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PREFACE

This special issue presents full versions of selected talks given at the minisymposium “Theoretical,
Computational and Experimental Mechanics for Coupled Field Problems and Multiphase Materials”,
held during the joint scientific meeting that took place in Gdansk, Poland on September 8–11, 2015,
uniting the Third Polish Congress on Mechanics (PCM) and the Twenty-First International Conference
on Computer Methods in Mechanics (CMM).

The investigation of coupled field problems is of pressing interest in many areas of science. Coupling
effects influence experimental measurements, which in turn creates the need for sophisticated physical
models and presents challenges for their numerical treatment, bringing to bear a vast array of scientific
techniques. Modeling tools designed to incorporate size effects in time and space, such as fractional
derivatives, enrich the underlying concepts. This drives new research in many subfields of mechanics.

The papers contained in this special issue address topics related to the constitutive modeling and
numerical treatment of coupled field problems and multiphase materials. Emphasis is placed on relating
theory to experimental observations, on nonconventional mathematical methods, and on new concepts
and developments in the computational algorithms for the solution of the governing equations. The gen-
eral topics addressed include model adaptation to experimental data, model identification and validation,
fractional calculus and its applications in mechanics, nonlocal (scale) effects, and new concepts in the
computational treatment for mechanical and thermomechanical problems.

The Guest Editors express their thanks to the Journal of Mechanics of Materials and Structures for
the opportunity to edit this special issue.
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VARIATIONAL METHODS FOR THE SOLUTION
OF FRACTIONAL DISCRETE/CONTINUOUS STURM–LIOUVILLE PROBLEMS

RICARDO ALMEIDA, AGNIESZKA B. MALINOWSKA,
M. LUÍSA MORGADO AND TATIANA ODZIJEWICZ

The fractional Sturm–Liouville eigenvalue problem appears in many situations, e.g., while solving anoma-
lous diffusion equations coming from physical and engineering applications. Therefore, obtaining solu-
tions or approximations of solutions to this problem is of great importance. Here, we describe how the
fractional Sturm–Liouville eigenvalue problem can be formulated as a constrained fractional variational
principle and show how such formulation can be used in order to approximate the solutions. Numerical
examples are given to illustrate the method.

1. Introduction

Fractional calculus is a mathematical approach dealing with integral and differential terms of noninteger
order. The concept of fractional calculus appeared shortly after calculus itself, but the development of
practical applications proceeded very slowly. Only during the last few decades, fractional problems have
increasingly attracted the attention of many researchers. Applications of fractional operators include
chaotic dynamics [Zaslavsky 2005], material sciences [Mainardi 2010], mechanics of fractal and com-
plex media [Carpinteri and Mainardi 1997; Li and Ostoja-Starzewski 2011], quantum mechanics [Hilfer
2000], physical kinetics [Zaslavsky and Edelman 2004] and many others (see, e.g., [Domek and Pworak
2016; Tarasov 2010]). Fractional derivatives are nonlocal operators and therefore successfully applied
in the study of nonlocal or time-dependent processes [Podlubny 1999]. The well-established application
of fractional calculus in physics is in the framework of anomalous diffusion behavior [Blaszczyk and
Ciesielski 2014; Chen et al. 2012; D’Ovidio 2012; Leonenko et al. 2013; Meerschaert 2012; Metzler
and Klafter 2000]: large jumps in space are modeled by space-fractional derivatives of order between 1
and 2, while long waiting times are modeled by the time derivatives of order between 0 and 1. These
partial fractional differential equations can be solved by the method of separating variables, which leads
to the Sturm–Liouville and the Cauchy equations. It means that, if we are able to solve the fractional
Sturm–Liouville problem and the Cauchy problem, then we can find a solution to the fractional diffusion
equation. In this paper, we consider two basic approaches to the fractional Sturm–Liouville problem:
discrete and continuous. In both cases, we note that the problem can be formulated as a constrained
fractional variational principle. A fractional variational problem consists of finding the extremizer of a
functional that depends on fractional derivatives (differences) subject to boundary conditions and possi-
bly some extra constraints. It is worth pointing out that the fractional calculus of variations has itself
remarkable applications in classical mechanics. Riewe [1996; 1997] showed that a Lagrangian involving

Keywords: fractional Sturm–Liouville problem, fractional calculus of variations, discrete fractional calculus, continuous
fractional calculus.
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fractional time derivatives leads to an equation of motion with nonconservative forces such as friction.
For more about the fractional calculus of variations, we refer the reader to [Almeida et al. 2015; Klimek
2009; Malinowska and Torres 2012; Malinowska et al. 2015] while for various approaches to fractional
Sturm–Liouville problems we refer to [Al-Mdallal 2009; 2010; Klimek et al. 2014; Klimek 2015; 2016;
Zayernouri and Karniadakis 2013].

The paper is divided into two main parts dedicated to discrete (Section 2) and continuous (Section 3)
fractional problems. In the first part, we give a constructive proof of the existence of orthogonal solutions
to the discrete fractional Sturm–Liouville eigenvalue problem (Theorem 2.4) and show that the smallest
and largest eigenvalues can be characterized as the optimal values of certain functionals (Theorems 2.5
and 2.7). Our results are illustrated by an example. In the second part, we recall the fractional variational
principle and the spectral theorem for the continuous fractional Sturm–Liouville problem. Since for
most problems involving fractional derivatives (equations or variational problems) one cannot provide
methods to compute the exact solutions analytically, numerical methods should be used for solving
such problems. Discretizing both the fractional Sturm–Liouville equation and the related isoperimetric
variational problem, we show, by an example, how the variational method can be used for solving the
fractional Sturm–Liouville problem.

2. Discrete fractional calculus

In this section, we explain a relationship between the fractional Sturm–Liouville difference problem and
a constrained discrete fractional variational principle. Namely, it is possible to look for solutions of
Sturm–Liouville fractional difference equations by solving finite-dimensional constrained optimization
problems. We shall start with necessary preliminaries. There are various versions of fractional differ-
ences; we mention here those of [Díaz and Osler 1974; Miller and Ross 1989; Atıcı and Eloe 2009a;
2009b] and the Caputo difference [Abdeljawad 2011]. In this paper, we use the notion of Grünwald and
Letnikov [Kaczorek 2011; Podlubny 1999].

Let us define the mesh points x j = a+ jh, j = 0, 1, . . . , N , where h denotes the uniform space step,
and set D = {x0, . . . , xN }. In what follows, α ∈ R and 0< α ≤ 1. Moreover, we set

a(α)i :=

{
1 if i = 0,

(−1)i (α(α− 1) · · · (α− i + 1))/ i ! if i = 1, 2, . . . .
(2-1)

Definition 2.1. The backward fractional difference of order α, where 0< α ≤ 1, of function f : D→ R

is defined by

01
α
k f (xk) :=

1
hα

k∑
i=0

(−1)i
α(α− 1) · · · (α− i + 1)

i !
f (xk−i ) (2-2)

while

k1
α
N f (xk) :=

1
hα

N−k∑
i=0

(−1)i
α(α− 1) · · · (α− i + 1)

i !
f (xk+i ) (2-3)

is the forward fractional difference of function f .

Fractional backward and forward differences are linear operators.
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Theorem 2.2 [Ostalczyk 2008]. Let f and g be two real functions defined on D and β, γ ∈ R. Then

01
α
k [γ f (xk)+βg(xk)] = γ 01

α
k f (xk)+β 01

α
k g(xk),

k1
α
N [γ f (xk)+βg(xk)] = γ k1

α
N f (xk)+β k1

α
N g(xk)

for all k.

The following formula for summation by parts for fractional operators will be essential for proving
results concerning variational problems.

Lemma 2.3 [Bourdin et al. 2013]. Let f and g be two real functions defined on D. Then

N∑
k=0

g(xk) 01
α
k f (xk)=

N∑
k=0

f (xk) k1
α
N g(xk).

If f (x0)= f (xN )= 0 or g(x0)= g(xN )= 0, then

N∑
k=1

g(xk) 01
α
k f (xk)=

N−1∑
k=0

f (xk) k1
α
N g(xk). (2-4)

2A. The Sturm–Liouville problem. The topic of this subsection is the Sturm–Liouville fractional dif-
ference equation

k1
α
N (p(xk) 01

α
k y(xk))+ q(xk)y(xk)= λr(xk)y(xk), k = 1, . . . , N − 1, (2-5)

with boundary conditions
y(x0)= 0, y(xN )= 0. (2-6)

We assume that p(xi ) > 0, r(xi ) > 0, q(xi ) is defined and real-valued for all xi , i = 0, . . . , N , and λ
is a parameter. It is required to find the eigenfunctions and the eigenvalues of the given boundary value
problem, i.e., the nontrivial solutions of (2-5)–(2-6) and the corresponding values of the parameter λ.
The theorem below gives an answer to this question.

Theorem 2.4. The Sturm–Liouville problem (2-5)–(2-6) has N − 1 real eigenvalues, which we denote by

λ1 ≤ λ2 ≤ · · · ≤ λN−1.

The corresponding eigenfunctions,

y1, y2, . . . , yN−1
: {x1, . . . , xN−1} → R,

are mutually orthogonal: if i 6= j , then

〈yi , y j
〉r :=

N−1∑
k=1

r(xk)yi (xk)y j (xk)= 0.

Furthermore, they span RN−1: any vector ϕ = (ϕ(xk))
N−1
k=1 ∈ RN−1 has a unique expansion

ϕ(xk)=

N−1∑
i=1

ci yi (xk), 1≤ k ≤ N − 1.
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The coefficients ci are given by

ci =
〈ϕ, yi

〉r

〈yi , yi 〉r
.

Proof. Observe that equations (2-5)–(2-6) can be considered as a system of N − 1 linear equations with
N − 1 real unknowns y(x1), . . . , y(xN−1). The corresponding matrix form is

AyT
= λRyT , (2-7)

where the entries Ai j of A are

A(α)i j =

{
(1/h2α)

[
q(xi )+

∑N−i
k=0 (a

(α)
k )2 p(xi+k)

]
if i = j,

(1/h2α)
[∑N−i

k=0 a(α)k p(xi+k)
∑k+i

m=0 a(α)m
]

and k−m+ i = j if i 6= j

and R = diag{r(x1), . . . , r(xN−1)}. Writing (2-7) as

R−1 AyT
= λyT , (2-8)

we get an eigenvalue problem with the symmetric matrix R−1 A. Because of the equivalence of problem
(2-5)–(2-6) to problem (2-8), it follows from matrix theory that the Sturm–Liouville problem (2-5)–(2-6)
has N − 1 linearly pairwise orthogonal real independent eigenfunctions with all eigenvalues real. Now
we would like to find constants c1, . . . , cN−1 such that ϕ(xk)=

∑N−1
i=1 ci yi (xk), 1≤ k ≤ N −1. Note that

〈ϕ, y j
〉r =

〈N−1∑
i=1

ci yi , y j
〉
r
=

N−1∑
i=1

ci 〈yi , y j
〉r = c j 〈y j , y j

〉r

because of orthogonality. Therefore, ci = 〈ϕ, yi
〉r/〈yi , yi

〉r , 1≤ i ≤ N − 1. �

2B. Isoperimetric variational problems. In this section, we prove two theorems connecting the Sturm–
Liouville problem (2-5)–(2-6) to isoperimetric problems of discrete fractional calculus of variations.

Theorem 2.5. Let y1 denote the first eigenfunction, normalized to satisfy the isoperimetric constraint

I [y] =
N∑

k=1

r(xk)(y(xk))
2
= 1 (2-9)

associated with the first eigenvalue λ1 of problem (2-5)–(2-6). Then y1 is a minimizer of functional

J [y] =
N∑

k=1

[
p(xk)(01

α
k y(xk))

2
+ q(xk)(y(xk))

2] (2-10)

subject to boundary conditions y(x0)= 0 and y(xN )= 0 and isoperimetric constraint (2-9). Moreover,
J [y1
] = λ1.

Proof. Suppose that y is a minimizer of J . Then by [Malinowska and Odzijewicz 2016, Theorem 5],
there exists a real constant λ such that y satisfies

k1
α
N (p(xk) 01

α
k y(xk))+ q(xk)y(xk)− λr(xk)y(xk)= 0, k = 1, . . . , N − 1, (2-11)
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together with y(x0)= 0 and y(xN )= 0 and isoperimetric constraint (2-9). Let us multiply (2-11) by y(xk)

and sum up from k = 1 to N − 1; then

N−1∑
k=1

[
y(xk) k1

α
N (p(xk) 01

α
k y(xk))+ q(xk)(y(xk))

2]
=

N−1∑
k=1

λr(xk)(y(xk))
2.

By summation by parts (2-4),

N−1∑
k=1

y(xk) k1
α
N (p(xk) 01

α
k y(xk))=

N∑
k=1

p(xk)(01
α
k y(xk))

2.

As (2-9) holds and y(xN )= 0, we obtain
J [y] = λ.

Any solution to problem (2-9)–(2-10) that satisfies (2-11) must be nontrivial since (2-9) holds, so λ must
be an eigenvalue. According to Theorem 2.4, eigenvalue λ1 is the smallest element of the spectrum
and has corresponding eigenfunction y(1) normalized to meet the isoperimetric condition. Therefore,
J [y(1)] = λ1. �

Definition 2.6. We will call functional R defined by

R[y] =
J [y]
I [y]

,

where J [y] is given by (2-10) and I [y] by (2-9), the Rayleigh quotient for the fractional discrete Sturm–
Liouville problem (2-5)–(2-6).

Theorem 2.7. Assume that y satisfies boundary conditions y(x0)= y(xN )= 0 and is nontrivial.

(i) If y is a minimizer of Rayleigh quotient R for the Sturm–Liouville problem (2-5)–(2-6), then the
value of R in y is equal to the smallest eigenvalue λ1, i.e., R[y] = λ1.

(ii) If y is a maximizer of Rayleigh quotient R for the Sturm–Liouville problem (2-5)–(2-6), then the
value of R in y is equal to the largest eigenvalue λN−1, i.e., R[y] = λN−1.

Proof. We give the proof only for (i) as the second case can be proved similarly. Suppose that y satisfying
boundary conditions y(x0)= y(xN )= 0 and being nontrivial is a minimizer of Rayleigh quotient R and
that value of R in y is equal to λ. Consider the functions

φ : [−ε, ε] → R,

h 7→ I [y+ hη] =
N∑

k=1

r(xk)(y(xk)+ hη(xk))
2,

ψ : [−ε, ε] → R,

h 7→ J [y+ hη] =
N∑

k=1

[
p(xk)(01

α
k (y(xk)+ hη(xk)))

2
+ q(xk)(y(xk)+ hη(xk))

2],
ζ : [−ε, ε] → R,

h 7→ R[y+ hη] =
J [y+ hη]
I [y+ hη]

,
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where η : D→ R with η(x0)= η(xN )= 0 and η 6= 0. Since ζ is of class C1 on [−ε, ε] and

ζ(0)≤ ζ(h), |h| ≤ ε,
we deduce that

ζ ′(0)=
d

dh
R[y+ hη]

∣∣∣∣
h=0
= 0.

Moreover, notice that

ζ ′(h)=
1

φ(h)

(
ψ ′(h)−

ψ(h)
φ(h)

φ′(h)
)

and

ψ ′(0)=
d

dh
J [y+ hη]

∣∣∣∣
h=0
= 2

N∑
k=1

[
p(xk) 01

α
k y(xk) 01

α
k η(xk)+ q(xk)y(xk)η(xk)

]
,

φ′(0)=
d

dh
I [y+ hη]

∣∣∣∣
h=0
= 2

N∑
k=1

r(xk)y(xk)η(xk).

Therefore,

ζ ′(0)=
d

dh
R[y+ hη]

∣∣∣∣
h=0

=
2

I [y]

[ N∑
k=1

[
p(xk) 01

α
k y(xk) 01

α
k η(xk)+ q(xk)y(xk)η(xk)

]
−

J [y]
I [y]

N∑
k=1

r(xk)y(xk)η(xk)

]
= 0.

Having in mind that J [y]/I [y] = λ and η(x0) = η(xN ) = 0 and using summation by parts (2-4), we
obtain

N−1∑
k=1

[
k1

α
N (p(xk) 01

α
k y(xk))+ q(xk)y(xk)− λr(xk)y(xk)

]
η(xk)= 0.

Since η is arbitrary, we have

k1
α
N (p(xk) 01

α
k y(xk))+ q(xk)y(xk)− λr(xk)y(xk)= 0, k = 1, . . . , N − 1. (2-12)

As y 6= 0, we have that λ is an eigenvalue of (2-12). On the other hand, let λi be an eigenvalue and yi

the corresponding eigenfunction; then

k1
α
N (p(xk) 01

α
k yi (xk))+ q(xk)yi (xk)= λir(xk)yi (xk). (2-13)

Similarly to the proof of Theorem 2.5, we can obtain∑N
k=1
[

p(xk)(01
α
k yi (xk))

2
+ q(xk)(yi (xk))

2
]∑N

k=1 r(xk)(yi (xk))2
= λi

for any 1≤ i ≤ N − 1. That is, R[yi
] = J [yi

]/I [yi
] = λi . Finally, since the minimum value of R at y is

equal to λ, i.e.,
λ≤ R[yi

] = λi for all i ∈ {1, . . . , N − 1},

we have λ= λ1. �
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α λ1 λ2 λ3

0.25 0.7102065750 1.148567387 1.349294886
0.50 0.6004483933 1.353660384 1.831047473
0.75 0.5779798778 1.632135974 2.496488153
1 0.5857864376 2.0 3.414213562

Table 1. Eigenvalues of (2-16) for different values of α.

Example 2.8. Let us consider the following problem: minimize

J [y] =
N∑

k=1

(01
α
k y(xk))

2 (2-14)

subject to

I [y] =
N∑

k=1

(y(xk))
2
= 1 (2-15)

and y(x0)= y(xN )= 0, where N is fixed. In this case, the Euler–Lagrange equation takes the form

k1
α
N 01

α
k y(xk)= λy(xk), k = 1, . . . , N − 1. (2-16)

Together with boundary conditions y(x0) = y(xN ) = 0, it is the Sturm–Liouville eigenvalue problem
where p(xi ) = 1, r(xi ) = 1 and q(xi ) = 0 for k = 1, . . . , N − 1. Let us choose N = 4 and h = 1.
Eigenvalues of (2-16) for different values of α are presented in Table 1. Those results are obtained by
solving the matrix eigenvalue problem of the form (2-8).

Observe that problem (2-14)–(2-15) can be treated as a finite-dimensional constrained optimization
problem. Namely, the problem is to minimize function J of N − 1 variables y1 = y(x1), . . . , yN−1 =

y(xN−1) on the (N − 1)-dimensional sphere with equation
∑N−1

k=1 y2
k = 1. Table 2 and Figure 1 present

the solution to problem (2-14)–(2-15) for N = 4, h = 1 and different values of α. By Theorem 2.5, the
first eigenvalue λ1 of (2-16) is the minimum value of J on

∑N−1
k=1 y2

k = 1 and the first eigenfunction
of (2-16) is the minimizer of this problem. Other eigenfunctions and eigenvalues of (2-16) we can find
by using the first-order necessary optimality conditions (Karush–Kuhn–Tucker conditions), that is, by
solving the system of equations

∂ J
∂yk
= λ

∂ I
∂yk

,∑N−1
k=1 y2

k = 1,
k = 1, . . . , N − 1. (2-17)

α y(x1) y(x2) y(x3) λ1

0.25 0.52042378274 0.65949734450 0.54242265711 0.7102065749
0.50 0.50954825567 0.67778735991 0.53006119446 0.6004483933
0.75 0.50509466979 0.69443334582 0.51248580736 0.5779798777
1 0.49999999999 0.70710678118 0.5 0.5857864376

Table 2. The solution to problem (2-14)–(2-15) for different values of α.
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Figure 1. The solution to problem (2-14)–(2-15) for α = 1
4 (·), 1

2 (+), 3
4 (◦) and 1 (�).

3. Continuous fractional calculus

This section is devoted to the continuous fractional Sturm–Liouville problem and its formulation as a
constrained fractional variational principle. Namely, we shall show that this formulation can be used to
approximate the solutions. As in the discrete case, there are several different definitions for fractional
derivatives [Kilbas et al. 2006]; the most well-known are the Grünwald–Letnikov, the Riemann–Liouville
and the Caputo fractional derivatives.

Definition 3.1. Let f : [a, b] → R be a function and α a positive real number such that 0< α < 1. We
define the left and right Riemann–Liouville fractional derivatives of order α by

aDα
x f (x) :=

1
0(1−α)

d
dx

∫ x

a
(x − t)−α f (t) dt,

x Dα
b f (x) :=

−1
0(1−α)

d
dx

∫ b

x
(t − x)−α f (t) dt

and the left and right Caputo fractional derivatives of order α by

C
a Dα

x f (x) :=
1

0(1−α)

∫ x

a
(x − t)−α f ′(t) dt,

C
x Dα

b f (x) :=
−1

0(1−α)

∫ b

x
(t − x)−α f ′(t) dt.

The Caputo derivative seems more suitable in applications. Let us recall that the Caputo derivative
of a constant is zero, whereas the Riemann–Liouville is not. Moreover, the Laplace transform, which
is used for solving fractional differential equations, of the Riemann–Liouville derivative contains the
limit values of the Riemann–Liouville fractional derivatives (of order α− 1) at the lower terminal x = a.
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Mathematically such problems can be solved, but there is no physical interpretation for such conditions.
On the other hand, the Laplace transform of the Caputo derivative imposes boundary conditions involving
the value of the function at the lower point x = a, which usually are acceptable physical conditions.

The Grünwald–Letnikov definition is a generalization of the ordinary discretization formulas for
integer-order derivatives.

Definition 3.2. Let 0 < α < 1 be real. The left and right Grünwald–Letnikov fractional derivatives of
order α of a function f are defined as

GL
a Dα

x f (x) := lim
h→0+

1
hα

∞∑
k=0

(−1)k
(
α

k

)
f (x − kh),

GL
x Dα

b f (x) := lim
h→0+

1
hα

∞∑
k=0

(−1)k
(
α

k

)
f (x + kh).

Here
(
α
k

)
stands for the generalization of binomial coefficients to real numbers (see (2-1)). However,

in this section for historical reasons, we denote

(wαk ) := (−1)k
(
α

k

)
rather than a(α)i .

Relations between those three types of derivatives are given below.

Proposition 3.3 [Podlubny 1999]. Let us assume the function f is integrable in [a, b]. Then the Riemann–
Liouville fractional derivatives exist and coincide with Grünwald–Letnikov fractional derivatives.

Proposition 3.4 [Kilbas et al. 2006]. Let us assume that f is a function for which the Caputo fractional
derivatives exist together with the Riemann–Liouville fractional derivatives in [a, b]. Then, if 0< α < 1,

C
a Dα

x f (x)= aDα
x f (x)−

f (a)
0(1−α)

(x − a)−α,

C
x Dα

b f (x)= x Dα
b f (x)−

f (b)
0(1−α)

(b− x)−α.
(3-1)

If f (a)= 0 or f (b)= 0, then C
a Dα

x f (x)= aDα
x f (x) or C

x Dα
b f (x)= x Dα

b f (x), respectively.

