Yxx

x tanα
+

Yzz

2x tanα
+

Yθθ
2x tanα

+
Yxz

2x

]
−
∂

∂θ

[
Yzθ

2x sinα

]
−

1
x
∂

∂x

[
xYzx

2

]
+ N v

x

]
x sinα dθ |x = 0 or δV |x = 0, (32)

∫
θ

[[
Yzx

2

]
+ P̂vh

x

]
x sinα dθ

∣∣
x= 0 or δ

(
∂V
∂x

)∣∣∣
x
= 0, (33)

∫
θ

[
1
x
∂

∂x
[x Mxx + xYxθ ] +

[
2Mxx

x
−

Mθθ

x
+

Yzθ

x tanα
+

Yxθ

2x

]
+
∂

∂θ

[
2Mxθ

x sinα
−

Yxx

x sinα
+

Yθθ
x sinα

+
Tzz cosα

x2 sin2 α

]
+ Nw

x

]
x sinα dθ

∣∣
x= 0 or δW

∣∣
x= 0, (34)

∫
θ

[−[Mxx + Yxθ ] +Mw
x ]dθ

∣∣
x= 0 or δ

(
∂W
∂x

)∣∣∣
x
= 0. (35)

The boundary conditions for θ = constant are∫
x

[[
Nxθ

x sinα
−

Yθθ cosα

2x2 sin2 α
+

Yzz cosα

2x2 sin2 α
+

Yxz

2x2 sinα

]
+
∂

∂θ

[
Yzθ

2x2 sin2 α

]
+

1
x
∂

∂x

[
Yzx

2 sinα

]
+ N u

θ

]
x sinα dx

∣∣
θ
= 0 or δU

∣∣
θ
= 0, (36)

∫
x

[
−

[
Yzθ

2x2 sin2 α

]
+ P̂uh

θ

]
x sinα dx

∣∣
θ
= 0 or δ

(
∂U
∂θ

)∣∣∣
θ
= 0, (37)

∫
x

[[
Nθθ

x sinα
−

Yxθ cosα

x2 sin2 α
+

Yzθ

2x2 sinα

]
−

1
x
∂

∂x

[
Yzθ

2 sinα

]
+ N v

θ

]
x sinα dx

∣∣
θ
= 0 or δV

∣∣
θ
= 0, (38)

∫
x

[[
2Mxθ

x2 sinα
−

Yxx

x2 sinα
+

Yθθ
x2 sinα

+
Tzz cosα

x3 sin2 α

]
+

1
x
∂

∂x

[
2Mxθ

sinα
−

Yxx

sinα
+

Yθθ
sinα

+
Tzz cosα

x sin2 α

]
+
∂

∂θ

[
Mθθ

x2 sin2 α
−

Yxθ

x2 sin2 α

]
+ Nw

θ

]
x sinα dx

∣∣
θ
= 0 or δW

∣∣
θ
= 0, (39)

∫
x

[
−

[
Mθθ

x2 sin2 α
−

Yxθ

x2 sin2 α

]
+Mw

θ

]
x sinα dx

∣∣
θ
= 0 or δ

(
∂W
∂θ

)∣∣∣
θ
= 0. (40)
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In the equations above (equations of motion and boundary conditions) parameters D1,i , D3,i , D5,i and
I1,i are defined as

(D1,i)=

∫ h−z̃c

−z̃c

E(z̃)
1−ν2(z̃)

(zi ) dz, (i = 0, 1, 2),

(D3,i)=

∫ h−z̃c

−z̃c

E(z̃)ν(
_
z )

1−ν2(z̃)
(zi ) dz, (i = 0, 1, 2),

(D5,i)=

∫ h−z̃c

−z̃c

µ(z̃)(zi ) dz, (i = 0, 1, 2),

(I1,i )=

∫ h−z̃c

−z̃c

ρ(z̃)(zi ) dz, (i = 0, 1, 2).

(41)

Now, it can be argued that (28)–(30) are the equations of motion of the FG conical shell based on the
modified couple stress theory. Also, (31)–(40) are the classical and nonclassical boundary conditions
of the FG conical shell based on the modified couple stress theory. In special cases, these equations of
motion and boundary conditions are reduced to the following equations:

Case 1: By setting the length scale parameter to zero (l = 0), the equations obtained in this paper are
reduced to the equations of motion and boundary conditions in the classical continuum theory based on
the thin shell model for FG materials.

