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TWO-DIMENSIONAL FRETTING CONTACT OF PIEZOELECTRIC MATERIALS
UNDER A RIGID CONDUCTING CYLINDRICAL PUNCH

JIE SU, LIAO-LIANG KE AND YUE-SHENG WANG

This paper investigates the fretting contact between a transversely isotropic piezoelectric half-plane and
a rigid cylindrical punch in a plane strain state. It is assumed that the punch is a perfect conductor with a
constant electric potential within the contact region. Since the fretting contact problem is frictional and
history dependent, the two bodies are brought into contact first by a monotonically increasing normal
load, and then by a cyclic tangential load, which is less than that necessary to cause complete sliding. It
is assumed that the contact region contains an inner stick region and two outer slip regions in which
Coulomb’s friction law is applied. With the use of the superposition principle and Fourier integral
transform technique, the problem is reduced to a set of coupled Cauchy singular integral equations.
An iterative method is used to determine the unknown stick/slip region, normal contact pressure, electric
charge and tangential traction. The effects of the friction coefficient, electric load and conductivity of
the punch on the surface electromechanical fields are discussed during different loading phases.

1. Introduction

Piezoelectric materials are important smart materials and have been widely used in various electrome-
chanical devices such as actuators, sensors, transducers and micropower generators. Piezoelectric devices
are often subjected to highly localized loading indented by a concentration load or rigid punches. Thus,
failure and degradation of the piezoelectric components may be caused by the inharmonious contact be-
tween piezoelectric devices and the punch due to the innate brittleness of the piezoelectric ceramics. As a
result of the aforementioned reasons, many theoretical investigations concerning indentation, frictionless
contact and frictional contact of piezoelectric materials have received considerable concerns and been
solved perfectly.

Using the state space framework, Sosa and Castro [1994] obtained the solutions of a piezoelectric half-
plane loaded by a concentrated line force and a concentrated line charge. Fan et al. [1996] investigated the
two-dimensional contact problem of an anisotropic piezoelectric half-plane by the nonslip or slip indentor.
Chen [1999] analyzed the contact problem of an inclined rigid conducting circular flat punch indenting
a transversely isotropic piezoelectric half-space. Ding et al. [2000] investigated the three-dimensional
frictionless contact problem including a spherical indenter, a conical indenter and an upright circular
flat indenter on a transversely isotropic piezoelectric half-space. The contact problem of piezoelectric
materials was also examined by Giannakopoulos and Suresh [1999], Chen [2000], Ramirez and Heyliger
[2003], Wang et al. [2008], Zhou and Lee [2012] and Wu et al. [2012] for the frictionless case; Makagon
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et al. [2009], Zhou and Lee [2011; 2014] and Ma et al. [2014] for the sliding frictional case; and Chen
and Yu [2005] and Guo and Jin [2009] for the adhesive case.

Fretting is a frictional contact phenomenon that occurs when two bodies are brought into contact
by a normal load, and are subjected to cyclic tangential loads causing small relative oscillations with
respect to each other. The whole contact surface is divided into an inner stick region, where there is
no relative motion between the two bodies, and two outer slip regions at the two edges. The surface
tractions near the ends of contact, where the contact surfaces undergo the relative tangential motion,
initiate surface cracks that are known as fretting fatigue. Contact damage and fretting fatigue, which
occur in engineering structures, gas turbine engines, electric power, aircraft, traffic tools, etc., are the main
causes of failure of key components. In some engineering components, the normal load for contacting
bodies often does not vary significantly, whereas the tangential load varies cyclically with time. An initial
theoretical investigation of the fretting contact was made by Cattaneo [1938], who extended the Hertz
contact theory to include a monotonically increasing tangential force. Subsequently, the fretting contact
of elastically similar bodies under tangential loading was considered by Mindlin and Deresiewicz [1953],
Mindlin et al. [1951], Ciavarella [1998a; 1998b] and Ciavarella and Hills [1999]. The fretting contact
of elastically dissimilar bodies was studied by Spence [1973] for monotonically normal loading, Spence
[1986] for monotonically tangential loading, Keer and Farris [1987], Hanson et al. [1989], Nowell et al.
[1988] for cyclic tangential loading.

Since piezoelectric devices are often in vibration environments, fretting contact damage inevitably
occurs in these devices. Unfortunately, so far the work done on the fretting contact of piezoelectric
materials is quite limited despite the importance of their application in smart devices. We only found
that Su et al. [2015] analyzed the two-dimensional fretting contact between a transversely isotropic
piezoelectric half-plane and a rigid insulating cylindrical punch. This paper further studies the fretting
contact of a piezoelectric half-plane under a rigid conducting cylindrical punch with a constant electric
potential. It is assumed that the whole contact region contains a centrally located stick region between
the two regions of slip in which Coulomb’s friction law is applied. The two dissimilar bodies are first
acted upon by a monotonically increasing normal load, and then by a cyclic tangential load. The fretting
contact problem is reduced to a set of coupled Cauchy singular integral equations which are then solved
by using an iterative method. The numerical results highlight the effects of the friction coefficient, electric
loading and conductivity of the punch on the normal contact pressure, electric charge, tangential traction,
in-plane stress and in-plane electric displacement.