It is well-known that we can approximate the Riemann–Liouville fractional derivative using the
Grünwald–Letnikov fractional derivative. Given the interval [a, b] and a partition of the interval x j =

a+ jh, for j = 0, 1, . . . , N and some h > 0 such that xN = b, we have

aDα
x j

f (x j )=
1

hα

j∑
k=0

(wαk ) f (x j−k)+ O(h),

x j D
α
b f (x j )=

1
hα

N− j∑
k=0

(wαk ) f (x j+k)+ O(h);

that is, the truncated Grünwald–Letnikov fractional derivatives are first-order approximations of the
Riemann–Liouville fractional derivatives. Using relations (3-1), we deduce a decomposition sum for
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the Caputo fractional derivatives:

C
a Dα

x j
f (x j )≈

1
hα

j∑
k=0

(wαk ) f (x j−k)−
f (a)

0(1−α)
(x j − a)−α =: Ca D̃α

x j
f (x j ), (3-2)

C
x j

Dα
b f (x j )≈

1
hα

N− j∑
k=0

(wαk ) f (x j+k)−
f (b)

0(1−α)
(b− x j )

−α
=:

C
x j

D̃α
b f (x j ). (3-3)

3A. Variational problem. Consider the following variational problem: minimize the functional

I [y] =
∫ b

a
L(x, y(x), C

a Dα
x y(x)) dx, (3-4)

subject to the boundary conditions

y(a)= ya, y(b)= yb, ya, yb ∈ R, (3-5)

where 0 < α < 1 and the Lagrange function L : [a, b] ×R2
→ R is differentiable with respect to the

second and third arguments.

Theorem 3.5 [Agrawal 2006]. If y is a solution to (3-4)–(3-5), then y satisfies the fractional differential
equation

∂L
∂y
(x, y(x), C

a Dα
x y(x))+ x Dα

b
∂L

∂ C
a Dα

x y
(x, y(x), C

a Dα
x y(x))= 0, t ∈ [a, b]. (3-6)

Relations like (3-6) are known in the literature as the Euler–Lagrange equation and provide a necessary
condition that every solution of the variational problem must satisfy. Adding to problem (3-4)–(3-5) an
integral constraint ∫ b

a
g(x, y(x), C

a Dα
x y(x)) dx = K , (3-7)

where K is a fixed constant and g : [a, b] × R2
→ R is a differentiable function with respect to the

second and third arguments, we get an isoperimetric variational problem. In order to obtain a necessary
condition for a minimizer, we define the new function

F := λ0L(x, y(x), C
a Dα

x y(x))− λg(x, y(x), C
a Dα

x y(x)), (3-8)

where λ0 and λ are Lagrange multipliers. Then every solution y of the fractional isoperimetric problem
given by (3-4)–(3-5) and (3-7) is also a solution to the fractional differential equation [Almeida and
Torres 2011]

∂F
∂y
(x, y(x), C

a Dα
x y(x))+ x Dα

b
∂F

∂ C
a Dα

x y
(x, y(x), C

a Dα
x y(x))= 0, t ∈ [a, b]. (3-9)

Moreover, if y is not a solution to

∂g
∂y
(x, y(x), C

a Dα
x y(x))+ x Dα

b
∂g

∂ C
a Dα

x y
(x, y(x), C

a Dα
x y(x))= 0, t ∈ [a, b], (3-10)

then we can put λ0 = 1 in (3-8).
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Discretization Method 1. Using the approximation formula for the Caputo fractional derivative given
by (3-2), we can discretize functional (3-4) in the following way. Let N ∈N, h = (b− a)/N and the grid
x j = a+ jh, j = 0, 1, . . . , N . Then

I [y] =
N∑

k=1

∫ xk

xk−1

L(x, y(x), C
a Dα

x y(x)) dx

≈

N∑
k=1

hL(xk, y(xk),
C
a Dα

xk
y(xk))

≈

N∑
k=1

hL(xk, y(xk),
C
a D̃α

xk
y(xk)). (3-11)

This is the direct way to solve the problem, using discretization techniques.

Discretization Method 2. By the previous discussion, the initial problem of minimization of the func-
tional (3-4), subject to boundary conditions (3-5), can be numerically replaced by the finite-dimensional
optimization problem

8(y1, . . . , yN−1) :=

N∑
k=1

hL(xk, y(xk),
C
a D̃α

xk
y(xk))→min,

subject to
y0 = ya, yN = yb,

where yk := y(xk).
Using the first-order necessary optimality conditions given by the system of N − 1 equations

∂8

∂y j
= 0 for all j = 1, . . . , N − 1,

we get

∂L
∂y
(x j , y(x j ),

C
a D̃α

x j
y(x j ))+

N− j∑
k=0

(wαk )

hα
∂L

∂ C
a Dα

x y
(x j+k, y(x j+k),

C
a D̃α

x j+k
y(x j+k))= 0 (3-12)

with j = 1, . . . , N − 1. As N →∞, that is, as h→ 0, the solutions of system (3-12) converge to the
solutions of the fractional Euler–Lagrange equation associated with the variational problem [Pooseh et al.
2013, Theorem 4.1]. The constrained variational problem given by (3-4)–(3-5) and (3-7) can be solved
similarly. More precisely, in this case, we have to replace the Lagrange function L by the augmented
function F = λ0L − λg and proceed with similar calculations.

3B. Sturm–Liouville problem. Consider the fractional differential equation[CDα
b p(x) CDα

a +q(x)
]
y(x)= λrα(x)y(x), (3-13)

subject to the boundary conditions
y(a)= y(b)= 0. (3-14)
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Equation (3-13) together with condition (3-14) is called the fractional Sturm–Liouville problem. As in
the discrete case, it is required to find the eigenfunctions and the eigenvalues of the given boundary value
problem, i.e., the nontrivial solutions of (3-13)–(3-14) and the corresponding values of the parameter λ.

In what follows, we assume:

Assumption A. Let 1
2 < α < 1 and p, q and rα be given functions such that p ∈ C1

[a, b] and p(x) > 0
for all x ∈ [a, b], q, rα ∈C[a, b], rα(x) > 0 for all x ∈ [a, b] and (

√
rα)′ is Hölderian, of order β ≤ α− 1

2 ,
on [a, b].

Theorem 3.6 [Klimek et al. 2014]. Under Assumption A, the fractional Sturm–Liouville problem (3-13)–
(3-14) has an infinite increasing sequence of eigenvalues λ1, λ2, . . . , and to each eigenvalue λk , there is
a corresponding continuous eigenfunction yk that is unique up to a constant factor.

The fractional Sturm–Liouville problem can be remodeled as a fractional isoperimetric variational
problem.

Theorem 3.7 [Klimek et al. 2014]. Let Assumption A hold and y1 be the eigenfunction, normalized to
satisfy the isoperimetric constraint

I [y] =
∫ b

a
rα(x)y2(x) dx = 1, (3-15)

associated with the first eigenvalue λ1 of problem (3-13)–(3-14), and assume that function Dα
b (p

CDα
a y1)

is continuous. Then y1 is a minimizer of the variational functional

J [y] =
∫ b

a

[
p(x)(CDα

a y(x))2+ q(x)y2(x)
]

dx, (3-16)

in the class of C[a, b] functions with CDα
a y and Dα

b (p
CDα

a y) continuous in [a, b], subject to the bound-
ary conditions

y(a)= y(b)= 0 (3-17)

and isoperimetric constraint (3-15). Moreover,

J [y1
] = λ1.

Discretization Method 3. Using the approximation formula for the Caputo fractional derivatives given
by (3-2)–(3-3), we can discretize (3-13) in the following way. Let N ∈ N, h = (b− a)/N and the grid
x j = a+ jh, j = 0, 1, . . . , N . Then at x = xi , (3-13) may be discretized as

h−2α

rα(xi )

N−i∑
k=0

(wαk )p(xi+k)

i+k∑
l=0

(wαl )yi+k−l +
q(xi )

rα(xi )
yi = λyi , i = 1, . . . , N − 1,

which in matrix form may be written as

AY = λY, (3-18)
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N 5 10 15

λ1 4.603751971 4.491185175 4.426964914

Table 3. Values of λ1 for N = 5, 10, 15.

where Y = [y1, y2, . . . , yN−1], yi = y(xi ), and A = (cik), i = 1, 2, . . . , N − 1, k = 1, 2, . . . , N − 1, with

cik =


(h−2α/rα(xi ))

∑N−i
j=0 (w

α
j )

2 p(x j+i )+ q(xi )/rα(xi ) if i = k,

(h−2α/rα(xi ))
∑N−i

j=0 (w
α
j )(w

α
j+i−k)p(x j+i ) if i > k,

(h−2α/rα(xi ))
∑N−i

j=k−i (w
α
j )(w

α
j+i−k)p(x j+i ) if i < k,

reducing in this way the Sturm–Liouville problem to an algebraic eigenvalue problem.

Example 3.8. Let us consider the following problem: minimize the functional∫ 1

0
(C0 Dα

x y(x))2 dx, (3-19)

under the restrictions ∫ 1

0
y2(x) dx = 1, y(0)= y(1)= 0, (3-20)

where α = 3
4 . Since y(0) = 0, we have C

0 Dα
x y(x) = 0 Dα

x y(x). Using Method 1, we obtain a finite-
dimensional constrained optimization problem

N∑
k=1

N 2α−1
( k∑

i=0

(wαi )yk−i

)2

→min, (3-21)

Figure 2. Approximations of solutions to problem (3-19)–(3-20) using Methods 1 (left)
and 2 (right) with N = 5 (�), 10 (◦) and 15 (+).
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N 5 10 15

λ1 4.603751969 4.491185168 4.426964909
λ2 13.67144835 14.31569449 14.33350940
λ3 22.69092491 26.35335634 26.90113751
λ4 29.24531071 39.48118456 41.37391615
λ5 52.54234156 56.93534748
λ6 64.64953668 73.03700902
λ7 74.96494602 89.07875858
λ8 82.83813371 104.5749014
λ9 87.76536891 119.0339408
λ10 132.0436041
λ11 143.2212682
λ12 152.2566950
λ13 158.8942685
λ14 162.9518168

Table 4. Values of λi for N = 5, 10, 15.

subject to
N∑

k=1

y2
k

N
= 1, y0 = yN = 0. (3-22)

Using the Maple package Optimization, we get approximations of the optimal solutions to (3-19)–(3-20)
for different values of N . Table 3 shows values of λ1 for N = 5, 10, 15. Note that λ1 is the value of
(3-21), where y = [0, y1, . . . , yN−1, 0] is the optimal solution to (3-21)–(3-22). In other words, λ1 is an
approximation of the minimum value of functional (3-19) and the first eigenvalue of the Sturm–Liouville
problem (which is the Euler–Lagrange equation for the considered variational problem). Figure 2, left,
presents minimizers y for N = 5, 10, 15.

Observe that the unique solution to the Euler–Lagrange equation (see (3-10)) associated with the
integral constraint is y(x)= 0. As y(x)= 0 is not a solution to (3-19)–(3-20) (condition

∫ 1
0 y2(x) dx = 1

fails), we can consider λ0 = 1 in (3-8). Therefore, the auxiliary function is

F := (C0 Dα
x y(x))2− λy2(x).

Thus,

8(y1, . . . , yN−1) :=

N∑
k=1

h((C0 Dα
xk

yk)
2
− λy2

k ),

and the computation of ∂8/∂y j leads to

−λy j + N 2α
N− j∑
k=0

(wαk )

j+k∑
l=0

(wαl )y j+k−l = 0, j = 1, . . . , N − 1. (3-23)

Solving system of equations (3-23) together with (3-22), we obtain not only an approximation of the
optimal solution to problem (3-19)–(3-20) but also other solutions to the Euler–Lagrange equation (3-9)
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Figure 3. Approximations of solutions to problem (3-19)–(3-20) using Methods 1 (◦)
and 2 (+) with N = 5 (left), 10 (center) and 15 (right).

as N →∞. In other words, we get some approximations of the eigenvalues and eigenfunctions of the
Sturm–Liouville problem. Table 4 presents approximations of the eigenvalues obtained by this procedure
for N = 5, 10, 15. In Figure 2, right, we present the eigenvectors, for N = 5, 10, 15, associated with the
eigenvalues λ1.

In Figure 3, we compare the approximation of the optimal solutions to (3-19)–(3-20), obtained by
solving (3-21)–(3-22) (Method 1) and (3-23)–(3-22) (Method 2), for N = 5, 10, 15.

Now let us consider the Sturm–Liouville problem

CD3/4
1

CD3/4
0 y(x)= λy(x), (3-24)

subject to the boundary conditions
y(0)= y(1)= 0. (3-25)

Under the conditions of Theorem 3.7, (3-24) is the Euler–Lagrange equation for isoperimetric problem

N 5 10 20 40 80 160

λ1 4.603751972 4.491185175 4.387575384 4.314056432 4.264767769 4.231946921
λ2 13.67144835 14.31569450 14.29943076 14.18275912 14.08194289 14.01015799
λ3 22.69092491 26.35335634 27.02784640 27.01132309 26.88877847 26.78184511
λ4 29.24531071 39.48118456 41.95747334 42.33045300 42.25841874 42.13429128
λ5 52.54234157 58.40981791 59.60122278 59.68496380 59.56753673
λ6 64.64953668 75.99486098 78.61012095 79.00578911 78.93437596
λ7 74.96494602 94.25189512 99.05856280 99.96479334 99.98764503
λ8 82.83813372 112.8375161 120.7904806 122.4632696 122.6454529
λ9 87.76536891 131.3694072 143.5891552 146.3337902 146.7516690
λ10 149.5318910 167.3194776 171.5033012 172.2513810
λ11 166.9946039 191.8029693 197.8472756 199.0332700
λ12 183.4744810 216.9142113 225.3053712 227.0563318
λ13 198.6917619 242.4962397 253.7773704 256.2351380
λ14 212.4063351 268.4292940 283.2100111 286.5368179

Table 5. Approximation of the eigenvalues using Method 3.
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Figure 4. Normalized eigenfunctions obtained with N = 100, corresponding to the
eigenvalues λ1 (top left), λ2 (top right), λ3 (bottom left) and λ4 (bottom right).

(3-19)–(3-20). Table 5 presents approximations of the eigenvalues of (3-24) obtained by Method 3 for
N = 5, 10, 20, 40, 80, 160 (for N = 20, 40, 80, 160 only the first 14 eigenvalues are listed). Figure 4
shows normalized eigenfunctions, obtained for N = 100, corresponding to the eigenvalues λ1, λ2, λ3, λ4.

4. Conclusions

Since the seminal works [Nigmatullin 1986; Wyss 1986] were published, fractional differential equations
have become a popular way to model anomalous diffusion. As stated in [Meerschaert 2012], this type
of approach is the most reasonable: the fractional derivative in space represents large particle jumps
(that lead to anomalous superdiffusion) while the time-fractional derivative models time delays between
particle motion. Fractional diffusion equations have been used, e.g., to model pollution in ground wa-
ter [Benson et al. 2001] and flow in porous media [He 1998]. Many other examples can be found in
[Meerschaert 2012; Meerschaert and Sikorskii 2012].

It was proved in [Klimek et al. 2016] that, under appropriate assumptions, the space-time fractional
diffusion equation

CDβ

0+,t u(t, x)=−
1

rα(x)

[CDα
b−,x p(x) CDα

a+,x +q(x)
]
u(t, x) for all (t, x) ∈ (0,∞)×[a, b], (4-1)

where 0< β < 1, 1
2 < α < 1 and C Dβ

0+,t and C Dα
b−,x , C Dα

a+,x are partial fractional derivatives, with the
boundary and initial conditions

u(t, a)= u(t, b)= 0, t ∈ (0,∞), (4-2)

u(0, x)= f (x), x ∈ [a, b], (4-3)
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has a continuous solution u : [0,∞)×[a, b] → R given by the series

u(t, x)=
∞∑

k=1

〈yk, f 〉Eβ(−λk tβ)yk(x). (4-4)

In (4-4), 〈 f, g〉 :=
∫ b

a rα(x) f (x)g(x) dx , Eβ is the one-parameter Mittag–Leffler function and yk and λk

(k = 1, 2, . . . ) are the eigenfunctions and the eigenvalues of the fractional Sturm–Liouville problem
(3-13)–(3-14). Thus, numerical methods, presented in this paper, for finding the eigenvalues and eigen-
functions of fractional Sturm–Liouville problems can also be used to approximate solutions to fractional
diffusion problems of the form (4-1)–(4-3). We have presented a link between fractional Sturm–Liouville
and fractional isoperimetric variational problems that provides a possible method for solution of the for-
mer. Discrete problems with the Grünwald–Letnikov difference were analyzed: we proved the existence
of orthogonal solutions to the discrete fractional Sturm–Liouville eigenvalue problem and showed that
its eigenvalues can be characterized as values of certain functionals. For continuous problems with
the Caputo fractional derivatives, in order to examine the performance of the proposed method, the
approximation based on the shifted Grünwald–Letnikov definition was used. This type of discretization
is most popular in practical applications, when numerically solving fractional diffusion equations, due
to the fact that such methods are mass-preserving [Defterli et al. 2015].

Acknowledgements

Research was supported by Portuguese funds through the Center for Research and Development in Math-
ematics and Applications (CIDMA) and the Portuguese Foundation for Science and Technology (FCT)
within UID/MAT/04106/2013 (Almeida) and UID/MAT/00013/2013 (Morgado), by the Bialystok Uni-
versity of Technology grant S/WI/1/2016 (Malinowska) and by the Warsaw School of Economics grant
KAE/BMN16/18/16 (Odzijewicz).

References

[Abdeljawad 2011] T. Abdeljawad, “On Riemann and Caputo fractional differences”, Comput. Math. Appl. 62:3 (2011), 1602–
1611.

[Agrawal 2006] O. P. Agrawal, “Fractional variational calculus and the transversality conditions”, J. Phys. A 39:33 (2006),
10375–10384.

[Al-Mdallal 2009] Q. M. Al-Mdallal, “An efficient method for solving fractional Sturm–Liouville problems”, Chaos Solitons
Fractals 40:1 (2009), 183–189.

[Al-Mdallal 2010] Q. M. Al-Mdallal, “On the numerical solution of fractional Sturm–Liouville problems”, Int. J. Comput.
Math. 87:12 (2010), 2837–2845.

[Almeida and Torres 2011] R. Almeida and D. F. M. Torres, “Necessary and sufficient conditions for the fractional calculus of
variations with Caputo derivatives”, Commun. Nonlinear Sci. Numer. Simul. 16:3 (2011), 1490–1500.

[Almeida et al. 2015] R. Almeida, S. Pooseh, and D. F. M. Torres, Computational methods in the fractional calculus of varia-
tions, Imperial College, London, 2015.

[Atıcı and Eloe 2009a] F. M. Atıcı and P. W. Eloe, “Discrete fractional calculus with the nabla operator”, Electron. J. Qual.
Theory Differ. Equ. Spec. Ed. I (2009), 3.

[Atıcı and Eloe 2009b] F. M. Atıcı and P. W. Eloe, “Initial value problems in discrete fractional calculus”, Proc. Amer. Math.
Soc. 137:3 (2009), 981–989.

http://dx.doi.org/10.1016/j.camwa.2011.03.036
http://dx.doi.org/10.1088/0305-4470/39/33/008
http://dx.doi.org/10.1016/j.chaos.2007.07.041
http://dx.doi.org/10.1080/00207160802562549
http://dx.doi.org/10.1016/j.cnsns.2010.07.016
http://dx.doi.org/10.1016/j.cnsns.2010.07.016
http://dx.doi.org/10.1142/p991
http://dx.doi.org/10.1142/p991
http://www.emis.de/journals/EJQTDE/sped1/103.html
http://dx.doi.org/10.1090/S0002-9939-08-09626-3


20 RICARDO ALMEIDA, AGNIESZKA B. MALINOWSKA, M. LUÍSA MORGADO AND TATIANA ODZIJEWICZ

[Benson et al. 2001] D. A. Benson, R. Schumer, M. M. Meerschaert, and S. W. Wheatcraft, “Fractional dispersion, Lévy
motion, and the MADE tracer tests”, Transp. Porous Media 42:1–2 (2001), 211–240.

[Blaszczyk and Ciesielski 2014] T. Blaszczyk and M. Ciesielski, “Numerical solution of fractional Sturm–Liouville equation
in integral form”, Fract. Calc. Appl. Anal. 17:2 (2014), 307–320.

[Bourdin et al. 2013] L. Bourdin, J. Cresson, I. Greff, and P. Inizan, “Variational integrator for fractional Euler–Lagrange
equations”, Appl. Numer. Math. 71 (2013), 14–23.

[Carpinteri and Mainardi 1997] A. Carpinteri and F. Mainardi (editors), Fractals and fractional calculus in continuum mechan-
ics (Udine, Italy, 1996), CISM Courses and Lectures 378, Springer, Vienna, 1997.

[Chen et al. 2012] Z.-Q. Chen, M. M. Meerschaert, and E. Nane, “Space-time fractional diffusion on bounded domains”, J.
Math. Anal. Appl. 393:2 (2012), 479–488.

[Defterli et al. 2015] O. Defterli, M. D’Elia, Q. Du, M. Gunzburger, R. Lehoucq, and M. M. Meerschaert, “Fractional diffusion
on bounded domains”, Fract. Calc. Appl. Anal. 18:2 (2015), 342–360.

[Díaz and Osler 1974] J. B. Díaz and T. J. Osler, “Differences of fractional order”, Math. Comp. 28:125 (1974), 185–202.
[Domek and Pworak 2016] S. Domek and P. Pworak (editors), Theoretical developments and applications of non-integer order
systems: 7th Conference on Non-Integer Order Calculus and Its Applications (Szczecin, Poland, 2015), Lecture Notes in
Electrical Engineering 357, Springer, Cham, Switzerland, 2016.

[D’Ovidio 2012] M. D’Ovidio, “From Sturm–Liouville problems to fractional and anomalous diffusions”, Stochastic Process.
Appl. 122:10 (2012), 3513–3544.

[He 1998] J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media”, Comput.
Methods Appl. Mech. Engrg. 167:1–2 (1998), 57–68.

[Hilfer 2000] R. Hilfer (editor), Applications of fractional calculus in physics, World Scientific, River Edge, NJ, 2000.
[Kaczorek 2011] T. Kaczorek, Selected problems of fractional systems theory, Lecture Notes in Control and Information Sci-
ences 411, Springer, Berlin, 2011.

[Kilbas et al. 2006] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equa-
tions, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006.

[Klimek 2009] M. Klimek, On solutions of linear fractional differential equations of a variational type, Monographs 172,
Czestochowa University of Technology, 2009.

[Klimek 2015] M. Klimek, “Fractional Sturm–Liouville problem and 1D space-time fractional diffusion with mixed boundary
conditions”, pp. 46808 in Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference (Boston, 2015), vol. 9: 2015 ASME/IEEE International Conference on
Mechatronic and Embedded Systems and Applications, American Society of Mechanical Engineers, New York, 2015.

[Klimek 2016] M. Klimek, “Fractional Sturm–Liouville problem in terms of Riesz derivatives”, pp. 3–16 in Theoretical devel-
opments and applications of non-integer order systems: 7th Conference on Non-Integer Order Calculus and Its Applications
(Szczecin, Poland, 2015), edited by S. Domek and P. Dworak, Lecture Notes in Electrical Engineering 357, Springer, Cham,
Switzerland, 2016.

[Klimek et al. 2014] M. Klimek, T. Odzijewicz, and A. B. Malinowska, “Variational methods for the fractional Sturm–Liouville
problem”, J. Math. Anal. Appl. 416:1 (2014), 402–426.

[Klimek et al. 2016] M. Klimek, A. B. Malinowska, and T. Odzijewicz, “Applications of fractional Sturm–Liouville problem
to the space-time fractional diffusion in a finite domain”, Fract. Calc. Appl. Anal. 19:2 (2016), 516–550.

[Leonenko et al. 2013] N. N. Leonenko, M. M. Meerschaert, and A. Sikorskii, “Fractional Pearson diffusions”, J. Math. Anal.
Appl. 403:2 (2013), 532–546.

[Li and Ostoja-Starzewski 2011] J. Li and M. Ostoja-Starzewski, “Micropolar continuum mechanics of fractal media”, Internat.
J. Engrg. Sci. 49:12 (2011), 1302–1310.

[Mainardi 2010] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models,
Imperial College, London, 2010.

