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CONDITIONS FOR THE LOCALISATION OF PLASTIC DEFORMATION IN
TEMPERATURE SENSITIVE VISCOPLASTIC MATERIALS

MARTIN K. PAESOLD, ANDREW P. BASSOM, KLAUS REGENAUER-LIEB AND MANOLIS VEVEAKIS

We study the onset of localisation of plastic deformation for a class of materials that exhibit both tem-
perature and rate sensitivity. The onset of localisation is determined via an energy bifurcation criterion,
defined by the postulate that viscoplastic materials admit a critical (mechanical) energy input above
which deformation becomes unstable and plastic localisation ensues. In analogy to the classical concepts
of mechanics, the conditions for the onset of localisation in temperature-sensitive viscoplastic materials
are reached at a critical stress. However, it is shown that in viscoplastic materials a material bifurcation
occurs when the heat supply through mechanical work surpasses the diffusion capabilities of the mate-
rial. This transition from near-isothermal stable evolution to near-adiabatic thermal runaway is the well-
known concept of shear heating. Here, it is generalised and the correspondence between this runaway
instability and the localisation of plastic deformation in solid mechanics is detailed. The obtained phase
space controlling the localisation is shown to govern the evolution of the system in the postyield regime.
These results suggest that the energy balance essentially drives the evolution of the plastic deformation
and therefore constitutes a physics-based hardening law for thermoviscoplastic materials.

1. Introduction

In this work, we present the hypothesis that the classical criterion for localisation can be generalised from
their isothermal and adiabatic limits through an extension of an energy bifurcation criterion suggested in
earlier studies [Cherukuri and Shawki 1995a; 1995b]. The criterion involves an analytical analysis of the
multiple steady states followed by a numerical analysis of the transients. We showcase the development
of the criterion, highlight its relation to the characteristics of hyperbolic differential equations (slip line
fields) and present a first numerical example. The problem of the localisation of plastic deformation
is commonly considered solved once both the spatial configuration of localisation and the necessary
loading conditions for its onset are extracted. The classical theory [Hill 1950; 1962; Rudnicki and Rice
1975; Rice 1977] of rate and temperature independent materials, provides a platform upon which modern
solid mechanics is built. These works suggest that the spatial configuration as well as the critical loading
conditions for the onset of localisation can be obtained from the stationary limit of a material dependent
wave equation.

In particular, the slip line field theory for ideal rigid plastic materials has been developed in the middle
of the last century [Hill 1950] and successfully applied to metal forming processes. The theory is based
on solving the hyperbolic differential equations of mass and momentum balance (at its stationary limit)
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and provides a closed form solution for the failure of such an idealised material using the method of
characteristics. The slip line field theory [Hill 1962] also forms the background for the development of
a criterion of localisation of plastic deformation stemming from a material bifurcation [Rudnicki and
Rice 1975; Rice 1977]. The study of this material bifurcation was the subject of the early approaches of
accelerating waves in rate and temperature independent solids [Hill 1962; Rudnicki and Rice 1975] and
shows that localisation instabilities occur at the stationary wave limit of the linear elasto-plastic wave
equation

L ikηk = ρc2ηi . (1-1)

In this eigenvalue problem ηi is the vector of the jump of the velocity gradient, c is the material velocity of
the accelerating wave and ρ the material density. The properties of the rate- and temperature-independent
material are encapsulated in the acoustic tensor

L ik = ν j C
ep
i jklνl, (1-2)

where Cep
i jkl is the elasto-plastic stiffness matrix of the material obeying an incremental elasto-plastic

response σ̇i j =Cep
i jkl ε̇kl . The vectors νi are the unit vectors of the discontinuity imposed by the propagating

acceleration wave. According to the theory of localisation of plastic deformation [Hill 1962; Rudnicki
and Rice 1975], localised failure occurs at the stationary limit of the propagating wave when c = 0. In
this regime, nontrivial solutions are obtained only when the determinant of the acoustic tensor is zero
and this condition allows for the calculation of both the orientation of the localised plane given by the
vectors νi , and the critical stress ratio for the onset of localisation, given by the critical value of the
tangent modulus.

Although slip line field theory has played an undeniable role in underpinning the theory of plastic-
ity, and has still some use in the limit analysis and design [Khan et al. 2008], it has been superseded
by advanced numerical techniques that are capable of modelling nonlinear, elastic, viscous and plastic
materials [Needleman and Tvergaard 1992]. The main drawback of the slip line field theory was that
it cannot be used for rate and temperature dependent constitutive laws which significantly hampered
the applicability to modern engineering applications since the importance of temperature is well known
in constitutive properties of most materials. Soil, rocks and ceramics are significantly influenced by
temperature with strain localisation being strongly affected by thermal loading [Hückel and Baldi 1990;
Hückel and Pellegrini 2002]. In polymers and polycarbonates temperature and strain rate are key pa-
rameters influencing the response of the material, even at ambient conditions [Bauwens-Crowet et al.
1974]. Finally, even in the analogue rigid materials for which the slip line field theory was developed,
i.e., metals, temperature was shown to be important. This becomes obvious in particular under conditions
of high speed deformation or at large strain where mechanical work is dissipated and the effects of heat
becomes important. An excellent example is the thermal cross that is often observed during forging of
mild steel caused by localised plastic dissipation on slip lines [Johnson et al. 1964].

The thermal cross becomes visible as heat lines owing to reaching temperatures of around 680 ◦C and
their pattern [Johnson et al. 1964, Figures 3 and 4]) closely resembles the original slip lines calculated
in theoretical plasticity [Hill 1950]. The coincidence of heat lines and slip lines suggests a strong re-
lationship and calls for an extension of the original theory beyond isothermal conditions. Later studies
[Benallal and Lemaitre 1991; 2004] generalised the localisation concepts and extended the acoustic tensor
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criterion to the realm of coupled thermomechanical response for rate-independent materials, involving
an updated formulation of the acoustic tensor for the limits of isothermal and adiabatic conditions.