Unlike the insulating punch problem in Su et al. [2015], the conductivity of the punch will lead to
electric charge distribution at the contact surface. Moreover, the conducting punch problem is governed
by the coupled Cauchy singular integral equations with unknown contact pressure and electric charge,
which is more difficult to solve than the insulating punch problem. The present results indicate that
the insulation of the punch may lead to the concentration of the tangential traction, which may cause a
serious influence on the fretting contact damage.

2. Problem formulation

Figure 1 shows the two-dimensional fretting contact between a transversely isotropic piezoelectric half-
plane and an infinitely long rigid conducting cylindrical punch with the radius R in a plane strain state.
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Figure 1. Sketch map of the fretting contact between a homogeneous piezoelectric half-
plane and a rigid conducting cylindrical punch in a plane strain state.

The x-axis is along the longitudinal direction at the contact surface while the z-axis is along the thick-
ness direction and points downwards. The two bodies are brought into contact first by a monotonically
increasing normal load P to form a contact region −a ≤ x ≤ a, and then by a cyclic tangential load
Q which is less than that necessary to cause complete sliding, i.e., |Q| < ηP where η is the friction
coefficient. It is assumed that the punch is a perfect conductor with a constant electric potential φ0

within the contact region. The resultant electric charge 0 is also applied on the punch. The normal
displacement component is known from the given punch profile within the contact region whereas the
surface normal and tangential tractions are zero outside the contact region.

To solve the present fretting contact problem, the first step is to derive the fundamental solutions of
the piezoelectric half-plane subjected to a normal linear load P , a tangential linear load Q and a linear
electric charge 0. Recently, Ma et al. [2014] developed these fundamental solutions which are written
as (refer to [Ma et al. 2014, Equations (27)–(29)])

ux0 =−
i f11 P
π

∫
+∞

0

sin(sx)
s

ds−
f12 Q
π

∫
+∞

0

cos(sx)
s

ds−
i f130

π

∫
+∞

0

sin(sx)
s

ds, (1)

uz0 =−
f21 P
π

∫
+∞

0

cos(sx)
s

ds−
i f22 Q
π

∫
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0

sin(sx)
s

ds−
f230

π

∫
+∞

0

cos(sx)
s

ds, (2)

φ0 =−
f31 P
π

∫
+∞

0

cos(sx)
s

ds−
i f32 Q
π

∫
+∞

0

sin(sx)
s

ds−
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π

∫
+∞

0

cos(sx)
s

ds. (3)

Here ux0 = ux(x, 0) and uz0 = uz(x, 0) are the surface displacement components in the x- and y- direc-
tions, respectively; φ0 = φ(x, 0) is the surface electric potential of the piezoelectric half-plane; i=

√
−1

and s is the transform variable; fi j (i, j = 1, 2, 3) are the parameters given in the Appendix.
Let p(x), q(x) and g(x) be the normal contact pressure, tangential traction and electric charge within

the contact region, respectively. The superposition principle gives the surface displacement components
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and surface electric potential
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i f11

π

∫ a

−a
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s

ds dt
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0
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s

ds dt, (5)
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π
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−a
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∫
+∞

0
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s

ds dt
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Differentiating Equations (4)–(6) with respect to x yields
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∂x
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π
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Using the Fourier representation of generalized functions gives [Gradshteyn and Ryzhik 2000; Choi and
Paulino 2008]

∫
∞

0
sin[s(x − t)] ds =

1
x − t

,

∫
∞

0
cos[s(x − t)] ds = πδ(x − t), (10)
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Figure 2. The normal contact with a monotonically increasing normal load P in a plane
strain state.

Equations (7)–(9) can be reduced to the following coupled Cauchy singular integral equations for the
unknowns p(x), q(x) and g(x)

−i f11 p(x)− i f13g(x)−
f12

π

∫ a

−a

q(t)
t − x

dt =
∂ux0

∂x
, |x | ≤ a, (11)

−
f21

π

∫ a

−a

p(t)
t − x

dt − i f22q(x)−
f23

π

∫ a

−a

g(t)
t − x

dt =
∂uz0

∂x
, |x | ≤ a, (12)

−
f31

π

∫ a

−a

p(t)
t − x

dt − i f32q(x)−
f33

π

∫ a

−a

g(t)
t − x

dt =
∂φ0

∂x
, |x | ≤ a. (13)

The resultant force P , Q and resultant electric charge 0 related to p(x), q(x) and g(x) are given by∫ a

−a
p(t) dt = P, (14)∫ a

−a
q(t) dt = Q, (15)∫ a

−a
g(t) dt = 0. (16)

Equations (11)–(16) are the general governing equations for the fretting contact problem of the piezo-
electric half-plane acted upon by a rigid conducting punch. Since the fretting contact is frictional and
loading history dependent, the analysis is often divided into the normal loading process and tangential
loading process. These two processes are discussed in the next two sections.

