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A UNIFIED THEORY FOR CONSTITUTIVE MODELING OF COMPOSITES

WENBIN YU

A unified theory for multiscale constitutive modeling of composites is developed using the concept of
structure genomes. Generalized from the concept of the representative volume element, a structure
genome is defined as the smallest mathematical building block of a structure. Structure genome mechan-
ics governs the necessary information to bridge the microstructure length scale of composites and the
macroscopic length scale of structural analysis and provides a unified theory to construct constitutive
models for structures including three-dimensional structures, beams, plates, and shells over multiple
length scales. For illustration, this paper is restricted to construct the Euler–Bernoulli beam model, the
Kirchhoff–Love plate/shell model, and the Cauchy continuum model for structures made of linear elastic
materials. Geometrical nonlinearity is systematically captured for beams, plates/shells, and Cauchy
continuum using a unified formulation. A general-purpose computer code called SwiftComp (accessible
at https://cdmhub.org/resources/scstandard) implements this unified theory and is used in a few example
cases to demonstrate its application.

1. Introduction

Structural analyses are often carried out using finite element analysis (FEA) in terms of three-dimensional
(3D) solid elements, two-dimensional (2D) plate or shell elements or one-dimensional (1D) beam ele-
ments (see Figure 1). Here, the notation of 1D, 2D, or 3D refers to the number of coordinates needed
to describe the analysis domain. It is not related with the dimensionality of the behavior. For example,
a beam element can have three-dimensional behavior as it can deform in three directions. A constitu-
tive relation is needed for the corresponding structural element. For isotropic homogeneous structures,
material properties such as Young’s modulus and Poisson’s ratio are direct inputs for structural analysis
using solid elements; these properties, combined with the geometry of the structure, can be used for
plate/shell/beam elements. However, such straightforwardness does not exist for composite structures
featuring anisotropy and/or heterogeneity. Consider a typical composite rotor blade of length 8.6 m and
chord 0.72 m, with a main D-spar composed of 60 graphite/epoxy plies each with a ply thickness of
125µm. To directly use the properties of graphite/epoxy composite plies in the blade analysis, at least
one 3D solid element through the ply thickness should be used. Sometimes several layers are commonly
lumped together into a single element with “smeared properties”, however, this will result in approximate
solutions that would negate the supposed accuracy advantage gained by the use of 3D solid elements.
Suppose one uses 20-noded brick elements with a 1:10 thickness-length ratio: it is estimated that around
ten billion degrees of freedom are needed for the blade analysis. Such a huge FEA model is too costly
for effective blade design and analysis. An alternative is to model rotor blades as beams [Yu et al. 2012]
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Figure 1. Typical structural elements: a) 3D solid elements; b) 2D shell elements; c)
1D beam elements; d) 2D plate elements.

with models to bridge the material properties of composite plies and the beam properties, and compute
the stress fields within each layer for failure and safety predictions.

Sometimes, it is desirable to start the modeling process of composite structures from the fiber (usually
the size of a few microns) and the matrix. A multiscale modeling approach is needed to link microme-
chanics [Li and Wang 2008; Nemat-Nasser and Hori 1998; Aboudi et al. 2012; Fish 2013] and structural
mechanics [Reddy 2004; Kollár and Springer 2009; Carrera et al. 2014]. Many micromechanics models
have been introduced to provide either rigorous bounds, such as the rules of mixtures [Hill 1952], Hashin–
Shtrikman bounds [Hashin and Shtrikman 1962], third-order bounds [Milton 2002], and higher-order
bounds [Torquato 2002]; or approximate predictions such as Mori–Tanaka method [Mori and Tanaka
1973], the method of cells [Aboudi 1982; 1989] and its variants [Paley and Aboudi 1992; Aboudi et al.
2001; 2012; Williams 2005], mathematical homogenization theories [Bensoussan et al. 1978; Murakami
and Toledano 1990; Guedes and Kikuchi 1990; Michel et al. 1999; Fish 2013; Zhang and Oskay 2016],
finite element approaches using conventional stress analysis of representative volume elements (RVEs)
[Sun and Vaidya 1996; Berger et al. 2006], Voronoi cell finite element method [Ghosh 2011], and varia-
tional asymptotic method for unit cell homogenization [Yu and Tang 2007; Zhang and Yu 2014]. Even
more structural models have been developed for composite structures which are usually based on a set of
a priori assumptions. For composite laminates, the displacement field is usually assumed to be expressed
in terms of 2D functions with known distributions through the thickness [Reddy 2004; Khandan et al.
2012]. For example, the classical laminated plate theory (CLPT) was derived based on the assumption
that the transverse normal remains normal to the reference surface and is rigid. The first-order shear-
deformation theory was derived based on the assumption that the transverse normal remains straight and
rigid, but does not necessarily remain normal. Many assumptions have been proposed in the literature
including equivalent single-layer assumptions [Reddy 1984; Mantari et al. 2012], layerwise assumptions
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Figure 2. Traditional multiscale modeling approach illustrated for composite laminates.

[Plagianakos and Saravanos 2009; Icardi and Ferrero 2010], and zigzag assumptions [Carrera 2003; Xi-
aohui et al. 2011]. Recently, Carrera [2012] developed a unified formulation to systematically construct
all these models based on a priori assumptions [Demasi and Yu 2012]. To avoid these assumptions,
asymptotic models were developed [Maugin and Attou 1990; Cheng and Batra 2000; Kalamkarov and
Kolpakov 2001; Reddy and Cheng 2001; Kalamkarov et al. 2009; Kim 2009; Skoptsov and Sheshenin
2011] with the field variables expressed using a formal asymptotic series.

Common multiscale modeling approaches usually apply a two-step approach (TSA), which carry out
a micromechanical analysis followed by a structural analysis. For example, for composite laminates, a
micromechanics model is first used to compute the lamina constants in terms of the microstructure —
commonly called the RVE or unit cell (UC) — of the composite ply, then a lamination theory is used to
construct a structural model for the macroscopic analysis (see Figure 2). There are three possible issues
with this approach. First, the microstructural scale is implicitly assumed to be much smaller than the
structural scale which might cause significant error for structures where one of the dimensions is similar
in size to the microstructure, such as thin laminates or sandwich structures with a thick core. Second,
as shown in Figure 3, TSA creates artificial discontinuities at the layer interfaces because the original
heterogeneous panel (Figure 3a) is effectively replaced with an imaginary panel made of homogeneous
layers (Figure 3b). The real discontinuities happen at the interfaces between the fiber and matrix if perfect
bonding is assumed between layers, which is normally done in lamination theories. Third, composite
damage might initiate and propagate in such a way that the separation of microscale and laminate scale
in TSA is not valid any more. These issues have been noticed by Pagano and Rybicki [1974]. The focus
of this paper is to potentially resolve these issues by developing a unified theory to link the lowest scale
of interest to the structural scale.
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Figure 3. Artificial discontinuity created by the lamination theory.

+

3D macroscopic structural analysis

a) 1D SG

b) 2D SG

C) 3D SG

Actual problem

SG-based 

Representa!on

Figure 4. Analysis of 3D heterogeneous structures approximated by a constitutive mod-
eling over SG and a corresponding 3D macroscopic structural analysis.

2. Structure Genome (SG)

A genome serves as a blueprint for an organism’s growth and development. We can extrapolate this
word into nonbiological contexts to connote a fundamental building block of a system. A new concept
called the Structure Genome (SG) is defined as the smallest mathematical building block of the structure,
to emphasize the fact that it contains all the constitutive information needed for a structure in the same
fashion that the genome contains all the genetic information for an organism’s growth and development.
It is noted that this work uses the continuum hypothesis, and scales below the continuum scale (such as
the atomic scale) are not considered here.

