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AN ANISOTROPIC PIEZOELECTRIC HALF-PLANE CONTAINING AN
ELLIPTICAL HOLE OR CRACK SUBJECTED TO UNIFORM IN-PLANE

ELECTROMECHANICAL LOADING

MING DAI, PETER SCHIAVONE AND CUN-FA GAO

We derive a series solution for the electro-elastic field inside an anisotropic piezoelectric half-plane
containing an elliptical hole or a crack when the half-plane is subjected to in-plane mechanical and
electric loadings. Our solution is based on a specific type of conformal map which allows for the mapping
of a complete half-plane (without a hole) onto the interior of the unit circle in the imaginary plane.
We illustrate our solution with several examples. We show that with decreasing distance between the
hole and the edge of the half-plane, the maximum hoop stress around the hole increases rapidly under
mechanical loading but slowly in the presence of electric loading. In particular, for a crack with particular
orientation in a piezoelectric half-plane subjected to pure shear, we find that the mode-II stress intensity
factor at the crack tip farthest from the edge of the half-plane may decrease as the crack approaches
the edge. Moreover, if the distance between the crack or the elliptical hole and the edge of the half-
plane exceeds four times the size of the hole or semi-length of the crack, the half-plane can be treated
essentially as a whole plane without inducing significant errors in the stress concentration around the
hole or in the stress and electric displacement intensity factors at the crack tips.

1. Introduction

Piezoelectric materials have been used widely in electronic and mechatronic devices due to their pro-
nounced electromechanical coupling properties. However, since various defects (e.g. pores, micro-cracks
or inclusions) often arise in the manufacture of piezoelectric materials, high stress and/or electric field
concentrations may be induced near defects when the material is subjected to mechanical and/or elec-
tric loading. This, in turn, may cause crack initialization/growth, dielectric breakdown, fracture and
ultimately failure [Zhang and Gao 2004]. In an effort to predict the reliability of piezoelectric devices,
problems involving the prediction of electro-elastic fields (including stress and electric field concen-
trations) in piezoelectric materials containing holes or inclusions have attracted tremendous attention
in the literature. In the context of two-dimensional deformations, researchers have examined problems
involving the anti-plane shear of an isotropic plane of the piezoelectric material subjected to out-of-plane
shear loading and in-plane electric loading as well as plane strain or plane stress problems corresponding
to an anisotropic plane of the piezoelectric material subjected to both in-plane mechanical and electric
loading. In the case of anti-plane shear, analytical results have been obtained not only for the case of
an elliptical hole/inclusion [Pak 2010; Guo et al. 2010] but also for an arbitrarily-shaped hole/inclusion
[Shen et al. 2010; Wang and Zhou 2013; Wang et al. 2015]. Problems involving plane strain or plane
stress are rather more challenging with analytical methods available only when the hole/inclusion is
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elliptical [Sosa 1991; Sosa and Khutoryansky 1996; Chung and Ting 1996; Qin 1998; Gao and Fan 1999;
Wang and Gao 2012] (see, in particular, the explanation in [Ting 2000]) with most studies resorting to
approximate methods to deal with cases of non-elliptical holes/inclusions [Dai and Gao 2014].

