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THE HEMISPHERICAL NANOPIT AT THE PLANE BOUNDARY
OF AN ELASTIC HALF-SPACE SUBJECTED TO

STATICALLY EQUIVALENT SHEAR TRACTIONS

CHANGWEN MI, ZHONGWEI SUN AND DEMITRIS KOURIS

The elastic deformation of a semi-infinite substrate containing a nanosized hemispherical pit on its plane
boundary crucially relies on the mechanical response of the pit surface. In this paper, we develop a mi-
cromechanical model that couples Gurtin and Murdoch’s model of surface mechanics with the classical
theory of elasticity, and we explicitly evaluate the stress concentration, displacement and stress distribu-
tion resulting from a family of statically equivalent shear tractions applied on the pit surface. We found
that two intrinsic dimensionless parameters, both constructed from the characteristic length and material
properties, govern the highly localized elastic field. Both the magnitude and sign of these parameters are
of great importance. Negative values tend to increase stress concentrations, whereas positive ones have
the opposite effect. We further highlight the consequences of our analysis by comparing a number of
shear tractions that correspond to the same torque. The comparison provides the means of evaluating the
degree of difference in elastic fields in the immediate vicinity of statically equivalent force distributions.

1. Introduction

The discontinuities in geometry and load distribution are primary causes of stress concentrations that
affect the otherwise smooth stress variations in elastic solids. The presence of geometric defects and
concentrated loads typically results in high stresses that are multiple times greater than their nominal
values in small and localized regions [Barber 2010]. Experimental methods and advanced theoretical and
numerical analysis are means of determining stress concentrations. Many results of practical engineering
importance can be found in the literature [Young and Budynas 2002].

Nevertheless, recent advancements in surface/interface mechanics call for a reevaluation of stress
concentrations near geometric defects at the nanoscale [Wang et al. 2011]. It is a fact that the area-
to-volume ratio of an elastic element is inversely proportional to its characteristic length [Sharma et al.
2003; Mi and Kouris 2014b]. The order of magnitude of this ratio can be as large as nine as the relevant
characteristic length goes from the macroscopic level down to the nanoscale. At such a small length
scale, the contribution of surface strain energy becomes comparable or even dominant to that of its
bulk counterpart in the total strain energy stored in the system [Streitz et al. 1994; Wang et al. 2011].
The linearly elastic model specifically tailored for a coherent surface/interface proposed by Gurtin and
Murdoch [1975; 1978] has gained major popularity in a continuous effort to couple surface effects with
the classical theory of elasticity [Sharma et al. 2003; Mi and Kouris 2006; 2014a; 2014b; He and Li
2006; Kushch et al. 2013; Steigmann and Ogden 1999]. Closed-form, semianalytical and numerical
solutions have all been developed to investigate the consequences of material surface/interface on both
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the overall effective modulus and the localized elastic field [Wang et al. 2011]. Among these works,
stress concentration near geometric defects at the nanoscale is one of the most important foci [He and Li
2006; Mi and Kouris 2013].

Theoretical analysis performed within the context of Gurtin–Murdoch’s surface mechanics model
and the classical theory of elasticity shows that the introduction of surface effects inevitably calls for
a modification to the solution predicted by the classical theory of elasticity alone. The net effect is
dependent on the type of surface model and the material properties describing the mechanical behavior
of a solid surface. For example, for a spherical nanocavity embedded in an infinite or semi-infinite elastic,
substrate positive surface material parameters tend to alleviate the stress concentration effect, in the case
of a metal surface [He and Li 2006; Mi and Kouris 2013; 2015]. This argument is supported by molecular
dynamics simulations of a spherical cavity inside an aluminum substrate axially loaded at a high strain
rate [Mi et al. 2011]. It can also be expected that the inclusion of a surface mechanics model worsens
the stress concentration, provided that the sign of surface materials properties is reversed.

While previous studies focus on the stress concentration behavior near a nanoscale geometric defect
subjected merely to nontorsional loads, the present work is directed towards the investigation of stress
concentrations under torsional deformation modes. When a twisting moment is transmitted through a
rigid-sphere embedded in an elastic medium, shear tractions develop on the surface of the rigid inclusion
[Hill 1966; Miyao et al. 1975]. In geotechnical engineering, both the static and dynamic behaviors of
rigid inclusions provide practical means of exploring the response of infrastructure foundations resting in
soil environments [Kausel 2010; Osman and Rouainia 2012]. Rigid inclusions also find applications in
offshore engineering, where vessels and floating structures are supported by anchors of different shapes.
In large scale systems, attention is typically paid to the dynamic propagation of elastic waves generated
by programming the motion of a distant rigid sphere or by applying dynamic loads on the surface of a
distant void. Stress distributions in the vicinity of the rigid sphere or cavity are another concern [Eringen
1957]. Torsion is one of the most important loading conditions considered in the literature [Reissner and
Sagoci 1944; Williams 1971; Chadwick and Johnson 1971; Zakout et al. 1999].

The behavior of these solutions due to a rigid sphere or void at the nanoscale is intricate and requires
further consideration. These problems naturally arise in nanoelectromechanical systems, particularly in
those systems involving structural elements made from soft materials. Since both the bulk and surface
material properties of soft materials are several orders of magnitude lower than those of metals [Gere and
Goodno 2009; Markidou et al. 2005; Białopiotrowicz and Jańczuk 2002; Weijs et al. 2014], particles of
secondary phases easily serve as rigid inclusions. In this case, torsional loading naturally kicks in, due
to the strong resistance of rigid particles to both volume and shape changes. As an early attempt to reach
this goal, here we consider a nanosized hemispherical pit at the plane boundary of an elastic half-space
subjected to a family of statically equivalent shear tractions.