However, when dealing with rate-dependent thermoplastic coupling, the mathematical study of the
eigenvalue problem (1-1) of plasticity breaks down. The procedure for determining the conditions for
the onset of localised deformation differs significantly from that of rate-independent materials [Anand
et al. 1987]. In this regime, the conditions for the loss of ellipticity that express the material instability
leading to localisation is approached through analyses of the full system of field equations, rather than
seeking for the loss of ellipticity of the momentum balance. These techniques were first introduced for
one-dimensional plastic shear deformation of nonlinear viscous fluids [Gruntfest 1963; Clifton 1980;
Bai 1981; 1982]. The one-dimensional problem of simple shear of a temperature dependent viscoplastic
layer has also been treated semianalytically [Chen et al. 1989; Leroy and Molinari 1992]. These concepts
gave rise to the proposition of an energy based localisation theory in which instabilities emerge when
the mechanical input rate rises significantly leading to a departure from the near isothermal limit towards
the near adiabatic limit [Cherukuri and Shawki 1995b; 1995a]. Since the energy equation can provide
information about the time evolution of the system, this regime has been extensively studied in earth
sciences [Regenauer-Lieb et al. 2013a; Regenauer-Lieb et al. 2013b] for one-dimensional failure patterns
seen in landslides [Veveakis et al. 2007] and fault mechanics [Veveakis et al. 2010].

The adiabatic limit of the energy equation, also known as adiabatic shear bands, was the focus of
considerable research efforts during past decades in material sciences [Gruntfest 1963]. It is of particular
interest since the adiabatic shear limit can act as a precursor to failure, irrespective of its mode (ductile
or brittle) [Dodd and Bai 2012]. In spite of the apparent relationship suggested by observations such
as reported by Johnson et al. [Johnson et al. 1964], a generalised slip line field theory that extends
Hill’s theory to nonlinear thermoviscoplastic materials is not yet developed. In this study we show that
such a theory can be obtained by expanding the conditions necessary for the loss of ellipticity of the
momentum equations, in the realm of coupled thermomechanical problems for temperature-dependent,
viscoplastic materials. This generalisation of the slip line field theory is two-pronged: firstly, at the limit
of stationary thermomechanical wave propagation (following the classical concepts of mechanics) the
stress equilibrium conditions define a spatial pattern of failure and dissipation (the product of stress and
velocity gradient). Secondly, the energy balance supplies the necessary conditions for the loss of elliptic-
ity that would lead to a jump in the dissipation. Further on, the transient analysis of the system provides
the evolution of plastic deformation from near-isothermal to near-adiabatic conditions and verifies the
results of the stationary analysis.

In the remainder of this article we present a detailed mathematical approach to the problem. In
Section 2 the continuum thermomechanical framework considered in this article is described. Section 3
extends the concepts of the slip line field theory from ideal plastic to viscoplastic materials. This entails
a generalisation of Hencky’s and Geiringer’s equations that determine the geometry and the onset of
localisation, respectively. These results are compared to finite element simulations of simple geometries
and Johnson’s heat lines (see [Johnson et al. 1964, Figures 3 and 4]) in Section 4. We conclude with
a discussion on the importance of the obtained results in Section 5. In the appendices more details on
the mathematical derivations are given and in Appendix A the energy budget of a viscoplastic material
is discussed, Appendix B details the derivation of the slip lines and Appendix C gives a perturbation
analysis of the energy equation.
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2. Fundamental principles of continuum thermomechanics

Here, we restrict ourselves to general plane strain loading and neglect the effect of gravity and inertia
terms so that the stress equilibrium reads

∂σ11

∂x1
+
∂σ12

∂x2
= 0, (2-1)

∂σ21

∂x1
+
∂σ22

∂x2
= 0. (2-2)

Further, we adopt the stress decomposition σi j = pδi j + si j , with p the volumetric mean stress and si j the
deviatoric stress. For such a problem, we formulate the governing equations in the equivalent coordinate
system where the stress tensor is rotated such that its elements are the mean stress p = I1/3 and the
von Mises stress q =

√
3J2. In these expressions I1 = tr(σi j ) is the first invariant of the stress tensor and

J2 = si j si j/2. The corresponding coordinate transformation dates back to Levy [Hill 1950] and is given
through the Mohr circle transformation

σ11 = p− q sin 2ψ, σ22 = p+ q sin 2ψ, σ12 = σ21 = q cos 2ψ, (2-3)

where ψ is the rotation angle of the coordinate system.

2A. Energy considerations. In this study we neglect higher-order energy terms in the energy equation.
These terms are expressed in terms of a second derivative of the Helmholtz free energy, ∂2ψ

∂ψ∂T ξ̇ and
are of secondary importance when studying the quasistatic the problem of localisation of viscoplastic
deformation. Frequently this is the case because ξ̇ = 0 at steady state. Such a case is the thermoelastic
heating term (see Appendix A) in which case the internal state variable is the elastic strain. Under this
assumption, the energy balance combined with the second law of thermodynamics can be written as

ρc
∂T
∂t
= α

(
∂2

∂x2
1
+
∂2

∂x2
2

)
T +8− rsink, (2-4)

where the right hand side represents the temporal change of energy within a volume element due to heat
flux and mechanical dissipation

8= βσi j ε̇
p
i j , (2-5)

and an energy sink rsink due to a postlocalisation transformation such as melting or endothermic chemical
reactions [Rosakis et al. 2000]. The constants in (2-4)–(2-5) denote the material density ρ, the specific
heat capacity c, heat conductivity α and the Taylor–Quinney coefficient β [Taylor and Quinney 1934].
This coefficient quantifies the amount of mechanical work converted to heat and β is of particular impor-
tance in the field of thermodynamics with internal state variables, as it incorporates the evolution of all
the internal state variables ξ of the system, as evident from its definition [Alevizos et al. 2014; Veveakis
et al. 2014]

β = 1−
Y ξ̇
σi j ε̇

p
i j
. (2-6)

In this expression Y is a thermodynamic potential, dual in energy with the internal state variable ξ .
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2B. Constitutive modelling. We first split the strain rate into elastic (reversible) and plastic (irreversible)
parts ε̇i j = ε̇

e
i j + ε̇

p
i j . For the elastic component we adopt a linear elastic law of the form

ε̇e
i j = C−1

i jkl σ̇kl . (2-7)

For the irreversible part, we assume that the Helmholtz free energy is invertible, such that the evolution
of the plastic strain depends on the stress and temperature through a smooth function of the plastic
potential g(σi j , T ). We focus on temperature contributions that act independently of the stress such that
the viscoplastic flow law can be decomposed as