3. Normal loading

For the first step of fretting contact analysis, we consider the normal contact with a monotonically in-
creasing normal load P to form a contact region −a ≤ x ≤ a, while the tangential load Q is neglected
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as shown in Figure 2. Due to two dissimilar contact bodies pressed together under the action of a purely
normal load, the corresponding surface particles will undergo different tangential displacements, and this
relative tangential motion will lead to the development of the tangential traction at the interface. That
is to say, an applied normal load will lead to both normal and tangential displacements. Therefore, the
normal contact of two dissimilar bodies is fully coupled to the normal contact pressure and tangential
traction. It is assumed that the whole contact region contains a centrally located stick region (|x | ≤ b)
between two slip regions (b < |x | ≤ a) in which Coulomb’s friction law is applied. The slip direction
must also be consistent with the direction of the frictional force in the slip regions, which means that the
slips in both slip regions are in opposite directions.

Referring to [Nowell et al. 1988] and [Hills et al. 1993], the tangential traction in the slip and stick
regions is written as

q(x)=
{
−ηp(x)sign(x) b < |x | ≤ a,
−ηp(b)(x/b)+ q∗(x) |x | ≤ b,

(17)

where q∗(x) is an unknown function equal to zero at x =±b.
For a cylindrical punch, the derivative of uz0 may be approximately represented as [Johnson 1985]

∂uz0

∂x
=

x
R
, |x | ≤ a. (18)

The surface electric potential φ0 is a constant inside the contact region, so we have

∂φ0

∂x
= 0, |x | ≤ a. (19)

Spence [1973] proposed the self-similarity assumption that the stress fields were self-similar at each
stage during monotonically increasing normal loading. In the inner stick region, the prior prestrain of
surface points before they enter the stick region is proportional to |x | as given by

∂ux0

∂x
= C |x |, |x | ≤ b, (20)

where C is unknown and denotes the slope of the tangential displacement gradient at this stage. In the
slip regions b < |x | ≤ a, ∂ux0/∂x cannot be specified.

With the aid of (18) and (19), (12) and (13) can be rewritten as

1
π

∫ a

−a

p(t)
t − x

dt =
f33x
γ1 R
− i

γ2

γ1
q(x), |x | ≤ a, (21)

−
f23

π

∫ a

−a

g(t)
t − x

dt =
x
R
+

f21

π

∫ a

−a

p(t)
t − x

dt + i f22q(x), |x | ≤ a, (22)

where
γ1 = f31 f23− f21 f33, γ2 = f32 f23− f22 f33.

For the conducting cylindrical punch, the contact pressure is smooth at x = ±a, while the electric
charge can be divided into two parts [Ke et al. 2008]

g(x)= g1(x)+ g2(x), (23)
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where g1(x) is induced by the normal load P and is smooth at x =±a, while g2(x) is induced by the
constant electric potential φ0 and has the square root singularity at both ends.

Then, by representing t = aθ and x = aτ (−1≤ (τ, θ)≤ 1), (21), (14), (22) and (16) are normalized as

1
π

∫ 1

−1

p(θ)
θ − τ

dθ = h0(τ ), (24)∫ 1

−1
p(θ) dθ = P

a
, (25)

−
f23

π

∫ 1

−1

g1(θ)

θ − τ
dθ = h1(τ ), (26)∫ 1

−1
g1(θ) dθ =

01

a
, (27)

−
f23

π

∫ 1

−1

g2(θ)

θ − τ
dθ = 0, (28)∫ 1

−1
g2(θ) dθ =

0−01

a
, (29)

where

h0(τ )=
f33aτ
γ1 R

− i
γ2

γ1
q(τ ), (30)

h1(τ )=
aτ
R
+

f21

π

∫ 1

−1

p(θ)
θ − τ

dθ + i f22q(τ ). (31)

Next, substituting (17) into (11) yields the equation about q∗(x),

1
π

∫ b

−b

q∗(t)
t − x

dt = N1(x), |x | ≤ b, (32)

where

N1(x)=−
C |x |

f12
−i

f11

f12
p(x)−i

f13

f12
g(x)+

η

π

∫ a

b

p(t)
t − x

dt−
η

π

∫
−b

−a

p(t)
t − x

dt+
ηp(b)

bπ

∫ b

−b

t
t − x

dt. (33)

By introducing the normalized quantities t = bκ and x = bα, (32) may be expressed as

1
π

∫ 1

−1

q∗(κ)
κ −α

dκ = N1(α), |α| ≤ 1. (34)

In addition, the following consistency condition should be satisfied [Muskhelishvili 1958]:∫ 1

−1

N1(ς)√
1− ς2

dς = 0. (35)

Using the method of Erdogan and Gupta [1972], this integral equation may be reduced to a set of
linear equations that satisfy the consistency condition (35). Through setting q∗(κ)= ϕ(κ)

√
1− κ2, we
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can discretize (34) to give

M∑
l=1

(1− κ2
l )ϕ(κl)

(M + 1)(κl −αr )
= N1(αr ), |αr | ≤ 1, (36)

where κl = cos[lπ/(M + 1)], αr = cos[(2r − 1)π/2(M + 1)], r = 1, 2, . . . ,M+1, and M is the total num-
ber of the discrete points of ϕ(κl) in (−1, 1). By setting p(θ)=ψ(θ)