The static equivalence means that the first moment of any traction mode with respect to the z-axis
reduces to the same torque. The effects of the pit surface were modeled by the coherent surface model of
Gurtin and Murdoch. This model consists of three components: a definition of surface strain, a surface
constitutive relation, and a force-balance law, as detailed in the original article [Gurtin and Murdoch
1978] as well as in the main body of the present paper. The method of displacement potential renders us an
efficient solution strategy for a three-dimensional torsional problem like the one we are examining [Barber
2010]. A single Boussinesq displacement potential function represented by an infinite series is sufficient
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to yield the required solution that satisfies a given shear traction boundary condition. The obtained
solution converges rapidly as a function of the number of terms included in the series and is available in
closed-form for certain forms of shear tractions. This approach is capable of generating displacements
and stresses at any point in the pitted half-space, including the stress concentration conditions at the pit
surface.

We show that the resultant elastic field is extremely localized and is dependent upon to two key intrinsic
dimensionless parameters that are constructed from the pit radius, shear modulus of the half-space, and
the residual surface tension and shear modulus of the pit surface. The surface material parameter that
represents the dilatational deformation of an area element turns out to be irrelevant to twisting deforma-
tion. Depending on both the magnitude and sign of the two intrinsic dimensionless parameters, the pit
surface model could alleviate or aggravate the stress concentration and distribution to a certain extent.
Dimension analysis suggests that the pit surface effects are much more significant for a soft solid than
for a metal material. In addition, by comparing different modes of shear tractions resulting in the exact
same torque, the developed solution provided us a means of examining the degree of difference in elastic
stresses near statically equivalent force distributions.

In Section 2, we derive a micromechanical model to determine the displacements and stresses in the
half-space, which we use to derive both closed-form and semianalytical solutions in Section 3. The
causes and consequences of these solutions will also be discussed in detail in this section. Finally, in
Section 4, we discuss a number of conclusions drawn from the theoretical and numerical analysis.

2. Method of solution

We consider a hemispherical pit of radius a, centered at the free surface of a semi-infinite elastic solid,
as shown in Figure 1. The center of the pit was chosen as the common origin for the cylindrical (r, θ, z)
and spherical (R, ϕ, θ ) coordinates. The elastic half-space is modeled as an isotropic and linearly elastic
material with shear modulus G and Poisson’s ratio ν. The external loading is modeled by a family
of statically equivalent shear tractions applied on the hemispherical pit surface. The net moment of
these shear tractions with respect to the symmetry axis z corresponds to the exact same torque T . The
mechanical property of the pit surface is characterized by the residual surface stress τ0 and two surface
Lamé constants λ0 and µ0.

The method of displacement potentials was adopted to tackle the present problem. For the case of
axial symmetric torsion in the absence of body forces, a single harmonic function (e.g., λ3) is sufficient
to represent the solution. This harmonic function is part of the well known Boussinesq displacement
potentials that was first proposed by Boussinesq in his memoirs in 1888, and later quoted by Todhunter
and Pearson [2010]. The harmonic function λ3 automatically satisfies the elastostatic Navier’s equation

∇
2u+

1
1− 2ν

∇(∇ · u)= 0, (1)

via the representation 2Gu = ∇ × (kλ3), where u is the displacement vector and k denotes a unit
vector oriented in the z-direction. The displacement potential λ3 could be related to the more familiar
Papkovich–Neuber solution to the equilibrium equation of displacements (1) via [Barber 2010]

φ =−
1

4(1− ν)
∇ × (kλ3). (2)
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Figure 1. Geometry of the problem.

In terms of spherical coordinates, the displacements resulting from the single torsional potential λ3

read

2Gu R =
1
R
∂λ3

∂θ
, 2Guϕ =

cotϕ
R

∂λ3

∂θ
, 2Guθ =−

cosϕ
R

∂λ3

∂ϕ
− sinϕ

∂λ3

∂R
. (3)

The change of variable µ= cos[ϕ] transforms the displacement components into

2Gu R =
1
R
∂λ3

∂θ
, 2Guϕ =

µ

R
√

1−µ2

∂λ3

∂θ
, 2Guθ =

√
1−µ2

(
µ

R
∂λ3

∂µ
−
∂λ3

∂R

)
. (4)

Recall that under the condition of axial symmetry, all derivatives with respect to θ vanish and hence

u R = uϕ = 0, 2Guθ =
√

1−µ2

(
µ

R
∂λ3

∂µ
−
∂λ3

∂R

)
. (5)

The corresponding stress components are then given by

σR R = σϕϕ = σθθ = σRϕ = 0,

σRθ√
1−µ2

=
1

2R
∂λ3

∂R
−

1
2
∂2λ3

∂R2 +
1

2R2(1−µ2)

∂2λ3

∂θ2 −
µ

R2

∂λ3

∂µ
+
µ

2R
∂2λ3

∂R∂µ
,

σϕθ =
µ

R
∂λ3

∂R
+
µ

2
∂2λ3

∂R2 −
(1+µ2)

2R2

∂λ3

∂µ
+
(1−µ2)

2R
∂2λ3

∂R∂µ
.

(6)

Since Pn[cosϕ]/Rn+1, where Pn is the Legendre polynomial with the argument µ= cos[ϕ], is a spher-
ical harmonic function for an arbitrary integer n [Arfken and Weber 2013], a more general representation
can be written in the form

λ3 = G
∞∑

n=0

An
a2n+3

R2n+1 P2n[µ], (7)
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where An stands for the unknown coefficients to be determined from the boundary conditions. The shear
modulus and power function of the pit radius were introduced to make the unknown coefficients dimen-
sionless. It should also be noted that in this representation only even orders of Legendre polynomials
were incorporated in order to clear tractions at the straight boundary of the pitted half-space.