ε̇
p
i j = ε̇0 e−T0/T

〈 f (g)〉
∂g(σi j )

∂σi j
, (2-8)

where the activation temperature is denoted by T0, and the Macaulay brackets 〈 · 〉 ensure zero plastic
strain before yield [Freed and Walker 1993]. This decomposition is supported by experimental data
at elevated temperatures, below the phase transition temperature of the material [Bauwens-Crowet et al.
1974] and the two most representative constitutive responses of temperature and rate dependent materials
are an Arrhenius-type dependency on temperature, with either a power-law or an exponential dependency
on stress. The function f (g) is an arbitrary scalar flow stress function. For the example of J2 associative
viscoplasticity the viscoplastic flow law takes the form

ε̇
p
i j = ėp

i j = ε̇0 e−T0/T
〈 f (g)〉

∂g
∂si j
= ε̇0

〈√
q

k
− 1

〉
si j

q
e−T0/T , (2-9)

where ėp
i j is the deviatoric part of the strain-rate plastic and k is the yield stress [Perzyna 1966]. The

flow stress function is in principle dependent on temperature, plastic strain and any other internal state
variable, but in this study we will not consider these dependencies for simplicity in the mathematical
treatment.

The exact form of the constitutive equation is not prescribed during the analysis of the bifurcation in
order to emphasise the generic nature of the formulation, where the onset of plastic deformation is derived
from the basic assumptions of the energetics. The only important aspect of the constitutive response of
the material is that it must obey a viscoplastic relationship linking the plastic strain-rate (i.e., plastic strain
increment) with the stress, in contrast to rate independent plasticity where an incremental relationship
between plastic strain increment and stress increment is required. The viscoplastic law is required so
that in the steady-state limit of the equations (σ̇i j = Ṫ = 0) the mechanical dissipation remains nonzero.

The formulation therefore encompasses most classes of physical behaviour described in the summary
of constitutive laws for viscoplastic materials [Chaboche 2008]. Since the rate-independent plasticity
case can be deduced from the equations of viscoplasticity as a limiting case [Chaboche 1977; Lubliner
2008], the presented formulation can be seen as a generic framework for temperature-sensitive plasticity.
For a more detailed discussion on the constitutive concepts of viscoplasticity the reader is encouraged to
consult the review article by Chaboche [2008].

As shown in earlier studies [Leroy and Molinari 1992; Cherukuri and Shawki 1995b; Veveakis et al.
2010], the choice of the form of the temperature dependence of the plastic flow law is not central for
the results of the present study. Those studies have shown that any nonlinear temperature dependence
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leads to the same physical behaviour with the Arrhenius type exponential dependency being the one that
allows for the most convenient mathematical treatment.

3. Steady state analysis: generalisation of the slip line field theory

We start by studying the steady-state limit of the system, in which Ṫ = σ̇i j = 0. Therefore, in this regime
the elastic contribution (2-7) is neglected and the problem reduces to that of the study of the response of a
rigid (visco-)plastic material. This setting can therefore be considered to be a direct extension of the slip
line field theory to thermoviscoplastic materials. We note that in the present formulation the temperature
equation (2-4) is active only when dissipation is nonzero. Since this is achieved in the postyield regime,
we expect that the orientation of possible localisation planes would arise from the characteristics of the
stress equilibrium, in accordance with the theory of plasticity [Hill 1950].

We therefore anticipate that given an arbitrary set of slip lines, two distinctly different cases of ma-
terial response can be identified from the energy balance equation. The plastic material may deform
homogeneously across the whole domain, and therefore across the slip lines; alternatively the material
deforms in a localised manner along the slip lines (the equivalent velocity gradient discontinuities in the
classical case). In our formulation the transition becomes an energy based transition expressed through
the multiple steady states which are possible. The complete field approach of the present work consists
of the identification of the generalised patterns of slip lines given by an arbitrary yield surface and the
derivation of the conditions for localised plastic deformation along these slip lines.

3A. Generalised Hencky’s equations. At the point of initial yield, where the temperature equation is
inactive, the response of the system is governed by the stress equilibrium equations. We assume a
generalised yield surface at a reference temperature of the form q = qY (p). In order to find the char-
acteristics of the hyperbolic differential stress equilibrium equations (slip lines) we substitute the Levy
stress transformations, (2-3), into the stress equilibrium equations, (2-1) and (2-2). The mathematical
treatment is detailed in Appendix B (see also [Lubliner 2008, Chapter 5]) and the results are summarised
below.

The slip lines are parametrised in terms of the arc-length s and the slopes of the characteristics along
the x1- and x2-axes read

∂x1

∂sk
=

µ(k)√
1+µ(k)2

,
∂x2

∂sk
=

1√
1+µ(k)2

(k = 1, 2), (3-1)

where µ(k) is the k-th left eigenvalue of the stress equilibrium equations (see Appendix B). For a general
yield surface q(p)

µ(1,2) =
∓
√

1− h2+ cos(2ψ)
h+ sin(2ψ)

, (3-2)

and the quantity h = q ′Y (p) is a generalised pressure modulus. Note that in this expression p must be
critical, i.e., equal to its yield value. For incompressible materials h = 0.

Rescaling (2-1) and (2-2) along the characteristics, Equation (3-1) provides

r (k)i Bi j
∂(p, ψ)
∂s

= 0 (k = 1, 2), (3-3)
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where the left eigenvectors are

r (1,2) =
(√

1− h2∓ cos(2ψ)
±(h− sin(2ψ))

, 1
)
. (3-4)

Equations (3-3) are derived in Appendix B and expanding them yields the generalised Henchky’s equa-
tions

0=
√

1− h2 ps ± 2qψs . (3-5)

In the case of a von Mises material, where qY = k is a constant, (3-2) simplifies (as h = 0) to the
familiar form

µ(1) =− tanψ, µ(2) = cotψ, (3-6)

and the eigenvectors (3-4) to

r (1) = (− tanψ, 1), r (2) = (cotψ, 1). (3-7)

The corresponding traces are commonly known as α/β-slip lines. Along the slip lines Equations (3-5)
reduce to the classical Hencky’s equations

p± 2kψ = Cα,β . (3-8)

3B. Generalised Geiringer’s equations. Traditionally the velocity components along the slip lines are
described by Geiringer’s equations which are obtained from the continuity equation, in conjunction with
the plastic flow rule and the small-strain compatibility equations [Hill 1950]. In the classical isothermal
formulation of slip line field theory velocity solutions are sought that satisfy the continuity equation and
localisation of plastic deformation is defined as a velocity jump across the slip line (velocity discontinuity)
of zero thickness. In the present formulation we relax the isothermal assumption and seek conditions of
localisation that replace the vanishing thickness by a finite width.