√
1− θ2 and g1(θ)= λ(θ)

√
1− θ2,

(24)–(27) are also discretized as

M∑
l=1

(1− θ2
l )ψ(θl)

(M + 1)(θl − τr )
= h0(τr ), |τr | ≤ 1, (37)

M∑
l=1

(1− θ2
l )ψ(θl)

M + 1
=

P
aπ
, (38)

M∑
l=1

−
f23(1− θ2

l )λ(θl)

(M + 1)(θl − τr )
= h1(τr ), |τr | ≤ 1, (39)

M∑
l=1

(1− θ2
l )λ(θl)

M + 1
=
01

aπ
, (40)

where θl = cos[lπ/(M + 1)], τr = cos[(2r − 1)π/2(M + 1)], r = 1, 2, . . . ,M + 1, where M is the total
number of the discrete points of ψ(θl) and λ(θl) in (−1, 1).

Because g2(x) has the square root singularity at both ends, we can set g2(θ)= ϑ(θ)/
√

1− θ2. Then
(28) and (29) can be reduced to

1
M

M∑
l=1

f23ϑ(θl)

(θl − τr )
= 0, |τr | ≤ 1, (41)

1
M

M∑
l=1

ϑ(θl)=
0−01

aπ
, (42)

where θl = cos[(2l − 1)π/2M], τr = cos[rπ/M], r = 1, 2, . . . ,M − 1, where M is the total number of
the discrete points of ϑ(θl) in (−1, 1).

In (36), (37), (39) and (41), we have 4M + 2 equations and 4M + 3 unknowns, ϕ(κ1), . . . , ϕ(κM),
ψ(θ1), . . . , ψ(θM), λ(θ1), . . . , λ(θM), ϑ(θ1), . . . , ϑ(θM), a, b and C ; the problem is also undercon-
strained. As we know, the tangential traction must be continuous at the stick-slip interface, which leads
to the requirements ϕ(±1)= 0 [Keer and Farris 1987; Hanson et al. 1989]. This condition can therefore
be utilized to determine b and q(x), to make the analysis self-contained. This technique would require
a sequence of iteration, which can be specified as follows:

(1) Input the values of a and b. The frictionless solutions of the contact pressure p0(θ) and electric
charge g0(θ) from Ke et al. [2008] are selected as the initial values for p(θ) and g(θ).

(2) Solve (36) to obtain the tangential traction q1(κ) for q(κ), and substitute q1(κ) into (37), (39) and
(41). Then, p1(θ) and g1(θ) can be solved from this set of equations.



TWO-DIMENSIONAL FRETTING OF PIEZOELECTRIC MATERIALS UNDER A RIGID CYLINDRICAL PUNCH 543

(3) Calculate ϕ(±1) from (36). If ϕ(±1)= 0, go to the next step; if ϕ(±1) 6= 0, return to steps 1 and
2. Then, the new values must be selected for b and a, and the procedure is repeated.

(4) Calculate pn(θ), gn(θ) and qn(κ) (the superscript n denotes the n-th iteration), together with C ,
which satisfy (36), (37), (39) and (41) and are the solutions of the coupled normal contact problem.
Then, we can get P and 0 from (38), (40) and (42).

4. Tangential loading

4.1. A monotonically increasing tangential load. At the end of the normal loading phase, the whole
contact region is divided into the inner stick region |x | ≤ b and two outer slip regions b < x ≤ a and
−a ≤ x <−b. Then, we apply a cyclic tangential load Q (|Q|< ηP) to the punch as shown in Figure 1.
The tangential loading history is depicted in Figure 3 to define the tangential load Q as a function of
time. In the first step of the tangential loading problem, the cylindrical punch is acted upon by a constant
normal load P , and then subjected to a monotonically increasing tangential load from zero to a maximum
value Qmax, i.e., point A in Figure 3.

The normal contact pressure, tangential traction and electric charge distributions at the end of the
normal loading phase can be found from the fully coupled normal contact in previous section. The
resulting values of the relative tangential displacement gradient ∂ux0/∂x in the whole contact region are
then calculated using (11) and stored. We expect an inner stick region at the interval −b1 ≤ x ≤ b2

bordered by two slip regions (−a ≤ x <−b1 and b2 < x ≤ a) with the same slip direction as shown in
Figure 1. In the slip regions, the tangential traction q(x) is strictly related to the local normal contact
pressure p(x) by Coulomb’s friction law. Hence, (11) is rewritten as

1
π

∫ b2

−b1

q∗∗(t)
t − x

dt = N2(x), −b1 ≤ x ≤ b2, (43)

where

q∗∗(x)=−ηp(x)+ q(x), (44)

N2(x)=−
1
f12

∂ux0

∂x
−

i f11

f12
p(x)−

i f13

f12
g(x)−

η

π

∫ a

−a

p(t)
t − x

dt. (45)

Once the tangential load is applied, the normal contact pressure and electric charge distributions may
become asymmetric. Therefore, the contact patch may be not central about the center-line of the punch

