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AN EULERIAN FORMULATION FOR LARGE DEFORMATIONS OF
ELASTICALLY ISOTROPIC ELASTIC-VISCOPLASTIC MEMBRANES

M. B. RUBIN AND BEN NADLER

Typical models of membrane-like structures use a Lagrangian formulation of a hyperelastic membrane
with a specified reference configuration. Here, an Eulerian formulation is proposed for modeling elasti-
cally isotropic, elastic-viscoplastic membranes. The membrane is modeled as a composite of an elastic
and an inelastic component with evolution equations for elastic deformation tensors for each component.
The model includes hyperelastic response as a special case and has a smooth elastic-inelastic transition
capable of modeling both rate-independent and rate-dependent inelastic response. Strongly objective
numerical algorithms are developed for integrating the proposed evolution equations. Also, an example
of an initially flat circular membrane loaded by a follower pressure is considered to examine: rate-
independent elastic and elastic-plastic responses, as well as rate-dependent inelastic relaxation effects.

1. Introduction

The Cosserat surface model of an elastic membrane can be developed as a restricted theory of a shell
with no bending stiffness [Naghdi 1972, Section 14]. In this formulation the membrane is modeled
as a deformable two-dimensional surface in three-dimensional space that can change area and distort.
More specifically, the membrane is modeled as a hyperelastic solid using a Lagrangian formulation with
director vectors that depend on convected coordinates related to a reference configuration.

Standard formulations of plasticity theory [Hill 1950; Green and Naghdi 1965; Cristescu 1967; Lee
1969; Lubliner 1990; Bertram 2005] are Lagrangian, with constitutive equations that depend on: a total
deformation measure from a reference configuration, an inelastic deformation measure from the reference
configuration and an elastic deformation measure from an intermediate configuration. In particular, for fi-
nite deformations it is common to use a multiplicative form relating total, elastic and plastic deformations
[Bilby 1960; Kröner 1960; Lee 1969]. Moreover, overstress models of viscoplasticity for rate-dependent
plasticity were introduced by Malvern [1951] and Perzyna [1963].

Eckart [1948] seems to be the first to emphasize that the stress tensor is determined by a constitutive
equation that depends on an elastic deformation tensor which is determined by integrating an evolution
equation. This evolution equation for elastic deformation is Eulerian in nature since it depends only
on quantities that characterize the present state of the material, which can be measured in principle.
More specifically, this evolution equation does not depend on tensor quantities, like total and plastic
deformation, that depend on arbitrariness of reference and intermediate configurations. Eckart’s for-
mulation [1948] is limited to elastically isotropic material response and is essentially the same as the
one proposed later by Leonov [1976] for polymeric media. Rubin [1994] generalized this approach
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for elastically anisotropy materials. An important feature of this formulation [Rubin 1994] is that it
removes unphysical arbitrariness of the specification of a reference configuration and an intermediate
configuration from which elastic deformation is measured [Rubin 2012].

The main objective of this paper is to present a new formulation of an isotropic elastic-viscoplastic
membrane for large deformations based on recent developments in viscoplasticity modeling of three-
dimensional continua. One novel feature of this new formulation is that it is Eulerian and does not
depend on convected Lagrangian coordinates from a fixed reference configuration for both elastic and
inelastic responses.

The membrane is modeled as a composite of an elastic component and an elastic-inelastic dissipative
component. Specifically, the elastic response of each component is taken to be isotropic. Evolution
equations are proposed for elastic deformations of both the elastic and dissipative components. In par-
ticular, the relaxation effect of inelasticity in the evolution equation for the elastic deformation of the
dissipative component is introduced through a rate of relaxation term. Using the recent developments
in [Hollenstein et al. 2013] the rate of relaxation term exhibits a smooth elastic-inelastic transition and
models both rate-independent and rate-dependent inelasticity. Simple functional forms are proposed for
this inelastic model with only five material constants. Two constants control rate-independent inelastic
response, two constants control rate-dependent inelastic response and an additional constant controls
the yield strain. Moreover, these simple functional forms yield robust, strongly objective [Papes 2012;
Rubin and Papes 2011] closed form (i.e., noniterative) numerical integration algorithms for the evolution
equations. Also, an evolution equation for an isotropic hardening variable could be proposed which
includes both hardening and softening without difficulty [Hollenstein et al. 2013], but is not included
here.

One challenge in developing an Eulerian formulation of deformation of a membrane is the removal of
dependence on a reference configuration in the formulation of the balance laws and constitutive equations
for the membrane. Membrane theory is typically formulated using the same convected (i.e., Lagrangian)
coordinates θα (α = 1, 2) for all time. This means that the director vectors aα , determined by differenti-
ating the position vector x of material points on the surface of the membrane with respect to θα , identify
the same material line elements for all time. In order to develop the Eulerian formulation presented here,
use is made of the fact that the convected coordinates are arbitrary and thus can be changed with time.
In this formulation, at each instant of time, the director vectors can be chosen to be any two linearly
independent vectors in the tangent plane of the membrane’s surface. These director vectors characterize
different material line elements at each instant of time and can be used to define coordinates that are
instantaneously convected.

The example of an initially flat circular membrane subjected to a follower pressure normal on its
surface is considered to examine: rate-independent elastic and elastic-plastic responses, as well as rate-
dependent inelastic relaxation effects. This problem has important applications to the bursting disks
of safety valves and the “bulge test” used to obtain the mechanical properties of thin films and ductile
materials. The response to small deformations was analyzed in [Hill and Storȧkers 1980]. Large defor-
mations of a thin shell with explicit modeling of changes in thickness of the shell have been considered
in [Storåkers 1966; Chater and Neale 1983a; 1983b; Ilahi and Paul 1985]. Cristescu [1967] discusses
wave propagation problems for thin elastic-plastic plates that are deformed by dynamic loads.