Upon substituting the potential function (7) into (5) and (6), the nonzero displacement and stress
components become

2Guθ = G
√

1−µ2
∞∑

n=0

{
An

a2n+3

R2n+2

(
(2n+ 1)P2n[µ] +µP ′2n[µ]

)}
, (8)

σRθ =−
1
2 G
√

1−µ2
∞∑

n=0

{
An

a2n+3

R2n+3 (2n+ 3)
(
(2n+ 1)P2n[µ] +µP ′2n[µ]

)}
,

σϕθ =−
(1−µ2)

2
G
∞∑

n=1

An
a2n+3

R2n+3

{
(2n+ 2)P ′2n[µ] +µP ′′2n[µ]

}
.

(9)

The above expressions can be simplified to

2Guθ =−G
∞∑

n=0

{
An

a2n+3

R2n+2 P1
2n+1[µ]

}
, (10)

σRθ =
1
2 G

∞∑
n=0

{
An

a2n+3

R2n+3 (2n+ 3)P1
2n+1[µ]

}
, σϕθ =−

1
2 G

∞∑
n=1

{
An

a2n+3

R2n+3 P2
2n+1[µ]

}
. (11)

by the introduction of the recurrence relation of Legendre polynomials [Arfken and Weber 2013]

P ′2n+1[µ] = (2n+ 1)P2n[µ] +µP ′2n[µ], (12)

and the associated Legendre function of the first kind [loc. cit.]

Pm
n [µ] = (−1)m(1−µ2)m/2

dm

dµm Pn[µ]. (13)

At the straight boundary of the half-space, as illustrated by (6) and (11),

σϕR = σϕϕ = 0, σϕθ =−
1
2

∞∑
n=1

{
An

a2n+3

R2n+3 P2
2n+1[0]

}
. (14)

The parity relation satisfied by the associated Legendre functions exemplifies that Pm
n [µ] is an odd

function provided that n+m is an odd number [Arfken and Weber 2013]. As a result, the only nonzero
stress component σϕθ also disappears on the straight boundary of the half-space µ= 0.

As one of the most adopted models of surface mechanics, Gurtin and Murdoch [1975] chose to treat
a solid surface as an elastic layer of material boundary whose thickness is vanishingly small. Within
the context of their theory, the fundamental equations that govern the mechanical behavior of the pit
surface (i.e., the surface version of the displacement-strain relation, surface constitutive law and force
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equilibrium condition) can be formulated as [Gurtin and Murdoch 1978]

Eαβ = 1
2((∇Su)αβ + (∇Su)βα), (15)

6αβ = τ0δαβ + 2(µ0− τ0)Eαβ + (λ0+ τ0)Eγ γ δαβ + τ0〈∇Su〉αβ, 63α = τ0〈∇Su〉3α, (16)

σi j n j = (∇S ·6)i + T (n)
i , (17)

where E stands for the 2× 2 surface strain tensor defined on the hemispherical pit surface with unit
normal vector n=−eR . Its four components are the same as the corresponding ones in the bulk strain
tensor when confined to the pit surface. In contrast, the surface stress tensor 6 is defined as a 3× 2
superficial tensor, i.e., only those three of its nine components applied perpendicular to the pit surface
were not taken into account [Mogilevskaya et al. 2010]. As a result, the surface stress tensor is not a
symmetric one, a well known property possessed by its bulk counterpart. To completely describe the
mechanical response of the pit surface, three surface moduli (τ0, λ0 and µ0) are required.

Particularly, the first term in the right hand side of the first equation of (16) states that the two normal
components 611 and 622 do not vanish in the absence of external loads. Namely, this term is deformation-
independent. Nonetheless, if we decompose the work done by the surface stress tensor against the surface
strain field, the contribution due to this term will only enter into the resultant area component but not the
distorsional one. Consequently, this deformation-independent term is not compatible with the torsional
deformation considered in the present work. Its effects should be studied in terms of loading conditions
that result in area/volume changes [He and Li 2006; Mogilevskaya et al. 2008; Mi and Kouris 2013].

It is also worth mentioning that the net traction at the pit surface does not vanish — in contrast, it
must be balanced by the surface divergence of the surface stress. Equation (17) directly bridges the gap
between surface mechanics and the classical bulk elasticity.

The above unique properties of a solid material surface serve as a fundamental tool for understanding
the various counter-classical phenomena that have been observed in nanoscale materials and structures.
The finite curvature of radius a of the hemispherical pit surface suggests that its surface mechanics effects
are of primary importance when compared to those of the half-space straight boundary. As a result, we
have chosen not to account for the latter in the present work.

In (15) and (16), the explicit expressions of the surface gradient of displacements should be self-
explanatory in Cartesian coordinates. In spherical coordinates, however, unit coordinate vectors (eR, eϕ, eθ )
are themselves functions of the angular coordinates (ϕ, θ). Consequently, the rate of change of unit
vectors with respect to spherical coordinate variables must be also considered. Based on the definition of
surface strain, the surface gradient of displacements can simply be extracted from the bulk displacement
gradient projected onto the pit surface

(∇Su)ϕϕ =
1
R

(
u R +

∂uϕ
∂ϕ

)
, (∇Su)ϕθ =

1
R

(
1

sinϕ
∂uϕ
∂θ
−

cosϕ
sinϕ

uθ

)
,

(∇Su)θϕ =
1
R
∂uθ
∂ϕ

, (∇Su)θθ =
1

R sinϕ

(
∂uθ
∂θ
+ cosϕuϕ + sinϕu R

)
,

(∇Su)Rϕ =
1
R

(
∂u R

∂ϕ
− uϕ

)
, (∇Su)Rθ =

1
R

(
1

sinϕ
∂u R

∂θ
− uθ

)
.