Case 2: By assuming constant mechanical properties (Young’s modulus, Poisson’s ratio and density),
the equations obtained in this paper are reduced to the equations of motion and classical and nonclassical
boundary conditions based on the modified couple stress theory and the thin shell model for the isotropic
homogeneous structure.

Case 3: By assuming cases (1) and (2), the equations obtained in this paper are reduced to the equations
of motion and boundary conditions in the classical continuum theory based on the thin shell model.

3. Case study

In this section, the free vibration of the simply supported FG conical shell in the special case is examined
so as to evaluate the equations derived. The equations governing the simply supported FG conical shell
are similar to (28)–(30); hence, it suffices to investigate the boundary conditions. It should be noted that
the boundary conditions in (36)–(40) are satisfied due to the variability of the θ angle from 0 to 2π edges;
thus, the boundary conditions in x = x0 and x = x0+ L edges must be investigated, which are (31)–(35).
By substituting (22) into (31)–(35), the boundary conditions for the simply supported FG conical shell
are obtained as

V |x=x0,x0+L = 0,

W |x=x0,x0+L = 0,
(42)
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[
D1,0

∂U
∂x
− D1,1

∂2W
∂x2 +

D3,0

x
U −

D3,1

x2 sin2 α

∂2W
∂θ2 −

D3,1

x
∂W
∂x
−

D5,0l2

4x2 sin2 α

∂3U
∂x ∂θ2

+
D5,0l2

4x3 sin2 α

∂2U
∂θ2 +

1
x sinα

[
D3,0−

D5,0l2

4x2

]
∂V
∂θ
+

D5,0l2

4x sinα
∂3V
∂x2∂θ

+
D5,0l2

4x2 sinα
∂2V
∂x ∂θ

+
D3,0

x tanα
W
]∣∣∣∣

x=x0,x0+L
= 0, (43)

[
−

D5,0l2

4x sinα
∂2U
∂x ∂θ

+
D5,0l2

4x2 sinα
∂U
∂θ
+

D5,0l2

4
∂2V
∂x2 +

D5,0l2

4x
∂V
∂x
−

D5,0l2

4x2 V
]∣∣∣∣

x=x0,x0+L
= 0, (44)

[
[D1,2+ D5,0l2

]
∂2W
∂x2 +

1
x
[D3,2− D5,0l2

]
∂W
∂x
+

1

x2 sin2 α
[D3,2− D5,0l2

]
∂2W
∂θ2

− D1,1
∂U
∂x
+

1
x sinα

[
D5,0l2

x tanα
− D3,1

]
∂V
∂θ
−

D3,1

x
U −

D3,1

x tanα
W
]∣∣∣∣

x=x0,x0+L
= 0. (45)

Hence, (28)–(30) as well as (42)–(45) are the governing equations and boundary conditions for the simply
supported FG thin conical shell, which must be simultaneously solved in order to investigate the free
vibration.

In order to solve the above equations and considering boundary conditions, the following approximate
solutions are used [Dung et al. 2014]:

U (x, θ, t)=U0 cos
(

mπ(x − x0)

L

)
sin(nθ) sin(ωt), V (x, θ, t)=U0 sin

(
mπ(x − x0)

L

)
cos(nθ) sin(ωt),

W (x, θ, t)=W0 sin
(

mπ(x − x0)

L

)
sin(nθ) sin(ωt). (46)

In the above equations ω, n and m stand for the natural frequency of the nanoshell, circumferential and
axial wave numbers, respectively. Given the above assumption, the majority of boundary conditions in
(42)–(45) are satisfied although some of them are not fully satisfied. However, in the references, it is
common that for a complicated formulation, like that one above, not all boundary conditions be satisfied.
Therefore, to investigate the free vibration of the nanoshell, it is necessary to solve the equations of
motion in (28)–(30). For this purpose, the Galerkin method is employed. To simplify integration, (28)–
(29) are multiplied by x4 and (30) is multiplied by x6, and, finally, using the Galerkin method and the
equations derived, the following equation is obtained:∫ x0+L

x0

∫ 2π

0
ψ1x cos

(
mπ(x − x0)

L

)
sinα dx dθ = 0,∫ x0+L

x0

∫ 2π

0
ψ2x sin

(
mπ(x − x0)

L

)
sinα dx dθ = 0,∫ x0+L

x0

∫ 2π

0
ψ3x sin

(
mπ(x − x0)

L

)
sinα dx dθ = 0,

(47)
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ρ (kg/m3) ν E (GPa)

Aluminum 70 2702 0.3
Ceramic 427 3100 0.17

Table 1. Material properties of aluminum and ceramic.