LARGE DEFORMATIONS OF ELASTICALLY ISOTROPIC ELASTIC-VISCOPLASTIC MEMBRANES 199

More recently, Atai and Steigmann [2014] have developed a model for finite deformations of an
elastic-viscoplastic thin sheet directly from the three-dimensional theory. This model uses a Lagrangian
formulation with multiplicative relations between total, elastic and plastic tensorial deformation mea-
sures connecting the reference, intermediate and present configurations. Also, the model characterizes
a generalized membrane since it introduces a director vector through the thickness of the sheet that is
determined by conditions based on the assumption of generalized plane stress in the sheet. In contrast,
here the membrane is modeled as a two-dimensional surface with no thickness and the formulation is
Eulerian. The deformation tensor of the membrane’s surface has only two invariants: one characterizing
area change and the other characterizing surface distortion. Although the thickness of the membrane is
not modeled explicitly, the constitutive equations are appropriate for generalized plane-stress response
in the surface of the membrane.

An outline of the paper is as follows. Section 2 discusses mathematical aspects of a two-dimensional
surface embedded in three-dimensional space with associated tensor analysis. The balance laws of a mem-
brane are presented in Section 3, and Section 4 develops constitutive equations for an elastic-viscoplastic
membrane. Invariance under superposed rigid body motions (SRBM) is discussed in Section 5 and nu-
merical integration algorithms are detailed in Section 6. Section 7 discusses an example of axisymmetric
deformation and conclusions are presented in Section 8. Also, details of invariance under SRBM are
presented in the Appendix.

2. Tensor preliminaries

This paper is concerned with a membrane that is a surface P with a closed boundary ∂P, which at
time t is embedded in three-dimensional Euclidean space. The usual summation convention is used
for repeated indices with Greek letters having the range (α = 1, 2) and Latin indices having the range
(i = 1, 2, 3). Moreover, use is made of a triad ai of linearly independent vectors, with aα being tangent
to the membrane’s surface and a3 being a unit vector normal to P, such that

a1/2
= a1× a2 · a3 > 0, a3 =

a1× a2

|a1× a2|
, (2-1)

where it is noted that a3 is determined by the tangent vectors aα. The associated reciprocal vectors ai

are defined by
a1
= a−1/2a2× a3, a2

= a−1/2a3× a1, a3
= a3. (2-2)

Let a⊗ b denote the tensor product between two vectors {a, b} and A · B = tr(ABT ) denote the inner
product between two second order tensors {A, B}. The second order three-dimensional unit tensor I∗

has the properties that for an arbitrary vector c

cI∗ = I∗c= c, I∗ · I∗ = 3. (2-3)

The second order tensor A is denoted as a surface tensor if it has the properties

a3 A= Aa3 = 0. (2-4)

Then, the associated second order surface unit tensor I is defined by

I = aα ⊗ aα = aα ⊗ aα = I∗− a3⊗ a3, (2-5)
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and has the properties

cI = I c= (c · aα)aα = (c · aα)aα, a3 I = I a3 = 0, I · I = 2. (2-6)

In this paper, tensors will be considered to be three-dimensional unless specifically stated otherwise.
The surface deviatoric operator generates the deviatoric part dev(A) of a second order surface tensor

A and is defined by
dev(A)= A− 1

2(A · I)I, dev(A) · I = 0. (2-7)

Also, the surface determinant det(A) of the surface tensor A is defined by

det(A)=
Aa1× Aa2 · a3

a1× a2 · a3
. (2-8)

If the surface determinant of the surface tensor A is nonzero, then A has a surface inverse inv(A) defined
by

A inv(A)= inv(A)A= I, A · inv(A)= 2. (2-9)

In addition, the three-dimensional determinant of a general three-dimensional second order tensor B is
defined by

det∗(B)=
Ba× Bb · Bc

a× b · c
for a× b · c 6= 0, (2-10)

where {a, b, c} are arbitrary linearly independent vectors.

3. Basic equations

Let x locate an arbitrary material point on the surface P of a membrane. Also, let θα be arbitrary
convected coordinates at time t that map θα to the material point x on the surface P

x = x(θα, t). (3-1)

The velocity v of this material point is given by

v = ẋ, (3-2)

where ( · ) denotes material time differentiation following the material point, which corresponds to partial
differentiation of x in (3-1) with respect to time holding θα fixed. The director vectors aα, which are
tangent to the surface P, are defined by

aα = x,α, (3-3)

where a comma denotes partial differentiation with respect to θα . Then, the director a3, which is the unit
normal to the surface P, and the reciprocal vectors ai are defined by (2-1) and (2-2), respectively.

Next, the rate tensor L, its symmetric part D and its skew-symmetric part W are defined by

L = v,α ⊗ aα = D+W , D = 1
2(L+ LT ), W = 1

2(L− LT ). (3-4)

It follows that the material derivative of an arbitrary material line element dx in the membrane’s surface
P can be determined by the expression

ḋx= L dx. (3-5)
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The formulation is Lagrangian when the tensors are expressed in terms of the same convected coor-
dinates for all time. For an Eulerian formulation it is necessary to be able to change the choice of the
convected coordinates with time. In particular, let bβ be two linearly independent vectors defined in the
surface P satisfying the conditions

bβ · a3 = 0, b1× b2 · a3 > 0. (3-6)

Then, another set of convected coordinate yα can be defined so that

θα = θα(yβ), yβ = yβ(θα), x = x(θα, t)= x̃(yβ, t), v = v(θα, t)= ṽ(yβ, t),
∂ x̃
∂yβ
= (∂θα/∂yβ)aα = bβ .