(18)
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Plugging the above expressions into (15) produces the surface strain components

Eϕϕ =
u R

R
+

1
R
∂uϕ
∂ϕ

, Eθθ =
u R

R
+

1
R sinϕ

∂uθ
∂θ
+

cotϕuϕ
R

,

Eϕθ = 1
2

(
1
R
∂uθ
∂ϕ
−

cotϕuθ
R
+

1
R sinϕ

∂uϕ
∂θ

)
.

(19)

By the use of (18) and (19) the surface constitutive law (16) can be reformulated directly in terms of
surface displacements

6ϕϕ =
1
R

{
(λ0+ 2µ0)

(
u R +

∂uϕ
∂ϕ

)
+ (λ0+ τ0)

(
u R +

cosϕ
sinϕ

uϕ +
1

sinϕ
∂uθ
∂θ

)}
,

6ϕθ =
1
R

{
µ0

(
1

sinϕ
∂uϕ
∂θ
−

cosϕ
sinϕ

uθ

)
+ (µ0− τ0)

∂uθ
∂ϕ

}
,

6θϕ =
1
R

{
µ0
∂uθ
∂ϕ
+ (µ0− τ0)

(
1

sinϕ
∂uϕ
∂θ
−

cosϕ
sinϕ

uθ

)}
,

6θθ =
1
R

{
(λ0+ 2µ0)

(
u R +

cosϕ
sinϕ

uϕ +
1

sinϕ
∂uθ
∂θ

)
+ (λ0+ τ0)

(
u R +

∂uϕ
∂ϕ

)}
,

6Rϕ =
τ0

R

{
∂u R

∂ϕ
− uϕ

}
,

6Rθ =
τ0

R

{
1

sinϕ
∂u R

∂θ
− uθ

}
.

(20)

The transform of the force balance condition (17) is less straightforward. Following Gurtin et al.
[1998], explicit expressions of its three component equations can be developed with the help of a constant
vector. In the present analysis, we have derived these expressions by first evaluating the surface gradient
of the superficial surface stress tensor and subsequently contracting the second and third base vectors of
the resultant third-order tensor. It should be noted that the surface gradient operator should be applied
on the surface stress tensor from right to left [Malvern 1969], based on the argument in [Gurtin and
Murdoch 1978]. Thus,

σR RnR =
1
R

{
1

sinϕ
∂6Rθ

∂θ
+
∂6Rϕ

∂ϕ
+ cotϕ6Rϕ − (6θθ +6ϕϕ)

}
+ TR,

σRϕnR =
1
R

{
1

sinϕ
∂6ϕθ

∂θ
+
∂6ϕϕ

∂ϕ
+ cotϕ(6ϕϕ −6θθ )+6Rϕ

}
+ Tϕ,

σRθnR =
1
R

{
1

sinϕ
∂6θθ

∂θ
+
∂6θϕ

∂ϕ
+ cotϕ(6θϕ +6ϕθ )+6Rθ

}
+ Tθ ,

(21)

where {TR, Tϕ, Tθ } denote the surface traction vector due to external loads. The above boundary condi-
tions are valid for a general spherical free surface with unit normal vector n=±eR . To proceed further,
we could substitute (20) into (21) in order to develop general expressions of the surface divergence
of the surface stresses in terms of displacements. It is these three boundary equations that couple the
mechanics of a spherical free surface into the classical theory of elasticity for the abutting bulk solid.
The development of their explicit expressions are straightforward yet quite tedious. Instead, we provide
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a simplified version that is particularly tailored for the present axial torsion condition (TR = Tϕ = 0). In
view of (5), it becomes obvious that only the last equation of (21) is nontrivial,

−σRθ = (∇S ·6)θ + Tθ . (22)

In this condition, Tθ now represents the distributed shear traction due to the external torque. The combi-
nation of equations (20) and (21) results in

(∇S ·6)θ =−
2τ0

R2 uθ +
µ0

R2

(
∂2uθ
∂ϕ2 +

cosϕ
sinϕ

∂uθ
∂ϕ
−

cos2ϕ

sin2ϕ
uθ + uθ

)
. (23)

Furthermore, the change of the polar angular variable ϕ to µ= cos[ϕ] transforms the above equation to

(∇S ·6)θ =−
2τ0

R2 uθ +
µ0

R2

(
(1−µ2)

∂2uθ
∂µ2 − 2µ

∂uθ
∂µ
+

1− 2µ2

1−µ2 uθ

)
. (24)

Substituting the hoop displacement uθ from (5) into the above relation and noting the harmonic property
of the displacement potential λ3,

∇
2λ3 =

∂2λ3

∂R2 +
2
R
∂λ3

∂R
+
(1−µ2)

R2

∂2λ3

∂µ2 −
2µ
R2

∂λ3

∂µ
. (25)

We may recast (24) in the form

(∇S ·6)θ =
τ0

2G R
2
√

1−µ2

R2

{
R
∂λ3

∂R
−µ

∂λ3

∂µ

}
−

µ0

2G R

√
1−µ2

R2

{
2R
∂λ3

∂R
− 2R2 ∂

2λ3

∂R2 − R3 ∂
3λ3

∂R3 −µ

(
2
∂λ3

∂µ
− R2 ∂3λ3

∂R2∂µ

)}
. (26)

In view of the proposed form of λ3 from (7) we arrive at

(∇S ·6)θ =−G
√

1−µ2
∞∑

n=0

{
An
(2n(2n+ 3)µ0+ 2τ0)

2aG
((2n+ 1)P2n[µ] +µP ′2n[µ])

}
. (27)

Eventually, by the use of (12) and (13) the surface divergence of the surface stress tensor is given by

(∇S ·6)θ =
G
2

∞∑
n=0

{
An(2n(2n+ 3)µ′0+ 2τ ′0)P

1
2n+1[µ]

}
, (28)

where µ′0 = µ0/aG and τ ′0 = τ0/aG are two intrinsic dimensionless parameters that characterize the
strength of the hemispherical pit surface. It is worth noting that the other surface Lamé constant, λ0,
turns out to be irrelevant to the present axial-symmetric torsion problem.

