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WAVE PROPAGATION IN LAYERED PIEZOELECTRIC RINGS
WITH RECTANGULAR CROSS SECTIONS

JIANGONG YU, XIAODONG YANG AND JEAN-ETIENNE LEFEBVRE

Wave propagation in multilayered piezoelectric structures has received much attention in past forty years.
But the research objects of previous research works are almost only for semi-infinite structures and one-
dimensional structures, i.e., structures with a finite dimension in only one direction, such as horizontally
infinite flat plates and axially infinite hollow cylinders. This paper proposes a double orthogonal poly-
nomial series approach to solve the wave propagation in a two-dimensional (2-D) layered piezoelectric
structure, namely, a multilayered piezoelectric ring with a rectangular cross-section. Through numerical
comparison with the available reference results for a purely elastic multilayered rectangular straight bar,
the validity of the double polynomial series approach is illustrated. The dispersion curves and electric
potential distributions of various layered piezoelectric rectangular rings with different material stacking
directions, different polarization directions, different radius to thickness ratios, and different width to
thickness ratios are calculated to reveal their wave propagation characteristics.

1. Introduction

Because of the applications in ultrasonic nondestructive evaluation and transducer design and optimiza-
tion, wave propagation in multilayered piezoelectric structures has received considerable attention from
engineering and scientific communities. Many solution methods have been used to investigate the wave
propagation phenomena in multilayered piezoelectric structures. The mostly used method is the transfer
matrix method (TMM) [Nayfeh 1995; Adler 2000; Cai et al. 2001] and the finite element method (FEM)
[Ballandras et al. 2004]. Because the TMM and FEM suffer from numerical instability in some particular
cases, some improvements have been developed, such as the recursive asymptotic stiffness matrix method
[Wang and Rokhlin 2002; 2004], the surface impedance matrix method [Collet 2004; Zhang et al. 2001],
the scattering-matrix method [Pastureaud et al. 2002] and the reverberation-ray matrix method [Guo et al.
2009].

The series expansion technique has been used for the problem of vibrations and waves. As early as
1960, Mindlin and McNiven [1960] used the Jacobi polynomial series to investigate the axially symmetric
waves in elastic rods. Wu et al. [2014] also used the Jacobi polynomial series for the axially symmetric
waves in piezoelectric ceramic rods. Dökmeci [1974] developed a double power series method to in-
vestigate the high frequency vibrations of piezoelectric crystal bars. Chou et al. [1991] used the double
power series method for the dynamic analysis of a vibratory piezoelectric beam gyroscope. In 1972,
an orthogonal polynomial approach has been developed to analyze linear acoustic waves in homoge-
neous semi-infinite wedges [Maradudin et al. 1972]. This approach has a special feature: it incorporates
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the boundary conditions into the equations of motion. So the boundary conditions are automatically
accounted for by assuming position-dependent material parameters. The equations of motion are then
converted into a matrix eigenvalue problem through the expansion of the independent mechanical vari-
ables into appropriate series of orthonormal functions which makes the semivariational determination of
the frequencies and the 8 associated modes possible. After that, this approach has been used to solve
various wave propagation and vibration problems, including surface acoustic waves in layered semi-
infinite piezoelectric structures [Datta and Hunsinger 1978; Kim and Hunt 1990], Lamb-like waves in
multilayered piezoelectric plates [Lefebvre et al. 1999] and multilayered piezoelectric curved structures
[Yu et al. 2013; 2012].

So far, investigations on wave propagation in multilayered piezoelectric structures are almost only
for semi-infinite structures and one-dimensional structures, i.e., structures having a finite dimension in
only one direction, such as horizontally infinite flat plates and axially infinite hollow cylinders. But
in practical applications, many piezoelectric elements have finite dimensions in two directions, such as
rings with rectangular cross sections. One-dimensional models are thus not suitable for these structures.
This paper proposes a double orthogonal polynomial series approach to solve wave propagation in a 2-D
piezoelectric structure, namely, a multilayered piezoelectric ring with rectangular cross-section. To the
authors’ knowledge, few references concerned on guided waves in multilayered piezoelectric rings. Two
material stacking directions (radial direction and axial direction) and two polarization directions (also
radial direction and axial direction) are respectively considered. The dispersion curves and the electric
potential profiles of various layered piezoelectric rectangular rings are presented and discussed. In this
paper, traction-free and open-circuit boundary conditions are assumed.