G

time 

Q 

Qmax 

-Qmax F

D

A

A0 

E

B

C

Figure 3. Load history of the tangential load Q as a function of time.
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which allows for an eccentricity e between the center-line and the origin [Nowell et al. 1988]. Thus, (21)
and (22) have the form

1
π

∫ a

−a

p(t)
t − x

dt =
f33(x − e)
γ1 R

− i
γ2

γ1
q(x), |x | ≤ a, (46)

−
f23

π

∫ a

−a

g(t)
t − x

dt =
x − e

R
+

f21

π

∫ a

−a

p(t)
t − x

dt + i f22q(x), |x | ≤ a. (47)

In addition, the static equilibrium for the normal contact pressure and tangential traction must be
satisfied by (14) and (15). Substituting (44) and (14) into (15) yields∫ b2

−b1

q∗∗(t) dt = Q− ηP. (48)

Introducing the following normalized quantities

t =
b1+ b2

2
κ +

b2− b1

2
, x =

b1+ b2

2
α+

b2− b1

2
, (49)

Equations (43) and (48) may be expressed in the form of

1
π

∫ 1

−1

q∗∗(κ)
κ −α

dκ = N2(α), |α| ≤ 1, (50)∫ 1

−1
q∗∗(κ) dκ =

2(Q− ηP)
b1+ b2

. (51)

Using (23), (46) and (47) are normalized by introducing t = aθ and x = aτ ,

1
π

∫ 1

−1

p(θ)
θ − τ

dθ = h2(τ ), |τ | ≤ 1, (52)

−
f23

π

∫ 1

−1

g1(θ)

θ − τ
dθ = h3(τ ), |τ | ≤ 1, (53)

where

h2(τ )=
f33(aτ − e)
γ1 R

− i
γ2

γ1
q(τ ), (54)

h3(τ )=
aτ − e

R
+

f21

π

∫ 1

−1

p(θ)
θ − τ

dθ + i f22q(τ ). (55)

Equations (52) and (53) are also discretized by setting p(θ)=ψ(θ)
√

1− θ2 and g1(θ)= λ(θ)
√

1− θ2

to give

M∑
l=1

(1− θ2
l )ψ(θl)

(M + 1)(θl − τr )
= h2(τr ), |τr | ≤ 1, (56)

M∑
l=1

−
f23(1− θ2

l )λ(θl)

(M + 1)(θl − τr )
= h3(τr ), |τr | ≤ 1, (57)
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where θl = cos[lπ/(M + 1)], τr = cos[(2r − 1)π/2(M + 1)], r = 1, 2, . . . ,M + 1, where M is the total
number of the discrete points of ψ(θl) and λ(θl) in (−1, 1).

Equations (50) and (51) are also discretized by setting q∗∗(κ)= ϕ(κ)
√

1− κ2 to give

M∑
l=1

(1− κ2
l )ϕ(κl)

(M + 1)(κl −αr )
= N2(αr ), |αr | ≤ 1, (58)

M∑
l=1

(1− κ2
l )ϕ(κl)

M + 1
=

2(Q− ηP)
(b1+ b2)π

, (59)

where κl = cos[lπ/(M + 1)], αr = cos[(2r − 1)π/2(M + 1)], r = 1, 2, . . . ,M + 1, and M is the total
number of the discrete points of ϕ(κl) in (−1, 1). In (41), (56), (57) and (58), there are 4M+2 equations
for 4M + 3 unknowns, ϕ(κ1), . . . , ϕ(κM), ψ(θ1), . . . , ψ(θM), λ(θ1), . . . , λ(θM), ϑ(θ1), . . . , ϑ(θM), b1,
b2 and e. It should be noted that the discretization of (58) yields M + 1 equations for M unknowns ϕ(κl),
since in this case there is no constant C to be determined, as the stick zone is receding. The iterative
procedure is given below:

(1) Input a value of b1 and a trial value of b2, and drop the (M + 1)-th equation of (58).

(2) Compute the solution of the coupled equations (41), (56), (57) and (58) by using the iterative pro-
cedure described in Section 3.

(3) Check whether the solution satisfies the (M + 1)-th equation of (58). If it satisfies, we obtain the
consistent solution; then go to the next step. Otherwise, a new value of b2 must be chosen for step
1 and the iteration procedure is continued till the consistent solution is achieved.

(4) Compute the applied normal load P , electric charge 0 and tangential load Q from (38), (40), (42)
and (59).

4.2. A cyclic tangential load. In the previous subsection, we analyzed the tangential load Q, which
increased monotonically from 0 to Qmax. However, the tangential load is generally cyclic between limits
in fretting fatigue. So, we further consider a cyclic tangential load varying between the limits ±Qmax

applied to the rigid conducting cylindrical punch. Starting immediately at unloading, the pressure cannot
sustain the stick at the outer edge of contact where the tangential traction becomes q(x)=−ηp(x). Since
the frictional contact problem depends on the loading history, the contact tractions and electric charge
can be first obtained at the end of the monotonically increasing tangential loading phase (Q = Qmax);
∂ux0/∂x can be calculated and stored by considering (43). Equation (11) is resolved in the new stick
region, −c1 ≤ x ≤ c2, and reverse slip regions, −a ≤ x <−c1 and c2 < x ≤ a, and thus can be expressed
as

1
π

∫ c2

−c1

q∗∗∗(t)
t − x

dt = N3(x), −c1 ≤ x ≤ c2, (60)

where

q∗∗∗(x)= q(x)+ ηp(x), (61)

N3(x)=−
1
f12

∂ux0

∂x
− i

f11

f12
p(x)− i

f13

f12
g(x)+

η

π

∫ a

−a

p(t)
t − x

dt. (62)
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Figure 4. Comparison of the present results with the results obtained in [Nowell et al.
1988]: (left) normal contact pressure; and (right) tangential traction.