Next, we substitute the shear stress σRθ from (11) and the surface divergence component (∇S ·6)θ
from (28) into the nonclassical boundary condition (22)

1
2 G

∞∑
n=0

An((2n+ 3)(2nµ′0+ 1)+ 2τ ′0)P
1
2n+1[µ] = −Tθ [µ]. (29)
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Since for each m, the associated Legendre functions Pm
n of different n are orthogonal and form a complete

basis, thus it is possible to perform the series expansion

Tθ [µ] =
∞∑

n=0

fn P1
2n+1[µ], (30)

where the coefficients fn are found by multiplying the series by P1
2m+1[µ] and integrating term by term

in the interval µ ∈ [0, 1]. Using the orthogonality property of the associated Legendre functions∫ 1

−1
P1

2n+1[µ]P
1
2m+1[µ] dµ=

2(2n+ 1)(2n+ 2)
4n+ 3

δnm, (31)

and the parity relation

P1
2n+1[−µ] = P1

2n+1[µ], (32)

we obtain ∫ 1

0
P1

2n+1[µ]P
1
2m+1[µ] dµ=

(2n+ 1)(2n+ 2)
4n+ 3

δnm . (33)

As a result, it is derived that

fn =
4n+ 3

(2n+ 1)(2n+ 2)

∫ 1

0
Tθ [µ]P1

2n+1[µ] dµ. (34)

A simple comparison of (29) and (30) implies that the unknown coefficients An can be connected to
the expansion coefficients fn via

An =−
2 fn

G{(2n+ 3)(2nµ′0+ 1)+ 2τ ′0}
. (35)

Upon successful derivation of the unknown dimensionless coefficients An , the azimuthal displacement
(10) and two shear stress components (11) can be evaluated as a function of the shear traction distribution
Tθ and material parameters (G, ν, µ′0 and τ ′0).

3. Results and discussion

Clearly, the determination of the shear traction distribution Tθ from the applied net torque T is an indeter-
minate problem. Different distributions might result in the same torque. Nevertheless, force equilibrium
requires that

T = 2πa3
∫ 1

0
Tθ [µ]

√
1−µ2 dµ. (36)

For a perfect elastic half-space without surface pits, a concentrated torque applied at the origin pro-
duces a shear stress distribution that is proportional to the sinϕ [Hill 1966; Miyao et al. 1975]. Thus, we
may assume

Tθ [µ] = T0

√
1−µ2, (37)
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Figure 2. Distributions of five example shear tractions that result in the same torque
load at the hemispherical pit surface (µ= cosϕ).

where T0 is the maximum shear traction evaluated at µ= cos[π/2] = 0. For the shear traction distribution
(37), an expression that relates the maximum shear traction and the applied torque can be determined as

T0 =
3T

4πa3 . (38)

For the general case of a pitted elastic half-space, the shear traction at the pit surface is treated as a
distribution of the applied load and thus may have a different form. It was found that for an arbitrary
nonnegative integer b, the shear traction distribution

Tθ [µ] = (T0/3)(3+ 4b+ b2)µb
√

1−µ2, (39)

will result in the exact same torque as that of the fundamental distribution form (37). A few example
distributions are

Tθ [µ] =



T0
√

1−µ2, b = 0,

5T0µ
2
√

1−µ2, b = 2,

16T0µ
5
√

1−µ2, b = 5,

33T0µ
8
√

1−µ2, b = 8,

56T0µ
11
√

1−µ2, b = 11.

(40)

For comparison purposes, the distributions of these five shear tractions are shown in Figure 2. It can be
seen that the maximum value of the traction function transfers from the pit rim toward the hemispherical
pit pole as b increases.

Replacing Tθ [µ] under the integral sign in (34) with the proposed shear traction distribution (39) and
noticing the definite integral [Gradshteyn and Ryzhik 2014]∫ 1

0
µb(1−µ2)

m/2
Pνm
[µ] dµ=

(−1)m2−m−10
[1

2 +
1
2 b
]
0
[
1+ 1

2 b
]
0[1+m+ ν]

0[1−m+ ν]0
[
1+ 1

2 b+ 1
2 m− 1

2ν
]
0
[3

2 +
1
2 b+ 1

2 m+ 1
2ν
] , (41)
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it can be derived that

fn =−
T0

12
(3+ 4b+ b2)(4n+ 3)
(2n+ 1)(2n+ 2)

0
[1

2 +
1
2 b
]
0
[
1+ 1

2 b
]
0[2n+ 3]

0[2n+ 1]0
[
1+ 1

2 b− n
]
0
[ 5

2 +
1
2 b+ n

] , (42)

where 0[z] = (z− 1)0[z− 1] is referred to as the Gamma-factorial function [Arfken and Weber 2013].
The interesting result 0[1/2] =

√
π becomes very useful in the subsequent evaluation of the expansion

coefficients fn in the Legendre series (30).
In view of (10), (11), (35) and (42), the semianalytical series representations of the solution have been

successfully developed for the present problem. Prior to exploring solutions that must be represented by
the Legendre series, let us examine a few simplified cases for which closed-form solutions are available.
We first consider the fundamental distribution of shear tractions (37). We observe that for this case
Tθ [µ]=−T0 P1