2. Problem formulation and solution method

We consider a multilayered piezoelectric ring with rectangular cross-section. In the cylindrical coordinate
system (θ, z, r), a, b are the inner and outer radii. Figure 1 shows the schematic diagram of a multilayered
ring with its stacking direction being in the axial direction. Its width is d , and the total height is h = hN .
The radius to thickness ratio is defined as η = b/(b− a).

For the wave propagation problem considered in this paper, the body forces and electric charges are
assumed to be zero. The dynamic wave equations are
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(1)

where Ti j , ui , and Di are the stress, elastic displacement, and electric displacement components, respec-
tively, and ρ is the density of the material.
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Figure 1. Schematic diagram of a z-direction multilayered rectangular ring.

The relationships between the generalized strain and generalized displacement components can be
expressed as
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(2)

where εi j , Ei , and φ are the strain components, electric field, and electric potential, respectively.
In this paper, we consider two kinds of layered piezoelectric rings, namely the material stacking

direction being respectively in the radial direction and in the axial direction. For a ring with a material
stacking direction being in the axial direction, we denote it as a-directional layered ring. Its elastic
parameters are expressed as

Ci j =

N∑
n=1

Cn
i jπhn−1,hn (z), ei j =

N∑
n=1

en
i jπhn−1,hn (z),

∈i j =

N∑
n=1

∈
n
i jπhn−1,hn (z), ρ =

N∑
n=1

ρnπhn−1,hn (z)

(3)

where

πhn−1,hn (z)=
{

1, hn−1 ≤ z ≤ hn,

0, elsewhere;

N is the number of the layers and Cn
i j , en

i j , ∈
n
i j are the elastic, piezoelectric and dielectric constants of

the n-th layer.
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For a layered ring with a stacking direction being in the radial direction, we denote it as r -directional
layered ring. Its material constants are expressed as

Ci j =

N∑
n=1

Cn
i jπdn−1,dn (r), ei j =

N∑
n=1

en
i jπdn−1,dn (r),

∈i j =

N∑
n=1

∈
n
i jπdn−1,dn (r), ρ =

N∑
n=1

ρnπdn−1,dn (r)

(4)

where

πdn−1,dn (z)=
{

1, dn−1 ≤ r ≤ dn,

0, elsewhere.

Simultaneously, two different polarization directions, i.e., radially polarized direction and axially po-
larized direction, will be considered. We use “Pr” and “Pa” to represent the two different polarization
directions.

We introduce the function I (r, z)

I (r, z)= π(r)π(z)=
{

1, a ≤ r ≤ b and 0≤ z ≤ h,
0, elsewhere,

(5)

where π(r) and π(z) are rectangular window functions (the subtraction of two Heaviside function)

π(r)=
{

1, a ≤ r ≤ b,
0, elsewhere,

and π(z)=
{

1, 0≤ z ≤ h,
0, elsewhere.

The derivatives along r and z of I (r, z) are

∂ I (r, z)
∂r

= δ(r − a)− δ(r − b) and
∂ I (r, z)
∂z

= δ(z)− δ(z− h).

By introducing the function I (r, z), the traction-free and open-circuit boundary conditions — that is,
Trr = Trθ = Tr z = Tθ z = Tzz = Dr = Dz = 0 at the four boundaries — are automatically incorporated in
the constitutive relations of the ring [Ludwig and Lengeler 1964]:
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For a time-harmonic wave propagating in the circumferential direction of a ring, we assume the dis-
placement components to be of the form

ur (r, θ, z, t)= exp(ikbθ − iωt)U(r, z), uθ (r, θ, z, t)= exp(ikbθ − iωt)V(r, z),

uz(r, θ, z, t)= exp(ikbθ − iωt)W(r, z), ψ(r, θ, z, t)= exp(ikbθ − iωt)X(r, z),
(7)

where U(r, z), V(r, z), and W(r, z) represent the amplitude of vibration in the r , θ , z directions, respec-
tively, and X(r, z) represents the amplitude of electric potential. Also, k is the magnitude of the wave
vector in the propagation direction, and ω is the angular frequency.