(3-7)

Next, taking the material derivative of this expression yields

ḃβ =
∂ ṽ

∂yβ
= (∂θα/∂yβ)v,α = Lbβ . (3-8)

Thus, bβ can be identified with material line elements in P at each instant of time. In this sense, yβ can
be thought of as coordinates that are instantaneously convected.

For later reference, it is noted that the current element of area dσ of the surface P, the current element
of arc length ds of the boundary ∂P and the unit outward normal vector n to ∂P tangent to the surface
P are defined by

dσ = a1/2dθ1dθ2, nds = aαdθα × a3, n · n= 1, (3-9)

so that a1/2 is the element of area per unit dθ1dθ2.
From [Rubin 2000], the conservation of mass for the membrane can be expressed in the form

m = ρa1/2, ṁ = 0, (3-10)

where ρ is the mass per unit present element of area dσ . Using the fact that a3 is a unit vector, the
director velocity w3 satisfies the conditions

w3 = ȧ3, w3 · a3 = 0, w3 =−(wα · a3)aα =−LT a3 =−a3 L. (3-11)

Then, taking the material derivative of the expression (2-1) for a1/2 yields

d
dt
(a1/2)= a1/2 D · I, (3-12)

which allows the conservation of mass equation (3-10) to be rewritten in the form

ρ̇+ ρD · I = 0. (3-13)

To develop constitutive equations for the response to area changes it is convenient to define the area
dilatation J by

ρ J = ρ0, (3-14)

where ρ0 is the constant density of the membrane in its zero stress state (J = 1). Then, using (3-13), J
satisfies the evolution equation

J̇ = J D · I . (3-15)
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Next, using the work in [Rubin 2000], the balance of linear momentum for a membrane can be ex-
pressed in the form

ρv̇ = ρb+ div(T ), (3-16)

where b is the external assigned force per unit mass due to body force and surface tractions on the
membrane’s surface P and T is a second order tensor, which has the units of force per unit current
length in P, to be determined by constitutive equations. Moreover, the surface divergence div(T ) of the
T can be defined by [Rubin 2000, Section 4.4]

a1/2 div(T )= tα,α, tα = a1/2T aα, T = a−1/2 tα ⊗ aα, (3-17)

so that (3-16) can be multiplied by a1/2 to obtain the alternative form

mv̇ = mb+ tα,α. (3-18)

Also, the force t and rate of work Ws done on the membrane, per unit current arc length ds, applied to
the boundary ∂P can be expressed in the forms

t = T n, Ws = t · v on ∂P. (3-19)

In addition, the balance of angular momentum requires the second order tensor T to be symmetric

T = T T . (3-20)

Then, the rate of material dissipation D is given by

a1/2D= a1/2T · D−m6̇ ≥ 0, (3-21)

where 6 is the strain energy function per unit mass.

4. Constitutive equations

Consider a membrane which is a composite of an elastic component and a dissipative component. Specif-
ically, the elastic component resists both total area changes and total distortional deformations. The total
area changes are characterized by the area dilatation J , which satisfies the evolution equation (3-15).
Motivated by the work of Flory [1961], the total distortional deformations of P are characterized by the
symmetric, unimodular, positive definite surface tensor B′. This tensor satisfies the restrictions

a3 B′ = B′a3 = 0, B′ · I > 0, det(B′)= 1, (4-1)

where B′ and its invariant β, satisfy the equations

Ḃ′ = L B′+ B′LT
− (D · I)B′, β = B′ · I, β̇ = 2 dev(B′) · D. (4-2)

In addition, the elastic area changes and the elastic distortional deformations of P of the dissipative
component are characterized by the elastic area dilatation Jd and the symmetric, unimodular, positive
definite surface tensor B′d , which satisfies the restrictions

a3 B′d = B′d a3 = 0, B′d · I > 0, det(B′d)= 1, (4-3)
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where Jd , B′d and its invariant α satisfy the evolution equations

J̇d = Jd [D · I −0d ln(Jd)], Ḃ′d = L B′d + B′d LT
− (D · I)B′d −0Ad ,

Ad = B′d −
[

2
inv(B′d) · I

]
I,

α = B′d · I, α̇ = 2 dev(B′d) · D−0Ad · I .

(4-4)

In these equations, 0d determines the magnitude of the rate of inelastic area changes and Ad determines
the direction and 0 determines the magnitude of the rate of inelastic distortional deformations. When 0d

vanishes, the evolution equation (4-4) for Jd reduces to the same form as (3-15) for the total area dilation
J . Also, when 0 vanishes, the evolution equation (4-4) for B′d reduces to the same form as (4-2) for
B′. Thus, when {0d , 0} both vanish, the instantaneous response of the dissipative component becomes
elastic with zero rate of dissipation. Moreover, the scalars {0d , 0} need to be specified by constitutive
equations which will be discussed later in this section. In addition, the term ln(Jd) used for the inelastic
area change in (4-4) is similar to the term used in [Rubin 2015] for the inelastic contribution of the active
stretch in cardiac muscle and is introduced for simplification of the numerical integration algorithm
discussed in Section 6. The inelastic response due to area dilatation can be used to model inelastic
distortional deformations due to area and thickness changes of a thin three-dimensional structure within
the context of a pure two-dimensional membrane model.