[Malinowska and Odzijewicz 2016] A. B. Malinowska and T. Odzijewicz, “Multidimensional discrete-time fractional calculus
of variations”, pp. 17–28 in Theoretical developments and applications of non-integer order systems: 7th Conference on Non-
Integer Order Calculus and Its Applications (Szczecin, Poland, 2015), edited by S. Domek and P. Dworak, Lecture Notes in
Electrical Engineering 357, Springer, Cham, Switzerland, 2016.

http://dx.doi.org/10.1023/A:1006733002131
http://dx.doi.org/10.1023/A:1006733002131
http://dx.doi.org/10.2478/s13540-014-0170-8
http://dx.doi.org/10.2478/s13540-014-0170-8
http://dx.doi.org/10.1016/j.apnum.2013.03.003
http://dx.doi.org/10.1016/j.apnum.2013.03.003
http://dx.doi.org/10.1007/978-3-7091-2664-6
http://dx.doi.org/10.1007/978-3-7091-2664-6
http://dx.doi.org/10.1016/j.jmaa.2012.04.032
http://dx.doi.org/10.1515/fca-2015-0023
http://dx.doi.org/10.1515/fca-2015-0023
http://dx.doi.org/10.2307/2005825
http://dx.doi.org/10.1007/978-3-319-23039-9
http://dx.doi.org/10.1007/978-3-319-23039-9
http://dx.doi.org/10.1016/j.spa.2012.06.002
http://dx.doi.org/10.1016/S0045-7825(98)00108-X
http://dx.doi.org/10.1142/9789812817747
http://dx.doi.org/10.1007/978-3-642-20502-6
http://www.sciencedirect.com/science/bookseries/03040208/204
http://www.sciencedirect.com/science/bookseries/03040208/204
http://dx.doi.org/10.1115/DETC2015-46808
http://dx.doi.org/10.1115/DETC2015-46808
http://dx.doi.org/10.1007/978-3-319-23039-9_1
http://dx.doi.org/10.1016/j.jmaa.2014.02.009
http://dx.doi.org/10.1016/j.jmaa.2014.02.009
http://dx.doi.org/10.1515/fca-2016-0027
http://dx.doi.org/10.1515/fca-2016-0027
http://dx.doi.org/10.1016/j.jmaa.2013.02.046
http://dx.doi.org/10.1016/j.ijengsci.2011.03.010
http://dx.doi.org/10.1142/9781848163300
http://dx.doi.org/10.1007/978-3-319-23039-9_2
http://dx.doi.org/10.1007/978-3-319-23039-9_2


VARIATIONAL METHODS FOR THE SOLUTION OF FDSL/FCSL PROBLEMS 21

[Malinowska and Torres 2012] A. B. Malinowska and D. F. M. Torres, Introduction to the fractional calculus of variations,
Imperial College, London, 2012.

[Malinowska et al. 2015] A. B. Malinowska, T. Odzijewicz, and D. F. M. Torres, Advanced methods in the fractional calculus
of variations, Springer, Cham, Switzerland, 2015.

[Meerschaert 2012] M. M. Meerschaert, “Fractional calculus, anomalous diffusion, and probability”, pp. 265–284 in Fractional
dynamics, edited by J. Klafter et al., World Scientific, Hackensack, NJ, 2012.

[Meerschaert and Sikorskii 2012] M. M. Meerschaert and A. Sikorskii, Stochastic models for fractional calculus, Studies in
Mathematics 43, Walter de Gruyter, Berlin, 2012.

[Metzler and Klafter 2000] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics
approach”, Phys. Rep. 339:1 (2000), 1–77.

[Miller and Ross 1989] K. S. Miller and B. Ross, “Fractional difference calculus”, pp. 139–152 in Univalent functions, frac-
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ANALYTICAL AND NUMERICAL SOLUTION OF THE FRACTIONAL
EULER–BERNOULLI BEAM EQUATION

TOMASZ BLASZCZYK

In this paper a new formulation of the Euler–Bernoulli beam equation is proposed, which is based on frac-
tional calculus. The fractional Euler–Bernoulli beam equation is derived by using a variational approach.
Such formulation leads to an equation containing left and right fractional Caputo derivatives simultane-
ously. The obtained equation is transformed into an integral equation and then is solved analytically and
numerically. Finally, examples of computations and error analysis are shown.

1. Introduction

Fractional calculus has recently played a very important role in various fields of science [Baleanu et al.
2015; Błasik and Klimek 2015; Leszczyński 2011; Klimek 2001; Kukla and Siedlecka 2015; Podlubny
1999; Torres 2015; Zhang et al. 2016; Zingales and Failla 2015]. It is caused largely by the fact that
the fractional derivatives are nonlocal operators and depend on the past values of a function (the left
derivative) or the future values of a function (the right derivative) [Baleanu et al. 2012; Kilbas et al. 2006;
Podlubny 1999; Samko et al. 1993]. On the other hand, nonlocal formulations play an essential role in
the description of the material deformation. Considering the description of the material deformation,
including length scale, we are able to describe the phenomena (such as scale effects) where the classical
approach is no longer valid [Sumelka 2014a; 2014b; Sumelka and Błaszczyk 2014].

The first approaches to link fractional calculus and nonlocal continuum mechanics come from Vazquez
[2004], Lazopoulos [2006] and Di Paola and Zingales [2008]. Later, Carpinteri et al. [2011; 2014] used
spatial fractional calculus to examine a material whose nonlocal stress is defined as the fractional integral
of the strain field, highlighting its connection with Eringen [2002] nonlocal elasticity. A similar prob-
lem was analyzed by Atanackovic & Stankovic [2009] starting from fractional nonlocal strain measure.
Other fractional approaches to nonlocal elasticity are presented in [Alotta et al. 2015; Drapaca and
Sivaloganathan 2012; Tarasov 2006; Zingales and Failla 2015].

In addition, recent research [Paola et al. 2013; Pirrotta et al. 2015] on the response evaluation of a
viscoelastic Euler–Bernoulli or Timoshenko beam under quasistatic and dynamic loads have shown that
for a better understanding of the viscoelastic behavior, a fractional constitutive law should be considered.
Vibration analysis of a simply supported beam with a fractional order viscoelastic material model is
presented in [Freundlich 2013].

As a concluding remark, it should be emphasised that there are many concepts dealing with non-
local formulations. However, they often require a large number of parameters. As a response to this
inconvenience, new models based on fractional calculus have been proposed.

Keywords: Euler–Bernoulli beam equation, Fractional Euler–Lagrange equation, Analytical and numerical solution, Caputo
derivatives.
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A good example where fractional models have been successfully used is in a group of viscoelastic
materials. These materials are very attractive for civil engineering applications, and thus need special
attention. One of the advantages of the fractional models is that they require a smaller number of param-
eters than classical models containing operators of integer order.

Due to these facts, fractional calculus looks to be a promising tool for modeling scale-dependent
material behavior.

In our previous work [Sumelka et al. 2015] the classical Euler–Bernoulli beam theory was reformulated
utilizing fractional Riesz–Caputo derivatives. In this paper we propose a new formulation of the Euler–
Bernoulli beam equation based on fractional variational calculus. The fractional derivative included in a
functional (see Section 3) is applied as a spatial derivative, and influences spatial response. In this sense
the fractional order of derivation α is a new material parameter. The parameter α controls the way in
which information is governed from the region of influence [Sumelka 2014a; Sumelka and Błaszczyk
2014].

We transform the obtained Euler–Lagrange equation into an integral equation and we find the exact
solution. Next, we present two numerical schemes. The first one is based on the discretization of the
analytical solution and the second one is based on the discretization of the Euler–Lagrange equation. We
calculated the errors generated by both schemes and estimated the rates of convergences of the presented
methods for a particular case. Finally, we show a few computational examples of static deflections for
various types of loads.

2. Fractional operators

In this section, we only recall necessary definitions of fractional operators and their properties [Kilbas
et al. 2006; Podlubny 1999; Samko et al. 1993]. The left and right Caputo derivatives of order 1< α ≤ 2
are respectively defined as

CDα
0+u(x) :=

{
I 2−α
0+ D2u(x) for 1< α < 2,

D2u(x) for α = 2,
(2-1)

CDα
L−u(x) :=

{
I 2−α

L− D2u(x) for 1< α < 2,

D2u(x) for α = 2,
(2-2)

where D2 is the operator of the second order derivative and operators I α0+ and I αb− are respectively the
left and right fractional Riemann–Liouville integrals of order α > 0 defined by

I α0+u(x) := 1
0(α)

∫ x

0

u(τ )
(x − τ)1−α

dτ (x > 0), (2-3)

I αL−u(x) := 1
0(α)

∫ L

x

u(τ )
(τ − x)1−α

dτ (x < L), (2-4)

where 0 is the Euler Gamma function.
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The composition rules of the fractional operators (for α ∈ (1, 2]) are

I α0+
CDα

0+ u(x)= u(x)− xu′(a)− u(a), (2-5)

I αL−
CDα

L− u(x)= u(x)+ (L − x)u′(L)− u(L). (2-6)

The left and right fractional integrals of the constant C have the following form:

I α0+ C = Cxα/(0(1+α)), (2-7)

I αL−C = C(L − x)α/(0(α+ 1)), (2-8)

and for power functions we have

I α0+xβ = 0(β+1)
0(α+β+1)

xα+β, (2-9)

I α0+xβ(L − x)γ = 0(β+1)xα+βLγ

0(α+β+1) 2 F1(β + 1,−γ ;α+β + 1; x/L), (2-10)

where 2 F1 is a hypergeometric function [Kilbas et al. 2006; Samko et al. 1993].

3. Mathematical model

In classical mechanics, the minimization of the potential energy for a fixed supported beam of length L
with a downward transverse load per unit length f (x) requires that the functional

V =

L∫
0

F(x, u, u′′) dx =

L∫
0

[
1
2

E I (u′′(x))2− f (x) u(x)
]

dx (3-1)

be minimized, where E I is the bending stiffness (which is constant) and u(x) is the static deflection of
the beam.

The individual terms 1/2E I (u′′(x))2 and f (x), u(x) represent potential (strain) energy due to bending
and potential energy due to the lateral deflection, respectively. The boundary conditions for the fixed
supported beam are

u(0)= u′(0)= u(L)= u′(L)= 0. (3-2)

The corresponding Euler–Lagrange equation for the considered problem has the form

∂F(x, u, u′′)
∂u

+
d2

dx2

(
∂F(x, u, u′′)

∂u′′

)
= 0, (3-3)

which leads to the Euler–Bernoulli beam equation

E I
d4

dx4 u(x)− f (x)= 0. (3-4)

In this manuscript, we propose a procedure for constructing the fractional Euler–Bernoulli beam equa-
tion utilizing the fractional variational calculus. We start from the functional (3-1) and we replace the
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second order derivative by the left Caputo derivative (2-1) in the following way:

Vfrac =

L∫
0

Ffrac(x, u, CDα
0+u) dx

=

L∫
0

[
1
2

E I (`α−2CDα
0+u(x))

2
− f (x) u(x)

]
dx . (3-5)

Next, by using results presented in [Lazo and Torres 2013; Malinowska et al. 2015] we get the cor-
responding form of the fractional Euler–Lagrange equation for the problem (3-5), which has the form

∂Ffrac(x, u, CDα
0+u)

∂u
+

CDα
L−

(
∂Ffrac(x, u, CDα

0+u)
∂CDα

0+u

)
= 0, (3-6)

and leads to the fractional Euler–Bernoulli beam equation

`2(α−2)E I CDα
L−

CDα
0+u(x)− f (x)= 0, (3-7)

where ` is a length scale [Sumelka 2014a; Sumelka and Błaszczyk 2014; Sumelka et al. 2015].
It should be highlighted that if we put α = 2 into (3-6) and (3-7) we obtain equations (3-3) and (3-4),

respectively. Therefore, we do not need to look at the proposed model as competitive to the classical
Euler–Bernoulli model. Because of this, we should treat this model as a complement to the classical
theory.

4. Analytical solution

Let us start with the denotation

f ∗(x)=
f (x)

`2(α−2)E I
. (4-1)

By using the denotation above we can rewrite the fractional Euler–Bernoulli Equation (3-7) as

CDα
L−

CDα
0+u(x)= f ∗(x). (4-2)

We start with the transformation of (4-2) into an integral equation [Błaszczyk and Ciesielski 2015; 2016;
Ciesielski and Błaszczyk 2015]. We integrate (4-2) two times by using fractional integral operators (2-3)
and (2-4), giving

I α0+ I αL−
CDα

L−
CDα

0+u(x)= I α0+ I αL− f ∗(x). (4-3)

After the first integration in regards to the property (2-6), we get

I α0+
(CDα

0+u(x)− CDα
0+u(x)|x=L+(L − x)CDα+1

0+ u(x)|x=L

)
= I α0+ I αL− f ∗(x). (4-4)

Next, we have to calculate the expression

I α0+(L − x)= I α0+L − I α0+x = L xα

0(1+α)
−

xα+1

0(2+α)
, (4-5)
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and on the basis of the composition rule (2-5) we obtain the following form of the considered equation:

u(x)− u(0)− u′(0)x

−

(CDα
0+u(x)|x=L

0(α+ 1)
xα +

CDα+1
0+ u(x)|x=L

0(α+ 2)

(
−(α+ 1)Lxα + xα+1))

= I α0+ I αL− f ∗(x). (4-6)

Now, we can write the above equation in a simpler form:

u(x)− (C1xα +C2xα(x − (α+ 1)L))= I α0+ I αL− f ∗(x), (4-7)

where C1 =
CDα

0+u(x)|x=L/0(α+ 1) and C2 =
CDα+1

0+ u(x)|x=L/0(α+ 2).
In order to determine the constants C1 and C2, we differentiate (4-7):

u′(x)−C1αxα−1
+C2(α+ 1)xα−1(αL − x)= I α−1

0+ I αL− f ∗(x), (4-8)

and in accordance with the boundary conditions (3-2) we write the adequate system of equations as{
C1Lα −C2αLα+1

= u(L)− I α0+ I αL− f ∗(x)|x=L ,

C1αLα−1
−C2(1−α2)Lα = u′(L)− I α−1

0+ I αL− f ∗(x)|x=L .
(4-9)

We determine the values C1 and C2 as

C1 =

(
u(L)− I α0+ I αL− f ∗(x)|x=L

)
(1−α2)−

(
u′(L)− I α−1

0+ I αL− f ∗(x)|x=L

)
αL

Lα
, (4-10)

C2 =

(
u′(L)− I α−1

0+ I αL− f ∗(x)|x=L

)
−
(
u(L)− I α0+ I αL− f ∗(x)|x=L

)
α/L

Lα
. (4-11)

Substituting the right-hand side of the expressions (4-10) and (4-11) into (4-7) we get

u(x)− (x/L)α
[
(αx/L −α− 1)I α0+ I αL− f ∗(x)|x=L + (L − x)I α−1

0+ I αL− f ∗(x)|x=L

]
=−(x/L)α

[
(α+ 1−αx/L)u(L)+ (L − x)u′(L)

]
+ I α0+ I αL− f ∗(x). (4-12)

Taking into account the boundary conditions (3-2) we obtain the final integral form of the fractional
Euler–Bernoulli Equation (4-2):

u(x)−(x/L)α
[
(αx/L −α− 1)I α0+ I αL− f ∗(x)|x=L + (L − x)I α−1

0+ I αL− f ∗(x)|x=L

]
= I α0+ I αL− f ∗(x). (4-13)

The analytical solution of the considered problem (4-2) and (3-2) is

u(x)= (x/L)α
[
(αx/L −α− 1)gα,α(L)+ (L − x)gα−1,α(L)

]
+ gα,α(x), (4-14)

where gη,µ(x)= I η0+ IµL− f ∗(x).

5. Numerical solution

In this section we present two numerical schemes for (3-7). The first one is dedicated to the integral
equation and the second one is dedicated to the differential equation (the Euler–Lagrange equation).

The ability to calculate the composition of left and right fractional operators is very important to get
a graphical interpretation of solutions for fractional variational differential equations. The analytical
evaluations for any function of such composition are difficult to achieve. In some cases, we can express
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them through special functions, but this causes difficulties in calculating the function values. Therefore,
numerical methods are a useful tool to obtain an approximation of integral or differential operators with
different types of kernel [Błaszczyk and Ciesielski 2015; 2016; Ciesielski and Błaszczyk 2015; Durajski
2014; 2015; Siedlecki et al. 2015].

Let us start with introducing the following grid of n + 1 nodes with the constant step 1x = L/n:
0= x0 < x1 < . . . < xi < xi+1 < . . . < xn = L , and xi = i 1x , i = 0, 1, . . . , n.

5.1. Method I: discretization of the integral equation. In our previous works [Błaszczyk and Ciesielski
2015; 2016] we determined the discrete form of the composition of the left and right fractional integrals
of order α. On the basis of these results, we present the composition of fractional integrals (2-3) and
(2-4):

I α0+ I αL− f ∗(x)
∣∣
x=xi
≈

i∑
j=0

w
(α)
i, j

n∑
k= j

v
(α)
j,k f ∗k , (5-1)

where coefficients w(α)i, j and v(α)i, j have the form

w
(α)
i, j =

(1x)α

0(α+ 2)


0 for i = 0 and j = 0
(i − 1)α+1

− iα+1
+ iα(α+ 1) for i > 0 and j = 0,

(i − j + 1)α+1
− 2(i − j)α+1

+ (i − j − 1)α+1 for i > 0 and 0< j < i,
1 for i > 0 and j = i

(5-2)

v
(α)
i, j =

(1x)α

0(α+ 2)


0 for i = n and j = n,
(n− i − 1)α+1

− (n− i)α+1
+ (n− i)α(α+ 1) for i < n and j = n,

( j − i + 1)α+1
− 2( j − i)α+1

+ ( j − i − 1)α+1 for i < n and i < j < n,
1 for i < n and j = i .

(5-3)

Now we present the discrete form of the integral equation (4-13). For every grid node xi , i = 0, 1, . . . , n,
we write the equation as

ui =−

(
i
n

)α[(
αi
n
−α− 1

) n∑
j=0

w
(α)
n, j

n∑
k= j

v
(α)
j,k f ∗k + (n− i)1x

n∑
j=0

w
(α−1)
n, j

n∑
k= j

v
(α)
j,k f ∗k

]

+

i∑
j=0

w
(α)
i, j

n∑
k= j

v
(α)
j,k f ∗k . (5-4)

One can observe that for the calculation of values u0, u1, . . . , un we do not need to solve the system of
n+ 1 linear equations. This is an important advantage of the proposed scheme from the computational
point of view.

5.2. Method II: discretization of the differential equation. In this case, we based the calculation on
the discrete form of the composition of the left and right fractional derivatives of order α presented in
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[Błaszczyk et al. 2011]:

C Dα
L−

C Dα
0+u(x)

∣∣
x=xi
≈

n∑
j=i−1

q(α)i, j

j+1∑
k=0

r (α)j,k uk, (5-5)

where coefficients r (α)i, j and q(α)i, j have the following forms:

r (α)i, j =
(1x)−α

0(3−α)



0 for i = 0 and j = 0,
i2−α
− (i − 1)2−α for i > 0 and j = 0,

3(i − 1)2−α − 2i2−α
− (i − 2)2−α for i > 0 and j = 1,

(i − j + 2)2−α − 3(i − j + 1)2−α

+ 3(i − j)2−α − (i − j)2−α for i > 0 and 1< j < i,
22−α
− 3 for i < n and j = i,

1 for i < n and j = i + 1

(5-6)

q(α)i, j =
(1x)−α

0(3−α)



0 for i = n and j = n,
(n− i)2−α−(n− i−1)2−α for i < n and j = n,
3(n− i−1)2−α−2(n− i)2−α−(n− i−2)2−α for i < n and j = n−1,
( j− i+2)2−α−3( j− i+1)2−α

+3( j− i)2−α−( j− i−1)2−α for i < n and i < j < n−1,
22−α
−3 for i < n and j = i,

1 for i < n and j = i−1

(5-7)

Now we present the discrete form of the Euler–Lagrange Equation (3-7). For every grid node xi , i =
2, 3, . . . , n− 2, we write the equation as

n∑
j=i−1

q(α)i, j

j+1∑
k=0

r (α)j,k uk = f ∗i . (5-8)

In this approach we have to solve the system of n+ 1 algebraic equations.

6. Error analysis

Let us consider the following example:

CDα
1−

CDα
0+u(x)= C, (6-1)

where C is a constant. The exact solution of the considered problem (6-1) with boundary conditions
(3-2) is

u(x)= xα
[
(αx −α− 1)gα,α(1)+ (1− x)gα−1,α(1)

]
+ gα,α(x), (6-2)

where

gη,µ(x)= I η0+ Iµ1−C = I η0+
C(1−x)µ

0(µ+1)
=

Cxη

0(η+1)0(µ+1) 2 F1(1,−µ; η+ 1; x). (6-3)
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Method I

n α = 1.5 p α = 1.6 p α = 1.7 p α = 1.8 p α = 1.9 p

80 2.27 ·10−6
− 1.08 ·10−6

− 4.72 ·10−7 - 1.84 ·10−7
− 5.42 ·10−8

−

160 7.01 ·10−7 1.70 3.10 ·10−7 1.80 1.29 ·10−7 1.87 4.84 ·10−8 1.93 1.39 ·10−8 1.96
320 2.08 ·10−7 1.75 8.61 ·10−8 1.84 3.42 ·10−8 1.91 1.25 ·10−8 1.95 3.53 ·10−9 1.98
640 6.04 ·10−8 1.79 2.34 ·10−8 1.88 8.93 ·10−9 1.94 3.18 ·10−9 1.97 8.91 ·10−10 1.99
1280 1.72 ·10−8 1.81 6.27 ·10−9 1.90 2.30 ·10−9 1.95 8.07 ·10−10 1.98 2.24 ·10−10 1.99

Method II

n α = 1.5 p α = 1.6 p α = 1.7 p α = 1.8 p α = 1.9 p

80 8.74 ·10−3
− 7.97 ·10−3

− 7.13 ·10−4 - 5.61 ·10−4
− 3.05 ·10−4

−

160 5.15 ·10−4 0.75 5.07 ·10−4 0.65 5.11 ·10−4 0.48 4.65 ·10−4 0.27 2.91 ·10−4 0.07
320 3.09 ·10−4 0.74 3.20 ·10−4 0.66 3.59 ·10−4 0.51 3.75 ·10−4 0.31 2.72 ·10−4 0.09
640 1.89 ·10−4 0.70 2.01 ·10−4 0.67 2.47 ·10−4 0.54 2.96 ·10−4 0.34 2.49 ·10−4 0.13
1280 1.20 ·10−4 0.65 1.27 ·10−4 0.67 1.68 ·10−4 0.55 2.31 ·10−4 0.35 2.25 ·10−4 0.15

Table 1. Maximum absolute errors and experimental estimation of rates of convergence
p for α ∈ {1.5; 1.6; 1.7; 1.8; 1.9} and C =−1/`2(α−2).

In this case (when the exact solution is available) we can compute errors generated by the presented
methods (5-4) and (5-8). Maximum errors were calculated based on the standard expression

err(1x)= max
i=0,...,n

(|u(xi )− ui |), (6-4)

and the experimental rate of convergence was estimated by using the formula

p = log2

(
err(1x)

err(1x/2)

)
. (6-5)

The maximum absolute errors and the experimental rate of convergence p for various values of α
and n are included in Table 1. One can note that errors decrease by increasing the number n. We also
conclude that the results obtained by using Method I are much better than those from Method II. From
these numerical tests, one may see that the rate of convergence p for scheme (5-4) is significantly higher
than for scheme (5-8).