In addition, the static equilibrium for the contact tractions must satisfy∫ c2

−c1

q∗∗∗(t) dt = Q+ ηP. (63)

Equation (60) is also solved together with (41), (56) and (57) by using the iterative procedure developed
in Section 4.1. Note that this process may be continued for the reverse loading phase (DF in Figure 3),
reverse unloading phase (FG in Figure 3) and other loading cycles.

5. In-plane stress and in-plane electric displacement

After we obtain the tangential contact stress σzx0 =−q(x), along with the normal contact stress σzz0 =

−p(x) and electrical displacement Dz0 = −g(x) for the normal and tangential loading processes, the
in-plane stress σxx0 and in-plane electric displacement Dx0 at the contact surface can be solved as

σxx0(x)=−(11+ i f1113)p(x)− (12+ i f1313)g(x)−
13 f12

π

∫ a

−a

q(t)
t − x

dt, (64)

Dx0(x)=−( e15
c44
− i f3214)q(x)+

14 f31

π

∫ a

−a

p(t)
t − x

dt +
14 f33

π

∫ a

−a

g(t)
t − x

dt, (65)

where
11 =

e31e33+ c13ε33

e2
33+ c33ε33

, 12 =
c13e33− c33e31

e2
33+ c33ε33

,

13 =
c11e2

33− c2
13ε33+ c33e2

31+ c11c33ε33− 2c13e31e33

e2
33+ c33ε33

,14 =
e2

15

c44
+ ε11.

6. Results and discussion

Before the analysis of the fretting contact of piezoelectric materials, we first verify the effectiveness of
the present method. If we neglect the anisotropy and piezoelectric effect of materials, the present contact
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Figure 5. Comparison of the present results with the results obtained in [Zhou and Lee
2012]: (left) normal contact pressure; and (right) electric charge distributions.

problem can be easily reduced to the fretting contact of an isotropic elastic half-plane under a rigid
cylindrical punch. Figure 4 plots the normal contact pressure and tangential traction for the coupled
normal contact with η = 0.3, R = 10 mm and P = 2.24 ·103 N/m. The elastic half-plane is made of
aluminum with the shear modulus µ= 27.3 GPa and Poisson’s ratio ν = 0.3. The results in [Nowell et al.
1988] are also provided in Figure 4 for a direct comparison. It is observed that the present results agree
well with the results given in [Nowell et al. 1988].

If we neglect the friction, the present contact problem is reduced to the frictionless contact of piezo-
electric materials. Zhou and Lee [2012] obtained the exact solutions for the frictionless contact of a
piezoelectric half-plane under a rigid conducting cylindrical punch. Figure 5 presents the normal con-
tact pressure and electric charge distributions for the frictionless contact of piezoelectric materials with
R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m. The present results show good agreement with the
exact solutions.

In what follows, we will discuss the fretting contact behavior of a piezoelectric half-plane under a rigid
conducting cylindrical punch. The half-plane is made of piezoceramic PZT-4 whose electromechanical
properties are listed in Table 1 [Ke et al. 2008]. Unless otherwise stated, the resultant normal load,
resultant electric charge and radius of the punch are selected as P = 2000 N/m, 0 = 6 ·10−7 C/m and
R = 60 mm. Note that Su et al. [2015] studied the fretting contact of a piezoelectric half-plane under
an insulating punch. Their results are also given in Figures 8, 9, 10, 16 and 19 to show the effect of the
conductivity of the punch.

6.1. Normal loading. Figure 6 plots the effect of the friction coefficient η on the normal contact pressure
p(x), electric charge g(x) and tangential traction q(x). As can be expected, the electric charge is singular
at the edge of the contact region, whereas the normal contact pressure and tangential traction are quite
smooth. It is observed that p(x) and g(x) are symmetric, and q(x) is antisymmetric with respect to x = 0.
The friction coefficient has a slight effect on p(x) and g(x). However, it has a marked effect on q(x).
The peak value of q(x) occurs at the interface between the stick region and slip region, and increases
rapidly with the increase of η.
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Figure 6. The effect of the friction coefficient η on the (left) normal contact pressure,
(right) electric charge distributions and (bottom) tangential traction with R = 60 mm,
P = 2000 N/m and 0 = 6 ·10−7 C/m.

c11 (GPa) c13 (GPa) c33 (GPa) c44 (GPa)
139 74.3 115 25.6

e31 (C/m2) e33 (C/m2) e15 (C/m2)
−5.2 15.1 12.7

ε11 (10−10 C/Vm) ε33 (10−10 C/Vm)
64.61 56.2

Table 1. Piezoelectric material properties of PZT-4.