To analyze the rate of material dissipation of the dissipative component use is made of (3-11), (4-2)
and (4-4) to deduce the results

d
dt
(B′a3)= 0,

d
dt
(a3 B′)= 0,

d
dt
(B′d a3)= 0,

d
dt
(a3 B′d)= 0, (4-5)

which show that the evolution equations (4-2) and (4-4) are consistent with {B′, B′d} remaining surface
tensors that satisfy (4-1) and (4-3). These evolution equations for {B′, B′d} also satisfy the conditions

Ḃ′ · inv(B′)= 0, Ḃ′d · inv(B′d)= 0, (4-6)

which ensure that {B′, B′d} remain unimodular {det(B′)= det(B′d)= 1}. In deriving the evolution equa-
tions for {β, α} use has been made of (2-5), (3-11), the restrictions (4-1), (4-3) and the results that

İ =−(w3⊗ a3+ a3⊗w3), B′ · İ = 0, B′d · İ = 0. (4-7)

For the class of membranes under consideration here, the strain energy 6 is additively separated into
an elastic part 6e and a dissipative part 6d , with

6 =6e(J, β)+6d(Jd , α). (4-8)

This considers the membrane to be modeled like an elastic component in parallel with a dissipative
component that is composed of an elastic element in series with a dissipative element (see Figure 1).
Here, the dissipative component is introduced to model dissipation, which includes rate-independent or
rate-dependent hysteresis in cyclic loadings. Also, the kinetic quantity T separates additively into its
elastic part Te and its dissipative part Td

T = Te+ Td . (4-9)
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elastic component

slider

elastic-viscoplastic component

viscous damper

σ σ

Figure 1. Sketch of an elastic-viscoplastic model with an elastic component and an
elastic-viscoplastic dissipative component in parallel.

Now, taking the constitutive equations for {Te, Td} in the forms

Te = Te I + dev(Te), Te = ρ0
∂6e

∂ J
, dev(Te)= 2J−1ρ0

∂6e

∂β
dev(B′),

Td = Td I + dev(Td), Td =

(
Jd

J

)
ρ0
∂6d

∂ Jd
, dev(Td)= 2J−1ρ0

∂6d

∂α
dev(B′d),

(4-10)

and using (3-15), (4-2) and (4-4), it can be shown that the rate of material dissipation (3-21) requires

D= 0d

(
Jd

J

)
ρ0
∂6d

∂ Jd
ln(Jd)+0 J−1ρ0

∂6d

∂α
Ad · I ≥ 0. (4-11)

Furthermore, with the help of (2-6) and (4-4) it follows that

Ad · I = B′d · I −
4

inv(B′d) · I
. (4-12)

However, by expressing B′d in its spectral form and using (4-3), the fact that B′d is a positive definite,
symmetric, unimodular surface tensor with eigenvalues {λ2, 1/λ2

} it follows that

B′d · I = inv(B′d) · I = λ
2
+

1
λ2 , (4-13)

which can be used to deduce the result
Ad · I ≥ 0. (4-14)

Then, using (3-14) and the expression for Td in (4-10), it is assumed that the strain energy of the dissi-
pative component satisfies the restrictions

∂6d

∂ Jd
= 0 for Jd = 1, ρ0

∂6d

∂ Jd
ln(Jd) > 0 for Jd 6= 1, ρ0

∂6d

∂α
> 0. (4-15)

It then follows that sufficient, but not necessary, conditions for inelasticity to be dissipative and the
restriction (4-11) to be satisfied are

0d ≥ 0, 0 ≥ 0. (4-16)

Moreover, in the absence of deformation rate L, the evolution equations (4-4) cause Jd to relax towards
1 and B′d to relax towards I , which cause Td to relax towards zero.
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For the examples considered later in the text, the strain energy functions are specified by

ρ06e(J, β)= 1
4 Ke[J 2

− 1− 2 ln(J )] + 1
2µe(β − 2),

ρ06d(α)=
1
4 Kd [J 2

d − 1− 2 ln(Jd)] +
1
2µd(α− 2),

(4-17)

where the constants {Ke, µe} are the zero stress bulk and shear moduli of the elastic component and
the constants {Kd , µd} are the zero stress bulk and shear moduli of the dissipative component. These
constants {Ke, µe, Kd , µd} have the units of force per unit length [N/m]. Then, with the help of (4-10)
the kinetic quantities are given by

Te = Te I + dev(Te), Te =
1
2

Ke

(
J − 1

J

)
, dev(Te)= J−1µe dev(B′),

Td = Td I + dev(Td), Td =
1
2

Kd

(
Jd
J

)(
Jd −

1
Jd

)
, dev(Td)= J−1µd dev(B′d).

(4-18)

These constitutive equations are similar to those of a compressible neo-Hookean material except that
{Te, Td} are surface tensors instead of three-dimensional tensors. Also, the constants {Ke, µe, Kd , µd}

are taken to be nonnegative so the restrictions (4-15) are satisfied.
Moreover, following [Hollenstein et al. 2013], the constitutive equation for the function 0 in (4-4),

which controls the rate of inelastic response, is proposed in the form

0 = 00+01〈g〉, 0i = ai + bi ε̇ (i = 0, 1), g = 1−
κ

γd
, ai ≥ 0, bi ≥ 0, (4-19)

where {ai , bi } are nonnegative material constants, g is the yield function with κ being a constant yield
strain and the equivalent elastic strain γd of the dissipative component being defined by

γd =

√
3
2 gd · gd , gd =

1
2 dev(B′d). (4-20)

Also, the equivalent rate ε̇ of total distortional strain is defined by

ε̇ =

√
2
3 dev(D) · dev(D), (4-21)

and the Macaulay brackets 〈g〉 are defined by

〈g〉 =max(g, 0). (4-22)

This constitutive equation produces a smooth elastic-inelastic transition, which is rate-independent when
ai vanish. The constants ai control relaxation effects for vanishing ε̇ and the constants bi control the
magnitude of overstrain when ε̇ is nonzero and g is positive. In particular, large values of bi cause g to
be limited by a small positive value since the relaxation effects of inelasticity tend to cause g to decrease.
Similar constitutive equations for 0d and a yield function gd for inelasticity of the elastic area dilatation
Jd could be proposed, but are not considered here since the example problems considered in Section 7
do not depend on Jd .