2.1. SG for 3D structures. As shown in Figure 4, analyses of 3D heterogeneous structures can be approx-
imated by a 3D macroscopic structural analysis with the material properties provided by a constitutive
modeling of a SG. For 3D structures, the SG serves a similar role as the RVE in micromechanics. How-
ever, they are significantly different, so the new term (SG) is used to avoid confusion. For example, for a
structure made of composites featuring 1D heterogeneity (e.g. binary composites made of two alternating
layers, Figure 4a), the SG will be a straight line with two segments denoting corresponding phases. One
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Figure 5. Analysis of beam-like structures approximated by a constitutive modeling
over SG and a corresponding 1D beam analysis.

can mathematically repeat this line in-plane to build the two layers of the binary composite, and then
repeat the binary composite out of plane to build the entire structure. Another possible application is to
model a laminate as an equivalent homogeneous solid. The transverse normal line is the 1D SG for the
laminate. The constitutive modeling over the 1D SG can compute the complete set of 3D properties and
local fields. Such applications of the SG are not equivalent to the RVE. For a structure made of composites
featuring 2D heterogeneity (e.g. continuous unidirectional fiber reinforced composites, Figure 4b), the
SG will be 2D. Although 2D RVEs are also used in micromechanics, only in-plane properties and local
fields can be obtained from common RVE-based models. If the complete set of properties are needed
for a 3D structural analysis, a 3D RVE is usually required [Sun and Vaidya 1996; Fish 2013], while
a 2D domain is sufficient if it is modeled using SG-based models (Figure 4b) or some semianalytical
models such as GMC/HFGMC [Aboudi et al. 2012]. For a structure made of composites featuring 3D
heterogeneity (e.g. particle reinforced composites, Figure 4c), the SG will be a 3D volume. Although a
3D SG for 3D structures represents the most similar case to a RVE, indispensable boundary conditions
in terms of displacements and tractions in RVE-based models are not needed for SG-based models.

2.2. SG for beams/plates/shells. SG allows the connection of microstructure studies with beam/plate/shell
analyses. For example, the structural analysis of slender (beam-like) structures can use beam elements
(Figure 5). If the beam has uniform cross-sections which could be made of homogeneous materials
or composites (Figure 5a), its SG is the 2D cross-sectional domain because the cross-section can be
projected along the beam reference line to form the beam-like structure. This inspires a new perspective
toward beam modeling [Yu et al. 2012], a traditional branch of structural mechanics. If the beam refer-
ence line is considered as a 1D continuum, every material point of this continuum has a cross-section
as its microstructure. In other words, constitutive modeling for beams can be effectively viewed as an
application of micromechanics. If the beam is also heterogeneous in the spanwise direction (Figure 5b), a
3D SG is needed to describe the microstructure of the 1D continuum, the behavior of which is governed
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Figure 6. Analysis of plate-like structures approximated by a constitutive modeling over
SG and a corresponding 2D plate analysis.

by the 1D beam analysis. Note that SG is different from the traditional notion of obtaining apparent
material properties for a structure. For example, the flexural stiffness of an I-beam could be given
by E∗ I , such that an I-beam could be represented by a rectangular beam but with an apparent Young’s
modulus E∗ so that E∗ I = E∗×bd3/12 with b as the width and d as the height. Instead, using SG we can
obtain the bending stiffness directly for the I-beam without referring to a geometry factor (reinterpreting
it as a rectangular beam). No intermediate step such as E∗ is needed. The concept of SG provides a
unified treatment of structural modeling and micromechanics modeling and enables us to collapse the
cross-section or a 3D beam segment into a material point for a beam analysis over the reference line with
a possible, fully populated 4× 4 stiffness matrix simultaneously accounting for extension, torsion, and
bending in two directions.

If the structural analysis uses plate/shell elements, a SG can also be chosen properly. For illustrative
purposes, typical SGs of plate-like structures are sketched in Figure 6. If the plate-like structures feature
no in-plane heterogeneities (Figure 6a), the SG is the transverse normal line with each segment denoting
the corresponding layer. For a sandwich panel with a core corrugated in one direction (Figure 6b), the SG
is 2D. If the panel is heterogeneous in both in-plane directions (Figure 6c), such as a stiffened panel with
stiffeners running in both directions, the SG is 3D. Despite the different dimensionalities of the SGs, the
constitutive modeling should output structural properties for the corresponding structural analysis (such
as the A, B, and D matrices for the Kirchhoff–Love plate model) and relations to express the original
3D fields in terms of the global behavior (e.g., moments, curvatures, etc.) obtained from the plate/shell
analysis. It is known that theories of plates/shells traditionally belong to structural mechanics, but the
constitutive modeling of these structures can be treated as special micromechanics applications using the
SG concept. For a plate/shell-like structure, if the reference surface is considered as a 2D continuum,
every material point of this continuum has an associated SG as its microstructure.

It is easy to identify SGs for periodic structures as shown in Figures 4, 5, and 6. For structures which
are not globally periodic, we usually assume that the structure is at least periodic in the neighborhood of
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a material point in the macroscopic structural analysis, the so-called local periodicity assumption implicit
in all multiscale modeling approaches [Fish 2013]. For nonlinear behavior, it is also possible that the
smallest mathematical building block of the structure is not sufficient as the characteristic length scale
of the nonlinear behavior may cover several building blocks. For this case, SG should be interpreted as
the smallest mathematical building block necessary to represent the nonlinear behavior.

SG serves as the link between the original structure with microscopic details and the macroscopic
structural analysis. Here, the terms “microstructure” and “microscopic details” are used in a general
sense: any details explicitly existing in a SG but not in the macroscopic structural analysis are termed
microscopic details in this paper. Here and later in the paper, the real structure with microscopic details
is termed as the original structure and the structure used in the macroscopic structural analysis is termed
as the macroscopic structural model. It is also interesting to point out the relation between the SG
concept and the idea of substructuring or superelement, which is commonly used in sizing software such
as HyperSizer [Collier et al. 2002]. A line element in the global analysis could correspond to a box
beam made of four laminated walls, and a surface element could correspond to a sandwich panel with
laminated face sheets and a corrugated core. For these cases, SG and its companion mechanics presented
below provide a rigorous and systematic approach based on micromechanics to compute the constitutive
models for the line and surface elements and the local fields within the original structures.

3. Mechanics of structure genome (MSG)

SG serves as the fundamental building block of a structure; whether it is a 3D structure or a beam,
plate, or shell. For SG to not merely remain as a concept, it must be governed by a physics-based
theory, namely mechanics of structure genome (MSG), so that there is a two-way communication between
microstructural details and structural analysis: microstructural information can be rigorously passed to
structural analysis to predict structural performance, and structural performance can be passed back to
predict the local fields within the microstructure for failure prediction and other detailed analyses.

A structural model contains kinematics, kinetics, and constitutive relations. On the one hand, kinemat-
ics deals with strain-displacement relations and compatibility equations, while on the other hand, kinetics
deals with stress and equations of motion. Constitutive relations relate stress and strain. Both kinematics
and kinetics can be formulated exactly within the framework of continuum mechanics and remain the
same for the same structural model independent of the composition of the structure. Constitutive relations
are where the difference comes from and are ultimately approximate because a hypothetical continuum
is used to model the underlying atomic structure. Some criteria is needed for us to minimize the loss of
information between the original model describing the microscopic details and the model used for the
macroscopic structural analysis. For elastic materials, this can be achieved by minimizing the difference
between the strain energy of the materials stored in SG and that stored in the macroscopic structural
model.

3.1. Kinematics. The first step in formulating MSG is to express the kinematics, including the displace-
ment field and the strain field, of the original structures in terms of those in the macroscopic structural
model. Although the SG concept is applicable to original structures made of materials admitting general
continuum descriptions such as the Cosserat continuum [Cosserat and Cosserat 1909], this work focuses
on materials admitting the Cauchy continuum description.
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Figure 7. Macrocoordinates (x1, x2, x3) and eliminated coordinates (x2, x3) of a beam.

3.1.1. Coordinate systems. Let us use xi , called macrocoordinates here, to denote the coordinates de-
scribing the original structure. The coordinates could be general curvilinear coordinates. However,
without loss of generality, we choose an orthogonal system of arc-length coordinates. If the structure
is dimensionally reducible, some of the macrocoordinates xα, called eliminated coordinates here, corre-
spond to the dimensions eliminated in the macroscopic structural model. Here and throughout the paper,
Greek indices assume values corresponding to the eliminated macrocoordinates, Latin indices k, l,m
assume values corresponding to the macrocoordinates remaining in the macroscopic structural model,
and other Latin indices assume 1, 2, 3. Repeated indices are summed over their range except where
explicitly indicated.

For beam-like structures, only x1, describing the beam reference line, will remain in the final beam
model, while x2, x3, the cross-sectional coordinates, will be eliminated (see Figure 7); for plate/shell-
like structures, x1 and x2, describing the plate/shell reference surface, will remain in the final plate/shell
model, while x3, the thickness coordinate, will be eliminated. For this reason, the beam model is called
a 1D continuum model because all the unknown fields are functions of x1 only. Similarly, the plate/shell
model is called a 2D continuum model because all the unknown fields are functions of x1 and x2 only.