To this end, the mechanical dissipation 8 of (2-5) is combined together with the constitutive law of
plasticity (2-8) to provide a temperature sensitive dissipation term

8= βσi j ε̇
p
i j = βε̇0σi j 〈 f (g)〉e−T0/T ∂g

∂σi j
, (3-9)

where the term σi j (∂g/∂σi j ) represents a tensorial product. The stability and bifurcation of the energy
balance equation (2-4) is characterised by the nonlinear response of its steady state. This problem has
been extensively studied in the literature for shear zones [Gruntfest 1963; Chen et al. 1989; Leroy and
Molinari 1992; Vardoulakis 2002; Veveakis et al. 2010]. In this work we generalise it for 2D loading
conditions by first studying the response of the energy balance in the original geometry and then rescaling
it to a one-dimensional subspace defined by the directions of the characteristics.

3B.1. Steady state analysis in the original geometry. The steady state of the energy balance equation is
defined by

α

(
∂2

∂x2
1
+
∂2

∂x2
2

)
T +βε̇0σi j 〈 f (g)〉

∂g
∂σi j

e−T0/T
= 0. (3-10)
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The energy balance can be brought into dimensionless form by setting

θ =
T − Tb

Tb
, x̂i =

xi

L i
(i = 1, 2), Ar=

T0

Tb
, (3-11)

where Tb is the boundary temperature and L i is an appropriate length scale. Since we are interested in
deformation taking place under isothermal boundary conditions the final dimensionless equation is (the
superimposed hats are dropped for convenience)(

∂2

∂x2
1
+ λ2 ∂

2

∂x2
2

)
θ +Gr2D exp

(
Ar θ
1+ θ

)
= 0, (3-12)

where λ= L1/L2 is an aspect ratio and the superscript 2D refers to the dimension of the domain. The
exponential term stems from the mechanical dissipation 8 and we define the normalised dissipation
function

φ = exp
(

Ar θ
1+ θ

)
. (3-13)

In order to solve the partial differential equation (3-12) on the domain [−1, 1] × [−1, 1] a pseudo arc-
length continuation [Chan and Keller 1982] in Gr2D, the Gruntfest number [Gruntfest 1963], was carried
out where

Gr2D
=
βε̇0L2

1

αTb
σi j 〈 f (g)〉 e−Ar ∂g

∂σi j
, (3-14)

and (3-12) is subjected to isothermal boundary conditions

θ(±1, y)= 0, θ(x,±1)= 0. (3-15)

In physical terms, Gr represents the ratio between heat production due to mechanical deformation and
heat loss due to thermal conduction or additional energy sinks [Vardoulakis 2002; Veveakis et al. 2010].
At the low Gr limit the system deforms in virtually isothermal conditions, whereas as Gr→∞ so the
system deforms under near-adiabatic conditions [Veveakis et al. 2010].

It is well known that the steady state response of the system depends on the values of Gr and Ar [Law
2006; Veveakis et al. 2010], see Figure 1. In Figure 1(a) we sketch the maximum temperature at the centre
of the domain, θc, as a function of Gr for two values of Ar. We notice that between Ar= 4 and Ar= 5
the response of the system changes from a stretched (Ar= 4) to a folded S-curve (Ar= 5). The stability
of the system is determined by the eigenvalues of the Jacobian matrix, shown in Figure 1(b). Since the
maximum eigenvalue of the case Ar≤ 4 (stretched) is negative for all values of Gr, the stretched S-curve
is stable throughout. In contrast, the folded S-curve (Ar = 5) exhibits two points of stability change,
coinciding with the turning points of the S-curve. This means that the stationary solutions are initially
stable up to the first turning point, then unstable and after the second turning point restabilise.

The above arguments are independent of λ and the variation of the steady state response with respect
to λ are presented in Figure 2. This conclusion allows us to proceed with rescaling the energy equation
in a 1D equivalent, along the characteristic curves sk of the stress equilibrium equations.
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Figure 1. (a) Bifurcation diagram of the two-dimensional heat equation for Ar= 4, 5.
If the path of stationary states is folded (Ar= 5) the solutions change stability at the fold
and dotted lines denote unstable stationary states. (b) Largest eigenvalues of the Jacobian
matrix associated with (3-12). For Ar= 4 the largest eigenvalue remains negative, but
for Ar = 5 stability of the stationary solutions changes at the folds where the largest
eigenvalue changes sign.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

8

Gruntfest number

N
o

rm
a

liz
e

d
 C

o
re

 T
e

m
p

e
ra

tu
re

λ=0 λ=0.5 λ=1 λ=1.5 λ=2

(a)

Gr
c

0 20 40 60 80 100
0

5

10

15

20

25

λ

Numerical points

Gr
c
 = 0.2285 λ + 0.1966

(b)

Gr
c

Figure 2. A change in aspect ratio λ shifts the steady states along the Gr-axis, but has
only little influence on the shape of the S-curve and no influence on the stability of the
steady states.

3B.2. Rescaling along the characteristics. In this work we look for the necessary conditions for locali-
sation of the plastic deformation to occur along the characteristics of the stress equilibrium. This means
that the characteristic curves sk also need to be the characteristics of the temperature equation. This
condition is satisfied in the limit where the elliptic operator vanishes, which is also the adiabatic limit.
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Hence, the loss of ellipticity of the temperature equation would ensure that localisation is achieved along
the characteristics of the momentum equation. Localisation should therefore be obtained through the
properties of the nonlinear response of the energy equation.

Replacing the spatial derivatives in (3-10) with (3-1) yields

α
(1+µ2)

µ2

(
(1+µ2)

∂2

∂s2 +
(µ2
− 1)
µ

∂µ

∂s
∂

∂s

)
T +βε̇0σi j 〈 f (g)〉

∂g
∂σi j

e−T0/T
= 0, (3-16)

and all super- and subscripts k have been dropped since the above arguments hold true for both sets of
characteristics. We consider the case of infinitesimal variations of the slip line geometry, so that the
derivatives ∂µ/∂s are small and can be ignored.