7. Example of computations

On the basis of the numerical scheme (5-4) presented in the paper, we implemented an algorithm in
Maple and carried out computational simulations for various values of parameters α, `, and a different
type of function f . In all presented examples we consider a nondimensional case and assumed L = 1,
E = 1, I = 1, ε = 0.01 and 1x = 0.001. Two cases are considered:
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(i) The beam with central load

f (x)=

{
−1/ε, for L/2− ε/2≤ x ≤ L/2+ ε/2

0, otherwise
. (7-1)

(ii) The beam with asymmetric load

f (x)=

{
−1/ε, for 3L/4− ε/2≤ x ≤ 3L/4+ ε/2

0, otherwise
. (7-2)

The numerical results are presented in Figures 1 and 2.
Analyzing the results presented in Figures 1 and 2, we observe that when length scale ` increases in

comparison to beam length L , the nonlocal effects are more noticeable. If ` is close to 0 or if the order
of Caputo derivative α tends to 2, the fractional Euler–Bernoulli beam equation reduces to the classical
model. It is also clearly seen that when values of α decrease the difference between the classical and
fractional result increases.

u(
x)

x

`= L/2

α = 1.80

α = 1.85

α = 1.90

α = 1.95

α = 2.00

u(
x)

x

α = 1.9

`= L/10

`= L/8

`= L/6

`= L/4

`= L/2

Figure 1. Comparison of the static deflections for a beam with central load (case (i))
for a various order of fractional derivatives α and the length scale `.

u(
x)

x

`= L/2

α = 2.00

α = 1.95

α = 1.90

α = 1.85

α = 1.80

u(
x)

x

α = 1.9

`= l/2

`= l/4

`= l/6

`= l/8

`= l/10

Figure 2. Comparison of the static deflections for a beam with asymmetric load (case
(ii)) for a various order of fractional derivatives α and the length scale `.
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8. Conclusions

In this paper a new formulation of the Euler–Bernoulli beam equation utilizing fractional calculus was
presented. It should be stressed that this is the first time the fractional variational approach was used to
obtain the Euler–Bernoulli beam equation. Therefore, the spatial fractional operator appearing in this
differential equation is the composition of left and right Caputo derivatives and this operator is defined on
the finite interval. The obtained equation was transformed into its equivalent integral form and then was
solved. We received both the exact and numerical solution of the integral equation. The errors generated
by the presented numerical scheme (Method I) and the experimental rate of convergence were calculated
and compared with numerical results obtained by discretizing the Euler–Lagrange equation (Method II)
for a particular case. We also carried out simulations to demonstrate how parameters ` and α affect the
static deflections of the beam.
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FRACTIONAL CALCULUS IN NEURONAL ELECTROMECHANICS

CORINA S. DRAPACA

Traumatic brain injuries (TBI) are among the leading causes of death and permanent disability worldwide.
Recent experimental observations suggest that damage in brain tissue involves complex local as well as
nonlocal chemomechanical interactions that happen on multiple spatiotemporal scales. Biomechanical
models of TBI existing in the literature do not incorporate either electrochemical or multiscaling features.
Given that neurons are the brain cells responsible for electrochemical signaling on multiplexed temporal
scales we propose a novel mathematical model of neuronal electromechanics that uses a constrained La-
grangian formulation and Hamilton’s principle to couple Newton’s law of motion for a linear viscoelastic
Kelvin–Voigt solid-state neuron and the classic Hodgkin–Huxley equations of the electronic neuron. We
will use fractional order derivatives of variable order to model multiple temporal scales. Numerical
simulations of possible damage dynamics in neurons due to mechanical trauma will be presented and
discussed.

A list of symbols can be found on page 53.

1. Introduction

Traumatic brain injuries (TBI) are among the main causes of death and disability worldwide, contributing
to approximately 30% of all injury deaths in the United States in 2010 [CDC 2016]. The data collected
in the United States during the period 2001-2010 [CDC 2016] show a dramatic increase of 70% in
TBI-related visits to emergency rooms, while the death rates decreased only by 7%. This prompted
an unprecedented unified effort from various US organizations (government, health and social services)
to come up with a public health approach for TBI in [Bell et al. 2015]. The authors of that article
concluded it by emphasizing the need for continued progress in brain science that can “inform and
suggest solutions for a problem that is of significant concern to the public”. In particular, mathematical
models and corresponding computer simulations can increase our comprehension of brain responses to
TBI and help us design better experiments for measurements and hypothesis testing that ultimately will
lead to improved medical diagnostic and therapeutic protocols. In the last few decades a multitude of
mathematical models have been proposed to study brain biomechanics and, independently, brain bio-
chemistry at cell and tissue levels (see [Goldsmith 2001; Goriely et al. 2015] for comprehensive reviews
of these models). However, most of these models have many physical parameters which are hard, if not
impossible, to find experimentally and the high complexity of the corresponding computations makes
these models hard to use in today’s clinical applications. In addition, these biomechanical models were
built at the tissue level and thus they cannot predict the mechanochemical responses of brain cells to
mechanical and/or electrochemical events that happen at the tissue and organ scales.

Keywords: fractional derivatives of variable order, entangled scales, Hamilton’s principle, fractional calculus,
Hodgkin–Huxley model, neuronal electromechanics, TBI.
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Following the recommendation of Goriely et al. [2015] for the development of bottom-up mathe-
matical models that link brain mechanics and electrochemistry at each relevant length scale as well as
across scales, we recently proposed a lower-dimensional electromechanical model of a neuron which is
simple enough so that its predictions may be experimentally verified, and could be used as a foundation
model for more advanced multiscaling mathematical models [Drapaca 2015]. By assuming that the
electrochemical activity of a neuron is described by the classic Hodgkin–Huxley [1952] equations and
that the neuron behaves mechanically like a linear viscoelastic Kelvin–Voigt solid, we showed through
numerical simulations that very fast initially applied speeds (jabbing) inhibit the action potentials and
thus might cause neuronal damage.

In this paper we generalize the model from [Drapaca 2015] by incorporating multiple time scales
using fractional order temporal derivatives of variable orders. In the last few decades fractional calculus
has been successfully used in a wide range of applications to model stochastic, multiscaling and nonlocal
phenomena in various physical systems (some relevant books on fractional calculus and its applications
are [Podlubny 1999; Samko et al. 1993; Oldham and Spanier 2006; Hilfer 2000; Baleanu et al. 2012;
Milici and Draganescu 2015; West 2015; Tarasov 2010]). Given that neuronal electrochemical dynamics
are stochastic [Schiff 2012] and fractional calculus is a natural mathematical representation of stochas-
ticity [West 2015], Sherief et al [2012] generalized the classic Hodgkin–Huxley model by replacing
the first order temporal derivatives with fractional order ones. The use of fractional order derivatives
in mathematical models of neuronal dynamics is supported by the experimental observations made in
[Lundstrom et al. 2008], and only last year Grevesse et al. [2015] showed empirically that mechanical
creep of neurons follow a power law of fractional order. Thus we propose to replace the first order time
derivatives in the model from [Drapaca 2015] with fractional temporal derivatives with variable orders.
The time-dependency of the fractional orders represents the biological variability of neurons as well as
the intrinsic entanglement of states existing in the complex mixture of physical components that makes
up a neuron. We call this inseparability of time scales entangled scales.

In this paper we use the respective left and right Riemann–Liouville fractional derivatives of variable
order which were introduced in [Atanackovic and Pilipovic 2011] as

0 Dα(t)
t f (t)=

f (0)
0(1−α(t))tα(t)

+

∫ t

0

d f (τ )/dτ
0(1−α(t − τ))(t − τ)α(t−τ)

dτ, (1-1)

t Dα(t)
T f (t)=

f (T )
0(1−α(T − t))(T − t)α(T−t) −

∫ T

t

d f (τ )/dτ
0(1−α(τ − t))(τ − t)α(τ−t) dτ, (1-2)

where f is an absolutely continuous1 function on [0, T ] with f (t)= 0, ∀t ∈ R−[0, T ], and the variable
order α(t) is a continuous function on [0, T ) and 0≤α(t)< 1. Definitions (1-1) and (1-2) allow us to use a
nonconservative form of Hamilton’s principle proposed in [Atanackovic and Pilipovic 2011] and obtain
the generalized integro-differential Euler–Lagrange equations corresponding to our electromechanical
model.

Although Definitions (1-1) and (1-2) can model the fading memory of materials with variable visco-
elasticity [Lorenzo and Hartley 2002], it was shown in [Chicone and Mashhoon 2002] that in the case of

1The absolute continuity of a real-valued function f on an interval [0, T ] is equivalent to the existence almost everywhere
of the derivative d f/dt which is Lebesgue integrable and f (t)= f (0)+

∫ t
0 (d f/ds)ds, ∀t ∈ [0, T ].
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piecewise uniform accelerated (linear and circular) motions these derivatives introduce additional mem-
ory effects that infringe causality. On the other hand, the respective left and right Marchaud fractional
derivatives of variable order

0 D̃α(t)
t f (t)=

f (0)
0(1−α(t))tα(t)

+
1

0(1−α(t))

∫ t

0

d f (τ )/dτ
(t − τ)α(t)

dτ, (1-3)

t D̃α(t)
T f (t)=

f (T )
0(1−α(t))(T − t)α(t)

−
1

0(1−α(t))

∫ T

t

d f (τ )/dτ
(τ − t)α(t)

dτ, (1-4)

satisfy the causality law [Chicone and Mashhoon 2002] and therefore their mathematical properties and
applications have been increasingly studied [Coimbra and Kobayashi 2002; Coimbra 2003; Soon et al.
2005; Sun et al. 2012; Almeida and Torres 2013]. However, it is easy to check (using power series
expansions) that for variable order functions α : [0, T ] → [0, 1) which are differentiable with continuous
derivatives and |dα/dt(t)| � 1, t ∈ (0, T ), the approximations

0 Dα(t)
t f (t)≈ 0 D̃α(t)

t f (t) and t Dα(t)
T f (t)≈ t D̃α(t)

T f (t) (1-5)

hold, which are identically satisfied for α(t)= constant ∈ [0, 1). Thus, in this paper we will use the left
and right Riemann–Liouville fractional derivatives (1-1) and (1-2) with variable orders belonging to the
following class of functions: C= {α : [0, T ] → [0, 1)/(dα/dt) exists and is continuous |(dα/dt)| � 1}
such that, thanks to the approximations (1-5), the causality and nonlocality criteria introduced in [Chicone
and Mashhoon 2002] are satisfied and the expansion formulas with higher-order derivatives proposed in
[Almeida and Torres 2013] can be applied.

We model a neuron as a linear viscoelastic Kelvin–Voigt solid with variable viscoelasticity whose
electrochemical activity is described by fractional order Hodgkin–Huxley equations with variable order.
In addition, we introduce three linear viscoelastic Maxwell fluid elements with variable viscoelasticity
that provide a physical representation for the three ionic gates with gating variables m,n, and h introduced
by the Hodgkin–Huxley model. The physical analogy of the ionic gates is that of door closers. We use
a Lagrangian formulation and Hamilton’s principle to obtain the equations of motion that couple macro-
scopic (cell level) and microscopic (ionic level) mechanical and electrical information and therefore they
can describe neuronal mechanotransduction. As in [Drapaca 2015], we assume that at the macroscopic
level the membrane’s capacitance depends on the mechanical displacement of the neuron and that the
Young’s modulus of the neuron depends on the gated variables m,n, and h. Our numerical simulations
solve a simplified version of the proposed equations using Matlab. Our results are comparable to those
in [Drapaca 2015]: when a constant external electric current is applied and the initial displacement and
speed are of orders of magnitude comparable to the size of the membrane, the action potentials look
similar to the ones seen in healthy neurons, while at very fast initial speeds (which could model a serious
traumatic event) and in the presence of a constant applied external current, high persisting oscillations
in the volume of the neuron are observed and the action potentials do not happen. Some points of note:
these results were obtained for a variable fractional order of the macroscopic Kelvin–Voigt element,
which was chosen based on mathematical simplicity rather than physical inspiration; and the classic
Hodgkin–Huxley equations were used instead of those of the microscopic Maxwell elements. The classic
Hodgkin–Huxley model has very finely adjusted equations and parameters which might have hidden the
possible effects of the variable viscoelasticity modeled with fractional order time derivatives of variable
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order. It is also possible that there exist other variable fractional orders that enclose physical information
that complements the Hodgkin–Huxley model. The lack of experimentally supported information on
neuronal mechanics and mechanotransduction limits our ability to explore the full capabilities of the
proposed model. However, the model is general enough and can be adapted to practical applications. For
instance, the model is independent of the Hodgkin–Huxley equations and thus simpler equations could
be used together with fractional order time derivatives of variable orders (and possibly the corresponding
evolution equations of the variable order functions) to observe action potentials and neuronal mechanics.
In this case the model might have fewer parameters with better prospects of finding experimental proof.
Therefore the work presented here can be seen as a first step towards a simpler chemomechanical model
of a neuron and its membrane.

In short, the main contributions of this paper are:

(1) Providing the physical structure of door closers to the ionic gates m,n, and h.

(2) Introducing the concept of entangled temporal scales for the stochastic nature of the action potential
and for the inseparability of the multiple time scales involved in the neuronal mechanochemical
processes.

(3) Use of fractional temporal derivatives of variable orders to model the entangled temporal scales.

(4) Showing through numerical simulations that after a serious traumatic event the elastic behavior
of a neuron dominates over its viscoelastic response, which appears to be in agreement with the
experimental observations reported in [Grevesse et al. 2015].

In the next section we present our mathematical model, followed by our results. The paper ends with
a section of conclusions and future directions which contains a first attempt at modeling entanglement
using an area law and level sets.

2. Mathematical model

We model the neuron as an axisymmetric circular cylindrical annulus whose inner core is filled with the
intracellular space and the outer core is the cell’s membrane (Figure 1). We assume that the intracellular
space and the membrane are homogeneous and thus reduce the study of neuronal electromechanics to
the study of a simple electromechanical element that we introduce here. Our low-dimensional elec-
tromechanical model couples spring-dashpot-mass mechanical elements for the intracellular space and
for the ionic gates located in the cell’s membrane to an electric circuit model of the cell’s membrane
(Figure 1). Motivated by the experimental findings in [Lu et al. 2006; Grevesse et al. 2015], we model
the intracellular space as a linear viscoelastic Kelvin–Voigt solid. We use the Hodgkin–Huxley [1952]
electric circuit to model the macroscopic electric dynamics of neuron’s membrane. Besides providing
a mathematical representation for neuronal electric dynamics, the Hodgkin–Huxley model introduces
three ion gates, m,n, and h, that produce action potentials by controlling the ionic flow into and out of
the neuron. Although m,n, and h are seen as nondimensional gate positions whose open or close state
is determined by phenomenologically established first order ordinary differential equations, no physical
structure has been given to them so far. In this paper we propose to model the m,n, and h gates as linear
viscoelastic Maxwell fluid elements located in the cell’s membrane (Figure 1). The physical analogy
for these ionic gates is a door closer. It is important to notice here that the electric circuit and Maxwell
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intracellular space membrane
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kn ηn
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kl ηl
c̃
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Figure 1. Schematic of the proposed model: the neuron is an axisymmetric homoge-
neous circular cylinder whose inner core is the intracellular space, and the outer layer
is the membrane. Due to the symmetry (dashpot line) and material homogeneity, it is
enough to study half of the neuron whose properties are encapsulated into a spring-
dashpot-mass mechanical system with the spring and dashpot connected in parallel
(Kelvin–Voigt model), and the membrane is represented as an electric circuit governed
by the classic Hodgkin–Huxley equations.

elements shown in Figure 1 might not actually be independent and this could be further investigated
using the method of mechanoelectric analogy, which is commonly employed in systems engineering
[Koenig and Blackwell 1961] (a few insightful comments on the mechanoelectric analogy are stated after
formula (2-32)). However, given the empirical nature of the Hodgkin–Huxley model and the current lack
of knowledge of neuronal mechanotransduction, in this paper we will treat the electric circuit and the
Maxwell elements as independent. The coupling of the Kelvin–Voigt and Maxwell mechanical elements
to the Hodgkin–Huxley electric circuit is achieved by using a Lagrangian formulation and Hamilton’s
principle. We introduce a Lagrangian of the form [Drapaca 2015; Galley et al. 2014]

L(qNa, qK, ql, u, dm, dn, dh, m̃, ñ, h̃)= 1
2 M(0 Dα(t)

t u)2+ 1
2 ã(0 Dβ(t)

t (r + dm))
2

+
1
2 b̃(0 Dβ(t)

t (r + dn))
2
+

1
2 c̃(0 Dβ(t)

t (r + dh))
2

−
1

2C(u)
q2

C −
1
2 k(m̃, ñ, h̃)u2

−
1
2 km(qC , u)(r + dm − m̃)2

−
1
2 kn(qC , u)(r + dn − ñ)2− 1

2 kh(qC , u)(r + dh − h̃)2, (2-1)

where M is half of the constant mass of the neuron with constant cross-sectional area A; u(t) is the
macroscopic (cell scale) displacement of mass M that depends on time t ; ã, b̃, and c̃ are the masses of
the gates m, n, and h, respectively; r + dm , r + dn , and r + dh are the relative displacements between
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mass M and each of the masses ã, b̃, and c̃, respectively; r is the constant thickness of the membrane;
and m̃, ñ, and h̃ are the microscopic (ionic scale) displacements of the dashpots in the Maxwell elements
corresponding to the m, n, h gates, respectively. In addition, C(u) is the macroscopic capacitance of
membrane’s lipid bilayer modeled as a capacitor of electric charge qC , k(m̃, ñ, h̃) is the spring constant
of the Kelvin–Voigt element, while km , kn , and kh are the spring constants of the corresponding Maxwell
elements. Lastly, qNa, qK, and ql are the electric charges of Na+, K+, and leakage channels, respectively.
For simplicity, we assume that the relative displacements dm , dn , and dh are independent of displacement
u. The fractional derivative in formula (2-1) is given by (1-1) for a variable order α ∈ C. In formula (2-1)
we identify the first term of the Lagrangian L with a macrokinetic mechanical energy, and the second,
third and fourth terms with microkinetic mechanical energies. The fifth term in formula (2-1) represents
a macropotential electric energy, the sixth term is a macropotential mechanical energy, and the last three
terms are micropotential mechanical energies.

The conservation law of electric charges provides the constraint

qC + qNa+ qK+ ql = 0. (2-2)

We take qNa, qK, ql , u, dm , dn , dh , m̃, ñ, and h̃ to be generalized coordinates and introduce corresponding
independent variations δqNa, δqK, δql , δu, δdm , δdn , δdh , δm̃, δñ, and δh̃ that vanish at times t = 0 and
t = T . Using formula (2-2) we calculate the first variation of the Lagrangian L as

δL= lim
ε→0

dL
dε
(qNa+ εδqNa, qK+ εδqK, ql + εδql, u+ εδu, dm + εδdm, dn + εδdn,

dh + εδdh, m̃+ εδm̃, ñ+ εñ, h̃+ εh̃)

=

[
M0 Dα(t)

t u0 Dα(t)
t (δu)− ku− 1

2
∂km

∂u
(r + dm − m̃)2

−
1
2
∂kn

∂u
(r + dn − ñ)2− 1

2
∂kh

∂u
(r + dh − h̃)2+

1
2C2 q2

C

]
δu

+
[
ã0 Dβ(t)

t (r + dm)0 Dβ(t)
t (δdm)− km(r + dm − m̃)

]
δdm

+
[
b̃0 Dβ(t)

t (r + dn)0 Dβ(t)
t (δdn)− kn(r + dn − ñ)

]
δdn

+
[
c̃0 Dβ(t)

t (r + dh)0 Dβ(t)
t (δdh)− kh(r + dh − h̃)

]
δdh +

[
−

1
2
∂k
∂m̃

u2
+ km(r + dm − m̃)i

]
δm̃

+

[
−

1
2
∂k
∂ ñ

u2
+ kn(r + dn − ñ)

]
δñ+

[
−

1
2
∂k

∂ h̃
u2
+ kh(r + dh − h̃)

]
δh̃

+

[
−

1
C

qC −
1
2
∂km

∂qC
(r + dm − m̃)2− 1

2
∂kn

∂qC
(r + dn − ñ)2

−
1
2
∂kh

∂qC
(r + dh − h̃)2

]
(−δqNa− δqK− δql). (2-3)

We define the virtual work done by nonconservative forces by [Drapaca 2015]
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δW=−
[
RNa(0 Dγ (t)

t qNa)δqNa+ RK(0 Dγ (t)
t qK)δqK+ Rl(0 Dγ (t)

t ql)δql
]

−
[
η(0 Dα(t)

t u)δu+ ηm(0 Dβ(t)
t m̃)δm̃+ ηn(0 Dβ(t)

t ñ)δñ+ ηh(0 Dβ(t)
t h̃)δh̃

]
+
[
−ENaδqNa− EKδqK− Elδql + Fmδdm + Fnδdn + Fhδdh + Fδu

]
. (2-4)

In formula (2-4), the terms inside the first two sets of parentheses represent dissipative forces: the first
is due to the resistors with resistances RNa,RK, and Rl in the Hodgkin–Huxley electric circuit, and
the second is due to the linear dashpots in the Kelvin–Voigt and Maxwell elements whose damping
coefficients are η,ηm ,ηn , and ηh . The last set of parentheses in (2-4) contain the reverse potentials ENa,EK,
and El of the Hodgkin–Huxley model and the forces Fm, Fn, Fh , and F which are work conjugates for
the Maxwell elements and the Kelvin–Voigt element, respectively. Again, the fractional derivatives in
formula (2-4) are given by (1-1) with variable orders β, γ ∈ C. The choice of signs in formula (2-4)
guarantees that δW is thermodynamically consistent. The nomenclature of the physical and structural
quantities used throughout the paper is given on page 53.