For the analysis of plasticity it is common to analyze a measure of accumulated plastic strain. Since
the rate of inelastic area dilatation and the rate of inelastic distortional deformation in the evolution
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equations (4-4) model different physical mechanisms it is natural to introduce two measures of accumu-
lated plastic strain. The formulation of inelastic response in this paper is based on a rate of inelastic
deformation and not on an inelastic deformation tensor. In this regard, it is noted from (4-4) and (4-20)
that for small elastic strains

Ad ≈ 2gd . (4-23)

Therefore, the accumulated distortional plastic strain εp, defined in [Rubin and Attia 1996], is determined
by integrating the evolution equation

ε̇p = 0

√
2
3 gd · gd =

2
30γd , (4-24)

subject to the initial condition that εp vanishes. Since ε̇p is nonnegative, a positive value of εp de-
notes regions which have experienced some inelastic deformations even though they may be responding
elastically in the present state. An additional measure of inelastic area dilatation εd can be defined by
integrating the evolution equation

ε̇d = 0d | ln(Jd)|. (4-25)

It can be seen from (4-4) that this corresponds to a logarithmic rate of inelastic area dilatation.

5. Superposed rigid body motions (SRBM)

Under SRBM the position vector x, time t and the directors ai , transform to their superposed values
{x+, t+, a+i }, such that

x+ = c(t)+ Q(t)x, t+ = t + c, a+i = Qai , (5-1)

where c(t) is an arbitrary translation vector, c is an arbitrary constant time shift and Q(t) is an arbitrary
proper orthogonal tensor

Q QT
= I∗, det∗(Q)=+1, �= Q̇ QT

=−�T, (5-2)

with � being a skew symmetric tensor. It can be shown that the velocity v, the reciprocal vectors aα and
the director velocities wα transform under SRBM to {v+, aα+,w+α }, such that

v+ = ċ+ Qv+�(x+− c), aα+ = Qaα, w+α = Qwα +�a+α . (5-3)

Here, and throughout the text, a superposed (+) is added to a symbol to denote the value of a quantity
in the superposed configuration. Moreover, in the Appendix it is shown that

L+ = QL QT
+�Q I QT , D+ = Q D QT

+
1
2(�Q I QT

− Q I QT�). (5-4)

Additional transformations under SRBM are given by

a1/2+
= a1/2, ρ+ = ρ, J+ = J, B′+ = Q B′QT , J+d = Jd , B′+d = Q B′d QT ,

b+ = v̇++ Q(b− v̇), T+ = QT QT , n+ = Qn, t+ = Qt,

0+d = 0d , 0+ = 0, ε+p = εp, ε+d = εd .

(5-5)
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Then, using these expressions and other results recorded in the Appendix, it can be shown that the entire
theory discussed in the previous sections is properly invariant under SRBM.

6. Robust, strongly objective numerical integration algorithms

The objective of this section is to develop robust, strongly objective numerical algorithms for integrating
the evolution equations (3-15) for J , (4-2) for B′ and (4-4) for Jd and B′d over a time step which begins
at t = t1, ends at t = t2, with time increment 1t = t2− t1. Specifically, given the values

{J (t1), B′(t1), Jd(t1), B′d(t1)} (6-1)

at the beginning of the time step, the numerical algorithm predicts the values

{J (t2), B′(t2), Jd(t2), B′d(t2)} (6-2)

at the end of the time step.
Motivated by the work in [Simo 1992; Simo and Hughes 1998, p. 315; Rubin and Papes 2011; Papes

2012; Hollenstein et al. 2013], robust, strongly object numerical algorithms are based on the relative
deformation gradient Fr , which satisfies the evolution equation and initial conditions

Ḟr = L Fr , Fr (t1)= I . (6-3)

In particular, the solution of this equation can be expressed in the form

Fr (t)= aα(t)⊗ aα(t1), (6-4)

and the relative dilatation Jr satisfies the equations

Jr (t)= det(Fr ), J̇r = Jr D · I, Jr (t1)= 1, (6-5)

Moreover, the unimodular part F′r of Fr satisfies the equations

F′r = J−1/2
r Fr , Ḟ′r = [L−

1
2(D · I)I]F

′

r , F′r (t1)= I . (6-6)

Using (6-5) and (6-6), the exact solutions of (3-15) and (4-2), which satisfy the initial conditions (6-1),
are given by

J (t2)= Jr (t2)J (t1), B′(t2)= F′r (t2)B
′(t1)F′Tr (t2). (6-7)