Since the size of a SG is much smaller than the wavelength of the macroscopic deformation, we
introduce microcoordinates yi = xi/ε to describe the SG, with ε being a small parameter. This basically
enables a zoom-in view of the SG at a size similar to the macroscopic structure. If the SG is 1D, only
y3 is needed; if the SG is 2D, y2 and y3 are needed; if the SG is 3D, all three coordinates y1, y2, y3

are needed. In multiscale structural modeling, a field function of the original structure can be generally
written as a function of the macrocoordinates xk which remain in the macroscopic structural model and
the microcoordinates y j . Following [Bensoussan et al. 1978], the partial derivative of a function f (xk, y j )

can be expressed as

∂ f (xk, y j )

∂xi
=
∂ f (xk, y j )

∂xi

∣∣∣
y j=const

+
1
ε

∂ f (xk, y j )

∂ yi

∣∣∣
xk=const

≡ f,i +
1
ε

f|i . (1)

3.1.2. Undeformed and deformed configurations. Let bk denote the unit vector tangent to xk for the
undeformed configuration. Note bi chosen this way are functions of xk only. For example, for beam-like
structures, we choose b1 to be tangent to the beam reference line x1, and b2, b3 as unit vectors tangent to
the cross-sectional coordinates xα. As shown in Figure 8, we can describe the position of any material
point of the original structure by its position vector r relative to a point O fixed in an inertial frame such
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Figure 8. Deformation of a typical beam structure.

that
r(xk, yα)= ro(xk)+ εyαbα(xk), (2)

where ro is the position vector from O to a material point of the macroscopic structural model. Note here
xk denotes only those coordinates remaining in the macroscopic structural model, and yα corresponds to
eliminated coordinates xα. Because xk is an arc-length coordinate, we have bk = ∂ ro/∂xk .

When the original structure deforms, the particle that had position vector r in the undeformed config-
uration now has position vector R in the deformed configuration, such that

R(xk, y j )= Ro(xk)+ εyαBα(xk)+ εwi (xk, y j )Bi (xk), (3)

where Ro denotes the position vector of the deformed structural model, Bi forms a new orthonormal
triad for the deformed configuration, and εwi are fluctuating functions introduced to accommodate all
possible deformations other than those described by Ro and Bi . Bi can be related with bi through a
direction cosine matrix, Ci j = Bi · b j , subject to the requirement that these two triads are the same in
the undeformed configuration. R is expressed in terms of Ro, Bi , and wi in (3), resulting in six times
redundancy. Six constraints are needed to ensure a unique mapping. These constraints can be directly
related with how we define Ro and Bi in terms of R. For example, it is natural for us to define

Ro = 〈〈R〉〉− 〈〈εyα〉〉Bα(xk), (4)

where 〈〈·〉〉 indicates averaging over the SG. If yα is chosen such that 〈〈εyα〉〉 = 0, Ro is defined as the
average of the position vector of the original structure. Then (3) implies the following constraint on the
fluctuating functions:

〈〈wi 〉〉 = 0. (5)

Note that for 3D structures yα disappears and no requirement for 〈〈εyα〉〉 = 0 is needed but the constraint
in (5) remains.
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The other three constraints can be used to specify Bi . For plate/shell-like structures, we can select B3

in such a way that
B3 · Ro,1 = 0, B3 · Ro,2 = 0, (6)

which provides two constraints implying that we choose B3 normal to the reference surface of the de-
formed plate/shell. It should be noted that this choice has nothing to do with the well-known Kirchhoff
hypothesis. In the Kirchhoff assumption, the transverse normal can only rotate rigidly without any local
deformation. However, in the present formulation, we allow all possible deformations, classifying all
deformations other than those described by Ro and Bi in terms of the fluctuating function wi Bi . The
last constraint can be specified by the rotation of Bα around B3 such that

B1 · Ro,2 = B2 · Ro,1. (7)

This constraint symmetrizes the macrostrains for a plate/shell model as defined in (19) later.
For beam-like structures, we can select Bα in such a way that

B2 · Ro,1 = 0, B3 · Ro,1 = 0, (8)

which provides two constraints implying that we choose B1 to be tangent to the reference line of the
deformed beam. Note that this choice is not the well-known Euler–Bernoulli assumption as the present
formulation can describe all deformations of the cross-section. We can also prescribe the rotation of Bα
around B1 such that

B3 ·
∂R
∂x2
− B2 ·

∂R
∂x3
= 0, (9)

which implies the following constraint on the fluctuating functions:

〈〈w2|3−w3|2〉〉 = 0. (10)

This constraint actually defines the twist angle of the macroscopic beam model in terms of the original
position vector as pointed out in [Yu et al. 2012].

Thus the fluctuating functions are constrained according to (5). For beam structures, they are addi-
tionally constrained according to (10). Other constraints for the fluctuating functions can be introduced
naturally into the formulation. For example, for periodic structures, fluctuating functions should be equal
on periodic boundaries.

3.1.3. Strain field. If the local rotation (the rotation of a material point of the original structure subtract-
ing the rotation needed for bringing bi to Bi ) is small, it is convenient to use the Jauman–Biot–Cauchy
strain according to the decomposition of the rotation tensor [Danielson and Hodges 1987]

0i j = 1/2(Fi j + F j i )− δi j , (11)

where δi j is the Kronecker symbol and Fi j is the mixed-basis component of the deformation gradient
tensor defined as

Fi j = Bi · Ga ga
· b j = Bi · (Gk gk

+Gα gα) · b j . (12)

Here ga are the 3D contravariant base vectors of the undeformed configuration and Ga are the 3D
covariant basis vectors of the deformed configuration.
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The contravariant base vector ga is defined as

ga
=

1
2
√

g
eai j gi × g j , (13)

with eai j as the 3D permutation symbol and gi as the covariant base vector of undeformed configuration
and g = det(gi · g j ).

From the undeformed configuration in (2), corresponding to the remaining macrocoordinate xk , we
obtain the covariant base vector as

gk =
∂ r
∂xk
= bk + εyα

∂bα
∂xk
= bk + εyαkk × bα = bk + eiα jεyαkki b j . (14)

Here kk = kki bi is the initial curvature vector corresponding to the remaining macrocoordinate xk . This
definition is consistent with k2D

kl for initial curvatures of shells in [Yu and Hodges 2004a], if we let

k2D
kl = αlmkkm, k2D

k3 = kk3, (15)

with αlm as the 2D permutation symbol: α11 = α22 = 0, α12 =−α21 = 1.
From the undeformed configuration in (2), corresponding to the eliminated macrocoordinate xα, we

obtain the covariant base vector as

gα =
∂ r
xα
=
∂εyα

xα
bα = bα. (16)

From the deformed configuration in (3), corresponding to the remaining macrocoordinate xk , we obtain
the covariant base vector Gk as

Gk =
∂R
∂xk
=
∂Ro

∂xk
+ εyα

∂Bα
∂xk
+ ε

∂wi

∂xk
Bi + εwi

∂Bi

∂xk
. (17)

From the deformed configuration in (3), corresponding to the eliminated macrocoordinate xα, we
obtain the covariant base vector as

Gα =
∂R
∂xα
=
∂(εyβ)
∂xα

Bβ + ε
∂wi

∂xα
Bi = Bα +

∂wi

∂ yα
Bi . (18)

A proper definition of the generalized strain measures for the macroscopic structural model is needed
for the purpose of formulating the macroscopic structural analysis in a geometrically exact fashion. Fol-
lowing [Yu et al. 2012; Yu and Hodges 2004a; Pietraszkiewicz and Eremeyev 2009b], we introduce the
following definitions:

εkl = Bl ·
∂Ro

∂xk
− δkl,

κki = (1/2)eia j B j ·
∂Ba

∂xk
− kki ,

(19)

where εkl is the Lagrangian stretch tensor and κki is the Lagrangian curvature strain tensor (or the so-
called wryness tensor). This definition corresponds to the kinematics of a nonlinear Cosserat continuum
[Cosserat and Cosserat 1909] which allows six degrees of freedom (three translations and three rotations)
for each material point no matter whether the macroscopic structural model is 1D, 2D, or 3D. For beam-
like structures, this definition reproduces the 1D generalized strain measures of the Timoshenko beam
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model defined in [Hodges 2006]. If we restrict B1 to be tangent to Ro, (8), this definition reproduces
the 1D generalized strain measures of the Euler–Bernoulli beam model defined in the previous work.
For plate/shell-like structures, if we use (7), we will have the symmetry ε12 = ε21 as a constraint for the
kinematics of the final plate/shell model. This definition reproduces the 2D generalized strain measures
of the Reissner–Mindlin model defined in [Yu and Hodges 2004a]. If we further restrain B3 to be
normal to the reference surface, (6), this definition reproduces the 2D generalized strain measures of the
Kirchhoff–Love plate/shell model defined in [Yu et al. 2002]. For 3D structures, this definition corre-
sponds to the natural strain measures defined in [Pietraszkiewicz and Eremeyev 2009b] for a nonlinear
Cosserat continuum. Although the SG kinematics formulated this way has the potential to construct a
Cosserat continuum model for the 3D macroscopic structural model even if the material of the original
heterogeneous structure is described using a Cauchy continuum, we will restrict ourselves to the Cauchy
continuum model for the 3D macroscopic structural model in this paper. In other words, we are seek-
ing a symmetric Lagrangian stretch tensor εkl and negligible curvature strain tensor κki . This can be
achieved by constraining the global rotation needed for bringing bi to Bi in a specific way, which can be
illustrated more clearly using an invariant form of the definitions in (19). According to [Pietraszkiewicz
and Eremeyev 2009a; 2009b], these definitions can be rewritten as

ε = CT
· F− I,

κT
=−(1/2)e :

(
CT
·
∂C
∂xk

bk

)
,

(20)

where ε is the Lagrangian stretch tensor, κ the Lagrangian curvature strain tensor, C = Bi bi is the global
rotation tensor bringing bi to Bi , F is the deformation gradient tensor, I = bi bi is the second-order
identity tensor, and e = −I × I is the third-order skew Ricci tensor. If the global rotation tensor C is
constrained to be decomposed from F according to the polar decomposition theorem,

F = C ·U, (21)

where U is a second-order positive symmetric tensor, then the definitions in (20) become

ε = CT
· (C ·U)− I = U − I,

κT
=−(1/2)e :

(
CT
·
∂C
∂xk

bk

)
.

(22)

Clearly, the Lagrangian stretch tensor ε becomes symmetric and is the definition of Jauman–Biot–Cauchy
strain tensor. The Lagrangian curvature strain tensor κ corresponds to higher-order terms (gradient of the
deformation gradient) which are commonly neglected in the Cauchy continuum model. This derivation
is significant because it provides a geometrically exact description for the 3D solid and has demonstrated
that the Cauchy continuum description can be actually reduced from the Cosserat continuum description.
It is noted that restraining the global rotation tensor according to (21) is equivalent to introducing three
constraints for Bi needed for 3D structures. With this derivation, the nonlinear kinematics of beams,
plates/shells, and 3D structures can be described using a single, unified formulation.
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To facilitate the derivation of the covariant vectors Gi , we can rewrite the definitions in (19) as

∂Ro

∂xk
= Bk + εkl Bl,

∂Bi

∂xk
= (κk j + kk j )B j × Bi .

(23)

Note ε13 = ε23 = 0 for plate/shell-like structures due to (6) and ε12 = ε13 = 0 for beam-like structures
due to (8).

Substituting (23) into (17), we can obtain more detailed expressions for the covariant base vectors of
the deformed configuration Gk as follows:

Gk = Bk + εkl Bl + εyα
∂Bα
∂xk
+ ε

∂wl

∂xk
Bl + ε

∂wα

∂xk
Bα + εwl

∂Bl

∂xk
+ εwα

∂Bα
∂xk

=

(
δkl + εkl + ε

∂wl

∂xk

)
Bl + ε(yα +wα)

∂Bα
∂xk
+ ε

∂wα

∂xk
Bα + εwl

∂Bl

∂xk

=

(
δkl + εkl + ε

∂wl

∂xk

)
Bl + ε

[
ei jα(yα +wα)(κk j + kk j )+

∂wα

∂xk
δαi + ei jlwl(κk j + kk j )

]
Bi .

(24)

Using the expressions for ga and Ga , and dropping nonlinear terms due to the product of the curvature
strains and the fluctuating functions, the 3D strain field defined in (11) can be written in the following
matrix form:

0 = 0hw+0ε ε̄+ ε0lw+ ε0Rw, (25)

where 0 = b011 022 033 2023 2013 2012c
T denotes the strain field of the original structure, w =

bw1 w2 w3c
T the fluctuating functions, and ε̄ is a column matrix containing the generalized strain

measures for the macroscopic structural model. For example, if the macroscopic structural model is
a beam model, we have ε̄ = bε11 κ11 κ12 κ13c

T with ε11 denoting the extensional strain, κ11 the twist,
and κ12 and κ13 the bending curvatures. If the macroscopic structural model is a plate/shell model,
we have ε̄ = bε11 ε22 2ε12 κ

2D
11 κ2D

22 κ2D
12 + κ

2D
21 c

T with εαβ denoting the in-plane strains and κ2D
αβ de-

noting the curvature strains. If the macroscopic structural model is a 3D continuum model, we have
ε̄ = bε11 ε22 ε33 2ε23 2ε13 2ε12c

T with εi j denoting the Biot strain measures in a Cauchy continuum.
0h is an operator matrix which depends on the dimensionality of the SG. 0ε and 0l are two operator
matrices, the form of which depends on the macroscopic structural model. 0R is an operator matrix
existing only for those original structures featuring initial curvatures. The explicit expressions for these
operators are given in the appendix for completeness.

3.2. Variational statement for SG. Although the SG concept can be used to analyze structures made of
various types of materials, in this paper, we illustrate its use by focusing on structures made of elastic
materials. These structures are governed by the variational statement

δU = δW , (26)

where δ is the usual Lagrangean variation, U is the strain energy, and δW is the virtual work of the
applied loads. The over bar indicates that the virtual work needs not be the variation of a functional. For
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a linear elastic material characterized using a 6× 6 stiffness matrix D, the strain energy can be written
as

U = 1
2

∫
1
ω
〈0T D0〉d�, (27)

where � is the volume of the domain spanned by xk remaining in the macroscopic structural model.
The notation 〈•〉 =

∫
•
√

gdω is used to denote a weighted integration over the domain of the SG and
ω denotes the volume of the domain spanned by yk corresponding to the coordinates xk remaining in
the macroscopic structural model. If none of yk is needed in the SG, then ω = 1. For example, if
a heterogeneous beam-like structure features a 3D SG, ω is the length of the SG in the y1 direction,
corresponding to x1 remaining in the macroscopic beam model. If the heterogeneous beam-like structure
features a 2D SG (uniform cross-section), y1 is not needed for the SG and ω = 1. ω for plate/shell-like
structures or 3D structures can be obtained similarly.

For a Cauchy continuum, there may exist applied loads from tractions and body forces. The virtual
work done by these applied loads can be calculated as

δW =
∫

1
ω

(
〈 p〉 · δR+

∫
s

Q · δR
√

c ds
)

d�, (28)

where s denotes the boundary surfaces of the SG with applied traction force per unit area Q = Qi Bi

and applied body force per unit volume p= pi Bi .
√

c is equal to 1 except for some degenerated cases
where s is only a boundary curve of the SG and one of coordinates xk is required to form the physical
surfaces on which the load is applied. In this case, the differential area of the physical surface is equal
to
√

c dsdxk with ds as the differential arc length along the boundary curve of SG. For example, for
beam-like structures featuring a 2D SG, the SG boundary is the curve encircling the cross-section and
√

c =
√

g+ (y2(dy2/ds)+ y3(dy3/ds))2k2
11.

Here δR is the Lagrangian variation of the displacement field in (3), such that

δR = δq i Bi + εyαδBα + εδwi Bi + εwiδBi . (29)

We may safely ignore products of the fluctuating functions and virtual rotations in δR, because the
fluctuating functions are small. The last term of the above equation is then dropped so that

δR = δq i Bi + εyαδBα + εδwi Bi . (30)

The virtual displacements and rotations of the macroscopic structural model are defined as

δq i = δRo · Bi , δBα = δψ j B j × Bα, (31)

where δq i and δψ i contain the components of the virtual displacement and rotation in the Bi system,
respectively. They are functions of xk only. Note δψ j are restrained to be derivable from δq i and are
higher-order terms that are neglected in a 3D structure described using the Cauchy continuum.