We use now the nonconservative form of Hamilton’s principle∫ T

0
δL+ δW dt = 0. (2-5)

We assume that the generalized coordinates and their variations are absolutely continuous functions on
[0, T ] so that the following integration by parts formula can be applied [Atanackovic and Pilipovic 2011]:∫ T

0

(
0 Dα(t)

t f (t)
)(

0 Dα(t)
t δ f (t)

)
dt =

∫ T

0
t Dα(t)

T (0 Dα(t)
t f (t))δ f (t) dt. (2-6)

Thus, by replacing formulas (2-3) and (2-4) into (2-5), using the integration by parts formula (2-6), the
independence of the variations of generalized coordinates and the fact that these are zero at 0 and T , we
obtain the generalized Euler–Lagrange equations2

M t Dα(t)
T (0 Dα(t)

t u)− η0 Dα(t)
t u− ku+ 1

2
dC
du

V 2

−
1
2

[
∂km

∂u
(r + dm − m̃)2+

∂kn

∂u
(r + dn − ñ)2+

∂kh

∂u
(r + dh − h̃)2

]
+ F = 0, (2-7)

ãt Dβ(t)
T (0 Dβ(t)

t (r + dm))− km(r + dm − m̃)+ Fm = 0, (2-8)

b̃t Dβ(t)
T (0 Dβ(t)

t (r + dn))− kn(r + dn − ñ)+ Fn = 0, (2-9)

c̃t Dβ(t)
T (0 Dβ(t)

t (r + dh))− kh(r + dh − h̃)+ Fh = 0, (2-10)

−ηm0 Dβ(t)
t m̃+ km(r + dm − m̃)− 1

2
∂k
∂m̃

u2
= 0, (2-11)

−ηn0 Dβ(t)
t ñ+ kn(r + dn − ñ)− 1

2
∂k
∂ ñ

u2
= 0, (2-12)

−ηh0 Dβ(t)
t h̃+ kh(r + dh − h̃)− 1

2
∂k

∂ h̃
u2
= 0, (2-13)

2These equations can also be obtained directly from [Atanackovic and Pilipovic 2011, Equation (35)].
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−RNa(0 Dγ (t)
t qNa)+ V − ENa

+
1

2C

[
∂km

∂V
(r + dm − m̃)2+

∂kn

∂V
(r + dn − ñ)2+

∂kh

∂V
(r + dh − h̃)2

]
= 0, (2-14)

−RK(0 Dγ (t)
t qK)+ V − EK

+
1

2C

[
∂km

∂V
(r + dm − m̃)2+

∂kn

∂V
(r + dn − ñ)2+

∂kh

∂V
(r + dh − h̃)2

]
= 0, (2-15)

−Rl(0 Dγ (t)
t ql)+ V − El

+
1

2C

[
∂km

∂V
(r + dm − m̃)2+

∂kn

∂V
(r + dn − ñ)2+

∂kh

∂V
(r + dh − h̃)2

]
= 0, (2-16)

where V = qC/C is the electric potential of the capacitor.
As in [Sherief et al. 2012], we introduce a generalized Kirchhoff’s current law of the form

0 Dγ (t)
t (CV + qNa+ qK+ ql)= I, (2-17)

where I is a known external current applied on the membrane. By replacing Equations (2-14), (2-15),
and (2-16) into (2-17) we obtain an equation for the membrane potential given as

0 Dγ (t)
t (CV )= I − 1

RNa
(V − ENa)−

1
RK
(V − EK)−

1
Rl
(V − El)

−
1

2C

(
1

RNa
+

1
RK
+

1
Rl

)[
∂km

∂V
(r + dm − m̃)2+

∂kn

∂V
(r + dn − ñ)2+

∂kh

∂V
(r + dh − h̃)2

]
. (2-18)

The unknown functions u, dm , dn , dh , m̃, ñ, h̃, and V can be found by solving the coupled Equations
(2-7), (2-8)–(2-13) and (2-18) with appropriate initial conditions. Given the insufficient knowledge of
neuronal mechanotransduction processes, it is very difficult to provide expressions for ã, b̃, c̃, k, km , kn ,
kh , ηm , ηn , ηh , C , Fm , Fn , and Fh which are needed in order to solve these equations. Therefore, we
now make some simplifying assumptions. We start by observing that the equations are not only coupling
neuronal mechanical and electrical behaviors but also microscopic (ionic level) and macroscopic (cell
level) length scales. This mixture of length scales will cause the system of differential equations to be
stiff numerically. Considering how little is known about most of the parameters in our model, a proper
analysis of the system and separation of the length scales using perturbation theory is not feasible at this
time. Thus we will give a qualitative rather than quantitative analysis of the terms of the equations. We
assume that the microscopic masses ã, b̃, and c̃ are negligible with respect to the cell’s mass M and thus
we remove Equations (2-8)–(2-10) from the system of equations and also remove dm , dn , and dh from
the set of unknowns. We further assume that the first variations of the spring constants km , kn , and kh of
the microscopic Maxwell elements with the macroscopic functions V and u are very small and thus we
neglect these terms from Equations (2-7) and (2-18). For simplicity, we take F = 0. Lastly, we introduce
the nondimensional displacements

m = m̃/r, n = ñ/r, h = h̃/r. (2-19)
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With these assumptions, the system of equations reduces to

M t Dα(t)
T (0 Dα(t)

t u)− η0 Dα(t)
t u− ku+ 1

2
dC
du

V 2
= 0, (2-20)

0 Dβ(t)
t m =−

km

ηm
m+

[
km

ηm
(1+ dm/r)−

1
2r2ηm

∂k
∂m

u2
]
, (2-21)

0 Dβ(t)
t n =−

kn

ηn
n+

[
kn

ηn
(1+ dn/r)−

1
2r2ηn

∂k
∂n

u2
]
, (2-22)

0 Dβ(t)
t h =−

kh

ηh
h+

[
kh

ηh
(1+ dh/r)−

1
2r2ηh

∂k
∂h

u2
]
, (2-23)

0 Dγ (t)
t (CV )= I − 1

RNa
(V − ENa)−

1
RK
(V − EK)−

1
Rl
(V − El). (2-24)

We notice now that when β(t)= 1, Equations (2-21)–(2-23) have the same forms as the classic Hodgkin–
Huxley equations for the gating variables m, n, and h and thus we identify our nondimensional displace-
ments m, n, and h with the variables representing the activations of the Na+ and K+ channels and the
inactivation of Na+ channel, respectively. Consequently, we have provided a physical meaning for m,n,
and h and their evolution equations which was, missing from the original ad hoc derivation of the classic
Hodgkin–Huxley [1952] model. Since the physical parameters required by Equations (2-21)–(2-23) are
not known we will replace the right-hand sides of these equations and Equation (2-24) by the expressions
from the Hodgkin–Huxley model [Dayan and Abbott 2001] and thus obtain the system of equations

M t Dα(t)
T (0 Dα(t)

t u)− η0 Dα(t)
t u− ku+ 1

2
dC
du

V 2
= 0, (2-25)

0 Dβ(t)
t m = αm(1−m)−βmm, (2-26)

0 Dβ(t)
t n = αn(1− n)−βnn, (2-27)

0 Dβ(t)
t h = αh(1− h)−βhh, (2-28)

0 Dγ (t)
t (CV )= I − gNam3h Ã(V − ENa)− gKn4 Ã(V − EK)− gl Ã(V − El), (2-29)

where Ã is the surface area of the neuron, gNa, gK, and gl are respectively the maximal conductances of
the Na+, K+, and leakage currents, and

αm =
0.1(V+40)

1−exp(−0.1(V+40))
, βm = 4 exp(−0.0556(V + 65)),

αn =
0.01(V+55)

1−exp(−0.1(V+55))
, βn = 0.125 exp(−0.0125(V + 65)),

αh = 0.07 exp(−0.05(V + 65)), βh =
1

1+exp(−0.1(V+35))
. (2-30)

The physical units of the parameters in (2-30) are the same as those of the left-hand sides of the Equations
(2-26)–(2-28), since all the constants multiplying potential V are meant to remove its physical units (mV).
Lastly, we notice that for a constant C , Equations (2-26)–(2-29) reduce to either the equations proposed
in [Sherief et al. 2012] when β(t) and γ (t) are constants between 0 and 1, or the equations of the classic
Hodgkin–Huxley model [Dayan and Abbott 2001] when β(t)= γ (t)= 1.
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In addition, we need to provide expressions for C(u), k(m, n, h), α(t), β(t), and γ (t). As in [Drapaca
2015], we assume that the membrane acts like a parallel plate capacitor and introduce

C = cm Ã = ε Ã
r(1+u/r)

≈
ε Ã
r
(1− u/r), (2-31)

where cm is the specific membrane capacitance and ε is membrane’s permittivity. For the dynamic spring
constant k(m, n, h) we propose the expression [Drapaca 2015]

k(m, n, h)= k0(1+m3(1− h)n4), (2-32)

where k0 is the spring constant of the neuron in the inactive state. Equation (2-32) suggests that the cell
stiffens during an action potential which appears to be in agreement with the observations made in [Hille
2001; Zou et al. 2013]. Lastly, due to a lack of knowledge of relationships among the multiple time
scales on which physical processes in a neuron take place, mathematical simplicity rather than physical
inspiration was used to select expressions for α(t), β(t), and γ (t) and these will be provided in the results
section.

The system of Equations (2-25)–(2-29) with parameters given by (2-30), (2-31), and (2-32) can be
solved either by direct numerical discretization or, as we will see below, by using higher order expansion
formulas that transforms the system into a system of first and second order differential equations which
can be solved using existing software such as Matlab. Before proceeding further it is worthwhile to
comment on the features of some of these equations. For the sake of argument we take β(t)= γ (t)= 1.
Then, Equations (2-26)–(2-29) and (2-30) become the classic Hodgkin–Huxley equations. The amount
of combined work, intuition and inspiration needed to obtain these very well tuned equations is obvious
from their expressions and this is why we decided to keep these formulas in our model. However, given
our interpretation of the gating variables m, n, and h as nondimensional displacements of the dashpots
in the microscopic Maxwell elements that model the ionic gates present in the membrane, we could
use the mechanoelectric analogy [Koenig and Blackwell 1961] to provide a macroscopic mechanical
description of the membrane corresponding to the Hodgkin–Huxley electric circuit. According to the
mechanoelectric analogy, the capacitance C is the average mass of the membrane seen as a multicom-
ponent and multiphasic porous medium, the voltage V is the average velocity of the membrane, the
external current I is an external force, the reverse potentials ENa, EK, and El are flux velocities of
Na+, K+, and Cl− (leakage), and the inverses of the resistances 1/RNa,1/RK, and 1/Rl are viscous
damping coefficients describing the friction caused by the transport of ions through the membrane. In
this analogy, Equation (2-24) (or (2-29)) is Newton’s second law of motion where the only internal forces
are the damping forces (1/RNa)(V − ENa), (1/RK)(V − EK), and (1/Rl)(V − El) corresponding to the
ion fluxes expressed relative to the average velocity of the membrane. One advantage of this mechanical
analog is that thermodynamics theory can be used to relate the flux velocities of the considered ionic
species to their concentrations via their chemical potentials [Doi and Edwards 1986] and thus recover
the Nernst equations, which are commonly used to express the dependency of the reverse potentials on
ion concentrations (see for instance [Wei et al. 2014]). Another possible advantage is that as experimen-
tally supported information on the chemomechanical properties of the membrane’s components becomes
available, the validation of a simpler mechanical model with fewer parameters may become possible. In
this context we notice that our model is not only independent of the Hodgkin–Huxley equations but also
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could be made to have fewer parameters thanks to the use of fractional order derivatives of variable order.
For instance, according to the Hodgkin–Huxley model, the damping coefficients 1/RNa, 1/RK, and 1/Rl

in the mechanical analog model depend on m, n, and h and thus vary in time according to (2-26)–(2-29).
This means that the mechanical analog model implements already variable viscoelasticity. Alternatively,
using a fractional order derivative of variable order γ (V (t)) ∈ [0, 1) in Equation (2-24) to model variable
viscoelasticity could drastically simplify Equations (2-26)–(2-28) and (2-30) and reduce the number of
parameters needed to be found experimentally. Thus the work presented in this paper can be seen as a
first step towards a simpler chemomechanical model of a neuron and its membrane.

We propose to simplify the system of Equations (2-25)–(2-29) even more by using (1-5) and the
expansion formulas (written here for a generic function f ) [Almeida and Torres 2013]

0 Dα(t)
t f (t)≈ 1

0(1−α(t))

[
1+

N∑
p=2

0(p−1+α(t))
0(α(t))(p−1)!

]
t−α(t) f (t)

+
1

0(2−α(t))

[
1+

N∑
p=1

0(p−1+α(t))
0(α(t)−1)p!

]
t1−α(t) d f

dt
(t)

+

N∑
k=2

0(k−1+α(t))
0(−α(t))0(1+α(t))(k−1)!

t1−k−α(t)Fk(t), (2-33)

dFk

dt
(t)= (k− 1)tk−2 f (t), Fk(0)= 0, k = 2, 3, . . . , N , (2-34)

t Dα(t)
T f (t)≈ 1

0(1−α(t))

[
1+

N∑
p=2

0(p−1+α(t))
0(α(t))(p−1)!

]
(T − t)−α(t) f (t)

−
1

0(2−α(t))

[
1+

N∑
p=1

0(p−1+α(t))
0(α(t)−1)p!

]
(T − t)1−α(t) d f

dt
(t)

+

N∑
k=2

0(k−1+α(t))
0(−α(t))0(1+α(t))(k−1)!

(T − t)1−k−α(t)Gk(t), (2-35)

dGk

dt
(t)= (1− k)(T − t)k−2 f (t), Gk(T )= 0, k = 2, 3, . . . , N . (2-36)

By replacing formula (2-33) into formula (2-35) the expression

t Dα(t)
T (0 Dα(t)

t f (t))≈− 1
0(2−α(t))2

[
1+

N∑
p=1

0(p−1+α(t))
0(α(t)−1)p!

]2

(t (T − t))1−α(t)
d2 f
dt2

+ lower order terms (2-37)

is obtained, where some of the lower order terms are linear in f and d f/dt and the rest of the terms
are combinations of the extra functions Fk , Gk , k = 2, 3, . . . N . Formulas (2-33)–(2-36) suggest that
the extra terms in (2-37) introduce additional memory effects which could invalidate the causality law.
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Thus in Equation (2-20) we take t Dα(t)
T (0 Dα(t)

t u)=−(d2u)/(dt2) and obtain a much simplified form of
the equation of motion for displacement u. If we replace formula (2-33) into Equations (2-20)–(2-24)
and add the extra N − 1 equations (2-34) corresponding to each unknown function u, m, n, h, V we
obtain a system of integer order differential equations with 5N equations. It was shown in [Almeida
and Torres 2013] that a value of N = 3 gives very accurate results, so we take N = 3 and obtain a total
of 15 equations: 14 of them are first order and one is a second order differential equation. We notice
that these mathematical approximations replace the variable fractional order time derivatives by integer
(first or second) order derivatives and the effect of the variable orders is contained in extra memory terms
(represented as power functions of time with variable fractional order) which are added to the proposed
equations and their corresponding evolution equations.

3. Results

In our numerical simulations we used the following parameters [Dayan and Abbott 2001]:

ENa = 50 mV,
EK =−77 mV,
El =−54.387 mV,

gNa = 1.2 mS/mm2,

gK = 0.36 mS/mm2,

gl = 0.003 mS/mm2,

r = 4 nm,
r0 = 2µm,
Ã = 0.01 mm2,

(3-1)

where r0 is the radius of the neuron. At mechanical equilibrium (u = 0), the specific membrane capaci-
tance is 0.01µF/mm2, which combined with formula (2-31) gives

cm = 0.01(1− u/r) µF/mm2.

We also used E0 = 200 Pa as an average Young’s modulus of a neuron [Lu et al. 2006; Zou et al. 2013],
M = 0.1 ng as half of the neuronal mass [Corbin et al. 2014], and µ = 4 mPa · s as neuronal dynamic
viscosity [Park et al. 2010]. From these parameters and the assumption of circular cylindrical shape, the
following parameters can be calculated [Drapaca 2015]:

k0 = 0.0013 mg/ms2, η = 2.5 · 10−11 mg/ms, vol0 = 9.95 · 10−6 mm3,

where vol0 is the volume of the neuron at mechanical equilibrium. In all numerical simulations we applied
a constant external current per unit surface area I = 0.1µA/mm2. Lastly, we used a characteristic time
of 25 ms, and α(t) = 0.001 exp(1 − t/25) ∈ C, β(t) = γ (t) = 1. We chose a simple function α(t)
that belongs to the class C, looks similar to the parameters from formulas (2-30), and gives apparently
reasonable results when the neuronal electrochemistry is described by the classic Hodgkin–Huxley model
(β(t)= γ (t)= 1).
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In this case the system of Equations (2-20)–(2-24) with approximations (2-33)–(2-34) become
d
dt

u = v, (3-2)

d
dt
v =−

[
k
M
+
η

M
1

0(1−α(t))

(
1+

3∑
p=2

0(p−1+α(t))
0(α(t))(p−1)!

)
t−α(t)

]
u

−
η

M
1

0(2−α(t))

(
1+

3∑
p=1

0(p−1+α(t))
0(α(t)−1)p!

)
t1−α(t)v

−
η

M

3∑
k=2

0(k−1+α(t))
0(−α(t))0(1+α(t))(k−1)!

t1−k−α(t)Fk +
1
2

dC
du

V 2, (3-3)

d
dt

Fk = (k− 1)tk−2u, k = 2, 3, (3-4)

d
dt

m = αm(1−m)−βmm, (3-5)

d
dt

n = αn(1− n)−βnn, (3-6)

d
dt

h = αh(1− h)−βhh, (3-7)

d
dt
(V )= 1

C
[
I − gNam3h Ã(V − ENa)− gKn4 Ã(V − EK)− gl Ã(V − El)

]
−

1
C
v

dC
du

V . (3-8)

We solved the system (3-2)–(3-8) with the initial conditions

V (0)=−65 mV, m(0)= αm(V (0))
αm(V (0))+βm(V (0))

, (3-9)

n(0)= αn(V (0))
αn(V (0))+βn(V (0))

, h(0)= αh(V (0))
αh(V (0))+βh(V (0))

, (3-10)

Fk(0)= 0, k = 2, 3 (3-11)

Set 1: u(0)= 1 nm, v(0)= 10 nm/ms,

Set 2: u(0)= 0, v(0)= 1 nm/µs,

Some numerical experimentation with physically plausible values for u(0) and v(0) showed the existence
of two trends in the behavior of stable solutions and thus the initial conditions given by sets 1 and 2 were
chosen such that both of these situations could be presented.

We used Matlab’s built-in function ode15s that solves stiff ordinary differential equations using

(1) a modified linear multistep backward difference formula of order up to 5 known to have good
stability, and

(2) an adaptive step size that changes according to a numerical scheme that calculates relative and
absolute error tolerances [Shampine and Reichelt 1997].

In our simulations we kept the default values of ode15s for the relative error tolerance (10−3) and for
the absolute error tolerance (10−6). For the chosen parameters and initial conditions we noticed that the
order of magnitude of dC/duV in Equations (3-3) and (3-8) is much bigger than the rest of the terms in
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Figure 2. Results for initial displacement of 1 nm and initial speed of 10 nm/ms: voltage;
functions n (blue curve), m (red), and h (green); volume; and Young’s modulus.

these equations and no action potentials are observed. Thus, as in [Drapaca 2015], we remove this term
from Equations (3-3) and (3-8). This simplification preserves a weaker coupling between the mechanical
and electrical behaviors of the neuron expressed by (2-31) and (2-32).

In Figures 2 and 3 we show the evolutions of the voltage, gating variables, volume and Young’s
modulus for the mechanical initial conditions in set 1 and set 2, respectively. For set 1, the action
potentials occur and the Young’s modulus and the volume variations appear to be physically admissible
and possibly within a healthy range. The dynamics of the cell’s stiffness (Figure 2, bottom right) seems
in agreement with the experimental observations in the normally functioning regime reported in [Zou
et al. 2013]. The initial conditions in set 2 mimic a more serious traumatic event and our simulations
show that there are no action potentials (Figure 3, top left), and the displacements of the gates m, n, and
h (top right) as well as the Young’s modulus (bottom right) remain at their corresponding initial values.
The solutions obtained in this case might show damaging effects of a very fast initial speed (jabbing)
on the material structure and electrochemical activity of a neuron. To better understand the simulated
neuronal mechanotransduction, in Figures 4 and 5 we look closer at the voltages and corresponding
volumes obtained using the mechanical initial conditions in set 1 and set 2. While oscillations in the
cell’s volume are quickly attenuated for set 1 of initial conditions (Figure 4, right) such that the action
potential can develop soon afterwards (Figure 4, left); for the initial conditions of set 2 the amplitudes of
the oscillations in volume are much higher than in the previous case and do not appear to diminish in time
(Figure 5, right), and thus the membrane’s depolarization does not happen. These results look similar to
the ones we reported in [Drapaca 2015], even though here Equation (3-3) has extra, time-dependent terms
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Figure 3. Results for zero initial displacement and initial speed of speed of 10 nm/ms:
voltage; functions n (blue curve), m (red), and h (green); volume; and Young’s modulus.
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Figure 4. A zoom-in of Figure 2: voltage potential (top) and volume (bottom).
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Figure 5. A zoom-in of Figure 3: voltage potential (top) and volume (bottom).

that account for the variable viscoelasticity. This might suggest that — for the chosen initial conditions,
parameters and electromechanical couplings — after a serious traumatic event the elastic behavior of a
neuron dominates over its viscoelastic response, which agrees with the experimentally supported claims
made in [Grevesse et al. 2015].

4. Conclusions and future directions

In this paper we proposed a generalization of our electromechanical model from [Drapaca 2015] in
which the temporal variations of the physical fields are represented using Riemann–Liouville fractional
derivatives of variable orders. The neuron was modeled as a linear viscoelastic Kelvin–Voigt solid
with variable viscoelasticity whose electrochemical activity was described by fractional order Hodgkin–
Huxley equations. In addition, we introduced three linear viscoelastic Maxwell fluids with variable
viscoelasticity to model the three ionic gates with gating variables m,n, and h. This provides a physical
structure for the ionic gates which can be interpreted as door closers. The fractional orders of the
derivatives model the multiple temporal scales used by a neuron for electrochemical signaling. The time
dependency of the fractional orders models the biological variability of neurons as well as the intrinsic
entanglement of states existing in the complex mixture that makes up a neuron. For this reason we call
these time scales entangled scales. We used a Lagrangian formulation and Hamilton’s principle to obtain
the coupled equations of motion. This approach links macroscopic (cell level) and microscopic (ionic
level) mechanical and electrical information and hence it can describe neuronal mechanotransduction
[Drapaca 2015]. As in [Drapaca 2015], we assumed that at the macroscopic level the membrane’s
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capacitance depends on the mechanical displacement of the neuron and the Young’s modulus of the
neuron depends on the nondimensional displacements of the dashpots in the Maxwell elements. In order
to satisfy the physical criterion of causality, we restrict the class of allowable variable order functions to
the class of differentiable functions with continuous first order derivatives and of slow variation. For such
variable order functions, we can approximate the Riemann–Liouville derivatives to Marchaud fractional
derivatives and further use the higher integer order expansions proposed in [Almeida and Torres 2013] to
transform the integro-differential Euler–Lagrange equations into classic Euler–Lagrange equations with
extra time-dependent terms, some with their own evolution equations. We further performed numerical
simulations in Matlab using the built-in function ode15s to solve simplified versions of our differential
equations. We used the same initial conditions and physical constants as in [Drapaca 2015] and we ob-
tained results comparable with those in the same paper. Namely, when a constant external electric current
was applied and the initial displacement and speed were of orders of magnitude comparable to the size of
the membrane, the action potentials occurred and looked similar to the ones seen in healthy neurons. In
this case the dynamics of the neuron’s stiffness seemed to agree with experimental measurements done
on healthy neurons [Zou et al. 2013]. At very fast initial speeds (which could model a serious traumatic
event) and in the presence of a constant applied external current, our numerical simulations showed
high persisting oscillations in the volume of the neuron and the action potentials did not happen. Also,
the Young’s modulus of the neuron and the displacements m, n, and h of the dashpots in the Maxwell
elements were almost constant, suggesting possible structural and functional damage of the neuron.

Some of the limitations of the proposed model and solution approach are as follows. One limi-
tation is finding physically valid capacitance-displacement and, respectively, stiffness-gating variable
relationships because there are no experimental observations that could guide us. Given the simplicity
of the proposed model, we hope that our model will inspire future experimental work that will provide
empirical relationships among the model’s mechanical and electrical parameters. Another limitation
of our approach is the use of the Matlab built-in function ode15s to solve the simplified system of stiff
differential equations. Shampine and Bogacki [1989] advised caution in drastically reducing the step size
in the discretization implemented in ode15s since this action could increase numerical error and cause
instabilities in the solutions. In addition, the class of admissible variable order functions is too restrictive.
In our future work we plan to develop our own numerical solver for the stiff system of differential
equations that uses the Riemann–Liouville fractional derivatives of variable orders. We believe that for
living neurons the causality law should not be imposed and therefore by removing this restriction on
our model we could use the Riemann–Liouville derivatives with variable order functions belonging to a
larger class of admissible (continuous) functions. A numerical solver will allow us to address another
limitation of our model: providing a more physically meaningful expression for the variable fractional
order α(t). One approach is to use the experimentally found dependence of a power law exponent on the
stress reported in [Grevesse et al. 2015] to calculate a corresponding α(t). Another approach is to add the
unknown function α(t) to the list of generalized coordinates and use Hamilton’s principle to obtain one
more Euler–Lagrange equation that presumably could be solved for α [Atanackovic and Pilipovic 2011].
Another possible limitation is the use in our numerical simulations of the classic Hodgkin–Huxley model,
whose very well tuned equations and parameters might have hidden the possible effects of the variable
viscoelasticity modeled with fractional order time derivatives of variable order. Since the proposed model
is not dependent on the Hodgkin–Huxley equations, we could use the mechanoelectric analogy mentioned
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in Section 2 to obtain a macroscopic mechanical analog model of the neuronal membrane made of the
membrane’s mass and three dashpots connected in parallel and located between the neuronal mass M
and the membrane’s mass. The corresponding equations of motion with classic time derivatives as well
as with fractional order derivatives of variable orders will not only have much simpler forms but also
may be easier to analyze and solve. In particular, a bifurcation analysis might be possible in this case
and the role of variable fractional order derivatives in critical transitions could be investigated.