The effect of the friction coefficient η on the in-plane stress σxx0 and in-plane electric displacement
Dx0 is given in Figure 7. The in-plane stress σxx0 is symmetric with x = 0 and compressive at all regions.
The maximum value of σxx0 increases with the decrease of η, and occurs at the interface between the stick
region and slip region. The in-plane electric displacement Dx0 is insensitive to the friction coefficient. It
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Figure 7. The effect of the friction coefficient η on the (left) in-plane stress σxx0 and
(right) in-plane electric displacement Dx0 with R = 60 mm, P = 2000 N/m and 0 =
6 ·10−7 C/m.
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Figure 8. The relations between the stick region size and the friction coefficient with
R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m.

has the antisymmetric distribution with the positive value at the region x > a and negative value at the
region x < a. The maximum value of Dx0 occurs at the two edges of the contact region.

Figure 8 depicts the relation between the stick region size b/a and friction coefficient η for both
insulating and conducting punches. For both punches, the value of b/a increases with the increase of η,
and is close to the value of fully adhesive contact (i.e., b/a ≈ 1) for large η. It can be concluded that the
higher the friction coefficient is the less likely the slip occurs. It is found that the conducting punch has
a greater value of b/a than the insulating punch for a given η.Therefore, the conductivity of the punch
has a significant effect on the fretting contact behavior of piezoelectric materials.

Figure 9 presents the relation between the slope of the tangential displacement gradient C and the
friction coefficient η for both insulating and conducting punches. With the increase of η, the value of
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Figure 9. The relations between the slope of the tangential displacement gradient and
the friction coefficient with R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m.
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Figure 10. The effect of the resultant electric charge 0 on the tangential traction with
R = 60 mm, η = 0.3, P = 2000 N/m.

C decreases rapidly when η < 0.3 (especially for the insulating punch), and then changes slightly when
0.3≤ η ≤ 0.8. Moreover, the value C of the insulating punch is larger than that of the conducting punch
for a given η.

Figure 10 analyzes the effect of the resultant electric charge 0 on the tangential traction for both
insulating and conducting punches with η = 0.3. We found that the peak value of q(x) for the insulating
punch is greater than that of the conducting punch, but the size of the stick region is smaller than that of
the conducting punch. With the increase of 0, the value of q(x) decreases at the stick region and changes
slightly at the slip region. The results indicate that the insulation of the punch may lead to a concentration
of the tangential traction, which may cause a serious influence on the fretting contact damage.
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Figure 11. Normal contact pressure during monotonically increasing tangential loading
with R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.3, point A0 in
Figure 3; and (right) Q/ηP = 0.5, point A in Figure 3.
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Figure 12. Electric charge distribution during monotonically increasing tangential load-
ing with R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.3, point A0

in Figure 3; and (right) Q/ηP = 0.5, point A in Figure 3.

6.2. Tangential loading. Figures 11–13 discuss the effect of the friction coefficient η on the normal
contact pressure p(x), electric charge g(x) and tangential traction q(x) at the loading phase (points A0

and A in Figure 3), respectively. Because of the action of the tangential load, the normal contact pressure,
electric charge distributions and tangential traction are asymmetric during the loading phase. The friction
coefficient has a minor effect on the normal contact pressure and electric charge distributions, but it has
a significant effect on the tangential traction. It shows that the maximum value of the tangential traction
increases with the increase of the friction coefficient and appears at the interface of the stick/slip region.
Additionally, because the eccentricity e is very small, the normal contact pressure and electric charge
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Figure 13. Tangential traction during monotonically increasing tangential loading with
R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.3, point A0 in
Figure 3; and (right) Q/ηP = 0.5, point A in Figure 3.
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Figure 14. Tangential traction during cyclic tangential loading with R = 60 mm, P =
2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.3, point C in Figure 3; and (right)
Q/ηP = 0.0, point D in Figure 3.

at the tangential loading phase is very close to those at the normal loading phase. Hence, the normal
contact pressure and electric charge distributions will not be discussed in the following analysis.

Figures 14 and 15 analyze the effect of the friction coefficient η on the tangential traction at the
unloading and reverse loading phases (points C, D, E and F in Figure 3). At first, near the two edges of the
contact region, we see that the reverse slip occurs during the unloading phase; and the tangential traction
becomes q(x)=−ηp(x). Due to the effect of the loading history, the distribution of the tangential traction
becomes quite complex at the stick region, and a localized increase or decrease occurs at the interface
of the stick/slip region during the unloading phase. Comparing Figure 13 (right) to Figure 15 (right), we
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Figure 15. Tangential traction during cyclic tangential loading with R = 60 mm, P =
2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP =−0.3, point E in Figure 3; and (right)
Q/ηP =−0.5, point F in Figure 3.
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Figure 16. Tangential traction during monotonically increasing tangential loading with
R = 60 mm, P = 2000 N/m, η = 0.3 and Q/ηP = 0.3, point A0 in Figure 3.

can observe that the distribution of tangential traction is completely reversed when the tangential load is
completely reversed from Q = Qmax to Q =−Qmax.