Substituting (2), (6), and (7) into (1), the governing differential equations in terms of the displacement
and the electric potential components can be obtained. In the case of Pr r -directional layered orthotropic
ring, they are given by

N∑
n=1

{
[Cn

33(r
2U,rr + rU,r )− (Cn

11+ (kb)2Cn
55)U+Cn

44r2U,zz + ikb(Cn
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11+Cn
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n
23+Cn

44)r
2W,r z + (Cn

23−Cn
12)r W,z + en
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}
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N∑
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N∑
n=1

{
[en
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31rU+ en
31r V+ en

32r2W,z −∈
n
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24r2U,z + en
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n
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= 0. (8d)

where a subscript comma indicates partial derivative.
To solve the coupled wave equation, U(r, z), V(r, z), W(r, z), and X(r, z) are expanded into products

of two Legendre orthogonal polynomial series as

U(r, z)=
∞∑

m, j=0

p1
m, j Qm(r)Q j (z), V(r, z)=

∞∑
m, j=0

p2
m, j Qm(r)Q j (z),

W(r, z)=
∞∑

m, j=0

p3
m, j Qm(r)Q j (z), X(r, z)=

∞∑
m, j=0

p4
m, j Qm(r)Q j (z),

(9)

where pi
m, j (i = 1, 2, 3, 4) are the expansion coefficients and

Qm(r)=

√
2m+ 1
b− a

Pm

(
2r − b− a

b− a

)
, Q j (z)=

√
2 j + 1

h
Pj

(
2z− h

h

)
(10)

with Pm and Pj being the m-th and the j-th Legendre polynomial. Theoretically, m and j run from 0
to∞. However, in practice the summation over the polynomials in (9) can be truncated at some finite
values m = M and j = J, when the effects of higher order terms become negligible.

Equations (8) are multiplied by Qn(r) with n running from 0 to M , and by Q p(z) with p from 0 to J,
respectively. Then integrating over z from 0 to h and over r from a to b gives the following system of
linear algebraic equations:

lAn,p,m, j
11 p1

m, j +
lAn,p,m, j

12 p2
m, j +

lAn,p,m, j
13 p3

m, j +
lAn,p,m, j

14 p4
m, j =−ω

2
·

lMn,p,m, j p1
m, j , (11a)

lAn,p,m, j
21 p1

m, j +
lAn,p,m, j

22 p2
m, j +

lAn,p,m, j
23 p3

m, j +
lAn,p,m, j

24 p4
m, j =−ω

2
·

lMn,p,m, j p2
m, j , (11b)

lAn,p,m, j
31 p1

m, j +
lAn,p,m, j

32 p2
m, j +

lAn,p,m, j
33 p3

m, j +
lAn,p,m, j

34 p4
m, j =−ω

2
·

lMn,p,m, j p3
m, j , (11c)

lAn,p,m, j
41 p1

m, j +
lAn,p,m, j

42 p2
m, j +

lAn,p,m, j
43 p3

m, j +
lAn,p,m, j

44 p4
m, j = 0, (11d)

where lAn,p,m, j
αβ (α, β = 1, 2, 3, 4) and lMn,p,m, j are the elements of the nonsymmetric matrices A and M,

which can be obtained by using (8).
Equation (11d) can be written as

p4
m, j =−

(lAn,p,m, j
44

)−1(lAn,p,m, j
41 p1

m, j +
lAn,p,m, j

42 p2
m, j +

lAn,p,m, j
43 p3

m, j
)
. (12)
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Substituting (12) into (11a)–(11c) gives[lAn,p,m, j
11 −

lAn,p,m, j
14

(lAn,p,m, j
44

)−1
·

lAn,p,m, j
41

]
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·
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·
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·
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+
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22 −
lAn,p,m, j
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·
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m, j

+
[lAn,p,m, j

23 −
lAn,p,m, j

24

(lAn,p,m, j
44

)−1
·

lAn,p,m, j
43

]
p3

m, j =−ω
2l Mn,p,m, j p2

m, j , (13b)[lAn,p,m, j
31 −

lAn,p,m, j
34

(lAn,p,m, j
44

)−1
·

lAn,p,m, j
41

]
p1

m, j

+
[lAn,p,m, j

32 −
lAn,p,m, j

34

(lAn,p,m, j
44

)−1
·

lAn,p,m, j
42

]
p2

m, j

+
[lAn,p,m, j

33 −
lAn,p,m, j

34

(lAn,p,m, j
44

)−1
·

lAn,p,m, j
43

]
p3

m, j =−ω
2l Mn,p,m, j p3

m, j . (13c)

Then, (11) can be rewritten aslĀn,p,m, j
11

lĀn,p,m, j
12

lĀn,p,m, j
13

lĀn,p,m, j
21

lĀn,p,m, j
22

lĀn,p,m, j
22

lĀn,p,m, j
31

lĀn,p,m, j
32

lĀn,p,m, j
33




p1
m, j

p2
m, j

p3
m, j

=−ω2l Mn,p,m, j

1 0 0
0 1 0
0 0 1




p1
m, j

p2
m, j

p3
m, j

 . (14)