where the parameters ψ1, ψ2 and ψ3 are obtained as

ψ1 = x4
[A11(U0)+ A12(V0)+ A13(W0)],

ψ2 = x4
[A21(U0)+ A22(V0)+ A23(W0)],

ψ3 = x6
[A31(U0)+ A32(V0)+ A33(W0)]. (48)

In the above equation, Ai j are values obtained by substituting Equation (47) into Equations (28)–(30).
Hence, the matrix form of Equation (48) is

([K ] −ω2
[M])


U0

V0

W0

= 0. (49)

Considering the eigenvalue problem, in order to obtain a nontrivial solution to Equation (49), the deter-
minant of the coefficients must be set to zero, and, by solving the derived equation, one can determine
the frequency of nanoshell.

4. Results and discussion

This section is devoted to the investigation of the free vibration of the simply supported FG conical thin
shell using the modified couple stress theory. The effect of parameters such as dimensionless length scale
parameter, apex angle, dimensionless length parameter and circumferential and axial wave numbers on
the dimensionless natural frequency are studied and the results are compared with those obtained based
on the classical continuum theory. As mentioned before, assuming l = 0, the resulting equations are
obtained based on the classical continuum theory.

The geometric features of the conical shell are assumed to be h = 0.34 nm, L/R1= 2 and h/R1= 0.04,
and the FG conical shell is assumed to consist of aluminum or ceramic with the material properties in
Table 1 [Sahmani et al. 2013].

4.1. Comparison of results. Since according to the authors studies, so far, no study is carried out on
the FG conical nanoshell, in order to verify the results, first the correctness of the results are shown by
comparing the obtained results from the homogeneous conical shell based on the classical continuum
theory and assuming N = 0 with that of [Irie et al. 1984; Jin et al. 2014; Lam and Hua 1999a] in Tables 2
and 3. Afterwards, as shown in Figure 2, the correctness of using the size effect, is assessed by comparing
the results from an isotropic homogeneous conical nanoshell with that of [Zeighampour and Tadi Beni
2014a] based on the modified couple stress theory. Besides, according to Table 2, the size effect which
leads to increase in natural frequency are shown correctly. By way of comparison, the dimensionless
natural frequency is calculated based on �= ωR

√
ρ(1− ν2)/E .
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n [Irie et al. 1984] [Jin et al. 2014] Present Present l = h

1 0.5462 0.5462 0.5988 0.6791
2 0.631 0.6309 0.6371 0.6594
3 0.5065 0.5063 0.5101 0.5511
4 0.3947 0.3943 0.4044 0.4852
5 0.3348 0.3340 0.3436 0.4975
6 0.3248 0.3239 0.3290 0.5748
7 0.3524 0.3213 0.3264 0.6833
8 0.4033 0.4022 0.3934 0.8386
9 0.4684 0.4673 0.4635 1.0227

Table 2. Comparison of frequency parameter � for the conical shell. (E = 211 GPa,
ν = 0.3, ρ = 7800 kg m−3, R2 = 1 m, h/R2 = 0.01, α = 45, L sin(α)/R2 = 0.5).

α = 30◦ α = 45◦ α = 60◦

n A† B†† Present A† B†† Present A† B†† Present

2 0.7910 0.8420 0.8297 0.6879 0.7655 0.7534 0.5722 0.6348 0.6301
3 0.7284 0.7376 0.7329 0.6973 0.7212 0.7135 0.6001 0.6238 0.6208
4 0.6352 0.6362 0.6365 0.6664 0.6739 0.6699 0.6054 0.6145 0.6130
5 0.5531 0.5528 0.5552 0.6304 0.6323 0.6309 0.6077 0.6111 0.6102
6 0.4949 0.4950 0.4972 0.6032 0.6035 0.6029 0.6159 0.6171 0.6158
7 0.4653 0.4661 0.4662 0.5918 0.5921 0.5905 0.6343 0.6350 0.6322
8 0.4654 0.4660 0.4629 0.5992 0.6001 0.5962 0.6650 0.6660 0.6607
9 0.4892 0.4916 0.4848 0.6257 0.6273 0.6202 0.7084 0.7101 0.7016

Table 3. Comparison of frequency parameter � for the conical shell. (E = 211 GPa,
ν = 0.3, ρ = 7800 kgm−3, R2 = 1 m, h/R2 = 0.01, L sin(α)/R2 = 0.25). †Values in
column A are from [Irie et al. 1984]. ††Values in B are from [Lam and Hua 1999a].