In many piezoelectric systems (structures or composites), it is common for holes or inclusions to
appear near an edge. This suggests that the system could be adequately modelled as a half-plane (rather
than a whole plane) containing holes or inclusions. In this context, Ru [2000] and Pan [2004] have
obtained exact solutions for a piezoelectric half-plane containing an arbitrarily-shaped inclusion and a
polygonal inclusion with uniform eigenstrains, respectively. However, in both of [Ru 2000; Pan 2004],
the solutions require that the inclusion has the same material constants as those of its surrounding piezo-
electric matrix (this essentially prevents the inclusion from degenerating into a hole). Kaloerov and
Glushchenko [2001] derived an approximate solution for a piezoelectric half-plane with holes or cracks
using a collocation method to deal with the boundary conditions on the holes/cracks. It is well-known,
however, that collocation methods often produce unsatisfactory and imprecise results with convergence
often becoming unstable with an increasing number of collocation points resulting in the possibility that
the corresponding boundary conditions are not well-satisfied. Based on the fundamental solution for a
dislocation in a piezoelectric half-plane, Yang et al. [2007] obtained a general solution for a crack in a
piezoelectric half-plane with a traction-induction free surface by modeling the crack using continuously
distributed dislocations. However, it is extremely difficult to extend the method in [Yang et al. 2007] to
deal with the equally significant case of a hole in a half-plane. In particular, we mention that, despite
the fact that an internal electric field inside the hole or crack may induce a significant impact on the
surrounding electro-elastic field and subsequently on the fracture behavior of the corresponding materials
(see [Sosa and Khutoryansky 1996; Gao and Fan 1999]), the contribution of any internal electric field
remains absent from both aforementioned papers [Kaloerov and Glushchenko 2001; Yang et al. 2007].
In this paper, recognizing the above-mentioned deficiencies in the methods used previously, we develop
a new efficient method, completely distinct from those used in [Kaloerov and Glushchenko 2001; Yang
et al. 2007] to address the problem of plane strain deformations of a piezoelectric half-plane containing
an elliptical hole or crack. In particular, we incorporate the contribution of electromechanical loadings
applied on surface of the half-plane and assume that the elliptical hole is permeable to an electric field.
This further requires that we take into consideration the electric field inside the hole: an issue hitherto
absent in the problem of a general anisotropic half-plane containing an elliptical hole.

The paper is organized as follows. Basic formula and boundary conditions of the problem are presented
in Section 2. The details of a novel solution procedure are given in Section 3. In Section 4, we calculate
the stress concentration around the elliptical hole and the electro-elastic intensity factors at the crack tips.
Finally, the main results are summarized in Section 5.

2. Basic formula and boundary conditions

We refer to the standard Cartesian xy-coordinate system and consider the plane strain deformation of a
piezoelectric lower half-plane containing an elliptical hole (see Figure 1 which includes the geometrical
parameters of the hole) whose poling direction is along the positive y-axis. The elliptical hole degenerates
into a crack when the minor axis of the elliptical hole tends towards zero. It is assumed that uniform
mechanical loadings (σ∞xx , σ

∞
yy , σ

∞
xy ) and uniform electric displacement loadings (D∞x , D∞y ) are applied
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Figure 1. A piezoelectric half-plane with an elliptical hole.

both at infinity and on the edge L ′ of the half-plane and that the elliptical hole has a traction-free bound-
ary and is filled with a homogeneous gas or liquid with dielectric constant ε0. The stress components
(σxx , σyy, σxy), the electric displacement components (Dx , Dy) and the electric potential φ of the piezo-
electric half-plane can be described in terms of three complex functions ϕi (zi ) (zi = x +µi y, i = 1, 2, 3)
as [Sosa 1991]

〈σxx , σyy, σxy〉 = 2Re
{ 3∑

i=1

〈µ2
i , 1,−µi 〉ϕ

′

i (zi )

}
, (1)

〈Dx , Dy〉 = 2Re
{ 3∑

i=1

λi 〈µi ,−1〉ϕ′i (zi )

}
, (2)

φ =−2Re
{ 3∑

i=1

κiϕ
′

i (zi )

}
(3)

where the angled brackets represent vectors and the related constants (µi , λi , κi ) are determined by the
elastic constants ai j , piezoelectric constants bi j and dielectric constants ci j of the piezoelectric material
occupying the half-plane, as [Sosa 1991]

a11c11µ
6
i + (a11c22+ 2a12c11+ a33c11+ b2

21+ b2
13+ 2b21b13)µ

4
i+

(a22c11+ 2a12c22+ a33c22+ 2b21b22+ 2b13b22)µ
2
i + a22c22+ b2

22 = 0,
(4)

λi =−
(b21+ b13)µ

2
i + b22

c11µ
2
i + c22

, κi = (b13+ c11λi )µi . (5)

Here, µi (i = 1, 2, 3) are three distinct complex roots with positive imaginary parts each determined from
Equation (4). Figure 2 shows the domains of definition of the functions ϕi (zi ) (i = 1, 2, 3), respectively,
in which the curves L i in the zi -planes (i = 1, 2, 3) correspond to the hole’s boundary L in the xy-plane
while the edges L ′i in the zi -planes (i = 1, 2, 3) correspond to the edge L ′ in the xy-plane.
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Figure 2. Domain of definition of the complex functions ϕi (zi ) (i = 1, 2, 3).