So, (14) forms the eigenvalue problem to be solved. The eigenvalues ω2 give the angular frequency
of the guided wave modes, and the eigenvectors pi

m, j (i = 1, 2, 3) allow the mechanical displacement
components to be calculated, and p4

m, j , which can be obtained from (12), determines the electric potential
distribution. By using the relation Vph = ω/k, the phase wave velocity Vph can be obtained. In the
computing progress, the obtained eigenvalues are complex, but their imaginary parts are all very small
compared to their corresponding real parts. For one eigenvalue, its imaginary part is less than one
millionth of its real part. So, we just think the real parts are solutions of the system.

3. Numerical results and discussions

Based on the solution procedure as described in Section 2, a computer program in terms of the extended
polynomial approach has been written using Mathematica to calculate the wave dispersion curves, the
displacement and the electric potential distributions for the layered piezoelectric rectangular rings.

3.1. Comparison with the available solution from the transfer matrix method. Since no reference re-
sults for the wave dispersion curves in layered piezoelectric rectangular rings can be found in literature,
we consider an a-direction layered purely elastic rectangular ring with a very large radius to thickness
ratio (η = 1000) to make a comparison with known results of a straightly layered bar from the semi-
analytical finite element method [Taweel et al. 2000]. It is a three layer +30◦/−30◦/+30◦ (with respect
to the θ -axis) fiber composite rectangular ring with equal layer-thickness. The bar’s width-to-height ratio
is d/h = 2 and the material properties are given by (15) [loc. cit.]. Figure 2 shows the corresponding
dispersion curves, in which the solid lines are from [loc. cit.], and the dotted lines are obtained from the
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Figure 2. Dispersion curves for the three-layer [+30◦/− 30◦/+ 30◦], equal thickness
fiber composite rectangular structures. Solid lines: the results from the semi-analytical
FEM [Taweel et al. 2000] for the straightly layered bar; dotted lines: the results of the
presented method for the layered ring with a very large radius to thickness ratio (η= 1000).

proposed polynomial approach. The normalized frequency is defined by ω/
√

15.167 GPa/ρh2, and the
dimensionless wave number kh is introduced. In [Taweel et al. 2000], all wave modes are assorted into
two classes and shown in two separate figures. But the proposed method in this paper can only calculate
all wave modes together. So, we put the dispersion curves of all wave modes in each figure to make the
comparison. As can be seen, the results from the proposed polynomial approach agree very well with
the available reference data.

[C]±30◦ =



86.231 27.5875 3.9233 0 0 ∓40.6352
23.73 3.6078 0 0 ∓13.4923

15.986 0 0 ∓0.2732
6.1663 0 0

symmetry 5.9628 0
29.3675


GPa. (15)

3.2. Dispersion curves in multilayered piezoelectric rectangular rings. In this section, layered piezo-
electric rectangular rings composed of BSN (B) and PZT-4 (P) are studied. The corresponding ma-
terial parameters can be seen in [Guo et al. 2009]. Here, the elastic constants of r-polarization and
a-polarization are taken as the same in order to make appropriate comparisons.

Firstly, four square rings with η = 10 are considered. Their stacking sequences, thickness ratio are
the same, P/B/P-1/1/1. Their stacking directions and polarization directions are different: (a) is a Pr
r-directional layered ring; (b) is a Pr a-directional layered ring; (c) is a Pa r-directional layered ring;
(d) is a Pa a-directional layered ring. Their phase velocity dispersion curves are shown in Figure 3. It can
be seen that both the stacking direction and the polarization direction have influences on the dispersion
curves.
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Figure 3. Phase velocity dispersion curves for the P/B/P-1/1/1 square rings with η = 10.
Layered rings: Pa a-directional (red), Pa r -directional (green), Pr a-directional (black),
and Pr r -directional (blue).
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Figure 4. Phase velocity dispersion curves for r -polarized and a-directional P/B/P-1/1/1
square rings: η = 2 (blue), η = 3 (green), η = 5 (red), and η = 10 (black).

Then, Figure 4 shows the dispersion curves for r -polarized and a-directional P/B/P-1/1/1 square rings
with different radius to thickness ratios, η = 2, 3, 5, and 10, respectively. Obviously, the radius to
thickness ratio has significant influences on the dispersion curves.