1 [µ] and thus only the zeroth mode f0=−T0 contributes to the series expansion. Evidently,
(35) becomes

A0 =−
2 f0

G(2τ ′0+ 3)
=

2T0

G(2τ ′0+ 3)
. (43)

A closed-form solution is now developed for the fundamental distribution of shear tractions

2Guθ =−
2T0

(2τ ′0+ 3)
a3

R2 P1
1 [µ], σRθ =

3T0

(2τ ′0+ 3)
a3

R3 P1
1 [µ], σϕθ = 0. (44)

Note that in this special case the stress component σϕθ vanishes.
The next case we examine is for b = 2 in (40). It is not hard to find that only two terms in the series

expansion (30) are required since

Tθ [µ] = 5T0µ
2
√

1−µ2 = f0 P1
1 [µ] + f1 P1

3 [µ], (45)

where the two coefficients required in the expansion are given by f0 = −T0 and f1 = −2T0/3. As a
result, (35) results in

A0 =
2T0

G(2τ ′0+ 3)
, A1 =

4T0

3G(10µ′0+ 2τ ′0+ 5)
. (46)

Similar to the case of fundamental traction distribution, closed-form displacements and stresses can now
be identified as

2Guθ =−
2T0

(2τ ′0+ 3)
a3

R2 P1
1 [µ] −

4T0

3(10µ′0+ 2τ ′0+ 5)
a5

R4 P1
3 [µ],

σRθ =
3T0

(2τ ′0+ 3)
a3

R3 P1
1 [µ] +

10T0

3(10µ′0+ 2τ ′0+ 5)
a5

R5 P1
3 [µ],

σϕθ =−
2T0

3(10µ′0+ 2τ ′0+ 5)
a5

R5 P2
3 [µ].

(47)

The availability of closed-form solutions is not an accident. As a matter of fact, the expansion coeffi-
cients fn are truncated by n < 1+ b/2 for a nonnegative even integer b since 0[z] has simple poles at
z = 0,−1,−2,−3,−4, . . . . Such behavior is solely due to 0[1+ b/2− n] in the denominator of (42).
Thus, for a b even and equal to 2s, where s is a positive integer, the shear traction distribution can be
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represented by a truncated Legendre series expansion. Only the first s + 1 terms are required in (30),
e.g., s = 4 for the fourth case (b = 8) in (40). In this case, the closed-form displacements and stresses
are given by

2Guθ =−
2T0

(2τ ′0+ 3)
a3

R2 P1
1 [µ] −

112T0

39(10µ′0+ 2τ ′0+ 5)
a5

R4 P1
3 [µ]

−
352T0

195(28µ′0+ 2τ ′0+ 7)
a7

R6 P1
5 [µ] −

128T0

221(54µ′0+ 2τ ′0+ 9)
a9

R8 P1
7 [µ]

−
256T0

3315(88µ′0+ 2τ ′0+ 11)
a11

R10 P1
9 [µ],

σRθ =
3T0

(2τ ′0+ 3)
a3

R3 P1
1 [µ] +

280T0

39(10µ′0+ 2τ ′0+ 5)
a5

R5 P1
3 [µ]

+
1232T0

195(28µ′0+ 2τ ′0+ 7)
a7

R7 P1
5 [µ] +

576T0

221(54µ′0+ 2τ ′0+ 9)
a9

R9 P1
7 [µ]

+
1408T0

3315(88µ′0+ 2τ ′0+ 11)
a11

R11 P1
9 [µ],

σϕθ =−
56T0

39(10µ′0+ 2τ ′0+ 5)
a5

R5 P2
3 [µ] −

176T0

195(28µ′0+ 2τ ′0+ 7)
a7

R7 P2
5 [µ]

−
64T0

221(54µ′0+ 2τ ′0+ 9)
a9

R9 P2
7 [µ] −

128T0

3315(88µ′0+ 2τ ′0+ 11)
a11

R11 P2
9 [µ],

(48)

It is worth noting that if b is odd, the coefficients of the Legendre series expansion fn are well defined
for every n. Fortunately, the coefficient of expansion fn behaves as a strong decaying function of n and
thus it is possible to truncate the series with a desired accuracy.

In the remainder of this section, parametric study was employed to facilitate the investigation of
surface effects. In view of (35), (44), (47) and (48) it can be seen that the influence of surface mechanics
becomes important when τ ′0 and µ′0 approach the order of magnitudes of unity and one tenth, respectively.
For smaller magnitudes of τ ′0 and µ′0, the incorporation of surface mechanics introduces inappreciable
modifications to the classical solution. The magnitude of both the residual surface stress τ0 and the
surface shear modulus µ0 of typical crystalline metal materials is 1 N/m [Mi et al. 2008] whereas that of
their bulk modulus is ∼ 1010 Pa [Gere and Goodno 2009]. As a result, the order of magnitude of the pit
radius a must be nearly as large as the subnanoscale to cause noticeable surface effects. This is because
only the deformation-dependent component of the surface constitutive law (17) can be accommodated
in a torsion problem. This scenario is in sharp contrast with that of the dilatational deformation mode in
which significant surface influence can still be observed at much larger characteristic length scales [He
and Li 2006; Mi and Kouris 2014b].