As is visible, according to [Hua 2000; Lam and Hua 1997; 1999b; Sofiyev et al. 2009] using the
Galerkin method, the comparison study is carried out for n ≥ 2 in order to establish convergent validity;
therefore, in this study according to Table 2, the obtained results have good consistency for n ≥ 2; besides,
in order to gain confidence on the accuracy of the current study, an additional comparison is carried out
in different apex angle according to Table 3. As is clear, the results have appropriate precision, according
to Table 2, Table 3 and Figure 2.

4.2. Effects of size parameter and apex angle on natural frequency. Figure 3 illustrates the effect
of dimensionless length scale parameter on natural frequency for α = 30◦ according to the modified
couple stress theory. As can be seen in Figure 3, decrease in the dimensionless length scale parameter
is accompanied by increase in natural frequency according to the modified couple stress theory, and this
increase is intensified with the increase in the gradient index N . In fact, decrease in h/ l stiffens the
conical shell, leading to increase in natural frequency. Also, as N = 0 is according to the aluminum shell
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Figure 2. Comparison of dimensionless natural frequency versus dimensionless length
scale parameter for SWCNC.
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Figure 3. Effects of dimensionless length scale parameter on natural frequency based
on modified couple stress theory α = 30◦.

and N = infinite is according to the ceramic shell, an increase in the gradient index is accompanied by an
increase in Young’s modulus of FG conical nanoshell, which stiffens the shell and results in increasing
the natural frequency.

Figure 4 displays the effect of dimensionless length scale parameter on natural frequency for α = 60◦

based on the modified couple stress theory. As can be seen in Figures 3 and 4, as the apex angle increases,
the natural frequency increases with the decrease in dimensionless length scale parameter, and the effect
of increase in the gradient index on the natural frequency can still be seen; however, with the increases
of the apex angle, the effects of these two parameters, length scale parameter and gradient index, on the
increase of natural frequency are weakened.
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Figure 4. Effects of dimensionless length scale parameter on natural frequency based
on modified couple stress theory α = 60◦.

4.3. Effects of length besides circumferential and axial wave number on natural frequency. Figures 5,
6 show the effect of length parameter; in addition, the circumferential and axial wave numbers on the
natural frequency. As can be seen, an increase in the circumferential and axial wave numbers leads
to increase in the natural frequency. On the other hand, the decrease in length parameter induced the
decrease in stability in the shell leading to increase in natural frequency intensifies the increasing effect
of circumferential and axial wave numbers on the increase in natural frequency. Therefore, in l = h, as
length parameter decreases from L = 2R1 to L = R1, and the circumferential wave number increases from
n= 1 to n= 5, the natural frequency increases from 1.69 to 2.3 for L = 2R1 and from 3.9 to 9 for L = R1.
In addition, according to the illustration, increase in the length scale parameter has an increasing impact
on the effect of length parameter and circumferential and axial wave numbers on natural frequency. Thus,
in L = R1, as the axial wave number changes from m = 1 to m = 5, the dimensionless natural frequency
increases from 1.95 to 13.6 in l = h and in l = 2h, the natural frequency increases from 2.77 to 22.1.
Also, in n = 2, the decrease in length parameter from L = 2R1 to L = R1 leads to an increase in natural
frequency from 1.36 to 3.7 in l = h and from 1.77 to 5.66 in l = 2h.

5. Conclusion

Using the modified couple stress theory, a new formulation for the FG truncated conical thin shell is
developed in this paper. The size effect is considered using the modified couple stress theory, and
material distribution in the FG conical shell is assumed according to the power law distribution as
continuously variable along shell thickness. Governing equations as well as classical and nonclassical
boundary conditions are derived using Hamilton’s principle, and, in the special case, the free vibration of
the simply supported FG conical nanoshell is investigated. Also, the effects of parameters such as length
scale parameter, apex angle, length, and circumferential and axial wave numbers on natural frequency is
studied. Increase in natural frequency induced by increase in length scale parameter is shown based on
the modified couple stress theory and compared with the results of classical continuum theory. Moreover,
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Figure 5. Effects of circumferential wave number and dimensionless length on dimen-
sionless natural frequency, α = 30◦, N = 1.
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Figure 6. Effects of axial wave number and dimensionless length on dimensionless
natural frequency, α = 30◦, N = 1.

the increasing effect of length scale parameter on the natural frequency induced by the decrease in length
and increase in circumferential and axial wave numbers is investigated as well.
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