The electric displacement components (D(0)
x , D(0)

y ) and electric potential φ(0) of the medium inside
the elliptical hole can be expressed in terms of a holomorphic function f (z) (z = x + I y with I denoting
the imaginary unit) by

φ(0) = Re[ f (z)], (6)

D(0)
x − I D(0)

y =−ε0 f ′(z). (7)

Using the functions ϕi (zi ) (i = 1, 2, 3) and f (z), the electro-elastic conditions on the hole’s boundary L
and on the edge L ′ of the half-plane are then described as [Sosa 1991; Sosa and Khutoryansky 1996]

2Re
{ 3∑

i=1

ϕi (zi )

}
= B

2Re
{ 3∑

i=1

µiϕi (zi )

}
= C

2Re
{ 3∑

i=1

λiϕi (zi )

}
= D− ε0Im[ f (z)]

−2Re
{ 3∑

i=1

κiϕi (zi )

}
= E +Re[ f (z)]



(zi ∈ L i , z ∈ L), (8)

2Re
{ 3∑

i=1

ϕi (zi )

}
= B ′+ σ∞yy x

2Re
{ 3∑

i=1

µiϕi (zi )

}
= C ′− σ∞xy x

2Re
{ 3∑

i=1

λiϕi (zi )

}
= D′− D∞y x


(zi ∈ L ′i , x ∈ L ′) (9)

where B, C , D, E , B ′, C ′ and D′ are real constants to be determined (although they do not influence the
final electro-elastic field of the half-plane). In what follows, we determine the four complex functions
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ϕi (zi ) (i = 1, 2, 3) and f (z) in their respective domains of definition from the boundary conditions (8)
and (9).

3. Solution process

3.1. Series representations of the complex functions. Noting that uniform electro-elastic loadings are
imposed at infinity and on the edge of the half-plane, the complex functions ϕi (zi ) (i = 1, 2, 3) can take
the form

ϕi (zi )= Ai zi +ϕi0(zi ), i = 1, 2, 3; (10)

where ϕi0(zi ) (i = 1, 2, 3) are holomorphic in the regions Si (i = 1, 2, 3; see Figure 2), respectively, while
the complex constants Ai (i = 1, 2, 3) are specified by the imposed electro-elastic loadings (according
to Equations (1) and (2)) as

〈σ∞xx , σ
∞

yy , σ
∞

xy 〉 = 2Re
{ 3∑

i=1

〈µ2
i , 1,−µi 〉Ai

}
,

〈D∞x , D∞y 〉 = 2Re
{ 3∑

i=1

λi 〈µi ,−1〉Ai

}
.

(11)

Here, since Equation (11) is insufficient to determine all three complex constants Ai (i = 1, 2, 3), we
can prescribe, for example, Im(A1) = 0. Note that the domain of definition Si (i = 1, 2, 3) of each
complex function ϕi0(zi ) (i = 1, 2, 3) can be interpreted as the intersection of an infinite region outside
the hole bounded by L i (i = 1, 2, 3) in the entire zi -plane (i = 1, 2, 3) and a complete lower zi -half-plane
(i = 1, 2, 3) (without a hole), so that based on the principle of superposition [Dai and Gao 2014; Dai
and Sun 2013], ϕi0(zi ) (i = 1, 2, 3) can be expressed as