Nevertheless, the story could be quite different for soft materials in which the relative magnitude
between surface elastic parameters and bulk shear modulus increases remarkably. As intuition could
expect, soft materials possess much smaller bulk shear modulus in magnitude. For example, the shear
modulus of rubber falls in the interval of 0.2−1 MPa [Gere and Goodno 2009]. More strikingly, the shear
modulus of gelatin is in the order of tens of kPa (∼ 104 N/m2). Specimens made by these soft materials



THE NANOPIT AT THE PLANE BOUNDARY OF AN ELASTIC HALF-SPACE 607

sh
ea

rs
tr

es
s
σ

R
θ
/

T 0

polar angle (◦)

b = 0
b = 2
b = 5
b = 8
b = 11

Figure 3. The distribution of normalized shear stress (σRθ/T0) as a function of the polar
angle (ϕ) at the hemispherical pit surface (R = a). Numerical values of the two intrinsic
dimensionless parameters are taken as µ′0 = τ

′

0 = 1.

stay fairly linearly elastic for strains below 10% of such a level of shear modulus, while the Young’s
modulus ranges from a few kPa to a few hundred kPa [Markidou et al. 2005]. The shear modulus
of gelatin gels fluctuates with a few factors including concentration, preparation procedure of testing
samples and temperatures at which the measurement was performed.

Little work has been done on the estimation of the surface mechanical properties for soft materials
compared to that of crystalline systems. Bialopiotrowicz and Janczuk [2002] managed to employ the
method of contact angle measurement to investigate the wetting characteristics of gelatin films and a
number of liquids. For those probe liquids with known energy components, the surface free energy of
a gelatin film is able to be determined. Experimental measurements demonstrate that the surface free
energy of gelatin films with concentrations ranging 0.005−100 mg/mL is in the magnitude of a few tens of
mJ/m2. Based on the force equilibrium, Weijs et al. [2014] developed a microscopic model that correlates
the interface stress and interface energy for an interface separating a liquid and an amorphous soft solid.
Although the quantitative behavior of their model is governed by the Poisson’s ratio of the interfacial
region, the interface stress and interface energy share the same order of magnitude. Furthermore, the
definition of elastic modulus [Gumbsch and Daw 1991; Mi et al. 2008] explains that interface energy,
interface stress and interface elastic moduli are all about the same order of magnitude (∼ 10−2 N/m).

To summarize the dimension analysis up to this point, for soft materials such as gelatin gels the effects
of surface mechanics become noticeable and even significant when the characteristic length goes down
to the microscale (a ≤ 10−6 m). At such a length scale, those two intrinsic dimensionless parameters
are both comparable to unity (µ′0 = µ0/aG ∼ 1 and τ ′0 = τ0/aG ∼ 1) and thus the model of surface
mechanics starts to participate in the mechanics and physics of the concerned material systems. Of course,
for rubber-like soft materials, a smaller length scale is preferred for highlighting the surface effects.

Figure 3 shows the distributions of the normalized shear stress σRθ/T0 at the hemispherical pit surface
resulting from the five example shear tractions emphasized in Figure 2. Undoubtedly, these shear stress
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Figure 4. The distribution of normalized stress component (σϕθ/T0) as a function of
the polar angle (ϕ) at the hemispherical pit surface (R = a). Numerical values of the
two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For comparison, the
corresponding classical solutions (µ′0 = τ

′

0 = 0) are also shown, indicated by ∗.

distributions would exactly recover to the shear tractions within the framework of the classical theory of
elasticity. Nonetheless, the model of surface mechanics (µ′0 = τ

′

0 = 1) has reduced the maximum shear
stress by more than 40% for all cases. The strength of surface mechanics increases monotonically with
b. For b = 11, the maximum shear stress becomes less than one fourth of its classical counterpart. Close
examination reveals that the value of the polar angle coordinate ϕ at which the maximum shear stress
takes place is now closer to the vertex A of the hemispherical pit. Furthermore, the stress level at the
pit perimeter (ϕ = 90◦) seems to converge to a limit value (σRϕ ∼−0.2T0) as the parameter b increases.
This behavior is clearly not observed in the classical solutions, cf. Figure 2.

The comparison of Figures 2 and 3 makes it clear that the parameter combination µ′0= τ
′

0= 1 represents
a fairly strong effect of surface mechanics. To better illustrate the effects of surface mechanics, we now
adjust these parameters to µ′0 = τ

′

0 = 0.1. The curves in Figure 4 show the distributions of the normalized
stress component σϕθ/T0 at the pit surface for four traction distributions (b = 2, 5, 8 and 11). Note that
this stress component vanishes for the case of b= 0, see (44). Both the curves with and without the model
of surface mechanics are plotted for the purpose of comparison. For both groups, σϕθ becomes zero at
the pit vertex A and the pit perimeter B, defined in Figure 1. For a given value of b, the maximum stress
occurs at the same place for both the classical and corrected solution. These places are ϕ = 55, 38, 31
and 27 degrees for b = 2, 5, 8 and 11, respectively. We expect that the value of ϕ at which the stress
extremities take place will converge to a specific value as b continues to increase. The strength of
surface mechanics depends on how the shear tractions distribute — the larger the value of b, the stronger
the surface effects become.

Figure 5 shows the distributions of the dimensionless displacement 2Guθ/T0/a at the pit surface
for the five example traction loads. These curves share similar distribution characteristics as those of
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Figure 5. The distribution of normalized hoop component (2Guθ/T0/a) as a function
of the polar angle (ϕ) at the hemispherical pit surface (R = a). Numerical values of the
two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For comparison, the
corresponding classical solutions (µ′0 = τ

′

0 = 0) are also shown, indicated by ∗.

the shear stress σRθ . Displacement extremities roughly occur at the same locations. Once again, the
significance of surface mechanics depends on loading mode of surface tractions. For b = 2, 5, 8 and
11, crossovers are observed between the classical and perturbed curves belonging to the same traction
mode. The coordinates of these intersections behave as functions of the loading mode — the larger the
parameter b, the farther the crossover deviates from the pit perimeter.