Next, the different stacking sequences are discussed. Phase velocity dispersion curves for three
r -polarized and r-directional thickness-equal rectangular rings with η = 2 and d/h = 0.5 are shown
in Figure 5. Their stacking sequences are B/P/P, P/B/P, and P/P/B. On the whole, the phase velocity
of B/P/P ring is the lowest and that of P/P/B ring is the highest. In fact, the wave velocity of BSN is
higher than that of PZT-4. Moreover, the volume fraction of BSN in B/P/P ring is the lowest in the three
r-directional layered rings because of its BSN being located at the innermost layer. When the radius
to thickness ratio becomes smaller, the difference among the volume factions of the three r -directional
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Figure 5. Phase velocity dispersion curves for r-polarized and r-directional thickness
equal rectangular rings with η = 2 and d/h = 0.5: B/P/P (black), P/B/P (green), and
P/P/B (blue).
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Figure 6. Phase velocity dispersion curves for r -polarized and a-directional thickness
equal rectangular rings with η = 2 and d/h = 2: P/B/P (red) and P/P/B (black).

layered rings becomes larger. For a-directional layered rings, the volume fractions of P/B/P-1/1/1 and
P/P/B-1/1/1 rings are the same, but different stacking sequence still results in different dispersion curves,
as shown in Figure 6.

3.3. Displacement and electric potential shapes. This section discusses the wave characteristics of lay-
ered square rings through the displacement and the electric potential shapes. The displacement in wave
propagating direction and the electric potential shapes at kd = 30.3 of the fourth and seventh modes for
Pr a-directional layered square ring are illustrated in Figure 7. It can be seen that the displacement and
the electric potential are always concentrated near the four boundaries. Furthermore, they are mostly
localized in the layers of PZT-4, which has a lower wave speed than BSN. In order to confirm this
phenomenon, the top of Figure 8 shows the seventh mode of the Pr a-directional B/P/B-1/1/1 square
ring with η = 10 at kd = 30.3. The displacement and the electric potential are mostly localized in the
middle layer, the layer of PZT-4. Finally, the bottom of Figure 8 shows, for the case of small radius
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Figure 7. Displacement and electric potential profiles of the fourth mode (top) and
seventh mode (bottom) for the Pr a-directional P/B/P-1/1/1 square ring with η = 10 at
kd = 30.3.



256 JIANGONG YU, XIAODONG YANG AND JEAN-ETIENNE LEFEBVRE

 

27

28

29

30

r

0

1

2

3

z

0

50

100

U

7

28

29r

    

27

28

29

30

r

0

1

2

3

z

-20

-10

0

10

20

V

7

28

29r

 

27

28

29

30

r

0

1

2

3

z

-5

0

5

W

7

28

29r

    

27

28

29

30

r

0

1

2

3

z

0

500

1000

1500

I

7

28

29r

 
Fig. 9. Displacement and electric potential profiles of the seventh mode for the Pr a-

η = 10
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a-directional B/P/B-1/1/1 square ring at kd = 30.3. with η= 10 (top) and η= 2 (bottom).



WAVE PROPAGATION IN LAYERED PIEZOELECTRIC RINGS WITH RECTANGULAR CROSS SECTIONS 257

to thickness ratio, the displacement and the electric potential of the Pr a-directional P/B/P-1/1/1 square
ring with η = 2. The displacement and the electric potential are still mostly localized in the layers of
PZT-4, but they become closer to the outer surface. In order to save space, above figures only show the
displacement profile in the x direction. The displacement profiles in the other two directions show the
same phenomena as the x direction displacement.

4. Conclusions

This paper proposed a double orthogonal polynomial series approach to solve wave propagation problems
in 2-D multilayered piezoelectric rectangular rings. The dispersion curves, the displacement, and the
electric potential shapes of various layered rectangular rings are obtained. According to the present
numerical results, we can draw the following conclusions:

(a) Numerical comparison of the wave dispersion curves show that the double orthogonal polynomial
method can accurately and efficiently solve the guided wave propagation problems in multilayered rect-
angular ring.

(b) The polarization direction and stacking sequence have weak influences on the dispersion curves,
but radius to thickness ratio, volume fraction, and width to height ratio have significant influences on
the dispersion curves. So, we can change the wave speed of the piezoelectric ring transducer through
adjusting its thickness ratio, volume fraction and width to height ratio.

(b) The high frequency wave displacements and electric potential are mainly concentrated in the layer
with a lower wave speed and they approach the outer surface of the ring with a little radius to thickness.
Through changing the stacking sequence of the layered piezoelectric ring transducer, we can position the
maximum displacement and electric potential where we want.
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