Analogously to (3-11), (3-16) is normalised and

∂2θ

∂s2 +Gr1D exp
(

Ar θ
1+ θ

)
= 0, (3-17)

where the Gruntfest number admits the following form

Gr1D
=
βε̇0L2

αTb

µ2

(1+µ2)2
e−Arσi j 〈 f (g)〉

∂g
∂σi j

, (3-18)

where L is a length scale. This Gruntfest number is spatially dependent through µ, and also incorporates
the dimensionality of the system at hand, through L and we conjecture that the critical values of the
Gruntfest number for the two dimensional and one dimensional case are related via

Gr1D
cr =

L2

L2
1

µ2

(1+µ2)2
Gr2D

cr , (3-19)

which follows upon comparing (3-14) and (3-18). As an example, we consider the experiment in [Johnson
et al. 1964] where the heat lines are oriented along the diagonals of a square sample. When rescaling a
von Mises material along the characteristics of a square domain (see the next section) with dimension
L1, then L =

√
2L1 and the geometric correction

L2

L2
1

µ2

(1+µ2)2
=

1
2

as µ=− tanψ or µ= cotψ . From here on forward we do not distinct between the Gr1D and Gr2D any
longer since there is no dis-ambiguity in terms of the physics between the one- and two-dimensional heat
equation.

The steady state response of this 1D equivalent equation follows that of the 2D case, as shown in
Appendix C. In Figure 3, we present the results of this analysis for the dissipation function φ and we find
three distinct steady states of alternating stability. The unstable branch BC corresponds to a localisation
instability across the characteristic trace for the normalised dissipation function φ. Since in Figure 3(a)
the branches AB and CD are stable in the dissipation the unstable branch BC cannot be admitted and the
solution jumps from stable near isothermal homogeneous plastic deformation on AB to localised near
adiabatic deformation on CD. The saddle point B therefore corresponds to the necessary condition for
the loss of ellipticity of the thermomechanical system, after which localisation is progressively achieved.



CONDITIONS FOR THE LOCALISATION OF PLASTIC DEFORMATION 123

lo
g
 φ

Gr

(a)

A

B

C

D

s

φ
/φ

m
a
x

 

 

(b)

Branch AB

Branch BC

Figure 3. (a) Folded S-curve. Along the branch AB the solution of (3-12) corresponds
to an isothermal temperature profile whereas along the section between the turning points
B and C the solutions localise. (b) Examples of the one-dimensional spatial pattern of the
dissipation profile for Ar= 10. The profiles are normalised with respect to the maximum
value of dissipation.

It is a similar condition to the traditional jump conditions for stress and velocity discontinuities in the
classical slip line field solution but is expressed here in terms of their product, the dissipation.

This transition from homogeneous to localised deformation is shown in Figure 3(b), where the nor-
malised dissipation is shown to localise towards the centre of the domain as it crosses the unstable BC
branch of the S-curve (see also the results of [Leroy and Molinari 1992; Veveakis et al. 2010]). The
critical threshold for the transition from the stable branch AB to the new steady state CD is characterised
by the turning point B and can be calculated asymptotically as shown in the Appendix C and Figure 10.

4. Transient analysis of the system

The steady state limit characterises the long-term behaviour of the system, but the evolution of the system
given a certain initial condition can only be obtained through direct time integration of the transient
system of equations of a von Mises elasto-(visco-)plastic material:

∂σi j

∂xi
= 0, ρc

∂T
∂t
= α

∂2T
∂x2

i
+βsi j ė

p
i j , ėi j =

˙si j

2G
+ ε̇0

〈√
q

k
− 1

〉
si j

q
e−T0/T . (4-1)

where G is the elastic shear modulus, and the last term of the third equation corresponds to the viscoplastic
contribution of an associative von Mises material. Notably, although the momentum balance is at its
stationary limit, the time evolution of the system is achieved through the temperature equation. The
energy balance therefore acts as a postfailure evolution equation similar to the ad hoc evolution laws of
the hardening modulus in classical plasticity.

In this section, we integrate this system of equations for the case of an ideal viscoplastic (G→∞) and
an elasto-viscoplastic material with thermomechanical coupling. To illustrate the results of the steady-
state analysis an elementary problem set is chosen, where in a plane strain setting the loading conditions
shown in Figure 4 are applied. A square cell is pinned in the x , y-direction on the left hand side and in
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A
F or v

x

y

Figure 4. Geometry of the problem configuration. A square is deformed by applying
either a constant force F or constant velocity v at the right hand side of the sample.
The sample is pinned on the left and in the y-direction. At the centre “A” the sample is
probed for various quantities. The theoretical analysis presented in the previous sections
for a rate-dependent von Mises material suggests that the slip lines of this model run
diagonally across the specimen and are represented by dashed lines [Johnson et al. 1964].

the y-direction on the right hand side. It is loaded on the right boundary with either a constant force F
or constant velocity v. The cell is surrounded by a reservoir that has a constant temperature Tb.

The results of the previous sections suggest that in such a configuration the slip lines should propagate
from the pinned corners of the rectangle, diagonally across the specimen as discussed in [Johnson et al.
1964]. Owing to the pressure independent von Mises yield envelope, the slip lines are expected to be
perpendicular to each other. In addition, the critical condition for the localisation of plastic deformation
is expected to be given by the critical value of the Gruntfest number, as shown in the previous sections. In
the time-dependent case, we may follow the same rules of normalisation ((3-11)) and define the Gruntfest
number as

Gr=
(
βε̇0L2

4αTb
e−Ar

)
si j

〈
q
k
− 1

〉
. (4-2)

Because the Gruntfest number incorporates the mechanical work, we expect the Gruntfest analysis of the
previous section to hold for both constant force and constant velocity conditions. The difference between
the two regimes would be that in the case of constant force conditions Gr will obtain a constant value,
once the stress equilibrates to a constant value. Under constant velocity conditions, the stress, and so Gr,
will continue to increase throughout the time of loading. Therefore, given enough time the system will
always be able to cross the critical Gr value for the onset of localisation.