Then we can rewrite (30) as

δR =
(
δq i + εe jαi yαδψ j + εδwi

)
Bi . (32)

Finally, we express the virtual work due to applied loads as

δW = δW H + ε δW
∗
, (33)
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where δW H is the virtual work not related to the fluctuating functions wi and δW
∗

is the virtual work
related to the fluctuating functions. Specifically,

δW H =

∫ (
fiδq i +miδψ i

)
d�, δW

∗
=

∫
1
ω

(
〈piδwi 〉+

∮
Qiδwi

√
c ds

)
d�, (34)

with the generalized forces fi and moments mi defined as

fi =
1
ω

(
〈pi 〉+

∫
Qi
√

c ds
)
, mi =

eiα j

ω

(
〈εyα p j 〉+

∫
εyαQ j

√
c ds

)
. (35)

If we assume that pi and Qi are independent of the fluctuating functions, then we can rewrite δW
∗

as

δW
∗
= δ

∫
1
ω

(
〈piwi 〉+

∫
Qiwi
√

c ds
)

d�. (36)

In view of the strain energy in (27) and virtual work in (33) along with (34), the variational statement
in (26) can be rewritten as∫

1
ω
δ

[
1
2
〈0T D0〉− ε

(
〈piwi 〉+

∫
Qiwi
√

c ds
)]
−
(

fiδq i +miδψ i
)

d�= 0. (37)

If we attempt to solve this variational statement directly, we will encounter the same difficulty as in a
direct analysis of the original structure. The main complexity comes from the fluctuating functions wi ,
which are unknown functions of both micro- and macrocoordinates. To reduce the original continuum
model to a macroscopic structural model, the common practice in structural modeling is to assume the
fluctuating functions, a priori, in terms of some unknown functions (displacements, rotations, and/or
strains) of xk and some known functions of yk . However, for arbitrary structures made with general
composites, use of such a priori assumptions may introduce significant errors. Fortunately, the variational
asymptotic method (VAM) [Berdichevsky 2009] provides a useful technique to obtain the fluctuating
functions through an asymptotical analysis of the variational statement in (37). It does so in terms of
the small parameter ε which is inherent in the composite structure to construct asymptotically correct
macroscopic structural models. As the last two terms in (37) are not functions of wi , we can conclude
that the fluctuating function is governed by the following variational statement instead:

δ

[
1
2
〈0T D0〉− ε

(
〈piwi 〉+

∫
Qiwi
√

c ds
)]
= 0, (38)

which can be considered as a variational statement for the SG as it is posed over the SG domain only.
According to VAM, we can neglect the terms in the order of ε to construct the first approximation of the
variational statement in (38) as

δ(1/2)〈(0hw+0ε ε̄)
T D(0hw+0ε ε̄)〉 = 0. (39)

It is noted here that only small geometry parameters are considered in this work. For structures made of
materials featuring significantly different properties, small material parameters should also be introduced
for the asymptotic analysis using VAM. It is also pointed out that VAM is used to discard energetically
small terms which might cause difficulty in capturing some higher order local stresses. However, such
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loss of information is mainly governed by the macroscopic structural model. In this work, only the
classical structural models including the Euler–Bernoulli beam model, Kirchhoff–Love plate/shell model,
and the Cauchy continuum model are constructed using MSG. It is our future plan to derive refined mod-
els such as the Reissner–Mindlin plate/shell model, Timoshenko beam model, and Cosserat continuum
model using the unified MSG framework.

For very simple cases such as isotropic beams [Yu and Hodges 2004b], laminated plates [Yu 2005],
and binary composites [Yu 2012], the variational statement in (39) can be solved exactly and analytically,
while for general cases we need to turn to numerical techniques such as the finite element method for
solutions. To this end, we need to express w using shape functions defined over SG as

w(xk, y j )= S(y j )V (xk). (40)

Equation (40) is a standard way to solve (39) using the finite element method. Equation (39) is a varia-
tional statement used to solve for w given ε̄ with V as a function of xk because of ε̄. Such a separation
of variables is inherent in multiscale modeling and structural modeling approaches. S are the standard
shape functions depending on the type of elements one uses, and can be found in typical finite element
textbooks. V is what we need to solve for as the nodal values for the influence function based on the
discretization.

Substituting (40) into (39), we obtain the following discretized version of the strain energy functional:

U = (1/2)(V T EV + 2V T Dhε ε̄+ ε̄
T Dεε ε̄), (41)

where
E = 〈(0h S)T D(0h S)〉, Dhε = 〈(0h S)T D0ε〉, Dεε = 〈0

T
ε D0ε〉. (42)

Minimizing U in (41), subject to the constraints, gives us the linear system

EV =−Dhε ε̄. (43)

It is clear that V linearly depends on ε̄, and the solution can be symbolically written as

V = V0ε̄. (44)

Substituting (44) back into (41), we can calculate the strain energy stored in the SG as the first approxi-
mation as

U = (1/2)ε̄T (V T
0 Dhε + Dεε)ε̄ ≡ (ω/2)ε̄T D̄ε̄, (45)

where D̄ is the effective stiffness to be used in the macroscopic structural model. For the Euler–Bernoulli
beam model, D̄ could be a fully populated 4×4 stiffness matrix; for the Kirchhoff–Love plate/shell model
and Cauchy continuum model, D̄ could be a fully populated 6× 6 stiffness matrix.

Substituting the solved strain energy stored in the SG into (37), we can rewrite the variational statement
governing the original structure as∫ [

δ(1/2)ε̄T D̄ε̄− fiδq i −miδψ i
]

d�= 0. (46)

This variational statement governs the macroscopic structural model as it involves only fields which are
unknown functions of the macrocoordinates xk . The first term is the variation of the strain energy of
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the macroscopic structural model and the rest of the terms are the virtual work done by generalized
forces and moments. This variational statement governs the linear elastic behavior of structural elements
(3D solid elements, 2D plate/shell elements, 1D beam elements) implemented in most commercial FEA
software packages.

Often, we are also interested in computing the local fields within the original structure. With ε̄ obtained
from the macroscopic structural analysis, the fluctuating function can be obtained as

w = SV0ε̄. (47)

The local displacement field can be obtained as

ui = ūi + xα(Cαi − δαi )+ εw j C j i , (48)

where ui is the local displacement and ūi is the macroscopic displacement. For SGs having coordinates
yk with corresponding xk existing in the macroscopic structural model, ūi should be interpreted as

ūi = ūi (xk0)+ xk ūi,k, (49)

where xk0 is the center of the SG and ūi,k is the gradient along xk evaluated at xk0 .
The local strain field can be obtained as

0 = (0h SV0+0ε)ε̄. (50)

The local stress field can be obtained directly using the Hooke’s law as

σ = D0. (51)

4. An analytical example: deriving the Kirchhoff–Love model for composite laminates

MSG presented above is very general so that it can handle a geometrically exact analysis for all types
of structures with arbitrary heterogeneity. For the sake of simplicity, the above formulation will be
specialized to derive the linear elastic Kirchhoff–Love model for composite laminates.

If we assume that the composite laminate is made of anisotropic homogeneous layers, the linear elastic
behavior is governed by 3D elasticity in terms of 3D displacements ui , strains εi j , and stresses σi j . To
construct a plate model, we need to first express the 3D displacements in terms of 2D plate displacements:

u1(x1, x2, y3)= ū1(x1, x2)− y3ū3,1+w1(x1, x2, y3)

u2(x1, x2, y3)= ū2(x1, x2)− y3ū3,2+w2(x1, x2, y3)

u3(x1, x2, y3)= ū3(x1, x2)+w3(x1, x2, y3)

(52)

Here ui (x1, x2, y3) are 3D displacements, while ūi (x1, x2) are plate displacements which are functions
of x1, x2 only. We also introduce 3D unknown fluctuating functions wi (x1, x2, y3) to describe the infor-
mation of 3D displacements which cannot be described by the simpler Kirchhoff–Love plate kinematics.
Note that the displacement expressions in (52) have nothing to do with the celebrated Kirchhoff–Love
assumptions. It can be considered as a change of variables to express the 3D displacements in terms of
the displacement variables of the Kirchhoff–Love plate model and fluctuating functions. The Kirchhoff–
Love assumptions are equivalent to assuming wi = 0. Since we consider that the original 3D model is
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our true model, we construct the plate model as an approximation to the true model. To this end, we
need to define the plate displacements in terms of 3D displacements. A natural choice is

hū3(x1, x2)= 〈u3〉, hūα(x1, x2)= 〈uα(x1, x2, y3)〉+ 〈y3〉ū3,α, (53)

which implies the following constraint on the fluctuating functions:

〈wi 〉 = 0. (54)

Note if the origin of the thickness coordinate is at the middle of the plate thickness, (53) actually defines
the plate displacements to be the average of the 3D displacements.