Also, the elastic trial values J ∗d of Jd and B′d
∗
(t) of B′d , defined by

J ∗d (t)= Jr (t)Jd(t1), B′d
∗
(t)= F′r (t)B

′

d(t1)F
′T
r (t), (6-8)

satisfy the evolution equations and initial conditions

J̇ ∗d = J ∗d (D · I), J ∗d (t1)= Jd(t1),

Ḃ′d
∗
= L B′d

∗
+ B′d

∗LT
− (D · I)B′d

∗
, B′d

∗
(t1)= B′d(t1),

(6-9)

where B′d
∗ in these equations is a surface tensor. Next, it is convenient to use an implicit backward Euler

approximation of the evolution equation (4-4) for Jd of the form

ln{Jd(t2)} = ln{J ∗d (t2)}−1t0d(t2) ln[Jd(t2)], (6-10)
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where 0d(t2) denotes the value of 0d at the end of the time step. Then, the value Jd(t2) at the end of the
time step is given by

Jd(t2)= [J ∗d (t2)]
1/{1+1t0d (t2)}. (6-11)

This value of Jd(t2) represents the exact solution of (4-4) when 0d vanishes and it represents an approx-
imate solution of (4-4) if the rate of inelastic area dilatation is nonzero. A discussion similar to the one
below for determining 0d(t2) could be presented but is not pursued further here since the constitutive
response for the example considered in the Section 7 does not depend on Jd .

Similarly, it is convenient to use an implicit backward Euler approximation of the evolution equa-
tion (4-4) for B′d by introducing the auxiliary tensor B′d defined by

B′d(t2)= B′d
∗
(t2)−1t0(t2)

[
B′d(t2)−

(
2

inv[B′d(t2)] · I

)
I
]
, (6-12)

where 0(t2) denotes the value of 0 at the end of the time step. The tensor B′d(t2) represents the exact
solution of (4-4) if 0 vanishes and it represents an approximate solution of (4-4) if the rate of inelastic
distortional deformation is nonzero. Moreover, B′d(t2) is introduced as an auxiliary tensor since it is
not necessarily unimodular and therefore is only an approximation of B′d(t2). Now, using the surface
deviatoric operator (2-7), the deviatoric part of B′d(t2) is set equal to the deviatoric part of B′d(t2) to
obtain

dev{B′d(t2)} = dev{B′d(t2)} = dev{B′d
∗
(t2)}−1t0(t2) dev{B′d(t2)}. (6-13)

This equation can be solved to obtain

dev{B′d(t2)} =
dev{B′d

∗
(t2)}

1+1t0(t2)
, γd(t2)=

γ ∗d (t2)
1+1t0(t2)

,

γ ∗d (t2)=
√

3
2 g∗d · g

∗

d , g∗d =
1
2 dev{B′d

∗
(t2)},

γd(t2)=
√

3
2 gd · gd , gd =

1
2 dev{B′d(t2)},

(6-14)

where use has been made of (4-20). Once the value 0(t2) is known, the value B′d(t2) can be determined
using dev{B′d(t2)} and the expression

B′d(t2)=
1
2α(t2)I + dev{B′d(t2)}, (6-15)

together with the condition that B′d(t2) is unimodular, which requires

α(t2)= 2
√

1− det[dev{B′d(t2)}], (6-16)

where it is noted that det[dev{B′d(t2)}] is nonpositive so that α(t2) is real and positive.
More specifically, introducing the relative total distortional deformation measures {C ′r , B′r }

C ′r = F′Tr F′r , B′r = F′r F′Tr , (6-17)

and using (2-7), (3-4) and (6-6) it can be shown that

Ċ ′r = 2F′Tr dev(D)F′r , dev(D)= 1
2 F′−T

r Ċ ′r F′−1
r . (6-18)
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Then, the value of dev(D) can be approximated by

dev(D)≈ dev(D)=
1

21t
[F′−T

r (t2){C ′r (t2)− I}F′−1
r (t2)] =

1
21t
[I − B′−1

r (t2)], (6-19)

so the equivalent rate ε̇ in (4-21) can be approximated by

ε̇(t2)≈ ˙̄ε =
√

2
3 dev(D) · dev(D), 1ε̄ =1t ˙̄ε. (6-20)

Also, with the help of (4-19) and (6-14), the value of the yield function g at the end of the time step is
given by

g(t2)= 1−
κ[1+1t0(t2)]

γ ∗d (t2)
. (6-21)

Moreover, using (4-19) and (6-20), the value of 0 at the end of the time step is given by

1t0(t2)=100+101〈g(t2)〉, 10i =1tai + bi1ε̄ (i = 0, 1). (6-22)

In order to solve these equations for 1t0(t2) it is convenient to introduce the auxiliary variable ḡ defined
by

ḡ = 1−
κ(1+100)

γ ∗d (t2)
, (6-23)

to obtain

g(t2)=
〈ḡ〉

1+
κ101

γ ∗d (t2)

, 1t0(t2)=100+
101〈ḡ〉

1+
κ101

γ ∗d (t2)

. (6-24)

Furthermore, the evolution equations (4-24) and (4-25) are integrated by taking

εp(t2)= εp(t1)+ 2
31t0(t2)γd(t2), εd(t2)= εd(t1)+1t0d(t2)| ln(Jd(t2)|, (6-25)

with γd(t2) given by (6-14) and 1t0(t2) given by (6-22). Next, introducing the relative director displace-
ments δα and the relative displacement gradient Hr by the expressions

aα(t2)= aα(t1)+ δα, Hr = δα ⊗ aα(t1), (6-26)

it follows that the relative deformation gradient at the end of the time step is given by

Fr (t2)= I + Hr . (6-27)

Thus, within the context of standard finite element procedures, the value of Fr (t2) can be expressed in
terms of nodal displacements which are determined at each iteration step.