ϕi0(zi )=

+∞∑
j=1

ai, jξ
− j
i +

+∞∑
j=1

bi, jη
j
i , i = 1, 2, 3; (12)

where ai, j and bi, j are some constant coefficients to be determined. We note that the ξi -plane and ηi -
plane (i = 1, 2, 3) are associated with the zi -plane (i = 1, 2, 3) by the following conformal mappings
[Lekhnitskii 1950; Copson 1935],

zi = ωi (ξi )= µi y0+
a0− Iµi b0

2
ξi +

ā0+ Iµi b̄0

2
ξ−1

i , |ξi | ≥ 1,

a0 = a cosα+ I b sinα, b0 = b cosα+ I a sinα, i = 1, 2, 3;

(13)

zi = ρ(ηi )=−I y0
ηi + 1
ηi − 1

, |ηi | ≤ 1, i = 1, 2, 3. (14)

Note that (13) maps the infinite region outside the curve L i (i = 1, 2, 3) in the entire zi -plane (i = 1, 2, 3)
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onto the exterior of the unit circle in the ξi -plane (i = 1, 2, 3), respectively, while (14) maps the complete
lower zi -half-plane (i = 1, 2, 3) onto the interior of the unit circle in the ηi -plane (i = 1, 2, 3), respectively.
In particular, when point (x, y) is located on the hole’s boundary L or on the edge L ′ in the physical
xy-plane, the arguments zi , ξi and ηi (i = 1, 2, 3) in their respective planes take the values

zi =

{
ωi (σ ), (zi ∈ L i )

ρ(σ ′)= x, (x ∈ L , zi ∈ L ′i )
, i = 1, 2, 3; (15)

ξi =

{
σ, (zi ∈ L i )

ω−1
i (ρ(σ ′)), (|ω−1

i (ρ(σ ′))|> 1, zi ∈ L ′i )
, i = 1, 2, 3; (16)

ηi =

{
ρ−1(ωi (σ )), (zi ∈ L i )

σ ′, (zi ∈ L ′i )
, i = 1, 2, 3; (17)

with
σ = eIθ , 0≤ θ ≤ 2π,

σ ′ = eIθ ′, 0≤ θ ′ ≤ 2π.
(18)

Consequently on the curves L i (i = 1, 2, 3) and L ′i (i = 1, 2, 3) in the zi -plane (i = 1, 2, 3), the com-
plex functions ϕi (zi ) (i = 1, 2, 3) can be expressed completely with respect to the arguments σ and σ ′,
respectively, as

ϕi (zi )= Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j , zi ∈ L i , i = 1, 2, 3; (19)

ϕi (zi )= Aiρ(σ
′)+

+∞∑
j=1

ai, j [ω
−1
i (ρ(σ ′))]− j

+

+∞∑
j=1

bi, j (σ
′) j , zi ∈ L ′i , i = 1, 2, 3. (20)

On the other hand, since the function f (z) is defined in the region occupied by the elliptical hole in
the physical xy-plane, it can be expanded into a Faber series such as [Dai and Sun 2013]

f (z)=
+∞∑
j=1

c j (a+ b)− j
[(

P +
√

P2− a2+ b2
) j
+

(
P −

√
P2− a2+ b2

) j
]
,

P = (z− I y0)e−Iα,

(21)

where the c j are constant coefficients to be determined. Specifically, the boundary value of f (z) on the
curve L in the xy-plane turns out to be

f (z)=
+∞∑
j=1

c j

[
σ j
+

(
a− b
a+ b

) j

σ− j
]
, σ = eIθ , z ∈ L (22)

where σ is given in Equation (18).
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3.2. Fourier expansion method. Substituting (19), (20) and (22) into the boundary conditions (8) and
(9) we obtain