Then the 3D strain field can be obtained as

011 = ε11+ x3κ11+w1,1,

2012 = 2ε12+ 2x3κ12+w1,2+w2,1,

022 = ε22+ x3κ22+w2,2,

2013 = w1,3+w3,1,

2023 = w2,3+w3,2,

033 = w3,3,

with the linear plate strains defined as

εαβ(x1, x2)=
1
2(ūα,β + ūβ,α), κ2D

αβ (x1, x2)=−ū3,αβ . (55)

Here α, β denote subscript 1 or 2.
The 3D strain field can also be written in the following matrix form:

εe = ε+ x3κ + Iαw‖,α, 2εs = w‖
′
+ eαw3,α, εt = w3

′, (56)
with

εe = b011 022 2012c
T ,

2εs = b2013 2023c
T ,

εt = 033,

ε = bε11 ε22 2ε12c
T ,

κ = bκ2D
11 κ2D

22 κ2D
12 + κ

2D
21 c

T ,

and

I1 =

1 0
0 1
0 0

 , I2 =

0 0
1 0
0 1

 , e1 =

{
1
0

}
, e2 =

{
0
1

}
. (57)

The strain energy can be used as a natural measure for information governing the linear elastic behavior.
Twice of the strain energy can be written as

2U =

〈
εe

2εs

εt


TCe Ces Cet

CT
es Cs Cst

CT
et CT

st Ct


εe

2εs

εt


〉
. (58)
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The explicit expression after dropping smaller energy contributions due to wi,α according to VAM is

2U0 = 〈(ε+ x3κ)
TCe(ε+ x3κ)+w

′T
‖

Csw
′

‖
+w′T3 Ctw

′

3

+ 2(ε+ x3κ)
TCesw

′

‖
+ 2(ε+ x3κ)

TCetw
′

3+ 2w′T
‖

Cstw
′

3〉. (59)

Minimizing this energy with respect to the fluctuating function wi along with the constraints in (54), we
reach the following Euler–Lagrange equations:

((ε+ x3κ)
TCes +w‖

′TCs +w3
′CT

st)
′
= λ‖, (60)

((ε+ x3κ)
TCet +w‖

′TCst +w3
′Ct)

′
= λ3, (61)

where λ‖ = bλ1λ2c
T and λ3 denote the Lagrange multipliers enforcing the constraints in (54). The

boundary conditions on the top and bottom surfaces are

(ε+ x3κ)
TCes +w‖

′TCs +w3
′CT

st = 0, (62)

(ε+ x3κ)
TCet +w‖

′TCst +w3
′Ct = 0. (63)

We can conclude that the above two equations should be satisfied at every point through the thickness
and solve for w‖′T and w3

′ as

w‖
′T
=−(ε+ x3κ)C∗esC−1

s , (64)

w3
′
=−(ε+ x3κ)C∗etC

∗−1
t , (65)

with
C∗t = Ct −CT

stC
−1
s Cst , C∗et = Cet −CesC−1

s Cst , C∗es = Ces −C∗etC
T
st/C∗t . (66)

wi can be solved by simply integrating through the thickness along with the interlaminar continuity.
Substituting the solved fluctuating functions into (59), we have

2U0 = 〈(ε+ x3κ)
TC∗e (ε+ x3κ)〉 =

{
ε

κ

}T [
A B
B D

]{
ε

κ

}
, (67)

with
C∗e = Ce−C∗esC−1

s CT
es −C∗etC

T
et/C∗t , A = 〈C∗e 〉, B = 〈x3C∗e 〉, D = 〈x2

3C∗e 〉. (68)

This strain energy along with the work done by applied loads can be used to solve the 2D plate problem
to obtain ūi , ε, κ . 3D displacements can be obtained after we have solved for wi :

u1(x1, x2, x3)= ū1(x1, x2)− x3ū3,1+w1(x1, x2, y3),

u2(x1, x2, x3)= ū2(x1, x2)− x3ū3,2+w2(x1, x2, y3),

u3(x1, x2, x3)= ū3(x1, x2)+w3(x1, x2, y3).

(69)

It is clear that the transverse normal does not remain rigid and normal according to Kirchhoff–Love
assumptions in CLPT. Instead, the transverse normal can be deformed according to wi .

3D strains can be obtained after neglecting the higher order terms wi,α , which are not contributing to
the approximation of the plate energy. That is,

εe = ε+ x3κ, 2εs =−(ε+ x3κ)C∗esC−1
s , ε33 =−(ε+ x3κ)C∗etC

∗−1
t . (70)
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Clearly, the strain field is not in-plane as what is traditionally assumed using Kirchhoff–Love assumptions
in CLPT. Instead, transverse shear and normal strains both could exist.

By directly using the above strain field along with the Hooke’s law in the original 3D elasticity theory,
3D stresses can be obtained as

σe = C∗e (ε+ x3κ, ) σs = 0, σ33 = 0 (71)

It can be observed that the Kirchhoff–Love model derived using MSG satisfies the plane-stress assump-
tion invoked in CLPT. However, this is not assumed a priori but derived by using MSG.

5. Numerical examples

The MSG developed in this paper was implemented into a computer code called SwiftComp. A few
examples are used here to demonstrate the application and validity of MSG and its companion code
SwiftComp. It can be theoretically shown that one can specialize MSG to reproduce the well estab-
lished theory of composite beams known as Variational Asymptotic Beam Sectional analysis (VABS)
[Cesnik and Hodges 1997; Yu et al. 2012], the theory of composite plates/shells known as Variational
Asymptotic Plate And Shell analysis (VAPAS) [Yu 2005] and the micromechanics theories known as
Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH) [Yu and Tang 2007] and
theories of heterogeneous plates and beams [Lee and Yu 2011a; 2011b]. We have verified that the
current version of SwiftComp can reproduce all the results of VAMUCH, and the classical models of
VABS and VAPAS. Particularly, an extensively benchmark study for micromechanics theories and codes
has been recently carried out by cdmHUB (Composites Design and Manufacturing HUB) and the results
have shown that MSG and SwiftComp can achieve the versatility and accuracy of 3D FEA with much less
computational time, which clearly demonstrates the advantage of MSG in micromechanics. Interested
readers are directed to the report and database of the Micromechanics Simulation Challenge available at
https://cdmhub.org/projects/mmsimulationchalleng. Here, a few examples which cannot be handled by
current versions of VAMUCH, VABS, and VAPAS are used to demonstrate the application of MSG and
SwiftComp.

5.1. A cross-ply laminate. First, we will use a simple cross-ply laminate example to demonstrate the
application of MSG. As shown in Figure 9, a four-layer cross-ply [90◦/0◦/90◦/0◦] laminate with length

x3

x2

83 mm

18 mm

40%

x1
F = 10 N

1 mm
1 mm
1 mm
1 mm

Figure 9. Sketch of the four-layer cross-ply laminate.

https://cdmhub.org/projects/mmsimulationchalleng
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Figure 10. 3D finite element mesh of the four-layer cross-ply laminate.

83 mm, width 18 mm, and height 4 mm is clamped at one end and loaded at the other end with a 10 N
tensile force at the center of the cross-section. The composite prepreg is assumed to have square packing
with 40% fiber volume fraction. The fiber and matrix are assumed to be isotropic, with a Young’s modulus
of 276 GPa and a Poisson’s ratio of 0.28 for the fiber and a Young’s modulus of 4.76 GPa and a Poisson’s
ratio of 0.37 for the matrix.