In summary, given the displacements δα: the relative deformation gradient Fr during the time step is
determined by (6-26) and (6-27); the exact values {J (t2), B′(t2)} are determined by (6-7); the elastic trial
values {J ∗d (t2), B′d

∗
(t2), γ ′d

∗
(t2)} are determined by (6-8) and (6-14); the final value Jd(t2) is determined

by (6-11); {10i ,1t0(t2)} are determined by (6-20)–(6-24); and the final value B′d(t2) is determined
by (6-14)–(6-16). Finally, using these values, the kinetic quantities are determined by the constitutive
equations (4-18), which are then used to check that the balance laws are satisfied to the desired accuracy
and to update the estimates of the displacements if additional corrections are needed.
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The expressions in this section are strongly objective with the numerical estimates of tensor quantities
having the same invariance properties under SRBM as the exact values of the tensors (see [Rubin and
Papes 2011]).

7. An example of axisymmetric deformation

As an example, the finite deformation of an initially flat circular membrane subjected to pressure normal
to its surface, which was analyzed in [Chater and Neale 1983a; 1983b], is used here to illustrate the
inelastic response of the proposed model. Figure 2 shows a sketch of a deformed membrane which in its
initial unstressed reference configuration at t = 0 is a flat circular disk of radius B. Its edges are simply
supported by a rigid ring of radius B. The position vector x for this axisymmetric problem is expressed
in terms of the cylindrical polar base vectors {er (θ), eθ (θ), e3} in the form

x = r(R, t)er + z(R, t)e3, 0≤ R ≤
B

1+ b
, b = 0.01, (7-1)

where R is the convected (i.e., Lagrangian) radial coordinate, θ is the circumferential angle, r(R, t) is
the current radial position and z(R, t) is the current axial position. In order to avoid numerical problems
associated with zero stiffness to normal displacements of a flat membrane, the membrane is slightly
stretched in the radial direction in its initial configuration at t = 0 with

r(R, 0)= (1+ b)R, z(R, 0)= 0. (7-2)

A uniform follower force pressure p is applied normal to the surface of the membrane which inflates
it to its deformed configuration. For this example, the external assigned force is given by

ρb= pa3. (7-3)

Also, the constitutive equations are specified by (4-17)–(4-19) with Kd set equal to zero.

e

p

w w

ht

hw

3

e
2B

1

Figure 2. Sketch of inflation of an initially flat circular membrane of radius B which
is loaded by an internal pressure p. The maximum width is denoted by 2w, the height
of this maximum width is denoted by hw and the height of the top of the membrane is
denoted by hw + ht .
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In order to emphasize the influence of inelasticity, the elastic component is taken to have no resistance
to distortional deformations and the rate of inelasticity is simplified by taking

µe = 0, b0 = 0, a1 = 0. (7-4)

The remaining constants are specified by

µd = 100Ke, b1 = 0 or 106, κ = 0.001. (7-5)

Also, the positive value of B is used to normalize the length measures {r, z}. A positive value of a0

causes rate-dependent inelasticity which tends to cause the stress Td in the dissipative component to
relax towards zero. When a0 vanishes and b1 is positive, then the dissipative component has a finite
elastic range and rate-independent plasticity only occurs when the yield function g becomes positive.
Moreover, when b1 attains the large value in (7-5) it causes the yield function g in (4-19) to remain very
close to zero during inelastic loading. Also, the applied pressure p is increased to the maximum value
pmax given by

pmax = 100
Ke

B
, (7-6)

and then is held constant. Here, the rate of loading need not be specified since attention is limited
to elastic response and elastic-plastic response, which are both rate-independent, and to fully relaxed
viscoplastic response with zero elastic distortional deformation.

The equations of equilibrium [(3-18) with v̇ = 0] were formulated in terms of {R, t} and were solved
numerically using finite differences for the spatial dependence at each time. The equilibrium equations for
the axisymmetric problem considered here simplify into a system of two second order nonlinear ordinary
differential equations in the spatial domain, which can be expressed as a system of four nonlinear first
order ordinary differential equations. The system of nonlinear first order ordinary differential equations
can be efficiently solved numerically using the shooting method for the spatial dependence at each time.
The solution procedure is iterative with the elastic distortional deformation (6-12) of the dissipative
component being based on the same initial value B′d(t1) in (6-8) until an equilibrium configuration has
been obtained and the next time step is analyzed.

7.1. Elastic response (E). When, b1 vanishes and the loading is rapid (i.e., ε̇ � a0), the influence of
viscoplasticity is negligible and the solution is purely elastic. This solution is denoted by (E).

7.2. Rate-independent elastic-plastic response (P). When, b1 is positive and the loading is rapid (i.e.,
b1ε̇� a0), the influence of viscoplasticity is negligible and the solution exhibits rate-independent elastic-
plastic response. This solution is denoted by (P).

7.3. Rate-dependent viscoplastic relaxation (R). When the pressure is held constant, the viscoplastic
response, controlled by a0, causes the elastic distortional deformation γd to asymptotically approach
zero with time. This causes Td to vanish so the final state is controlled only by the elastic area changes
associated with Te in (4-18). This asymptotic relaxed solution is denoted by (R). Since only the fully
relaxed asymptotic solution for viscoplasticity is presented, it is sufficient to solve the elastic problem
with vanishing µd .
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Figure 3. Deformed shapes of the membrane loaded by the constant uniform internal
pressure p = 10Ke/B for the elastic solution (E), the plastic solution (P) and the fully
relaxed viscoplastic solution (R).