In the following sections we present the results of the time-integration of the system (4-1). The analysis
was carried out using finite element techniques as implemented in the finite element code REDBACK1

in which the viscoplasticity is solved using Perzyna’s overstress formulation. REDBACK is an open
source application derived from the Multiphysics Object Oriented Simulation Environment (MOOSE)
[Gaston et al. 2009]. MOOSE provides a simulation environment that is focussed on the physics of
the problem at hand and it takes care of meshing and numerical handling of memory and structures
internally via the finite element library libMesh [Kirk et al. 2006] and the nonlinear parallel solver PETSc

1Available at http://github.com/pou036/redback.git.

http//github.com/pouzethsi/redback.git
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[Balay et al. 2014], respectively. Hence, MOOSE’s approach to the finite element method is mesh and
dimension independent which differentiates it from other solvers that require the user to define elements
and handle more in-depth numerical issues. MOOSE is based in Jacobian-free Newton–Krylov methods
for computational efficiency [Knoll and Keyes 2004].

Initially we present two cases for the deformation of an ideal viscoplastic material and an elasto-
viscoplastic material under constant force boundary conditions. Further, the response of the elasto-
viscoplastic material under a constant velocity boundary condition is studied.

4A. Ideal viscoplastic material under constant force boundary conditions. In the case of an ideal
viscoplastic material (G →∞) under constant force conditions the stress exerted onto the sample is
constant throughout the simulation and the sample enters the plastic regime immediately. Hence, Gr
is held constant throughout the loading. The evolution of the deforming system is best represented by
its orbits in Gr-θ space as shown in Figure 5 because this allows for a direct comparison between the
“S-curve” that marks the steady states in Gr-T space and the steady state attained by the sample. As
Gr is constant these orbits are vertical lines in the case of ideal viscoplasticity. Figure 5 summarises
the evolution of the deforming sample for various initial conditions (marked by grey squares) and their
final state (black squares). The results of these simulations confirm the concept of the “S-curve” that is
comprised of two stable branches that are linked by an unstable branch (BC). If Gr is chosen to be larger
than the critical value (turning point B) or the initial state lies above the unstable branch BC the system
converges to the high-energy (temperature), adiabatic branch. On the other hand, if Gr is smaller than
the critical value the system converges to the low-energy (temperature) isothermal branch.

When elasticity is incorporated and the system is loaded using constant force, the Gruntfest number
(i.e., the overstress) is expected to relax to a constant value after its initial evolution due to the elastic

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

Gr

θ
A

C

B

Figure 5. Evolution of an ideal viscoplastic material that is deformed with a constant
force. The solid black line marks steady states. The grey lines represent the trajectories
through the Gr-θ space as the system evolves in time. Initial and final conditions are
marked by grey and black squares, respectively.
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response of the system. This regime allows us to test the extent of the validity of the S-curve concept
established in Section 3B, since the orbits of the elasto-viscoplastic material are not constant in Gr. To
this end, the system of equations (4-1) was integrated for different initial conditions and values of Gr.
The results are summarised in Figure 6(a) where we observe that the phase space is indeed split into
two domains, in accordance with the concept of the S-curve. Grey squares denote initial conditions and
black squares denote the final state of each numerical experiment.

For initial conditions starting below the unstable branch (branch BC of Figure 3) the system evolves to-
wards a low-energy steady state, which coincides with the stable branch AB of Figure 3. Correspondingly,
for initial conditions above the unstable branch the orbits diverge and eventually relax in a high-energy
steady-state where dissipation localises along the characteristics of the stress equilibrium equations. This
high energy steady state corresponds to the branch CD of Figure 3. Runs that started very close to, but
above, branch BC (solid black squares) diverge towards the high temperature branch as well. The time
evolution of these orbits showcase the different responses (Figure 6(b,c)). Indeed, the low-energy orbits
converge quickly to the low-energy steady state where plastic deformation is not localised, whereas the
high-energy orbits provide an evolution of the system towards the localisation of dissipation along the
characteristics of the stress equilibrium equations. This transition is equivalent to the evolution from
secondary to tertiary creep in material science (Figure 6(b,c)).

4B. Elasto-viscoplastic material under constant force boundary conditions. Following the results of
Figure 3, we expect the orbits leading to the low-energy steady state to be stable without profound
localisation of the plastic deformation. On the contrary, the high-energy steady-state is expected to
provide the necessary conditions for localisation. In Figure 7 we plot the spatial distribution of the
mechanical dissipation for an orbit converging to a low-energy and high-energy steady-state. We notice
that in both cases the slip lines indeed propagate from the corners towards the diagonals of the specimen
as expected, but that in the low-energy case the plastic deformation is not localised across the slip lines,
whereas in the high energy case localisation is emerging, with localisation being more pronounced the
higher the value of Gr. We may therefore suggest indeed that the critical Gruntfest number constitutes a
material bifurcation criterion for temperature sensitive viscoplastic materials.

4C. Heat lines under constant velocity boundary conditions. When the elasto-viscoplastic material is
loaded at constant velocity conditions, the Gruntfest number initially grows rapidly and attains values
beyond its critical value. Hence, the temperature rises rapidly and the system can be assumed to transition
quickly from near-isothermal to near-adiabatic conditions.

An extreme end-member of this regime is the case of an elasto-viscoplastic material evolving under
fast loading, thus establishing directly adiabatic conditions. This regime which is also known as adia-
batic shear banding is crucial in metal forming and cutting [Gruntfest 1963], but also in geomaterials
[Vardoulakis 2002]. In the present study adiabatic shear banding constitutes just a limiting case of the
analysis, when Gr→∞. Such a case can be simulated by setting the thermal diffusion to zero in the
temperature equation which is equivalent to assuming that the diffusive capabilities of the material are
negligible as compared to the heat producing capabilities. In this case, the dimensionless form of the
temperature equation (4-1) reads

∂θ

∂tad
= exp

(
θ

1+ εθ

)
, (4-3)
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Figure 6. (a) Evolution of an elasto-viscoplastic material deformed with a constant force.
Grey and black squares mark initial and final states of the system of the simulation, re-
spectively. The solid black squares mark the final state of runs with initial conditions very
close to but above the separatrix BC and we find that the these runs are indeed intrinsically
unstable, blowing up in short times. (b) Centre temperature θA over time for the three runs
marked in (a). (c) Strain rate ε̇ at point A over time for the three runs marked in (a).

where tad =Gr ·t is finite only when t→ 0, since Gr→∞. This means that the limiting case of adiabatic
shearing takes place in explosive timescales of the order t ∼ O(1/Gr) [Gruntfest 1963; Veveakis et al.
2007]. Hence, the Gruntfest number Gr controls the time evolution of the adiabatic shear banding, in
addition to the onset of localisation.