It is noted here that this example is not representative of a typical fiber reinforced composite laminate,
as usually each layer could contain many more fibers instead of one fiber per layer thickness as assumed
here for simplicity. The purpose of this example is not to question CLPT’s modeling capability for
conventional laminates, which could be the subject of a future publication. Instead, this example is used
to demonstrate the accuracy and efficiency of alternative analysis options provided by MSG. There are
two common approaches to analyze this type of structure: 3D FEA using solid elements to mesh all
of the microstructural details (see Figure 10) and lamination theory with lamina constants computed
by a micromechanics approach (see Figure 2). Using 3D FEA, the laminate is meshed with 2,294,784
C3D20R elements with a total of 9,319,562 nodes in ABAQUS to achieve a fair convergence of stress
predictions. Using MSG, we can also analyze the structure as a plate with the constitutive relations
provided through an analysis of the corresponding SG as shown in Figure 11, where the SG is meshed
in ABAQUS using 1,536 20-noded brick elements with 7,585 total nodes, and the reference surface is
meshed with 2,988 STRI3 elements containing 1,596 nodes. Because the length is much larger than both
the height and width, the structure can also be analyzed as a beam with the constitutive relations provided

Figure 11. SwiftComp-based plate analysis.
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Figure 12. SwiftComp-based beam analysis.

through an analysis of the corresponding SG as shown in Figure 12. The SG is meshed with 27,648 20-
noded brick elements with 124,409 nodes total, and the reference line is meshed with 83 two-noded line
elements with 84 nodes total.

Different analysis approaches require different computing resources and time. Using 3D FEA, we
used a computer with 48 cores and it took ABAQUS 7 days 11 hours and 37 minutes to finish the
analysis. For the lamination theory, we used the composite layup analysis in ABAQUS with the same
surface mesh as shown in Figure 11. To compute the lamina constants, SwiftComp only requires a 2D
SG which is much more efficient than other computational homogenization approaches which usually
require a 3D domain to obtain the complete set of properties [Fish 2013]. The micromechanics analysis
and the laminate analysis are finished within 30 seconds. For SwiftComp-based plate analysis, homoge-
nization of the SG to compute the plate stiffness takes 6 seconds, the surface analysis takes 28 seconds,
and dehomogenization to obtain 3D local fields takes 6 seconds. For SwiftComp-based beam analysis,
homogenization of SG to compute the beam stiffness takes 3 minutes and 14 seconds, the beam analysis
takes 0.02 second, and dehomogenization to obtain 3D local fields takes 1 minute 21 seconds. Except
for the 3D FEA, all the other analyses were done in the same computer using only 1 core. The other
analyses are several orders of magnitude more efficient than 3D FEA. SwiftComp adds small overhead
for the constitutive modeling including both the homogenization and dehomogenization processes in
comparison to the traditional lamination theory for this simple static analysis. However, constitutive
modeling is usually done once, while many global structural analyses using beam elements or plate
elements are needed in the real design and analysis of composite structures. In other words, the small
overhead added by SwiftComp could be negligible for most cases.

Different analysis approaches result in different predictions. The displacements at the center of the
loaded tip are shown in Table 1. SwiftComp-based plate and beam analyses achieve excellent agreement

Analysis methods Deflection (mm) Extension (mm)

3D FEA 2.7124·10−3 2.0849·10−4

SwiftComp beam analysis 2.7146·10−3 2.0873·10−4

SwiftComp plate analysis 2.7084·10−3 2.0832·10−4

ABAQUS Composite layup 2.5264·10−3 2.0804·10−4

Table 1. Displacements predicted by different analyses.
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with 3D FEA. Lamination theory using ABAQUS layup analysis provides an excellent prediction for the
minor displacement (extension), but introduces about 7% error for the major displacement (deflection)
in comparison to 3D FEA. The prediction of the detailed stress distribution within composites is also
very important, as these quantities could be directly related with the failure of the structure. Consider
the stress distribution through the thickness at x1 = 41.5 mm, x2 = 0.5 mm. Note at this point x3 is
passing through the diameter of one of the fibers. As shown in Figures 13, 14, and 15, both SwiftComp-
based plate analysis and beam analysis achieve excellent agreement with 3D FEA for all the nontrivial
stress components while the ABAQUS composite layup analysis shows significant discrepancies from 3D
FEA. It is clear that the composite layup analysis predicts stress discontinuities happening at the wrong
locations and the maximum stresses predicted by the composite layup analysis are also very different
from 3D FEA. The composite layup analysis cannot predict the transverse normal stress (σ33) due to its
inherent plane-stress assumption, while SwiftComp-based plate and beam analyses still remain in very
good agreement with 3D FEA, although the magnitude is small compared to the other two in-plane stress
components. It can be observed that for this problem, SwiftComp can achieve similar accuracy as 3D
FEA but with orders of magnitude savings in computing time and resources. Regarding the relatively
larger discrepancy between SwiftComp and 3D FEA for σ33, it is mainly because we could not further
refine the 3D FEA model due to the limitation of the workstation we can access (56 CPUs with 256 GB
RAM). We have verified that for simpler cases such as a two-layer plate of the same example, we can
get a perfect match with 3D FEA. We have done mesh convergence studies for many problems and MSG
consistently converges faster than 3D FEA due to the semianalytical nature of MSG.

5.2. Sandwich beam with periodically varying cross-sections. The next example is used to demonstrate
the application of MSG to analyze beams with spanwise heterogeneities which can be commonly found
in civil engineering applications. It is a sandwich beam with periodically variable cross-section studied

σ
11

(k
Pa

)

x3 (mm)

3D FEA
SwiftComp Plate
SwiftComp Beam
Composite Layup

Figure 13. σ11 distribution through the thickness (x1 = 41.5 mm, x2 = 0.5 mm).
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σ
22

(k
Pa

)

x3 (mm)

3D FEA
SwiftComp Plate
SwiftComp Beam
Composite Layup

Figure 14. σ22 distribution through the thickness (x1 = 41.5 mm, x2 = 0.5 mm).

in [Dai and Zhang 2008]. The geometric parameters for each configuration are given in Figure 16. Note
that although all the SGs in Figure 16 are uniform along y2, the SG must be 3D because they are used to
form a beam structure and y2 is one of the cross-sectional coordinates (Figure 17). All sandwich beams
in the above cases have the same core material properties (material indicated by blue color in the figure)
of Ec = 3.5 GPa, νc = 0.34 and face sheet material properties (indicated by purple color in the figure)
of E f = 70 GPa, νc = 0.34. Also note that although these beams are studied in [Dai and Zhang 2008],

σ
33

(k
Pa

)

x3 (mm)

3D FEA
SwiftComp Plate
SwiftComp Beam
Composite Layup

Figure 15. σ33 distribution through the thickness (x1 = 41.5 mm, x2 = 0.5 mm).
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Figure 16. The structure genome for sandwich beams with different cross-sections: a)
square holes (b = d = 1.5 m, t = 0.1 m, a = 1 m); b) circular holes (b = d = 1.5 m,
t = 0.1 m, r = 0.5614 m); c) cross-shaped holes (b= d = 1.5 m, t = 0.1 m, e= 0.7071 m);
d) hexagonal holes (b = 1.23745 m, d = 2b, t = 0.1 m, a = 0.7887 m, e = 0.6431 m).

[Dai and Zhang 2008] SwiftComp NIAH

square holes 5.669 5.576 5.576
circular holes 5.176 5.537 5.554

cross-shaped holes 5.486 5.805 5.891
hexagonal holes 2.875 2.888 2.886

Table 2. Effective beam bending stiffness of sandwich beams predicted by different
methods (all units are 1010 N·m2).

only bending stiffnesses are given. In fact, the effective stiffness for the classical beam model in general
should be represented by a fully populated 4× 4 matrix. This example is also studied in [Yi et al. 2015]
using a novel finite implementation of the asymptotic homogenization theory applied to beams. The
effective bending stiffnesses predicted by the analytical formulas in [Dai and Zhang 2008], those of [Yi
et al. 2015] denoted as NIAH standing for Novel Implementation of Asymptotic Homogenization, and
SwiftComp are listed in Table 2. The details of these approaches can be found in the cited references.

As can be observed, SwiftComp predictions have an excellent agreement with NIAH and are slightly
different from those in [Dai and Zhang 2008]. However, the present approach is more versatile than that
in the previous work because that paper only provides analytic formulas for the bending stiffness of beams
made of materials characterized only by one material constant, the Young’s modulus, while SwiftComp
can estimate all the engineering beam constants represented by a 4× 4 stiffness matrix (possibly fully
populated) for the most general anisotropic materials by factorizing the coefficient matrix in the linear
system (Equation (43)) only once. NIAH results are obtained using multiple runs of a commercial finite
element code, which requires much more computing time than SwiftComp.

5.3. Sandwich panel with a corrugated core. The last example is to demonstrate the application of
MSG to model plates with in-plane heterogeneities. It is a corrugated-core sandwich panel, a concept
used for Integrated Thermal Protection Systems (ITPS) studied in [Sharma et al. 2010]. The ITPS panel
along with the details of the SG is sketched in Figure 18. Both materials are isotropic with E1 = 109.36
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Figure 17. A sandwich beam with hexagonal holes.