Figure 16 shows the effect of the resultant electric charge 0 on the tangential traction q(x) during the
loading phase (points A0 in Figure 3) for both insulating and conducting punches. Similar to the normal
loading phase, the peak value of q(x) for the insulating punch is greater than that of the conducting
punch during the tangential loading phase. With the increase in 0, the value of q(x) has a slight change
at the stick region, and is almost unchanged at the slip region.

Figure 17 plots the effect of the friction coefficient η on the in-plane stress σxx0 when Q/ηP =±0.5.
For Q/ηP = 0.5, σxx0 is compressive at the region x < 0, but changes from compressive to tensile and
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Figure 17. The effect of the friction coefficient η on the in-plane stress σxx0 with R =
60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.5, point A in Figure 3;
and (right) Q/ηP =−0.5, point F in Figure 3.
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Figure 18. The effect of the friction coefficient η on the in-plane electric displacement
Dx0 with R = 60 mm, P = 2000 N/m and 0 = 6 ·10−7 C/m: (left) Q/ηP = 0.5, point A
in Figure 3; and (right) Q/ηP =−0.5, point F in Figure 3.

increases as η increases throughout most of the region x > 0. The behavior of σxx0 for Q/ηP =−0.5
is opposite of that for Q/ηP = 0.5. In particular, the maximum tensile stress σxx0 increases with the
increase of η, and occurs at x = a for Q/ηP = 0.5 and at x = −a for Q/ηP = −0.5. The maximum
tensile stress implies the possible site of the fretting crack initiation.

Figure 18 analyzes the effect of the friction coefficient η on the in-plane electric displacement Dx0

when Q/ηP =±0.5. During tangential loading phase, the in-plane electric displacement distribution is
quite similar to that of the normal loading phase. The friction coefficient η also has little effect on the
in-plane electric displacement.
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Figure 19. The effect of the resultant electric charge 0 on the (left) in-plane stress σxx0

and (right) in-plane electric displacement Dx0 with R = 60 mm, P = 2000 N/m, η = 0.3
and Q/ηP = 0.5, point A in Figure 3.

Figure 19 discusses the effect of the resultant electric charge 0 on the in-plane stress σxx0 and the
in-plane electric displacement Dx0 for both insulating and conducting punches with Q/ηP = 0.5 and
η = 0.3. We can observe that the in-plane stress distribution of the insulating punch is similar to that
of the conducting punch. The maximum tensile stress of the insulating punch is greater than that of the
conducting punch. However, the in-plane electric displacement distribution is totally different than that
of the conducting punch. The in-plane electric displacement is singular at the edge of the contact region
for the conducting punch whereas it is quite smooth for the insulating punch. The change of 0 has a
slight effect on both σxx0 and Dx0.

7. Conclusions

In this paper, the two-dimensional fretting contact between a homogeneous transversely isotropic piezo-
electric half-plane and a rigid conducting cylindrical punch was considered. The two dissimilar bodies
are first acted upon by a monotonically increasing normal load, and then by a cyclic tangential load.
The fretting contact problem is reduced to a set of coupled Cauchy singular integral equations which
are solved by using an iterative method to determine the contact tractions, electric charge and unknown
stick/slip region. It was found that:

(1) The electric charge is singular at the edge of the contact region whereas the normal contact pressure
and tangential traction is quite smooth.

(2) The friction coefficient has a slight effect on the normal contact pressure and electric charge. The
peak value of the tangential traction occurs at the interface between the stick region and slip region,
and increases rapidly with the increase of the friction coefficient.

(3) With the increase of the applied electric charge, the value of the tangential traction decreases at the
stick region and changes slightly at the slip region.
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(4) The peak values of tangential traction for the insulating punch is greater than that of the conducting
punch, but the size of the stick region is smaller than that of the conducting punch.

(5) The maximum values of the in-plane tensile stress and the in-plane electric displacement occur at
the edges of the contact region during the tangential loading phase, which implies a possible site of
electromechanical damage.
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Appendix

The parameters fi j may be written in the form

fi j = s Fi j , i, j = 1, 2, 3, (A.1)

where

[F]=

 1 1 1
a1 a2 a3

b1 b2 b3

c13is+ c33a1n1+ e33b1n1 c13is+ c33a2n2+ e33b2n2 c13is+ c33a3n3+ e33b3n3

c44n1+ c44isa1+ e15isb1 c44n2+ c44isa2+ e15isb2 c44n3+ c44isa3+ e15isb3

e31is+ e33a1n1− ε33b1n1 e31is+ e33a2n2− ε33b2n2 e31is+ e33a3n3− ε33b3n3

−1

,

and [ ]−1 is the inverse matrix.
For the piezoceramic PZT-4 half-plane, the parameters fi j can be written as

f11 =−7.5241 ·10−12i, f12 = 1.8396 ·10−11, f13 = 1.7328 ·10−2i,

f21 = 1.7728 ·10−11, f22 = 7.4241 ·10−12i, f23 = 2.2085 ·10−2,

f31 = 2.2085 ·10−2, f32 =−1.7328 ·10−2i, f33 =−8.8307 ·107.

(A.2)
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