Under such a scenario the localisation of dissipation along the slip lines is profound, and patterns re-
sembling the heat lines of [Johnson et al. 1964] are obtained, as shown in Figure 8. In this case the system
enters directly the unstable area of the S-curve, and traces the upper branch CD during the time of loading.
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Figure 7. Dissipation profiles for the final state of a run that converges towards the low
temperature branch AB and a run that converges towards branch CD. The spatial distribu-
tion of the mechanical dissipation: (a) isothermal low temperature stable branch without
significant localisation of plastic deformation. (b) simulation for the high temperature
branch with significant localised heating. The dissipation profiles were recorded along
the lines highlighted in (a) and (b) and are presented in (c) and (d), respectively.
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Figure 8. Heat lines under fast constant velocity loading. The heat lines emerge from
an initially homogeneous temperature state. The heat lines follow the slip lines and can
be observed as a localisation of (a) mechanical dissipation and (b) temperature.
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5. Discussion

The simulation of the temporal evolution of temperature and rate-sensitive materials under various load-
ing conditions verifies the results of the steady-state response. In conclusion, the problem of mechanical
deformation of a temperature-sensitive viscoplastic material can be elegantly captured by the bifurcation
curves of Figure 1. We have seen that for this class of materials the energy equation determines the
conditions for the onset of localisation of plastic deformation, which occurs along the characteristics of
the stress equilibrium equations.

The results of Figure 6 highlight this energy bifurcation as the main driver of the transient orbits in
the system, even when elasticity is considered. It therefore provides a material bifurcation criterion and,
combined with the analysis of Section 3A, a generalisation of the slip line field theory for thermovis-
coplastic materials. The main effect of an extension to rate and temperature dependence is that lines of
velocity discontinuity do not exist below a critical temperature and deformation rate corresponding to
a critical dissipation as captured by the Gruntfest number Gr. Above critical Gr the classical slip lines
emerge in terms of velocity discontinuities and below critical Gr homogeneous deformation is derived.

The extension of the analytical treatment of generalised slip line field theory to the transient regime
using a numerical scheme has allowed us to test it for the problem of metal forging [Johnson et al. 1964].
The constant velocity boundary condition applied during forging lead to a variation in Gr thereby crossing
the stability regimes from homogeneous deformation to the appearance of heat lines. The fast loading
during this deformation can lead the material directly to the extreme case of adiabatic deformation.

This work has therefore presented a generalised approach of slip line field theory showing that the
simple, but restrictive, rheology of a rigid-plastic body can be extended to included rate dependent and
temperature dependent material behaviour. We have detailed an energy based framework to obtain the
modified Hencky’s and Geiringer’s equations which still provide the information on the basic pattern
of slip lines underpinning the deformation process. We argue that this extension is therefore useful for
gaining a basic understanding into the more complex material behaviour from an analytical perspective.
The extension of the analytical approach reveals, however, a more complex material behaviour than in
the classical theory.

The results of the present study highlight the role of the energy balance in material bifurcations. Since
the critical condition for material instability is retrieved from an energy bifurcation, the temperature
equation can act as a hardening law and substitute the experimentally derived hardening laws. Such
a case would allow us to account explicitly for different physics as well as for the mechanisms acting
at different scales in a material through their energy budget. We are therefore one step further to our
quest on multiscale analyses, since all the necessary mechanisms can be explicitly accounted for in the
energy equation through the corresponding internal state variables of the microprocesses. The results of
the present work can provide the basis for a unified theory for material behaviour, starting from solid
mechanics and extending naturally to the fluid-like postfailure evolution of materials using explicitly the
energy considerations as the link.

Appendix A: The complete energy budget

A consistent description of the thermomechanical behaviour of viscoplastic materials must be based on
the conservation of (1) mass, (2) momentum and (3) energy. In addition to these conservation laws
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it must be ensured that the entropy production is positive at all times. The combination of these four
prerequisites leads to the heat equation

ρcṪ = ∂xiα∂xi T +8+ r + T (∂Tσi j )ε̇
e
i j (A-1)

that describes the local energy budget and where ρ denotes the material density, c the specific heat, α
the heat conductivity, 8 the mechanical dissipation, σi j the stress tensor, ε̇e

i j the elastic strain rate. The
significance of this equation is that it couples the temperature evolution to the mechanical properties of
the material.

In the context of thermomechanical coupling the term r in (A-1) could be thought of as a heat sink
that has the effect of limiting temperature production after the onset of localisation. Possible heat sinks
due to a postlocalisation transformation are melting or endothermic chemical reactions [Rosakis et al.
2000]. Without the heat sink uncontrolled thermal runaway would ensue and hence r acts as a stabiliser
[Veveakis et al. 2010]. In this work r is neglected, because the aim of this work is to find criteria for
the onset of localisation and a detailed study of the postlocalisation regime is not of central interest. In
doing so, the postfailure evolution of temperature will be exaggerated, since the heat-absorbing processes
gathered in r do not limit the temperature evolution.

The final term in (A-1) describes thermoelastic heating, but is ignored in this work for simplicity of
the mathematical treatment.

Appendix B: Characteristic traces and generalised Hencky equations

Here, the stress equilibrium equations (2-1) and (2-2) are rewritten as a system of first-order differential
equations by means of the method of characteristics and this process reveals the characteristic traces
inherent to the stress equilibrium equations. In the context of plasticity characteristic traces are often
referred to as slip lines along which failure will occur [Hill 1950]. Hence, in the remainder of this section
the geometry of the failure patterns is determined.

Rather than solving equations (2-1) and (2-2) for the stress components σi j themselves we employ the
Mohr circle transformation (2-3) and evaluate p, q and φ. Since there are three unknowns and only two
equations a further relation is required and we choose a general yield criterion that allows to express q
in terms of p, q = q(p).