GPa, ν1 = 0.3 for material 1, and E2 = 209.482 GPa, ν2 = 0.063 for material 2. Although 3D unit cells
are needed for the study in the previous reference, only a 2D SG is necessary for SwiftComp as it is
uniform along one of the in-plane directions. The effective stiffness for the Kirchhoff–Love plate model
can be represented using the A, B and D matrices known in CLPT. Results obtained in the previous
reference are compared with SwiftComp in Tables 3, 4 and 5. SwiftComp predictions agree very well
when compared to those results with the biggest difference (around 1%) appearing for the extension-
bending coupling stiffness (B11). However, the present approach is much more efficient because using
the approach in [Sharma et al. 2010] one needs to carry out six analyses of a 3D unit cell under six
different sets of boundary conditions and load conditions and postprocess the 3D stresses to compute the

A11 A12 A22 A33

[Sharma et al. 2010] 2.83 0.18 2.33 1.07
SwiftComp 2.80 0.18 2.33 1.08

Table 3. Effective extension stiffness of ITPS (all units in 109 N/m).

D11 D12 D22 D33

[Sharma et al. 2010] 3.06 0.22 2.85 1.32
SwiftComp 3.03 0.22 2.87 1.32

Table 4. Effective bending stiffness of ITPS (all units in 106 N·m).

B11 B13 B22 B33

[Sharma et al. 2010] −71.45 −3.36 −34.05 −71.45
SwiftComp −70.67 −3.31 −34.06 −71.42

Table 5. Effective coupling stiffness of ITPS (all units in 106 N).
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Figure 18. Sketch of the ITPS panel (left) and its SG (tT = 1.2 mm, tB = 7.49 mm,
tW = 1.63 mm, p = 25 mm, d = 70 mm, and θ = 85◦).

plate stress resultants. Using the present approach, one only needs to carry out one analysis of a 2D SG
without applying carefully crafted boundary conditions and postprocessing.

6. Conclusion

This paper developed a unified theory for multiscale constitutive modeling of composites based on the
concept of SG. The SG facilitates a mathematical decoupling of the original complex analysis of compos-
ite structures into a constitutive modeling over the SG and a macroscopic structural analysis. The MSG
presented in this paper enables a multiscale constitutive modeling approach with the following unique
features:

• Use of SG to connect microstructures and macroscopic structural analyses. Intellectually, SG en-
ables us to view constitutive modeling for structures as applications of micromechanics. Technically,
SG empowers us to systematically model complex build-up structures with heterogeneities.

• Use of VAM to avoid a priori assumptions commonly invoked in other approaches, providing the
rigor needed to construct mathematical models with excellent tradeoffs between efficiency and ac-
curacy.

• Decouple the original problem into two sets of analyses: a constitutive modeling and a structural
analysis. This allows the structural analysis to be formulated exactly as a general (1D, 2D, or 3D)
continuum, the analysis of which is readily available in commercial FEA software packages. This
also confines all approximations to the constitutive modeling, the accuracy of which is guaranteed
to be the best by the VAM.

A general-purpose computer code, called SwiftComp, was developed to implement MSG along with
several examples to demonstrate its application. This code can be used as a plug-in for commercial FEA
software packages to accurately model structures made of anisotropic heterogeneous materials using
traditional structural elements.

Although only theoretical details and implementation have been worked out for linear elastic behavior
of periodic structures for which a SG can be easily identified, the basic framework is also applicable to
nonlinear behavior of aperiodic heterogeneous structures, which are topics for future work.



406 WENBIN YU

Appendix

0h is an operator matrix which depends on the dimensionality of the SG. If the SG is 3D, we have

0h =



1/
√

g1(∂/∂y1) 0 0
0 1/

√
g2(∂/∂y2) 0

0 0 (∂/∂y3)

0 (∂/∂y3) 1/
√

g2(∂/∂y2)

(∂/∂y3) 0 1/
√

g1(∂/∂y1)

1/
√

g2(∂/∂y2) 1/
√

g1(∂/∂y1) 0


, (72)

where
√

g1 =
√

g2 = 1 for plate-like structures or 3D structures;
√

g1 = 1− εy2k13+ εy3k12,
√

g2 = 1
for beam-like structures; and

√
g1 = 1+ εy3k12,

√
g2 = 1− εy3k21 for shell-like structures.

If the SG is a lower-dimensional one, one just needs to vanish the corresponding term corresponding
to the microcoordinates which are not used in describing the SG. For example, if the SG is 2D, we have

0h =



0 0 0
0 1/

√
g2(∂/∂y2) 0

0 0 (∂/∂y3)

0 (∂/∂y3) 1/
√

g2(∂/∂y2)

(∂/∂y3) 0 0
1/
√

g2(∂/∂y2) 0 0


. (73)

If the SG is 1D, we have

0h =



0 0 0
0 0 0
0 0 (∂/∂y3)

0 (∂/∂y3) 0
(∂/∂y3) 0 0

0 0 0


. (74)

0ε is an operator matrix, the form of which depends on the macroscopic structural model. If the
macroscopic structural model is the 3D Cauchy continuum model, 0ε is the 6× 6 identity matrix. If the
macroscopic structural model is a beam model, we have

0ε =
1
√

g1



1 0 εy3 −εy2

0 0 0 0
0 0 0 0
0 0 0 0
0 εy2 0 0
0 −εy3 0 0


. (75)
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If the macroscopic structural model is a plate/shell model, we have

0ε =



1/
√

g1 0 0 εy3/
√

g1 0 0
0 1/

√
g2 0 0 εy3/

√
g2 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 1/2
(

1
√

g1
+

1
√

g2

)
0 0 1/2

(
εy3
√

g1
+
εy3
√

g2

)


. (76)

Note the above expression is obtained with the understanding that the difference between κ12 and κ21 is
of higher order and negligible if we are not seeking a higher-order approximation of the initial curvatures.
0l is an operator matrix, the form of which depends on the macroscopic structural model. If the

macroscopic structural model is 3D, 0l has the same form as 0h in (72) with ∂/∂yk replaced with ∂/∂xk ,
that is

0l =



1/
√

g1(∂/∂x1) 0 0
0 1/

√
g2(∂/∂x2) 0

0 0 (∂/∂x3)

0 (∂/∂x3) 1/
√

g2(∂/∂x2)

(∂/∂x3) 0 1/
√

g1(∂/∂x1)

1/
√

g2(∂/∂x2) 1/
√

g1(∂/∂x1) 0


. (77)

Of course for 3D structures, we have
√

g1 =
√

g2 = 1.
If the macroscopic structural model is a lower-dimensional one, one just needs to vanish the corre-

sponding term corresponding to the macrocoordinates which are not used in describing the macroscopic
structural model. For example, if the macroscopic structural model is a 2D plate/shell model, we have

0l =



1/
√

g1(∂/∂x1) 0 0
0 1/

√
g2(∂/∂x2) 0

0 0 0
0 0 1/

√
g2(∂/∂x2)

0 0 1/
√

g1(∂/∂x1)

1/
√

g2(∂/∂x2) 1/
√

g1(∂/∂x1) 0


. (78)

If the macroscopic structural model is the 1D beam model, we have

0l =



1/
√

g1(∂/∂x1) 0 0
0 0 0
0 0 0
0 0 0
0 0 1/

√
g1(∂/∂x1)

0 1/
√

g1(∂/∂x1) 0


. (79)

0R is an operator matrix existing only for those heterogeneous structures featuring initial curvatures.
For prismatic beams, plates or 3D structures, 0R vanishes. For those structures having initial curvatures
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such as initially twisted/curved beams or shells, the form of 0R depends on the macroscopic structural
model. If the macroscopic structural model is a 1D beam model,

0R =
1
√

g1



k11

(
y3
∂

∂y2
− y2

∂

∂y3

)
−k13 k12

0 0 0
0 0 0
0 0 0

−k12 k11 k11

(
y3
∂

∂y2
− y2

∂

∂y3

)
k13 k11

(
y3
∂

∂y2
− y2

∂

∂y3

)
−k11


. (80)

If the macroscopic structural model is a 2D shell model,

0R =



0 −k13/
√

g1 k12/
√

g1

k23/
√

g2 0 −k21/
√

g2

0 0 0
0 k21/

√
g2 0

−k12/
√

g1 0 0
k13/
√

g1 −k23/
√

g2 0


. (81)
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