Figure 3 plots the shapes of the membrane normalized by the radius B of the ring for the elastic
solution (E), the plastic solution (P) and the viscoplastic relaxed solution (R) with p = pmax. From
this figure it can be seen that the deformations of the solution (E) are smaller than those of (P) and (R)
because the resistance to distortional deformations in the solution (P) is reduced relative to that in the
solution (E) due to plasticity. Also, the solution (R) is fully relaxed with zero resistance to distortional
deformations. Figure 4 plots the geometric parameters {ht/w, hw/w} (see Figure 2) as functions of the
pressure for the three solutions (E, P, R). From Figure 4 (left) it can be seen that the normalized heights
ht/w of each of the solutions (E, P) are very close to each other and the top part of the fully relaxed
membrane attains a near circular shape (i.e., ht/w = 1). Figure 4 (right) shows that the ring controls the
maximum width w of the membrane until the pressure attains a critical value when the normalized height
hw/w becomes nonzero. This figure also shows that the effect of distortional strength of the membrane
near the constraining ring significantly changes the shape of the lower part of the membrane, with only
the solution (R) approaching that of a spherical membrane (i.e., hw/w = 1).
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Figure 4. Geometric properties of the membrane as functions of the internal pressure
p for the elastic solution (E), the plastic solution (P) and the fully relaxed viscoplastic
solution (R).
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8. Conclusions

The balance laws and constitutive equations for large deformations of an elastically isotropic elastic-
viscoplastic membrane have been developed based on an Eulerian formulation. Specifically, the mem-
brane is considered to be a composite of an elastic component and a dissipative elastic-viscoplastic
component. The constitutive equations (4-10) are hyperelastic in the sense that the kinetic quantities
{Te, Td} are determined by derivatives of the strain energy functions {6e, 6d}, respectively. The response
of the elastic component depends on the area dilatation J and on the total elastic distortional deformation
B′e, which are determined by the evolution equations (3-15) and (4-2). In addition, the response of the
dissipative component depends on the elastic area dilatation Jd and the elastic distortional deformation
B′d of the dissipative component, which are determined by the evolution equations (4-4).

The rate of inelastic deformation in (4-4) is based on the work in [Hollenstein et al. 2013] which models
a smooth elastic-inelastic transition, with rate-independent plasticity and rate-dependent viscoplasticity
included as special cases. Specifically, this rate of inelasticity depends on five material constants: two
{a0, a1} which control rate-dependent response; two {b0, b1} which control rate-independent response;
and one {κ} which controls the yield strain.

Numerical algorithms have been developed which are robust and strongly objective. Also, these
algorithms produce exact solutions for purely elastic response. Finally, the example of large axisymmetric
deformations of an initially flat circular membrane subjected to a follower pressure normal to its surface
is considered to examine: the elastic and elastic-plastic responses and the fully relaxed viscoplastic
response of the membrane.

This model can be implemented into a general purpose computer program. Then, the influence of dissi-
pation and hysteresis during cyclic loading due to the dissipative component can be examined. Moreover,
since the model uses an Eulerian formulation, it would be interesting to use it to model some features of
lipid membranes with dissipation to the distortional motion of lipid reorganization in the surface of the
membrane.

Appendix: Details of invariance properties under SRBM

With the help of (2-5), (5-1) and (5-3) it follows that

I+ = a+α ⊗ aα+ = aα+⊗ a+α = Q I QT . (A.1)

Then, from (3-4) and (5-3) it can be shown that

L+ = v+,α ⊗ aα+ = (Qwα +�a+α )⊗ aα+ = QL QT
+�Q I QT . (A.2)

Also, using (5-2) it follows that

(�Q I QT
− Q I QT�)T = (�Q I QT

− Q I QT�), (A.3)

which verifies (5-4).
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Next, using (5-4) and (A.1) it can be shown that

D+ · I+ = [Q D QT
+

1
2(�Q I QT

− Q I QT�)] · Q I QT ,

D+ · I+ = D · I + 1
2� · Q I QT (Q I QT )T − 1

2� · (Q I QT )T Q I QT ,

D+ · I+ = D · I + 1
2(�−�) · Q I QT

= D · I .

(A.4)

It then follows that the invariance properties (5-5) for {ρ, J } are consistent with proper invariance under
SRBM of the evolution equation (3-15) and the conservation of mass equation (3-16). Moreover, using
(5-1) and (5-5) it can be shown that

inv(B′+d )= Q inv(B′d)QT ,

inv(B′+d ) · I+ = Q inv(B′d)QT
· (Q I QT )= inv(B′d) · I,

(A.5)

so with the help of (4-4) it follows that

A+d = B′+d −
[

2
inv(B′+d ) · I+

]
I+ = Q Ad QT. (A.6)

Next, use is made of (5-4) and (5-5) to deduce that

L+B′++ B′+L+T
− (D+ · I+)B′+ = Q[L B′+ B′LT

− (D · I)B′]QT
+�B′+− B′+�,

L+B′+d + B′+d L+T
− (D+ · I+)B′+d = Q[L B′d + B′d LT

− (D · I)B′d ]Q
T
+�B′+d − B′+d �.

(A.7)

Then, with the help of (5-2) and (5-5) it can be shown that

d
dt
(B′+)= Q Ḃ′QT

+�B′+− B′+�,
d
dt
(B′+d )= Q Ḃ′d QT

+�B′+d − B′+d �, (A.8)

which can be used together with (A.4) to deduce that the evolution equations (4-2) for B′ and (4-5) for
B′d are properly invariant under SRBM.

The invariance properties (5-5) for T follow directly from the constitutive equations (4-10). Next,
using (3-17), (5-3) and (5-5) it follows that

div+(T+)= a−1/2(a1/2T+aα+),α = Q div(T ), (A.9)

which with the help of (5-5) can be used to show that the balance of linear momentum (3-16) is properly
invariant under SRBM.
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