2Re
{ 3∑

i=1

[
Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j
]}
= B,

2Re
{ 3∑

i=1

µi

[
Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j
]}
= C,

2Re
{ 3∑

i=1

λi

[
Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j
]}

= D− ε0Im
{ +∞∑

j=1

c j

[
σ j
+

(
a− b
a+ b

) j

σ− j
]}
,

−2Re
{ 3∑

i=1

κi

[
Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j
]}

= E +Re
{ +∞∑

j=1

c j

[
σ j
+

(
a− b
a+ b

) j

σ− j
]}
,

(23)

and

2Re
{ 3∑

i=1

[ +∞∑
j=1

ai, j [ω
−1
i (ρ(σ ′))]− j

+

+∞∑
j=1

bi, j (σ
′) j
]}
= B ′,

2Re
{ 3∑

i=1

µi

[ +∞∑
j=1

ai, j [ω
−1
i (ρ(σ ′))]− j

+

+∞∑
j=1

bi, j (σ
′) j
]}
= C ′,

2Re
{ 3∑

i=1

λi

[ +∞∑
j=1

ai, j [ω
−1
i (ρ(σ ′))]− j

+

+∞∑
j=1

bi, j (σ
′) j
]}
= D′.

(24)

Note that both sides of Equations (23) and (24) can be expanded into Fourier series in σ , and σ ′, re-
spectively. Consequently, if we truncate the series in Equations (12) and (21) so that we seek only the
unknown coefficients ai, j (i = 1, 2, 3; j = 1 . . . N ), bi, j (i = 1, 2, 3; j = 1 . . .M) and c j ( j = 1 . . . N ),
equating the coefficients of σ k (k = 1 . . . N ) and (σ ′)k (k = 1 . . .M) on both sides of Equations (23)
and (24), respectively, we obtain a system of linear equations with respect to the unknown coefficients
ai, j (i = 1, 2, 3; j = 1 . . . N ), c j ( j = 1 . . . N ) and bi, j (i = 1, 2, 3; j = 1 . . .M), namely
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3∑
i=1

[
Ai C

(2)
i,k + Āi C̄

(2)
i,−k +

M∑
j=1

bi, j C
(1)
i, j,k +

M∑
j=1

b̄i, j C̄
(1)
i, j,−k + āi,k

]
= 0,

3∑
i=1

µi

[
Ai C

(2)
i,k + Āi C̄

(2)
i,−k +

M∑
j=1

bi, j C
(1)
i, j,k +

M∑
j=1

b̄i, j C̄
(1)
i, j,−k + āi,k

]
= 0,

3∑
i=1

λi

[
Ai C

(2)
i,k + Āi C̄

(2)
i,−k +

M∑
j=1

bi, j C
(1)
i, j,k +

M∑
j=1

b̄i, j C̄
(1)
i, j,−k + āi,k

]

= 0.5Iε0

[
ck −

(
a− b
a+ b

)k

c̄k

]
,

−

3∑
i=1

κi

[
Ai C

(2)
i,k + Āi C̄

(2)
i,−k +

M∑
j=1

bi, j C
(1)
i, j,k +

M∑
j=1

b̄i, j C̄
(1)
i, j,−k + āi,k

]

= 0.5
[

ck +

(
a− b
a+ b

)k

c̄k

]
,



(k = 1 . . . N ), (25)

3∑
i=1

[ M∑
j=1

ai, j C
(3)
i, j,k +

M∑
j=1

āi, j C̄
(3)
i, j,−k + bi,k

]
= 0

3∑
i=1

µi

[ M∑
j=1

ai, j C
(3)
i, j,k +

M∑
j=1

āi, j C̄
(3)
i, j,−k + bi,k

]
= 0

3∑
i=1

λi

[ M∑
j=1

ai, j C
(3)
i, j,k +

M∑
j=1

āi, j C̄
(3)
i, j,−k + bi,k

]
= 0


(k = 1 . . .M), (26)

where

C (1)
i, j,k =

1
2π

∫ 2π

0
[ρ−1(ωi (σ ))]

jσ−k dθ, i = 1, 2, 3; j = 1 . . .M, k =±1 · · · ± N , (27)

C (2)
i,k =


(a0− Iµi b0)/2, k = 1,

(ā0+ Iµi b̄0)/2, k =−1,

0, k =±2,±3, . . . ,±N ,

i = 1, 2, 3; (28)

C (3)
i, j,k =

1
2π

∫ 2π

0
[ω−1

i (ρ(σ ′))]− j (σ ′)−k dθ ′, i = 1, 2, 3; j = 1 . . . N , k =±1 · · · ±M. (29)