Lastly, we intend to generalize our model by including spatial variations. Let �⊂ R3 be the domain
occupied by the intracellular space, the cell’s membrane, and a very small ε-neighborhood of the mem-
brane located in the extracellular space that contains the ions exchanged with the neuron through its
membrane. This domain is filled with a very complex mixture of solids, fluids, ionic components and
other proteins and molecules that interact dynamically with each other on multiple time and space scales
and thus there exists a subset ω ⊂� that contains the entangled state. This region ω could be seen as a
sort of black hole in the sense that once components enter ω, any information about them is lost (however,
unlike black holes, components can “escape” ω). Thus the energies contributing to the Lagrangian form
are the kinetic and potential energies as well as an interfacial energy due to the presence of ω. All these
energies are in fact part of the total entropy of domain �, and the entanglement entropy, which is the
entropy of ω, satisfies a so-called area law that says that the entanglement entropy is proportional to the
surface area of ω [Eisert et al. 2010]. If we introduce the level set function

φ(x)=


dx if x ∈�−ω,
−dx if x ∈ ω,

0 if x ∈ ∂ω,

then we can introduce the Lagrangian

L=

∫
�

1
2ρM(0 Dα(t,x)

t u)2 H(φ)+ 1
2ρã(0 Dβ(t,x)

t (r + dm))
2 H(φ)

+
1
2ρb̃(0 Dβ(t,x)

t (r + dn))
2 H(φ)+ 1

2ρc̃(0 Dβ(t,x)
t (r + dh))

2 H(φ)

−
1

2C(u)
q2

C H(φ)− σu · εu H(φ)− σdm · εdm H(φ)

− σdn · εdn H(φ)− σdh · εdh H(φ)+ λδ(φ)||∇φ|| dx, (4-1)

where H(φ) is the Heaviside function; δ(φ) is the Dirac distribution; ρM , ρã, ρb̃, and ρc̃ are the densities
of the masses represented as subindices; σu, σdm, σdn, σdh are the stress tensors for the displacements
u, r + dm − m̃, r + dn − ñ, r + dh − h̃ with εu, εdm, εdn , and εdh the corresponding strain tensors. We
denoted by ||∇φ|| the Euclidean norm of the Jacobian matrix of φ. The last term in formula (4-1) is the
surface area of ω. An expression for the corresponding virtual work can be obtained from formula (2-4)
in a similar manner. Hamilton’s principle will provide again the system of nonlinear integro-differential
Euler–Lagrange equations, which will have to be completed with the Kirchhoff current law and an evo-
lution equation for the level set function φ. Appropriate initial and boundary conditions will complete
this model which we intend to fully describe and study in the near future.
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List of Symbols

A neuronal cross-sectional area
Ã neuronal surface area
r0 neuronal radius
r thickness of neuronal membrane
t time (independent variable)
α, β, γ ∈ [0, 1) time-dependent fractional orders (entangled time scales)
M half of the neuronal mass
ã, b̃, c̃ masses attached to the Maxwell elements
u neuronal displacement
r + dm, r + dn, r + dh relative displacements between M and each of ã, b̃, c̃
m̃, ñ, h̃ displacements of the dashpots in the Maxwell elements
k spring constant of the Kelvin–Voigt element
η damping coefficient of the Kelvin–Voigt element
F force (work conjugate) for the Kelvin–Voigt element
km, kn, kh spring constants of the Maxwell elements
ηm, ηn, ηh damping coefficients of the Maxwell elements
Fm, Fn, Fh forces (work conjugates) for the Maxwell elements
C capacitance of neuronal membrane
cm specific membrane capacitance
qC electric charge of the capacitor
V electric potential (voltage) of the capacitor
ε membrane’s permittivity
I external current
qNa,qK,ql electric charges of Na+,K+, and leakage channels
RNa, RK, Rl resistances of the resistors
ENa, EK, El reverse potentials
gNa, gK, gl maximal conductances of the Na+,K+, and leakage currents
αm, αn, αh, βm, βn, βh voltage-dependent parameters of the Hodgkin–Huxley model
Fk,Gk , k = 2, 3 extra memory terms due to mathematical approximations
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TIME-ADAPTIVE FINITE ELEMENT SIMULATIONS OF DYNAMICAL
PROBLEMS FOR TEMPERATURE-DEPENDENT MATERIALS

MATTHIAS GRAFENHORST, JOACHIM RANG AND STEFAN HARTMANN

Dynamical systems in finite elements yield systems of second-order differential equations. Incorporating
inelastic material properties, thermomechanical coupling and particular Dirichlet boundary conditions es-
sentially changes the underlying mathematical problem. In this respect, we investigate the behavior of a
number of subproblems such as reaction force computation, high-order time-integration, time-adaptivity,
etc., which yield (depending on the underlying problem) systems of differential-algebraic equations or
a mixture of systems of second-order and first-order ordinary differential equations (especially if the
constitutive equations are of evolutionary-type, as in the case of viscoelasticity and viscoplasticity). The
main goals are to provide higher-order time integration schemes using diagonally implicit Runge–Kutta
methods and the generalized-α method so that they may be applied to the constitutive equations, and
to apply time-adaptivity via embedded schemes so that step-sizes are chosen automatically. The consti-
tutive equations are given by a thermoviscoplasticity model of Perzyna/Chaboche-type with nonlinear
kinematic hardening.

1. Introduction

The modeling of thermomechanically coupled material properties is an important and challenging task
for both constitutive modeling and for numerical treatment. In the case of polymers, small temperature
variations essentially change the mechanical response. Cyclic processes induce heat and must be consid-
ered under such circumstances. Other applications are metal forming processes either via heat treatment
or by recurrent processes.

The numerical treatment of thermomechanically coupled problems using finite elements is connected
to the historical evolution of considering the constitutive equations of rate-type for both quasistatic com-
putations and in the case of dynamical situations. To begin with, let us discuss quasistatic mechanical
but transient thermal problems where the constitutive equations are defined by evolution equations of
rate-type. The unsteady heat equation yields after its spatial discretization using finite elements to a
system of ordinary differential equations (ODEs), which is coupled with the algebraic equations defining
the mechanical equilibrium [Lewis et al. 1996; Reddy and Gartling 2000; Quint et al. 2011]. The latter
is coupled with the constitutive model of rate-type. In our case, it forms a first-order ODE system as
well (with case distinction in the case of viscoplasticity with yield function). This system can be solved
using partitioned or monolithic approaches [Schrefler 2004]. In [Felippa and Park 1980; Felippa et al.
2001], the authors proposed a partitioned approach where the mechanical and the thermal parts are
solved separately (commonly two different programs and/or meshes are chosen [Erbts and Düster 2012;
Erbts et al. 2015; Wendt et al. 2015]). Particular investigations on partitioned systems and their stability

Keywords: dynamics, DIRK methods, finite elements, generalized-alpha method, time-adaptivity, thermoviscoplasticity.
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are provided in [Simo and Miehe 1992; Armero and Simo 1992; 1993]. The monolithic approach was
proposed in [Glaser 1991; Miehe 1988] and extended to high-order time-integration schemes in [Quint
2012; Rothe 2015; Rothe et al. 2015a]. In the latter case, the resulting equations define differential-
algebraic equations (DAE) after spatial discretization, using finite elements that lead to changes in the
numerical and theoretical properties of the mathematical model. In view of thermoviscoelasticity and the
combination of high-order methods in space and time, we refer to [Netz and Hartmann 2015; Hamkar
2013].

Concerning inertia effects, the case of linear elastodynamics for small strains represents a huge scien-
tific area which is not discussed here, as we focus on proposals treating inelastic material properties. The
case of finite strain viscoelasticity is treated in [Conde Martín et al. 2014], where the constitutive model
must have a particular structure (a so-called GENERIC scheme) to fit within the numerical scheme. This
is extended in [Krüger et al. 2016] to the case of dynamical systems for finite strain thermoviscoelasticity.
The application of dynamical systems in the context of viscoplasticity is proposed in [Noels et al. 2006;
2008], where variational update formulations are considered.

Our goal is the application of higher-order time-integration schemes (at least second-order accurate) so
that all quantities — displacements, velocities, temperatures, and internal variables — reach second order.
Commonly, first-order accurate methods are used. Even the Newmark-method has only a maximum order
of two in the context of dynamical systems [Newmark 1959; Hughes 1987; Zienkiewicz and Taylor 2000].
However, it is common to treat the evolution equations on Gauss-point level with a first-order method so
that the entire system cannot reach the expected order (regarding the relation of the Newmark-method in
the context of Nyström-methods, see [Fritzen 1997]). Since we have a coupled system of second-order
and first-order ODEs, the question arises as to what the appropriate method might be, since there are
methods to treat second-order ODEs directly or the second-order ODEs are transferred into a system of
first-order ODEs. Thus, two methods are considered here: first, we convert the second-order ODEs to a
first-order ODE system and apply diagonally implicit Runge–Kutta (DIRK) methods to the entire system
(for details concerning DIRK methods, see [Hairer et al. 1989; 1993; Hairer and Wanner 1996]). These
methods have been successfully applied in the context of finite elements for isothermal and quasistatic
problems in [Ellsiepen and Hartmann 2001; Hartmann 2002; Hartmann et al. 2008a] and quasistatic
coupled problems in [Birken et al. 2010; Hartmann and Rothe 2013; Rothe et al. 2015b]. In the present
article, the quasistatic problems are recapped as well, where a DAE system has to be solved. One
intention is to show the underlying difference in the equations.

For problems in the field of linear structural dynamics, the generalized-α method formulated as a one-
step method was originally introduced in [Chung and Hulbert 1993]. For first-order ODEs the method
was introduced in [Jansen et al. 2000]. These methods show second-order accuracy in most numerical
experiments, minimal numerical dissipation of lower modes, and maximal numerical dissipation of higher
modes in the linear structural dynamics regime, where this numerical dissipation mechanism can be
controlled by certain parameters. For first-order ODEs, an analysis of the generalized-α scheme was
performed in [Dettmer and Perić 2003]. For the corresponding consistency and stability analysis of the
generalized-α method for the second-order ODE system in structural dynamics, the reader is referred
to [Chung and Hulbert 1993; Erlicher et al. 2002]. Furthermore, the generalized-α method includes the
most popular classical numerical dissipative and nondissipative time integration schemes (the Newmark-
family [Newmark 1959], the HHT-α method [Hilber et al. 1977] and the WBZ-α method [Wood et al.
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1980]) in the field of structural dynamics. For this reason, it is a widely applied time integration scheme
which has been successfully applied, for example, in [Hartmann 2007; Popp 2012; Kuhl 1996; Kuhl and
Crisfield 1999; Kuhl and Ramm 1999]. Rang [2013a] proposed a simple adaptive time-step control for
the one-step versions of the generalized-α method. A coupling between the generalized-α method for
first-order ODEs and for second-order ODEs is presented in [Rang 2013b].

This paper is structured as follows: first, the basic equations are summarized; starting with a model
problem of thermoviscoplasticity, the weak forms and their spatial discretization. Second, the time
discretization is explained using DIRK and a modified generalized-α method. Finally, we investigate the
order and efficiency of these methods by drawing on some examples.

The notation in use is defined in the following manner: geometrical vectors are symbolized by Ea and
second-order tensors A by boldface Roman letters. We introduce matrices at the global level symbolized
by boldface italic sans-serif letters A and matrices on local level using the upright counterpart, A.

2. Basic equations

In the following, the basic equations are summarized, which are: the constitutive model under consid-
eration; the weak forms of the balance of linear momentum; the unsteady, nonlinear heat equation; and
the result of the spatial discretization using finite elements.

2.1. Constitutive model. In the scope of our application in thermoviscoplasticity, we restrict ourselves to
the case of small strains (large strains are straight forward and are embedded in the numerical schemes as
well). Let E(Ex, t)= 1

2(grad Eu(Ex, t)+gradT
Eu(Ex, t)) be the linearized strain tensor, Eu(Ex, t) the displacement

vector, Ex the material point and t the time. Most phenomenological constitutive models are expressed by

T= h(E,2,q), (1)

q̇(t)= rq(E,2,q), (2)

where q∈ Rnq is the vector of internal variables, T(Ex, t) is the stress tensor and 2(Ex, t) is the absolute
temperature. In Table 1, qT

= {ET
v ET

r } is given by two different strain-like internal variables in Voigt-
notation, i.e., nq = 12, Er ∈ R6, Ev ∈ R6. For details of the model, see [Tsakmakis and Willuweit 2004;
Rothe et al. 2015a]. Pure (thermo)elasticity is embedded as well (q= q̇= 0).

2.2. Spatial discretization. We investigate the partial differential equations

div T(Ex, t)+ ρ(Ex)Ek = ρ(Ex) Ëu(Ex, t), (3)

ĉp(E,2)2̇=
1
ρ

div(κ(2) grad2)+ p̂(E, Ė,2,Ev,Er), (4)

where ρ is the density, Ek is the acceleration of gravity,

cp = ĉp(E,2)=
(

c2−
9Kα2

2

ρ
−

3cKα2

ρ
γ (E,2)

)
2 (5)

is the temperature- and strain-dependent heat capacity (with the abbreviation γ (E,2)= I ·E− 3α22),
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yield function: f (T,X,2)=
√

3
2(T−X)D

· (T−X)D
− k̂(2)

elasticity relation: T= K (2)(tr E)I+ 2G(2)(E−Ev)
D
− 3K (2)α2ϑI

loading condition:
{

elasticity f < 0
viscoplasticity f ≥ 0

flow rules:

{
elasticity Ėv = 0, Ėr = 0

viscoplasticity Ėv = λ
(T−X)D
‖(T−X)D‖ , Ėr = λβXD

abbreviations: X= cX ED
k = cX (Ev−Er)

D,

λ= 1/η
〈
f (T,X,2)/σ0

〉m
,

k̂(2)= (k0− kH )e−b(2−20)+ kH ,

K (2)= K0− cK (2−20),

G(2)= G0− cG(2−20)

Table 1. Summary of constitutive equations (thermoviscoplasticity small strains).

and the heat production term due to dissipation and thermoelastic coupling is

p = p̂(E, Ė,2,Ev,Er)= δ−
2

ρ

(
(3Kα2+ cKγ )I+ 2cG(E−Ev)

D)
· Ė+ 2

ρ
2cG(E−Ev)

D
· Ėv (6)

with

δ =
1
ρη

〈
f̂ (E,2,Ev,Er)

σ0

〉m(
‖2G(2)(E−Ev)

D
− cX (Ev−Er)

D
‖−βc2

X‖(Ev−Er)
D
‖

2). (7)

The angle brackets define Macauley brackets symbolizing a case distinction: 〈x〉 = 0 if x < 0 and 〈x〉 = x
if x ≥ 0. Equation (3) represents the balance of linear momentum. In view of the balance of energy (5),
Fourier’s model (Eq =−κ(2) grad2) is assumed, where Eq defines the heat flux vector.

The partial differential equation (3) is multiplied with virtual displacements δEu(Ex) and is integrated
over the volume V . The divergence theorem is applied, which leads to d’Alembert’s principle∫

V
h(E,2,q)︸ ︷︷ ︸

T

·δE dV +
∫

V
ρ Ëu · δEu dV =

∫
A
Et · δEu dA+

∫
V
ρEk · δEu dV, (8)

where δE(Ex)= (grad δEu(Ex)+gradT δEu(Ex))/2 defines the virtual strain tensor. In this context δEu(Ex)=E0 has
to hold on the boundary Au of the material body, where the displacements are prescribed; A = Aσ ∪ Au ;
Eu(Ex, t) = Eu(t) on Au (Dirichlet boundary conditions). Here, Et(Ex, t) = T(Ex, t)En(Ex, t) defines the stress
vector on the surface Aσ , where En represents the surface normal and Et(Ex, t)= Et(Ex, t) on Aσ defines the
Neumann boundary conditions.

We multiply the unsteady, nonlinear heat equation (4) with the virtual temperature δ2 in a similar
manner, and perform both the integration over the volume as well as the application of the divergence
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theorem, yielding the principle of virtual temperatures∫
V
ρĉp(E,2)2̇δ2 dV =

∫
A

q δ2 dA−
∫

V
κ(2) grad2 · grad δ2 dV +

∫
V
ρ p̂(E, Ė,2,q)δ2 dV . (9)

The boundary conditions are: 2(Ex, t)=2(Ex, t) on the surface, A2 and q(Ex, t)= q(Ex, t) on Aq . Here,
we assume q = −Eq · En with the normal vector En on the outer surface. Of course, mixed boundary
conditions for temperature-dependent heat fluxes such as convection or radiation must be considered
as well, q = q̂(2). Here, we refer to [Quint et al. 2011] and the literature cited therein. The entire
mathematical model considers the heat production due to mechanical dissipation in an exact manner.

In order to solve the initial boundary-value problem (3) and (4) together with constitutive models of
type (1) and (2), we draw on the method of vertical lines. First, the spatial discretization is performed,
followed by the time-discretization. The spatial discretization is carried out using the finite element
method, i.e., an ansatz for the displacements, virtual displacements, absolute temperatures and virtual
temperatures are inserted into the weak forms (8) and (9). As summarized in more detail in Appendix A,
this leads to the mixed first and second-order ODE system

Mü(t)=−gu(t,u,Θ,q)−Mupü(t),

C2(t,u,Θ)Θ̇(t)= r2(t,u, u̇,Θ,q),

q̇(t)= r Q(t,u,Θ,q),

(10)

with the initial conditions

u(0)=u0, u̇(0)= v0, Θ(0)=Θ0, q(0)=q0. (11)

Equation (10)1 represents the (semidiscrete) equation of motion with a constant and consistent mass
matrix M ∈ Rnuu×nuu (see (76)) which is assigned to the unknown displacement degrees of freedom (DOF)
u ∈ Rnuu . Here, Mup ∈ Rnuu×nup symbolizes the mass matrix assigned to the known (prescribed) displace-
ment DOF u ∈ Rnup . Thus, ü(t)∈ Rnup are the prescribed nodal accelerations, which are explicit functions
of time t . The matrix C2(t,u,Θ)∈ Rn2u×n2u defines the deformation and temperature-dependent heat-
capacity matrix (see (82)) where Θ ∈ Rn2u are the unknown nodal temperatures. The ODE system (10)3

is the result of assembling all evolution equations of the internal variables into a large vector q ∈ RnQ ,
see the discussion in [Ellsiepen and Hartmann 2001; Hartmann 2005].

2.2.1. Subproblems. There are a number of subproblems which are connected to the dynamical system
(10) if particular quantities do not appear, i.e., if they are neglected. In the case of q̇(t)=q(t)= 0, the
case of thermoelasticity under dynamical agencies is given, see (12) of Table 2. Additionally, if Θa is
constant spatially and temporally (where Θa ∈ Rn2a), and n2a= n2u+n2p defines all nodal temperatures,
pure elasto-dynamic has to be solved (see (13)). Of course, further subproblems can appear, such as:
C2 = constant or gu(t,u,Θ) represents a linear function in u and Θ , or one-sided coupling is assumed,
etc. This can be solved with specific numerical methods.

The quasistatic case holds for ü(t)≈0 leading to DAE systems, see the case of thermoinelasticity (14),
isothermal inelasticity (viscoelasticity, viscoplasticity) (15), and pure elasticity (16). The case of rate-
independent elasto-plasticity with a yield function leads to the evolution equations Aq̇(t)=r Q(t,u,Θ,q),
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thermoelasticity:
Mü(t)=−gu(t,u,Θ)−Mupü(t)

C2(t,u,Θ)Θ̇(t)= r2(t,u, u̇,Θ)
(12)

elasto-dynamics: Mü(t)=−gu(t,u)−Mupü(t) (13)

quasistatic thermoinelasticity:

0= gu(t,u,Θ,q)

C2(t,u,Θ)Θ̇(t)= r2(t,u, u̇,Θ,q)

q̇(t)= r Q(t,u,Θ,q)
(14)

quasistatic inelasticity:
0= gu(t,u,q)

q̇(t)= r Q(t,u,q)
(15)

elasticity: 0= gu(t,u) (16)

Table 2. Dynamical and quasistatic subproblems.

where A is a singular matrix and r contains case distinctions (see the discussion in [Ellsiepen and Hart-
mann 2001]).

2.2.2. Reaction force computation. Another question connected to the dynamical systems under consid-
eration is related to the computation of the reaction forces at those degrees of freedom, where the displace-
ments are prescribed. This is not provided by d’Alembert’s principle (8) since the virtual displacements
vanish at those DOF for which the displacements are prescribed (and no virtual work is produced). The
same situation holds for the heat flux computation for those nodes with prescribed temperatures.

This is consistently discussed for isothermal quasistatic problems in [Hartmann 2005] and the literature
cited therein. Hamkar [2013] treats this issue for quasistatic thermomechanical problems since other time-
integration methods require these investigations. He applies a concept developed by Gear [1986]. The
basic idea is as follows: we assume that all displacement DOF ua ∈ Rnuu+nup are unknown. The vector is
decomposed into DOF that are connected to Dirichlet boundary conditions and the remaining quantities,

ua(t)=
{
u(t)
û(t)

with u ∈ Rnuu and û ∈ Rnup .

Consistently, all virtual displacements are arbitrary, δua ∈ Rnuu+nup . However, there is the constraint
equation

cu(t,aa)=Z T
u ua(t)−u(t)= û(t)−u(t)= 0 (17)

at the DOF for which displacements are prescribed, with

Z u =

[
0nuu×nup

I nup×nup

]
,Z u ∈ R(nuu+nup)×nup
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and the prescribed functions u(t)∈ Rnup . Additionally, the weak form changes to

δu T
a
{
Maüa(t)+gua(t,ua,Θa,q)−Z uλu(t)

}
= 0,

i.e., there is an additional term defined by the Lagrange-multiplier λu ∈ Rnup . In other words,

Maüa(t)+gua(t,ua,Θa,q)−Z uλu(t)

=

[
M Mup

Mpu Mpu

]{
ü(t)
¨̂u(t)

}
+

{
gu(t,u, û,Θ, Θ̂,q)

ĝu(t,u, û,Θ, Θ̂,q)−λu(t)

}
= 0 (18)

has to be solved in combination with the constraint (17). The same idea holds for the heat equation
having the constraint

c2(t,Θa)=Z T
2Θa(t)−Θ(t)= Θ̂(t)−Θ(t)= 0 (19)

for the given nodal temperature functions Θ(t)∈ Rn2p . The modified weak form reads

δΘT
a
{
C2a(t,ua,Θa)Θ̇a(t)−r2a(t,ua, u̇a,Θa,q)−Z2λ2(t)

}
= 0,

with the Lagrange multiplier λ2(t)∈ Rn2p and the matrix

Z2 =

[
0n2u×n2p

I n2p×n2p

]
,Z2 ∈ R(n2u+n2p)×n2p .

The decomposition yields the ODE system[
C2 C2up

C2pu C2pp

]{
Θ̇(t)
˙̂
Θ(t)

}
=

{
r2(t,u, û, u̇, ˙̂u,Θ, Θ̂,q)

r̂2(t,u, û, u̇, ˙̂u,Θ, Θ̂,q)+λ2(t)

}
. (20)

Table 3 summarizes the entire DAE system. For the case of quasistatic and isothermal problems and
implicit finite elements, see [Hartmann et al. 2008b].

3. Time discretization schemes

In the following we propose two implicit time integration methods to treat the ODE system (10) since
we are interested in a low frequency response. Explicit methods are widely used in the context of high
frequency responses and wave-like phenomena — or in high velocity impact situations, where contact

Maüa(t)=−gua(t,ua,Θa,q)+Z uλu(t)

Z T
u ua(t)−u(t)= 0

C2a(t,cr a,Θa)Θ̇a(t)= r2a(t,ua, u̇a,Θa,q)+Z2λ2(t)

Z T
2Θa(t)−Θ(t)= 0

q̇(t)= r Q(ua,Θa,q)

(21)

Table 3. Entire DAE system if reaction force and reaction heat flux have to be determined
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conditions dominate the problem. Implicit methods have the advantage in that it is possible to apply rel-
atively large time-step sizes in comparison to explicit schemes. However, the implementation of implicit
methods is more challenging due to the fact that nonlinear solution methods have to be considered, see
in this context [Belytschko et al. 2000].