To investigate the range of the elastic field resulting from the surface tractions applied at the pit surface,
we further performed numerical experiments to evaluate the displacements and stresses on a couple of
concentric hemispherical coordinate surfaces. Shown in Figure 6 is the distribution of the normalized
shear stress σRθ/T0 for three surface traction loads (b= 0, 5 and 11) at two radial distances (R= 1.5a and
R= 2a). The classical solutions for which µ′0= τ

′

0= 0 are also plotted for each of the six cases. Although
the variation characteristics for an individual curve is quite similar to its corresponding counterpart at
the pit surface, see Figures 2 and 3, the stress magnitude decays drastically as the radial coordinate
increases. For example, the maximum stress for the case of b = 11 reduced more than nine tenths as the
radial coordinate changes from R = a to R = 1.5a. The rate of decay is slightly slower for the solution
accounting for surface effects as the maximum stress decreased approximately two thirds. For both the
classical and modified solutions, the traction loads applied at the pit surface on the plane boundary of an
elastic half-space is a short-range force field since the resulting elastic field is completely localized and
confined within a distance that is just a couple of multiples of the pit radius.

Numerical results shown in Figure 7 and Figure 8 further support the argument of a localized elastic
field made above in which the normalized stress σϕθ/T0 and displacement component 2Guθ/T0/a are
now plotted for the radial coordinates R = 1.25a and R = 1.5a. It should be noted that Figure 7 only
shows two modes of traction loads (b = 5 and 11) since σϕθ is identically zero for the fundamental
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Figure 6. The distribution of normalized shear stress (σRθ/T0) as a function of the polar
angle (ϕ) for two constant radial coordinates (R = 1.5a and 2a). Numerical values of
the two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For comparison,
results due to three traction distributions (b = 0, 5 and 11) are plotted with the classical
solutions indicated by ∗.

st
re

ss
co

m
po

ne
nt
σ
ϕ
θ
/

T 0

polar angle ϕ (◦)

b = 5, R/a = 1.25∗
b = 5, R/a = 1.25
b = 5, R/a = 1.5∗
b = 5, R/a = 1.5
b = 11, R/a = 1.25∗
b = 11, R/a = 1.25
b = 11, R/a = 1.5∗
b = 11, R/a = 1.5

Figure 7. The distribution of normalized stress component (σϕθ/T0) as a function of
the polar angle (ϕ) for two constant radial coordinates (R = 1.25a and 1.5a). Numerical
values of the two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For
comparison, results due to two traction distributions (b = 5 and 11) are plotted with the
classical solutions indicated by ∗.
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Figure 8. The distribution of normalized hoop displacement (2Guθ/T0/a) as a function
of the polar angle (ϕ) for two constant radial coordinates (R = 1.25a and 1.5a). Numer-
ical values of the two intrinsic dimensionless parameters are taken as µ′0 = τ

′

0 = 0.1. For
comparison, results due to three traction distributions (b = 0, 5 and 11) are plotted with
the classical solutions indicated by ∗.

traction distribution (b = 0). The trend of decay as a function of the radial coordinate is obvious for the
stress σϕθ (Figure 7) and the displacement component uθ (Figure 8). These elastic components become
numerically negligible at a distance only a few radii away from the pit center.

4. Concluding remarks

In this paper, we analyzed in detail the axial-symmetric torsion problem of a nanoscale hemispherical
pit on the plane boundary of a semi-infinite elastic solid. We considered a number of traction loads,
see (39), that are proportional to the shear stress distribution on a hemispherical coordinate surface
due to a concentrated torque applied on an intact half-space. Although all considered traction loads
resulted in the exact same torque, displacement and stress distributions differ from one case to another,
reflecting the indeterminate nature of the problem. Semianalytical solutions in the form of infinite series
were successfully developed. Within the framework of Gurtin and Murdoch’s theory of surface elasticity
[1978], two intrinsic dimensionless parameters, µ′0=µ0/Ga and τ ′0= τ0/Ga, were formulated to account
for the significance of the pit surface. The other surface Lamé parameter λ0, which is indispensable to a
torsionless problem, turns out to be irrelevant in the present analysis.

Dimension analysis carried out in the previous section suggests that the assumed model of a pit surface
can reasonably be neglected for a metal substrate. The drastic difference between metals’ surface and
bulk elastic constants make the two dimensionless parameters comparable to unity only for picoscale pits.
Nonetheless, for soft substrates, such as gelatin gels, the pit surface effects became a dominant factor
that affected the resulting stress levels. To bring the model of surface mechanics into effect, we inferred
that µ′0 and τ ′0 should be at the order of magnitude of unity and one tenth, respectively — which is fairly
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practical for a soft substrate [Białopiotrowicz and Jańczuk 2002; Weijs et al. 2014]. It can be further
argued that the surface shear modulus µ0 is more important than the residual surface stress τ ′0 in a torsion
problem. This interpretation is in opposition to a dilatational problem in which the residual surface stress
proves to be much more important than surface Lamé constants [Mi and Kouris 2014b]. The reason is due
to the fact that the deformation-dependent component of the surface constitutive relation is not applicable
in the torsion analysis. Numerical results prove that the parameter combination of µ′0 = τ

′

0 = 0.1 is strong
enough to change both the magnitude and distribution of the classical solution when the model of surface
mechanics is excluded.

We have based our calculations merely on nominal values of the two dimensionless parameters, µ′0
and τ ′0. For a practical soft material, it is a challenge to determine accurate values of surface and bulk
elastic parameters. Considering what has been done for metal systems [Gumbsch and Daw 1991; Shenoy
2005; Mi et al. 2008], this could be one future line of research. Another possibility is to extend the static
problem to investigate the coupling effects of surface mechanics and dynamic loading.
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