Here, the definite integrals in Equations (27) and (29) can be evaluated numerically, for example, by
Gaussian quadrature. Finally, the (4N+3M) unknown coefficients ai, j (i = 1, 2, 3; j = 1 . . . N ), c j ( j =
1 . . . N ) and bi, j (i = 1, 2, 3; j = 1 . . .M) are determined from Equations (25) and (26), following which
we can obtain the electro-elastic field in the piezoelectric half-plane and the electric field inside the
elliptical hole.
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4. Numerical examples

In the following examples, the material constants of the piezoelectric half-plane are taken as those of
PZT-4 ceramic [Berlincourt et al. 1964],

a11 = 8.205× 10−12, a12 =−3.144× 10−12, a22 = 7.495× 10−12, a33 = 19.3× 10−12(Pa−1);

b13 = 39.4× 10−3, b21 =−16.62× 10−3, b22 = 23.96× 10−3(m2/C);

c11 = 7.66× 107, c22 = 9.82× 107(m/F);
(30)

and the related complex parameters µi , λi and κi (i = 1, 2, 3) in Equations (4) and (5) are calculated as

µ1 = 1.218I, −µ̄2 = µ3 = 0.201+ 1.070I ;

λ1 =−6.351× 10−10, λ2 = λ̄3 = (−2.411+ 1.362I )× 10−10(m ·F/C);

κ1 =−0.0113I, −κ̄2 = κ3 = 0.0154+ 0.0203I (m2/C);

(31)

while the medium inside the elliptical hole is assumed to be homogeneous air with an approximate
dielectric constant ε0 = 8.85× 10−12 F/m. The convergence of the present solution is verified by the fact
that the relative error between the calculated electro-elastic field corresponding to two adjacent values
of N and M is less than 10−4.

4.1. Verification of the method. Our solution for a piezoelectric half-plane degenerates quite simply
into that for an elastic half-plane without piezoelectricity when all of the piezoelectric constants bi j in
Equations (4) and (5) tend towards zero. Comparisons between our present solutions and known results
[Dejoie et al. 2006; Kushch et al. 2006] for stress distributions in an isotropic half-plane with circular or
elliptical hole are presented in Figures 3 and 4 which indicated good agreement between the two.
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Figure 3. Hoop stress around a circular hole in an isotropic half-plane under uniform
uniaxial tensile loading parallel to the edge of the half-plane.
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Figure 4. Stress concentration along the edge of an isotropic half-plane with an elliptical
hole under uniform uniaxial tensile loading perpendicular to the edge.

4.2. An elliptical hole in a piezoelectric half-plane. Figures 5 and 6 show the hoop stresses around an
elliptical hole in a piezoelectric half-plane under mechanical and electric loadings, respectively, with
increasing distance between the hole and the edge of the half-plane.

In Figures 5 and 6 we see that, as the distance between the hole and the edge of the half-plane
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Figure 5. Hoop stress around an elliptical hole in a piezoelectric half-plane under me-
chanical loadings.



AN ANISOTROPIC PIEZOELECTRIC HALF-PLANE CONTAINING AN ELLIPTICAL HOLE 443

0 1 2
-0.32

-0.06

0.20

0 1 2
-0.3

0.0

0.3

0 1 2
-0.15

-0.01

0.13

(c)(b)

1 tt

D

��
∞

�

0.75a

0.25a

0

x y

xx yy xy

D D D

� � �

∞ ∞ ∞

∞ ∞ ∞

= =

= = =

d

�

0� =

� �

 

 d=0.1a

 d=0.25a

 d=3.5a

 d=infinity
relative error 5%

(a)d=infinity [Gao and Fan 1999]

1 tt

D

��
∞

2� �=

� �

 

 

 d=0.05a

 d=0.15a

 d=1.1a

 d=infinity

relative error 5%

6� �=

1 tt

D

��
∞

� �

 

 d=0.1a

 d=0.2a

 d=2.6a

 d=infinity
relative error 5%

Figure 6. Hoop stress around an elliptical hole in a piezoelectric half-plane under elec-
tric loadings.

decreases, the maximum hoop stress around the hole increases rapidly under the influence of mechanical
loadings but much slower when subjected to electric loading. On the other hand, for an arbitrarily-
oriented elliptical hole in a piezoelectric half-plane under either mechanical or electric loading, when the
distance between the hole and the edge exceeds, for example, four times the size of the hole, the effect of
the edge on the stress concentration around the hole is negligible so that the half-plane can be modeled
approximately as a whole plane.