Since we are interested in one-step methods, we follow the numerical schemes in [Ellsiepen and
Hartmann 2001] (see [Fritzen 1997] for problems concerning the aspect of dynamics). Accordingly, the
ODE part of second order is transferred into a system of first-order ODEs and stiffly accurate diagonally
implicit Runge–Kutta methods are applied. A second method is an extension of the generalized-α method
seen in [Chung and Hulbert 1993]. Here, we draw on a one-step formulation.

In contrast to these methods, there are multistep methods that require a special starting procedure as
well as access to time-step information reaching back even further than tn .

3.1. DIRK methods. In order to obtain a basic background of the proposed time integration scheme, we
recall the general class of implicit Runge–Kutta methods (IRK) applied to (10) [Strehmel et al. 2012;
Hairer et al. 1993]. In the next step, we introduce the class of diagonally implicit Runge–Kutta (DIRK)
methods using a special choice of algorithmic parameters in order to obtain the important goal of com-
putational efficiency. To this end, we transform the coupled system of second-order ODEs in (10) to a
first-order ODE system by exploiting the trivial equation u̇ = v(t). Accordingly, the system

Mv̇(t)=−gu(t,u,Θ,q)−Mupv̇(t),

u̇(t)= v(t),

C2(t,u,Θ)Θ̇(t)= r2(t,u,v,Θ,q),

q̇(t)= r Q(t,u,Θ,q),

(22)

must be solved. To achieve a high-order method, we divide the integration step from time tn to tn+1 in
further points in time

Tni = tn + ci1tn, i = 1, . . . , s, (23)

with coefficients ci , i = 1, . . . , s. These points are called stages, where s defines the number of stages.
At every stage, the stage variables in the corresponding field are defined according to

U ni =un +1tn
s∑

j=1

ai jV nj , V ni = vn +1tn
s∑

j=1

ai jAnj ,

Θni =Θn +1tn
s∑

j=1

ai jΘ̇nj , Qni =qn +1tn
s∑

j=1

ai jQ̇nj ,

(24)

with weighting factors ai j . The index ni denotes the i-th stage at time Tni . Formally, we now have
two sets of unknowns, namely the so-called stage values U ni ,V ni ,Θni ,Qni (displacements, velocities,
temperatures and internal variables) and the stage derivatives V ni ,Ani , Θ̇ni ,Q̇ni . However, since they
are not independent, due to (24), we choose the stage derivatives V ni ,Ani , Θ̇ni for the following expla-
nations, and the stage value Qni as the primary unknown for the internal variables. Since we are looking
for the approximate solution at tn+1, we need a relation which maps the stage derivatives to the unknown
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c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...
...

. . .
...

cs a1s a2s · · · ass

b1 b2 · · · bs

(a) IRK method

c1 a11 0 · · · 0

c2 a21 a22
. . .

...
...
...

. . . 0
cs b1 b2 · · · bs

b1 b2 · · · bs

(b) SDIRK method

c A

b T

(c) RK scheme

c A A

b
T

b T

(d) Indirect RKN scheme

Figure 1. Butcher-tableaus.

quantities at tn+1. These integration formulas are based on quadrature rules in [Hairer et al. 1993; Hairer
and Wanner 1996; Strehmel et al. 2012] and are defined by

un+1 =un +1tn
s∑

i=1

biV ni , vn+1 = vn +1tn
s∑

i=1

biAni ,

Θn+1 =Θn +1tn
s∑

i=1

biΘ̇ni , qn+1 =qn +1tn
s∑

i=1

biQ̇ni ,

(25)

with the weighting factors bi , i = 1, . . . , s. The weighting factors ai j , bi , and ci are usually summarized in
a Butcher array to distinguish different classes of Runge–Kutta methods, see Figure 1(a). These factors
are defined and calculated in order to obtain efficient, stable and accurate methods. By applying the
general implicit Runge–Kutta scheme to (22) (i.e., inserting the primary variables and the relations of
(24)), we obtain (for i = 1, . . . , s)

MAni =−gu(Tni ,U ni (Anj ),Θni (Θ̇nj ),Qni )−Mupü(Tni ),

V ni (Anj )= vn +1tn
s∑

j=1

ai jAnj , j = 1, . . . , s,

C2(U ni ,Θni )Θ̇ni = r2(Tni ,U ni (Anj ),V ni (Anj ),Θni (Θ̇nj ),Qni ),

Q̇ni (Qnj )= r Q(Tni ,U ni (Anj ),Θni (Θ̇nj ),Qni ),

(26)

a coupled nonlinear system of equations with the dimension (2nuu+ n2u+ nQ)× s in each time-step
1tn , where all stage unknowns are coupled. Next, we can eliminate V ni in (25)1 and (24)1 by exploiting
(26)2. Furthermore, we assume existing stability requirements in the form of

ci =

s∑
j=1

ai j ,

s∑
i=1

bi = 1, (27)
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0 0 0
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2 −β β

1
2 −β β

1− γ γ

c A

b
T

b T

Figure 2. Butcher tableau for Newmark-method and presentation of schematic direct
RKN scheme: Newmark-methods embedded as Nyström-method (left) and Nyström-
scheme (right).

which ensures a consistent method and applicability for nonautonomous ODEs. This leads to

U ni =un+1+ ci1tnvn +1t2
n

s∑
j=1

āi jAnj , (28)

un+1 =un +1tnvn +1t2
n

s∑
i=1

b̄iAni , (29)

with the new coefficients

āi j =

s∑
k=1

aikak j , and b̄i =

s∑
j=1

b j a j i . (30)

This approach is identical to the construction of an indirect Runge–Kutta–Nyström method (RKN) by
consistent application of an underlying Runge–Kutta scheme [Hairer et al. 1993; Strehmel et al. 2012;
Fritzen 1997]. A schematic Butcher-tableau for an indirect RKN method is depicted in Figure 1(d). The
stage quantities U ni and V ni can now be expressed as functions of the stage acceleration Anj , so that it
is sufficient to store only the stage derivatives. For a pure structural dynamical problem, it is possible to
save half the storage.

There are further schemes apart from these indirectly constructed Runge–Kutta–Nyström methods. We
call them direct Runge–Kutta–Nyström methods if the conditions in (30) do not exist and if the weighting
factors āi j and b̄i are independent from ai j and bi . The direct RKN methods are principally applicable
to first-order ODEs and to coupled systems, such as the one presented in (10). These methods were
originally developed for general second-order ODEs. Furthermore, in the case of second-order ODEs
which are not coupled with ODEs of first order and do not depend on u̇ (i.e., gu does not depend on u̇, see
the case of structural dynamics in (13)), the coefficients ai j are no longer needed. Methods for which no
coefficient matrix A is given are called Nyström methods [Hairer et al. 1993], see Figure 2 (right). How-
ever, taking (24)2–(24)4 in to account, these coefficients are indispensable. Fritzen [1997] showed that
the popular Newmark-family is included in the class of diagonally implicit, direct Runge–Kutta–Nyström
(DIRKN) methods in form of the Butcher-tableau in Figure 2 (left), with the well-known algorithmic
parameters γ ∈ [0, 1] and β ∈ [0, 1/2] determining the stability and accuracy behavior (see Section 3.2).
Because of the restrictions regarding u̇ mentioned above and the treatment of ODEs, portions of first-
order general Newmark methods with arbitrary algorithmic parameter combinations are not applicable to
(10). There exists one exception to this statement. The trapezoidal rule, which is known as the constant
average acceleration method (CAA) in structural dynamics literature, is considered the most effective



TIME-ADAPTIVE SIMULATIONS OF DYNAMICAL PROBLEMS FOR TEMPERATURE-DEPENDENT MATERIALS 67

if the parameters {γ = 1/2, β = 1/4} are chosen [Hughes 1987]. This second-order method fits into
the class of DIRK methods [Ellsiepen and Hartmann 2001]. For this reason, the trapezoidal rule is the
method of choice if we solve (10) with a Newmark-scheme (see [Ortiz and Popov 1985] for additional
information regarding the trapezoidal rule).

The computational expense of a solution using IRK methods is high and thus is a drawback compared
to other time integration methods. To decouple the stage quantities and to preserve the sparse structure of
the linearized finite element system, we use DIRK methods where ai j = 0 and — with regard to (30)1 —
āi j = 0 for j > i holds (compare Figures 1(a) and 1(b)). In this case, the integration step for each field
variable reduces to

U ni =U S
ni +1t2

n āi iAni , V ni =V S
ni +1tnai iAni ,

Θni =Θ
S
ni +1tnai iΘ̇ni , Qni =Q S

ni +1tnai iQ̇ni ,
(31)

with starting values

U S
ni =un + ci1tnvn +1t2

n

i−1∑
j=1

āi jAnj , V S
ni = vn +1tn

i−1∑
j=1

ai jAnj ,

ΘS
ni =Θn +1tn

i−1∑
j=1

ai jΘ̇nj , Q S
ni =qn +1tn

i−1∑
j=1

ai jQ̇nj ,

(32)

depending only on stage derivatives already calculated in previous stages. In each time-step — due to the
decoupling of the stage quantities — we have to consecutively solve a sequence of s nonlinear systems
of equations with nuu+ n2u+ nQ unknowns (Ani , Θ̇ni ,Qni ) of the form

G u(Tni ,Ani , Θ̇ni ,Qni )=MAni +gu(Tni ,U ni (Ani ),Θni (Θ̇ni ),Qni )+Mupü(Tni )= 0,

G2(Tni ,Ani , Θ̇ni ,Qni )=C2(U ni ,Θni ) Θ̇ni

−r2(Tni ,U ni (Ani ),V ni (Ani ),Θni (Θ̇ni ),Qni )= 0,

L (Tni ,Ani , Θ̇ni ,Qni )=Qni −Q S
ni −1tnai i r Q(Tni ,U ni (Ani ),Θni (Θ̇ni ),Qni )= 0.

(33)

Equation (31)4 can be rearranged to

Q̇ni =
Qni −Q S

ni

1tnai i
. (34)

In other words, we have to solve the nonlinear system of equations

G u(Ani , Θ̇ni ,Qni )= 0,

G2(Ani , Θ̇ni ,Qni )= 0,

L (Ani , Θ̇ni ,Qni )= 0,

(35)

at each stage Tni to obtain the stage quantities (i.e., the acceleration Ani , the temperature-rate Θ̇ni and
the internal variables Qni ). Here, we have omitted the stage time Tni for brevity. This is done using the
multilevel Newton algorithm (MLNA) in [Rabbat et al. 1979]; regarding finite elements, see [Ellsiepen
and Hartmann 2001; Hartmann 2005].



68 MATTHIAS GRAFENHORST, JOACHIM RANG AND STEFAN HARTMANN

After solving these systems, the stage derivatives are known and the final solution at time tn+1 is
computable by the sum (29) and (25)2–(25)4.

At this point we would like to remark that for DAE systems resulting from the quasistatic case,
stiffly accurate methods are preferable [Ellsiepen and Hartmann 2001; Hartmann 2002; Hartmann et al.
2008a; Birken et al. 2010; Hartmann and Rothe 2013; Rothe et al. 2015b]. Here, the solution variables
Ans, Θ̇ns,Qns in the last stage coincide with the new solution at time tn+1, an+1 =Ans , Θ̇n+1 = Θ̇ns ,
qn+1 =Qns . This property guarantees that the algebraic constraints are fulfilled at the new time-step
[Prothero and Robinson 1974]. With regard to the Butcher-tableaus in Figure 1(b), stiff accuracy implies
a regular coefficient matrix A satisfying asi = bi and āsi = b̄i . From (24) and (25) it is obvious that
this results in the mentioned equivalence. Thus, the latter equation can be omitted, saving additional
computational time. In Section 4, we draw on stiffly accurate, diagonally implicit Runge–Kutta (SDIRK)
methods for our numerical examples in order to treat the quasistatic as well as the dynamic case.

3.2. Generalized-α method. In this section we apply the generalized-α method, formulated as a one-step
method, which was originally introduced in [Chung and Hulbert 1993] for second-order ODEs in the field
of computational solid dynamics. This unconditionally stable method allows us to introduce controllable
numerical dissipation into the considered system. For a special choice of the integration parameter set
consisting of the algorithmic parameters α f , αm , β and γ , the generalized-α method includes the most
popular classical numerical dissipative and nondissipative time integration schemes (for more details
regarding the Newmark-family [Newmark 1959], the HHT-α method [Hilber et al. 1977] and the WBZ-
α method [Wood et al. 1980], see [Kuhl and Crisfield 1999]). In many publications [Chung and Hulbert
1993; Jansen et al. 2000; Erlicher et al. 2002; Popp 2012], the proposed single-step version of the
integrator, which comprises a special parameter set, is assumed to be second-order accurate at all times.
In [Rang 2013a; 2013b], however, it was shown that this statement holds only for a particular parameter
set, which is not identical to the commonly used one, since there is a distinction between the one-step
and the multistep version [Erlicher et al. 2002]. These parameter sets {α f , αm, β, γ } are often expressed
in terms of a spectral radius ρ∞ ∈ [0, 1] as the sole free parameter

α f =
1

1+ρ∞
, αm =

2− ρ∞
1+ ρ∞

, γ =
1
2
+αm −α f , β =

1
4
(1+αm −α f )

2. (36)

The given setting follows directly from requirements of unconditional stability, optimized numerical
dissipation, and second-order accuracy for the multistep method. The spectral radius ρ∞ controls the
high-frequency dissipation, whereas ρ∞ = 1 designates the no dissipation case, and ρ∞ = 0 means
full annihilation [Chung and Hulbert 1993; Kuhl and Crisfield 1999; Jansen et al. 2000; Popp 2012].
Furthermore, ρ∞ ensures algorithmic parameters leading to optimal time integration schemes. In the
linear structural dynamic regime, this leads to maximized high-frequency dissipation, while damping for
the important lower modes is kept at a minimum. However, if these parameter sets are used for the one-
step method, it is theoretically only possible to reach first order. The error constant in this case is very
small, so the observed numerical order of convergence is two. Moreover, in [Rang 2013b], the one-step
version of the generalized-α method applied to second and first-order ODEs obtains better results than
the corresponding multistep version.

The chosen notation in this paper for the generalized-α method is based on the works of Rang [2013a;
2013b] and Jansen et al. [2000]. In the following, we apply the one-step version of the generalized-α
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method for second-order ODEs to the semidiscrete equations of motion (10)1 and use the presented
algorithmic parameter set {α f , αm, β, γ } as a function of ρ∞. We start with linear interpolation rules for
the generalized mid-point quantities which are commonly established for the generalized-α method,

U n+α f =α f un+1+(1−α f )un, U̇ n+α f =α f vn+1+(1−α f )vn, Ü n+αm =αman+1+(1−αm)an. (37)

Now, we introduce the well-known Newmark [1959] approximations to describe the discrete velocities
vn+1 and accelerations an+1 at tn+1 as functions of the unknown displacements un+1 and in terms of
already known quantities at time tn ,

vn+1 =
γ

β1tn
(un+1−un)−

γ−β

β
vn −

γ−2β
2β

1tnan, (38)

an+1 =
1

β1t2
n
(un+1−un)−

1
β1tn

vn −
1−2β

2β
an. (39)

The generalized midpoint velocities and accelerations in (37) can be expressed as function of the dis-
placements un+1,

U̇ n+α f =
α f γ

β1tn
(un+1−un)−

α f γ −β

β
vn −

(γ − 2β)α f

2β
1tnan, (40)

Ü n+αm =
αm

β1t2
n
(un+1−un)−

αm

β1tn
vn −

αm − 2β
2β

an. (41)

By applying the generalized-α method to the semidiscrete equation of motion (10)1 with

Tn+α f = tn +α f1tn = α f tn+1+ (1−α f )tn (42)

and
Tn+αm = tn +αm1tn = αm tn+1+ (1−αm)tn, (43)

we obtain the discrete linear momentum balance, i.e., the fully (meaning in space and time) discretized
finite element formulation of nonlinear structural dynamics. This modified structural equation of motion,
evaluated at some instant inside [tn, tn+1], reads

G u(tn+1,un+1,Θn+1,qn+1)=MÜ n+αm +gu(Tn+α f ,U n+α f ,Θn+α f ,Qn+α f )+Mup
¨U (Tn+αm )= 0,

(44)
where we have to evaluate the internal forces and external forces at the midpoint n+α f , which occur
in gu defined in (75). This is a midpoint-type approach. In this way we obtain an equivalent equation
structure and can use the same material and element routines as for the DIRK integrators. Alternatively,
a linear interpolation for gu based on a trapezoidal rule can be applied [Kuhl and Crisfield 1999; Erlicher
et al. 2002; Popp 2012]. For the linear case (small deformation and linear elastic material behavior) both
approaches are equivalent.

At this point, we would like to briefly mention the so-called energy-momentum conserving time
integration schemes [Simo and Tarnow 1992; Simo et al. 1992; Gonzalez 2000; Kuhl and Crisfield
1999; Kuhl and Ramm 1999], which are all included in an enhanced version of the generalized energy
momentum method (the so-called GEMM+ξ method) developed by Kuhl and Crisfield [1999]. Basically,
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the only difference between the GEMM+ξ method and the generalized-α method is the way the internal
forces are evaluated — or more specifically, the way for computing a generalized midpoint strain quantity.

In the following, we apply the generalized-α scheme for first-order ODEs formulated as a one-step
method to the semidiscrete heat equation (10)2. Based on the algorithmic parameter set introduced in
(36), whereas β is not used anymore, we violate the criterion of an optimized numerical dissipation in
case of the generalized-α for first-order ODEs [Jansen et al. 2000; Rang 2013a; 2013b]. Due to this
coupling, the optimal condition for αm cannot be satisfied anymore. However, unconditional stability
and second-order accuracy for the multistep version are still maintained. We start again with identical
linear interpolation rules for the generalized mid-point temperature quantities

Θn+α f = α fΘn+1+ (1−α f )Θn, Θ̇n+αm = αmΘ̇n+1+ (1−αm)Θ̇n. (45)

The discrete temperature velocities Θ̇n+1 at t = tn+1 can be expressed as

Θ̇n+1 =
1

γ1tn
(Θn+1−Θn)−

1−γ
γ

Θ̇n. (46)

Due to the properties of the heat capacity matrix C2, the semidiscrete heat equation (10)2 can be trans-
formed into explicit form. Applying the generalized-α method yields

Θ̇n+αm =C−1
2 (U n+α f ,Θn+α f ) r2(Tn+α f ,U n+α f ,U̇ n+α f ,Θn+α f ,Qn+α f ), (47)

with a capacity matrix evaluated at Tn+α f (see [Jansen et al. 2000] for further explanation).
In order to apply the same material and element subroutines, we transfer (47) to a DIRK similar

structure. By transforming (45)1 to

Θn+1 =
1
α f
Θn+α f −

1−α f

α f
Θn, (48)

and substituting into (45)2, we arrive at

Θ̇n+αm =
1
1tα

(Θn+α f −Θ
S
n+α f

), (49)

with the abbreviation 1tα = α f γ1tn/αm for a time-step quantity and the starting value

ΘS
n+α f
=Θn +

(
α f − γ

α f

αm

)
1tnΘ̇n =Θn +

αm − γ

γ
1tα Θ̇n, (50)

which depends only on already calculated quantities at time tn . Finally, we obtain the discrete formulation

G2(tn+1,un+1,Θn+1,qn+1)=C2(U n+α f ,Θn+α f )(Θn+α f −Θ
S
n+α f

)

−1tα r2(Tn+α f ,U n+α f ,U̇ n+α f ,Θn+α f ,Qn+α f )= 0 (51)

of the weak formulation in (9). Analogously to the just considered first-order ODE, the generalized-α
method applied to the evolution equations for the internal variables (10)3 can be written as

L (tn+1,un+1,Θn+1,qn+1)=Qn+α f −QS
n+α f
−1tα r Q(Tn+α f ,U n+α f ,Θn+α f ,Qn+α f )= 0, (52)
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with the starting value

QS
n+α f
=qn +

(
α f − γ

α f

αm

)
1tnq̇n =qn +

αm − γ

γ
1tα q̇n. (53)

The derivative q̇n+1 at t = tn+1 is defined, analogously to (46), by

q̇n+1 =
1

γ1tn
(qn+1−qn)−

1−γ
γ

q̇n. (54)

In other words, at each point in time, we have to solve the nonlinear system of equations

G u(u,Θ,q)= 0,

G2(u,Θ,q)= 0,

L Q(u,Θ,q)= 0,

(55)

where we have omitted the time tn+1 and the index n+ 1 for brevity. One drawback of the procedure can
be seen in (54), because we need the derivatives of the quantities at time t = 0. These can be obtained
by evaluating (10) at the beginning of the entire computation.

3.3. Time adaptivity. Step-size control is an essential issue to obtain both accurate results and efficient
computations. We draw on the approach in [Gustafsson 1994; Hairer et al. 1993; Hairer and Wanner
1996], by using a PI-controller approach. Furthermore, the physical meaning of the different quantities
is taken into account. For details, especially for the case of the generalized-α method, see Appendix B.

4. Examples

In this section, the performance of the presented algorithms is studied by means of several numerical
examples. To demonstrate the advantages and capabilities of the approach in a thermoviscoplastic finite
element analysis, two different three-dimensional cases are investigated in detail. The finite element
analyses are carried out using the in-house code Tasafem for monolithic, coupled and time-adaptive
simulations.

4.1. Order analysis. In the first example, we perform an order analysis drawing on a uniaxial tensile
specimen, where only one-eighth of the thermoviscoplastic steel specimen is discretized (symmetry con-
ditions are assumed for the displacement as well as temperature distribution, see Figure 3 (left)). For the
spatial discretization, we employ a mesh with nel = 360 twenty-noded hexahedral finite elements (p = 2)
consisting of a total number n p = 2089 nodes (nuu = 4803, n2u = 2089, nQ = nel× 27× 12= 116640),
see Figure 3 (left) for the mesh.

The specimen is loaded by a sinusoidal displacement-control at the middle cross-section (y = 0) with
ū y = û sin(2π f t), û = 0.2 mm, f = 10 Hz within the time interval t ∈ [0 s, 0.1s]. Starting from the
rest position, we choose initial conditions uh(x, 0)= 0, and 2h(x, 0)=20, with an initial temperature
of 20 = 25 ◦C. To ensure consistent initial conditions in the coupled field equations for the velocity
and acceleration fields, we apply a smoothing step function (polynomial of fifth order) for ū y(t) within
t ∈ [0 s, 0.0125 s] for which vh(x, 0)= 0 and ah(x, 0)= 0 holds, see Figure 3 (right).