After substituting the stress components (2-3), (2-1) and (2-2) can be conveniently written in matrix
form as

Ai j
∂(p, ψ)
∂x1

+ Bi j
∂(p, ψ)
∂x2

= 0, (B-1)

where

A =
(

1− q ′ sin(2ψ) −2q cos(2ψ)
q ′ cos(2ψ) −2q sin(2ψ)

)
, (B-2)

B =
(

q ′ cos(2ψ) −2q sin(2ψ)
q ′ sin(2ψ)+ 1 2q cos(2ψ)

)
, (B-3)
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and the prime (·)′ denotes differentiation with respect to p. In order to simplify (B-1) the two (left)
eigenvectors ri and eigenvalues µ that satisfy

r (k)i Ai j = µ
(k)r (k)i Bi j (k = 1, 2) (B-4)

are computed and (B-4) is substituted into (B-1) so that

r (k)i Bi j

(
µ(k)√

1+µ(k)2
∂(p, ψ)
∂x1

+
1√

1+µ(k)2
∂(p, ψ)
∂x2

)
= 0. (B-5)

Instead of solving (B-5) on the whole x1-x2 plane we restrict ourselves to one characteristic trace along
which the independent variables x1 and x2 can be parametrised in terms of the arc-length s. Parametrising
along the characteristic and identifying

∂x1

∂sk
=

µ(k)√
1+µ(k)2

,
∂x2

∂sk
=

1√
1+µ(k)2

(B-6)

allows us to write (B-5) as

r (k)i Bi j
∂(p, ψ)
∂sk

= 0, (B-7)

and the coupled system of ordinary differential equations (B-6) and (B-7) is equivalent to stress equilib-
rium equations (2-1)–(2-2) along the characteristic.

We wish to emphasise that (B-6) defines the geometry of the characteristic trace and that there are two
characteristic traces. In general, the eigenvalues µ(k) depend on ψ and q ′(p).

Appendix C: Asymptotic approximations

In this section asymptotic solutions to the nondimensional heat equation (3-12) are computed, but the
perturbation analysis requires us to identify a “small” parameter which is used as the perturbation pa-
rameter. If the temperature is measured in units of Ar such that θ̃ = Ar θ the heat equation (3-16) reads

θ̃ ′′+ G̃r exp
(

θ̃

1+ εθ̃

)
, (C-1)

where G̃r=Ar Gr and ε= 1/Ar� 1 and ε is a suitable perturbation parameter. We drop the∼ superscript
for convenience.

If θ ∼ O(1), εθ � 1 and the exponent in (C-1) can be expanded as a geometric series which yields

θ ′′+Gr exp(θ − εθ2
+ ε2θ3

+ · · · )= 0. (C-2)

In order to find the governing equations at increasing orders of ε we expand

θ = θ0+ εθ1+ · · · and Gr= Gr0+εGr1+ · · ·

and substitute into (C-2). Here, only asymptotic solutions up to O(ε2) are considered and we find

0= (θ0+ εθ1+ ε
2θ2+ · · · )

′′
+ (Gr0+εGr1+ε

2 Gr2+ · · · )

× exp(θ0+ ε(θ1− θ
2
0 )+ ε

2(θ2− 2θ0θ1+ θ
3
0 )+ · · · ). (C-3)
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We perturb Gr as well since the previously obtained numerical results suggest that the critical value of
the Gruntfest number, Grc, depends on Ar, and hence on the small parameter ε = Ar−1

� 1 (Figure 10).
After the exponential in the above expression is expanded as a Taylor series the zeroth-, first- and

second-order equations of an asymptotic series are obtained:

O(1) : θ ′′0 +Gr0 eθ0 = 0, (C-4)

O(ε) : θ ′′1 +Gr0 eθ0θ1 = Gr0 θ
2
0 eθ0 −Gr1 eθ0, (C-5)

O(ε2) : θ ′′2 +Gr0 eθ0θ2 = Gr0 eθ0
(
2θ0θ1− θ

3
0 −

1
2(θ1− θ

2
0 )

2)
−Gr1 eθ0(θ1− θ

2
0 )−Gr2 eθ0 . (C-6)

Equation (C-4) has a known solution

θ0(s)= θc− 2 ln cosh
(√

Gr0

2
eθc/2s

)
, (C-7)

which satisfies the boundary conditions θ0(0)= θc as θ ′0(0)= 0 [Fowler 1997]. The remaining boundary
condition, θ0(1)= 0 fixes the value of Gr0 and

Gr0 = 2 acosh2
[eθc/2]e−θc . (C-8)

Maximising Gr0 with respect to θc yields the critical value of Gr at leading order which is Gr0,cr ≈ 0.878.
In order to find the first-order approximations we note that the homogeneous part of (C-5) is solved by

tα = θ ′0 and tβ = sθ ′0+ 2. Based on the homogeneous solutions a particular solution tp can be constructed
and we set tp = ξ tα +ψ tβ . The parameters ξ and ψ are required to satisfy

0= ξ ′tα +ψ ′tβ, (C-9)

Gr0 θ
2
0 eθ0 −Gr1 eθ0 = ξ ′t ′α +ψ

′t ′β . (C-10)
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Figure 9. Approximation coefficients Gri (i = 1, 2, 3) as a function of centre tempera-
ture θc.
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Figure 10. (a) Position of steady states of the heat equation (3-12) for ε = 0.1, 0.01.
Squares and circles denote numerical results and the solid lines represent a three-term
asymptotic approximation. The asymptotic approximation is suitable for θc < 3. (b) The
critical Gruntfest number, Grcr, as a function of ε. Circles denote numerical results and
the solid line represents a three-term asymptotic approximation. Note: here temperature
is measured in units of Ar as described in the main text.

The even solution of (C-5) then reads

θ1 = θ
2
0 − 2θ0+ 4sθ ′0+ 6−

Gr1

Gr0
− 2θ ′0

∫
θ0 ds+C1(sθ ′0+ 2), (C-11)

where Gr1 and C1 are fixed by the boundary conditions θ1(0) = θ1(1) = 0. After θ1 and Gr1 have
been established the second order corrections Gr2 and θ2 can be computed analogously to the first-order
correction.

In Figure 9 the coefficients of the expansion Gr= Gr0+Gr1 ε+Gr2 ε
2 are shown as functions of the

centre temperature θc and Figure 10(a) presents a comparison of the numerical results and asymptotic
approximation. An approximation in the low temperature regime is capable of estimating the critical
Gruntfest number to a good degree (see Figure 10(b)).
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