4.3. A crack in a piezoelectric half-plane. Since the crack face is permeable to an electric field, electric
loading alone does not induce stress or electric field concentrations at the crack tips. As a result, here
we consider only mechanical loading. Stress and electric displacement intensity factors at the crack tips
in a piezoelectric half-plane subjected to mechanical loading are given in Figures 7–12.

It is shown in Figures 7–12 that both stress and electric displacement intensity factors at the crack
tip closest to the edge of the half-plane always increase with decreasing distance between the crack and
the edge. However, as shown in Figure 11(b), for a crack with particular orientation in a piezoelectric
half-plane under pure shear loading, the mode-II stress intensity factor at the crack tip farthest from the
edge of the half-plane, may decrease with decreasing distance between the crack and the edge. Moreover,
as shown in Figures 7–12, for a crack with an arbitrary orientation in a piezoelectric half-plane under
mechanical loading, if the distance between the crack and the edge of the half-plane is larger than, for
example, twice the length of the crack, the influence of the edge on the stress and electric displacement
intensity factors at the crack tips is negligible so that the half-plane can again be treated approximately
as a whole plane.
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Figure 7. Intensity factors of stress and electric displacement at the tips of a crack
perpendicular to the edge of the piezoelectric half-plane under uniaxial tensile loading
parallel to the edge.
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Figure 8. Intensity factors of stress and electric displacement at the tips of a crack
inclined from the edge of the piezoelectric half-plane under uniaxial tensile loading
parallel to the edge.
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Figure 9. Intensity factors of stress and electric displacement at the tips of a crack paral-
lel to the edge of the piezoelectric half-plane under uniaxial tensile loading perpendicular
to the edge.
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Figure 10. Intensity factors of stress and electric displacement at the tips of a crack
inclined from the edge of the piezoelectric half-plane under uniaxial tensile loading
perpendicular to the edge.
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Figure 11. Intensity factors of stress and electric displacement at the tips of a crack
inclined from the edge of the piezoelectric half-plane under pure shear loading.
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Figure 12. Intensity factors of stress and electric displacement at the tips of a crack
perpendicular to the edge of the piezoelectric half-plane under pure shear loading.
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5. Conclusions

The electro-elastic field in a piezoelectric half-plane containing an elliptical hole or a crack under in-
plane electromechanical loadings is obtained using conformal mapping and Fourier expansion techniques.
Numerical results are given to verify the feasibility of the present solution and to demonstrate the effect of
the edge of the half-plane on the stress concentration around the hole and on the electro-elastic intensity
factors at the crack tips. For an elliptical hole or a crack in a piezoelectric half-plane with an edge
perpendicular to the poling direction of the half-plane with mechanical or electric loading imposed on
the edge and remotely, our main conclusions are as follows:

(1) The maximum hoop stress around the elliptical hole increases with decreasing distance between the
hole and the edge of the half-plane under either mechanical or electric loading. However, the hoop
stress around the hole is much more sensitive to the distance between the hole and the edge of the
half-plane when subjected to mechanical as opposed to electric loading.

(2) In general, all stress and electric displacement intensity factors at the two crack tips increase with
decreasing distance between the crack and the edge of the half-plane. However, for a crack with par-
ticular orientations in a piezoelectric half-plane subjected to pure shear loading, the mode-II stress
intensity factor at one of the crack tips (that farthest from the edge) may decrease with decreasing
distance between the crack and the edge.

(3) When the distance between the elliptical hole or the crack and the edge of the half-plane is more
than four times the size of the hole or the semi-length of the crack, the half-plane can be treated
approximately as a whole plane.
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