The chosen unit system consists of the basic units mm, t, s, and K. The material parameters used
in this example can be found in Table 4, where the heat capacity cp is given according to the unit
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Figure 3. Model setup: (left) geometry, mesh and boundary conditions (units in mm);
(right) loading path.

material parameters symbol value unit

bulk modulus K 1.6666 ·105 N/mm2

change of K with temperature cK 91 N/(mm2K)
shear modulus G 0.769 ·105 N/mm2

change of G with temperature cG 42 N/(mm2K)
thermal exp. coef. α2 1.2 ·10−5 K-1

hardening parameter cX 4230 N/mm2

hardening parameter β 3 ·10−3 N-1mm-2

initial yield stress k0 450 N/mm2

yield stress at high temperature kH 100 N/mm2

yield stress slope b 4.2 ·10−3 C-1

viscosity η 6 ·104 s
exponent m 1 -
normalization stress σ0 1 N/mm2

density ρ 7.836 ·10−9 Ns2/mm4

Table 4. Thermoviscoplastic material parameters.

system in mm2/(s2K). Thus, the conversion factor between SI units J/(kgK) and the chosen system
is 1 mm2/(s2K) = 10−6 J/(kgK). Instead of choosing the heat capacity given by (5), we choose a
temperature-dependent approach that originates from differential scanning calorimetry measurements.
In order to take into consideration the phase transformation at higher temperatures, a log-interpolation
of the two functions

cp1(2)= a1ea22+ a3, cp2(2)= a4e−a5(2−2̃0)+ a62, (56)
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DIRK
abbreviation method order p stages s reference

BE Backward Euler 1 1 [Butcher 2008]
Alex2/Ell Alexander/Ellsiepen 2 2 [Alexander 1977; Ellsiepen 1999]
CAA trapezoidal rule or CAA 2 2 [Hughes 1987; Ellsiepen and Hartmann 2001]
Alex3/Cash Alexander/Cash 3 3 [Alexander 1977; Cash 1979]
CAA+BE CAA + Backward Euler 2/1 2/1 -

generalized-α
abbreviation method order p stages s reference

Gen-α generalized-α, ρ∞ = 0.8 2 - [Chung and Hulbert 1993]

Table 5. Applied one-step methods with references in the context of ODE solution and
applications within finite elements.

is chosen according to Kreisselmeier and Steinhauser [1979]

cp(2)=−cW ln
(

e−cp1(2)/cW+e−cp2(2)/cW

2

)
. (57)

The calibrated parameters are as follows: a1 = 34.2 J/(kgK), a2 = 0.0026 K−1, a3 = 421.15 J/(kgK),
a4 = 956.5 J/(kgK), a5 = 0.012 K−1, a6 = 0.45 K/(kgK2), and 2̃0 = 900 K. The weighting factor of the
interpolation function is chosen to be cW = 30 J/(kgK).

The thermal conductivity κ is given in tmm/(s3K), which is equivalent to W/(mK). According to Quint
et al. [2011] we assume

κ(2)= b0+ b12+ b22
2
+ b32

3, (58)

with b0 = 40.1 W/(mK), b1 = 0.05 W/(mK2), b2 = −10−4 W/(mK3), and b3 = 4.9 ·10−8 W/(mK4),
which are taken from the steel 51CrV4.

For the order considerations, the relative error measures of the displacement, velocity, temperature
field and internal variables are computed. The relative error quantities are defined by the maximum
relative error over all points in time tn , given as

erru=max
n

 ‖u ref
n −un‖

max
n

(
‖uref

n ‖
)
 , errv=max

n

 ‖v ref
n −vn‖

max
n

(
‖v ref

n ‖
)
 , (59)

errΘ =max
n

 ‖Θ ref
n −Θn‖

max
n

(
‖Θ ref

n ‖
)
 , errq=max

n

 ‖q ref
n −qn‖

max
n

(
‖qref

n ‖
)
 , (60)

For the illustrated problem the integration methods compiled in Table 5 are analyzed in view of their
expected and achieved temporal convergence order for different fields. For further information regarding
the applied DIRK methods, we refer to [Ellsiepen and Hartmann 2001] and the literature cited in Table 5.
Cash’s [1979] method is the time-adaptive extension using an embedded scheme of Alexander’s [1977]
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Figure 4. Displacement norm (left) and temperature distribution (right) for reference
solution (Alex3/Cash, 1tn = 10−5 s) at t = 0.075 s.
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Figure 5. von Mises-stress distribution (left) and yield function state (right) for refer-
ence solution (Alex3/Cash, 1tn = 10−5 s) at t = 0.075 s.

method of third order. Similarly, Ellsiepen’s [1999] method is the time-adaptive extension of Alexander’s
[1977] second-order method. In the following we call them Alex3/Cash and Alex2/Ell.

The algorithmic parameters of the generalized-α method —α f , αm , β and γ — are computed using
(36) as function of the spectral radius ρ∞. The order of convergence is given by the slope of the curves in
a double logarithmic plot. The reference solution is given by Alex3/Cash (highest-order method of our
investigations), with a constant step-size of 1tn = 10−5 s. The resulting deformation and temperature
distribution for the reference solution at t = 0.075 s are shown in Figure 4. Mechanical agencies of the
structure change the temperature distribution due to plastic dissipation, and cause plastic deformations,
see Figure 5.

Regarding the order considerations for the displacement field, only the Backward Euler (which is the
simplest DIRK method), the applied Newmark-scheme in the parametrization of the trapezoidal rule
(CAA), and the generalized-α method reach their theoretical orders in Figure 6 (left). The convergence
order for Alex2/Ell and Alex3/Cash degenerates after passing an optimal step-size. The reasons for this
are not known.

Due to the strong coupling of the displacement field to the internal variables, the combination of the
CAA and Backward Euler methods yields only order one, i.e., the order of the global trapezoidal rule
(Newmark-scheme) will be reduced, and the artificially created order reduction in the internal variables
affects the order in the displacement field. Thus, commercial programs using the Newmark-method
combined with a Backward Euler-like scheme on Gauss-point level for integrating the internal variables
cannot reach second order. This is different in the pure CAA approach.

For the convergence behavior in the velocity field, the higher-order DIRK methods — excluding the
Newmark-type schemes (CAA, generalized-α method) — reach only first order (see Figure 6 (right)).
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Figure 6. Convergence behavior for order analysis: (left) global error in displacement
field and (right) global error in velocity field.
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Figure 7. Convergence behavior for order analysis: (left) global error in temperature
field and (right) global error for internal variables.

However, the field variable velocity is only of minor importance compared to the others. On the other
hand, the convergence behavior for the temperature field in Figure 7 (left) for the different time inte-
gration methods matches the theory. As reported in [Ellsiepen 1999; Ellsiepen and Hartmann 2001],
we observe in the convergence graph for the internal variables (Figure 7 (right)) — due to the lack of
smoothness in the time domain — an order reduction where the third order of the Alex3/Cash method is
not attained. This is known from quasistatic and isothermal computations [Ellsiepen and Hartmann 2001].
As already mentioned, the combination of Backward Euler for the internal variables (stress-algorithm)
and the Newmark-method yields only order one.

It is not only the rate of convergence that is of practical importance, but the computational costs of the
methods as well. Figures 8 and 9 show the relative error in each field variable versus the computational
time.

In these plots, the second-order DIRK methods (Alex2/Ell, CAA), with the exception of Figure 8 (right),
show an identical slope, which is steeper than the more accurate Alex3/Cash-method. They are more



76 MATTHIAS GRAFENHORST, JOACHIM RANG AND STEFAN HARTMANN

1 ·10+0

1 ·10+0

1 ·10−1

1 ·10−2

1 ·10−2

1 ·10−41 ·10−61 ·10−8

BE
Alex2/Ell

CAA
Alex3/Cash

Gen-α
CAA+BE

erru

no
rm

al
iz

ed
C

PU
-t

im
e

1 ·10+0

1 ·10+0

1 ·10−1

1 ·10−1

1 ·10−2

1 ·10−2

1 ·10−4 1 ·10−3 1 ·10+1

BE
Alex2/Ell

CAA
Alex3/Cash

Gen-α
CAA+BE

errv

no
rm

al
iz

ed
C

PU
-t

im
e

Figure 8. Efficiency analyses for displacement (left) and velocity (right) fields.
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Figure 9. Efficiency analyses for temperature field (left) and internal variables (right).

efficient for high accuracy requirements, i.e., the fastest methods for a given error tolerance. The Back-
ward Euler method yields only comparatively rough results — even for high computational times. The
considered generalized-α method behaves only moderately: acceptable results are only obtained for the
smallest time-step, see Figure 8 (left). All in all, the combination of Newmark-method and Backward
Euler seems to be superior to the pure Backward Euler method, but is not as attractive as the generalized-α
method due to the small slope in the displacements.

We would like to remark that the increase of elements by a factor of two in all directions, which yields
more accurate results in the spatial domain, does not influence the order diagrams, especially the order
reduction phenomenon of CAA and Alex3/Cash in Figure 6 (left). This can be explained by the accuracy
of the error tolerance of the global MLNA step, where the tolerances (norm of 1u and 1Θ) could not
be smaller than 10−7 in the computations. Otherwise, the MLNA will not converge.

4.2. H-Beam. In the second example, we study the dynamical behavior of a thermoviscoplastic H-Beam
profile by performing time-adaptive computations. The error of the current time-step is estimated by
using embedding methods as described in Section 3.3. The dimensions of the profile are depicted in
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εu
a εu

r ε2a ε2r ε
q
a ε

q
r

1.0 ·10−2 mm 1.0 ·10−3 1.0 ·10−2 ◦C 1.0 ·10−3 1.0 ·10−5 1.0 ·10−5

Table 6. Absolute and relative error tolerances for step-size estimation.

Figure 10 (left) and the material parameters are given in Table 4 with the nonlinear material functions
(57) and (58). The left end of the beam is clamped, i.e., all displacements are fixed, and the right side is
loaded by a time-dependent cyclic pressure load in z-direction,

p̄(t)=
{

K pt for 0 s≤ t ≤ 1 s with K p = 130 MPa/s
p0 sin(2π f t) for 1 s< t ≤ 2 s with p0 = 20 MPa, f = 233 Hz

, (61)

see Figure 10 (right). The frequency is chosen to be close to an eigenfrequency so that the influence of the
inertia terms becomes larger. Similar computations — which are not shown here — at a loading frequency
of f = 60 Hz show very similar amplitudes and phases for all time integration schemes. This holds for the
step-size behavior as well. The whole profile is discretized with nel = 11200 twenty-noded hexahedral
finite elements. Consequently, this implies a total number of 68591 nodes (nuu = 204300, n2u = 68591)
with nQ = nel× 27× 12 = 3628800 internal variables. The problem setup is completed by the initial
conditions uh(x, 0)= 0, vh(x, 0)= 0, q(0)= 0, and initial temperature distribution 2h(x, 0)=20 with
reference temperature 20 = 25 ◦C.

For all investigated time-integration methods, namely the generalized-α (Gen-α), Newmark (CAA),
and Ellsiepen (Alex2/Ell) time integrators, the same absolute and relative error tolerances for the field
variable’s displacement, temperature and internal variables are used (see Table 6) in order to estimate the
new step-sizes. The proposed adaptive time-step control uses the error measure em =max(eu, ev, eθ , eq)

for the step-size selection rule (95). As a result of the observed poor convergence behavior in the velocity
field for the DIRK methods Alex2/Ell and Alex3/Cash (see Figure 6 (right)), we do not take ev into
account to compute em . This — in combination with the chosen factors fmin = 0.3, fmax = 2.5, and
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Figure 10. Model setup and loading process: dimensions of the H-Beam, mesh and
boundary conditions (units in mm) (left); schematic loading path (right).
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fsafety = 0.85 of the step-size controller — leads to the step-size behavior shown in Figure 15 (left). An
initial step-size of 1t 0 = 10−2 s is chosen and applied at each external load-change, i.e., at tn = 0 s
and tn = 1 s. In the quasistatic loading range the step-size increases until it is limited by the stability
of the employed Multilevel Newton algorithm. If there are time-steps that are too large, a failure of the
applied Newton algorithm on the local level is obtained. Thus, step-size rejections are observable. As
the dynamics of higher modes of the structure are stimulated by the cyclic loading, the step-size in this
time interval is reduced significantly by the time-adaptive scheme.

For a comparison of the integration schemes, we consider the structural response at two nodes n1 and
n2. Figure 11 shows the deflection/time behavior at node n1. At the second evaluation point n2, however,
we observe the temperature evolution depicted in Figure 12. The generalized-α method and the applied
Newmark-scheme (CAA) yield approximately the same structural response, see Figure 11 (right) and
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Method No. of time-steps CPU time (s) Efficiency factor

Gen-α 12592 253136 0.54
CAA 12601 467034 1.00
Alex2/Ell 4107 106077 0.23

Table 7. Computational costs of applied time integration schemes.

‖~u‖ (mm)
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Figure 13. Displacement (left) and temperature (right) distribution at the end of the
computation (t = 2 s), computed with Ellsiepen’s method.

σv (MPa)
f (MPa)

elastic

plastic

Figure 14. von Mises stress (left) and yield function (right) state at the end of the com-
putation (t = 2 s), computed with Ellsiepen’s method.

Figure 12 (right). Moreover, both show a very similar step-size behavior which can be observed in
Figure 15. However, as shown by the CPU times in Table 7, the generalized-α requires only 54% of
the computational time of the trapezoidal rule (CAA). This fact is due to the use of a further stage
in the embedded scheme for the trapezoidal rule (a Backward Euler stage) for applying the proposed
time-adaptivity procedure in Section 3. The generalized-α method uses an estimation introduced by
Rang [2013a; 2013b]. Ellsiepen’s method yields larger step-sizes in the cyclic loading range and, ac-
cordingly, leads to the fastest computation.

Figures 13 and 14 (left) show the displacement, temperature and von Mises stress distribution at the
final stage of a time-adaptive computation with the Ellsiepen integrator. In Figure 14 (right), we consider
the regions where yielding appears. When the cyclic load is applied, a plastic zone starts to evolve at the
upper and the lower surface of the clamping. One can clearly see that in the area of clamping — above and
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Figure 16. Temperature difference between dynamic and quasistatic computation at the
end of the computation (t = 2 s), computed with Ellsiepen’s method.

below, where a singularity exists — the highest stresses occur. Furthermore, due to the elastic coupling
effect in the constitutive model, the maximum temperature occurs in the lower part of the clamping.

Figure 16 shows the influence of the inertia terms on the temperature distribution by comparing a
dynamical simulation with a quasistatic one. For this purpose, we perform an identical quasistatic
simulation by ignoring the inertia term and computing the difference between both simulations. The
resulting DAE system of the quasistatic simulation is listed in (14). It can clearly be seen that in the
lower part of the clamping, the temperature differs and reveals a temperature increase. In the remaining
part of the structure, there is no drastic change in temperature.

5. Conclusions

We studied the resulting ODE system of dynamical problems which were combined with heat conduction
problems and inelastic material behavior. All equations are coupled. The problem under consideration
is related to the computation of a system of second-order ODEs with first-order ODEs. The classical
Newmark-method, which is a method of second-order combined with stress-algorithms of first order on
Gauss-point level, does not lead to a second-order scheme. Thus, other methods must be treated. Another
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question is connected to an automatic step-size control technique based on local error estimations, due
to which the physical quantities and their temporal evolution determine the step-size.

Apart from the compilation of different semidiscrete forms, we investigated stiffly accurate, diagonally
implicit Runge–Kutta methods and the generalized-α method (single-step version). In the case of DIRK
methods, the second-order ODE part is transformed into a system of first-order ODEs. A particular
discussion of the relation to Runge–Kutta–Nyström methods was offered as well. The generalized-α
method, originally developed for second-order ODEs, was combined with a generalized-α method for
first-order ODEs. The different schemes were studied in view of their order of accuracy revealing similar
behavior. Since an order-reduction is known for the case of yield function-based models, only second-
order accuracy was expected. This was obtained for all methods in the displacements, temperatures
and internal variables. Only the fully consistently applied trapezoidal scheme (CAA) — consistent with
the integration scheme on Gauss-point level to determine the internal variables — the expected order is
achieved in the velocities as well.

Additional investigations of the embedded time-step control of the DIRK methods and the generalized-
α methods proved both the applicability of the time-adaptivity of the two methods as well as the greater
efficiency of DIRK methods. Unfortunately, the fully consistent CAA method is computationally four
times slower than the DIRK approach in our examples. Thus, either Ellsiepen’s method, which has turned
out to be very efficient for quasistatic and coupled problems, or the generalized-α should be applied. The
latter method is also applicable for problems with internal variables if it is applied in a consistent manner.
However, there is the drawback that the function evaluations are at stage-times within a time-interval so
that constraint problems cannot be satisfied.

Appendix A. Derivation of matrices

In this section, we draw on the notation used in [Rothe et al. 2015a]. In finite elements, the displacements
Eu(Ex, t), the virtual displacements δEu(Ex), the temperatures 2(Ex, t), and the virtual temperatures δ2(Ex)
are approximated by shape functions within an element e,

uh(x, t)=Ne
u(ϕ

e
u(x))u

e(t)=Ne
u(ϕ

e
u(x))Z

e
uaU a =Ne

u(ϕ
e
u(x))

{
Z e

uu+Z e
uu(t)

}
, (62)

u̇h(x, t)=Ne
u(ϕ

e
u(x))u̇
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u(ϕ
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e
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2h(x, t)=Ne T
2 (ϕe
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where uh
∈ R3, δuh

∈ R3. For the three-dimensional case we have the matrix and vector shape functions
Ne

u ∈ R3×ne
u , and Ne

2 ∈ Rne
2 , where ne

u and ne
2 are the displacement and temperature element degrees of

freedom (DOF). Here, ue
∈ Rne

u and 2e
∈ Rne

2 describe the element DOF. In the case of h-elements, these
are displacements and nodal temperatures. The expression ξ = ϕe

u(x) defines the inverse coordinate trans-
formation of the global coordinates x to the local coordinates ξ in the reference element. Here, we have
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to distinguish between the coordinate transformation ϕe
u in the mechanical problem and the coordinate

transformation in the thermal problem ξ = ϕe
2(x). In a monolithic approach, both transformations are

assumed to be identical, ϕe
u(x)= ϕ

e
2(x) (of course, a generalization might be possible). In a partitioned

approach both meshes can be different. Thus, the given coordinate transformations x = χ e
u(ξ) and

x = χ e
2(ξ) with χ e

u = ϕ
e
u
−1 and χ e

2 = ϕ
e
2
−1 are distinct in the general case. In this context, ua ∈ Rnua

symbolizes all displacement DOF for the entire structure containing the unknown quantities u ∈ Rnuu and
the known (prescribed) displacement DOF u ∈ Rnup . Obviously, nua = nuu+ nup for u T

a = {u Tu T
} holds.

The same decomposition is carried out for the temperature DOF, Θa ∈ Rn2a , Θ ∈ Rn2u , Θ ∈ Rn2p (i.e.,
ΘT

a = {Θ
TΘ

T
} and n2a = n2u+ n2p). For ni j the first index denotes the mechanical and the thermal

quantities, i = u,2. The second subscript, j = a, u, p, stands for all, unknown and prescribed. The terms
u(t) and Θ(t) are the given functions at time t representing displacement-control and prescribed tem-
perature boundary conditions. The incidence matrices Z e

u ∈ Rne
u×nuu , Z e

u ∈ Rne
u×nup , Z e

2 ∈ Rne
2×n2u , and

Z e
2 ∈ Rne

2×n2p are related to the assemblage procedures, which are frequently symbolized by either ∪
n2el
e=1

or An2el
e=1 in [Wriggers 2001; Hughes 1987]. Accordingly, the incidence matrices Z are not programmed

explicitly, but symbolize the assemblage procedure of “local” quantities into “global” vectors or matrices.
They are also helpful in developing new algorithms [Hartmann 2005; Hartmann and Hamkar 2010] or
for describing the transition from local to global quantities.

In view of d’Alembert’s principle (8) and temperatures (9), respectively, both the strain and virtual
strain vectors as well as the temperature gradient and virtual temperature gradient are required:

Ee(t, ξ ,u)= Be
u(ξ)u

e(t)= Be
u(ξ)

{
Z e

uu+Z e
uu(t)

}
, (69)

Ėe
(t, ξ , u̇)= Be

u(ξ)u̇
e(t)= Be

u(ξ)
{
Z e

u u̇+Z e
u u̇(t)

}
, (70)

δEe(ξ , δu)= Be
u(ξ)δu

e
= Be

u(ξ)Z
e
u δu, (71)

γ e(t, ξ ,Θ)= grad2h
= Be

2(ξ)2
e(t)= Be

2(ξ)
{
Z e
2Θ +Z e

2Θ(t)
}
, (72)

δγ e(ξ , δΘ)= grad δ2h
= Be

2(ξ)δ2
e
= Be

2(ξ)Z
e
2δΘ, (73)

where Be
u(ξ)∈ R6×ne

u symbolizes the strain-displacement matrix, and Be
2(ξ)∈ R3×ne

2 represents the tem-
perature gradient-temperature matrix. In Voigt-notation, the stresses (1) read T= h(E,2,q), T∈ R6,
E∈ R6, which are inserted into the weak form (8) leading to the second-order ODE

Mü(t)=−gu(t,u,Θ,q)−Mupü(t) (74)

with

gu(t,u,Θ,q)=
nu

el∑
e=1

Z e
u

T
{ne

GPu∑
j=1

we( j)
u Be( j)

u
T
h(Ee( j),2e( j),qe( j)) det Je( j)

u

}
−p (t), (75)

M =
nu

el∑
e=1

Z e
u

T
[ne

GPu∑
j=1

we( j)
u Ne( j)

u
T
Ne( j)

u ρe( j) det Je( j)
u

]
Z e

u , (76)

Mup =

nu
el∑

e=1

Z e
u

T
[ne

GPu∑
j=1

we( j)
u Ne( j)

u
T
Ne( j)

u ρe( j) det Je( j)
u

]
Z e

u . (77)
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Here ne
GPu are the number of Gauss-points in the mechanical element e; we( j)

u symbolizes the weighting
factor of the spatial integration scheme, where we assume a Gauss-integration formula; Be( j)

u = Bu(ξ
( j))

is the strain-displacement matrix used in (69) and evaluated at Gauss-point ξ ( j); Ee( j)
= Ee(t, ξ ( j),u)

are the strains (69); 2e( j)
= 2e(t, ξ ( j),Θ) defines the temperature (66); and qe( j)

= qe(t, ξ ( j)) the
internal variables at Gauss-point ξ ( j). The Jacobian of the coordinate transformation is defined as Je( j)

u =

dχ e
u(ξ)/dξ |ξ=ξ ( j) and p (t) symbolizes the equivalent nodal force vector.
Following [Ellsiepen and Hartmann 2001], we formally assemble all internal variables of all Gauss-

points into a large vector

q(t)=
nu

el∑
e=1

ne
GPu∑

j=1

Z e( j)
Q

T
qe( j)(t) (or qe( j)(t)=Z e( j)

Q q(t)), (78)

and the ordinary differential equations (evolution equations of the internal variables) are treated in the

same manner (r Q =
∑nu

el
e=1

∑ne
GPu

j=1 Z e( j)
Q

T
rQ(Ee( j),2e( j),qe( j))), which leads to

q̇(t)= r Q(t,u,Θ,q). (79)

In our case qe( j)
∈ Rnq with nq = 12 (symmetry of the tensors Ev and Er is assumed), Z e( j)

Q ∈ Rnq×nQ ,
and q ∈ RnQ hold.

In its spatially discretized representation, the weak form of the heat equation (9) reads

g2(t,u, u̇,Θ, Θ̇,q)=
n2el∑

e=1

Z e
2

T
{ne

GP2∑
j=1

w
( j)
2 ĉp(Ee( j),2e( j))Ne( j)

2 2̇e( j)(t) det Je( j)
2

}
+p κ(t,Θ)−p2(t,Θ)− p̂2(t,u, u̇,Θ,q), (80)

or by inserting (66)–(68) and (72), (73) one obtains the more brief form

C2(t,u,Θ)Θ̇(t)= r2(t,u, u̇,Θ,q). (81)

In this equation, the temperature-dependent heat capacity matrix is obtained:

C2(t,u,Θ)=
n2el∑

e=1

Z e
2

T
[ne

GP2∑
j=1

w
( j)
2 ĉp(Ee( j),2e( j))Ne( j)

2 Ne( j)
2

T
det Je( j)

2

]
Z e
2 (82)

(C2 ∈ Rn2u×n2u) and

r2(t,u, u̇,Θ,q)=−p κ(t,Θ)+p2(t,Θ)+ p̂2(t,u, u̇,Θ,q), (83)

with the conductivity term

p κ(t,Θ)=
n2el∑

e=1

Z e
2

T
{ne

GP2∑
j=1

w
( j)
2 κ(2e( j)) Be( j)

2

T
γ e(2e( j)(t)) det Je( j)

2

}
(84)
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and the dissipation term

p̂2(t,u, u̇,Θ,q)=
n2el∑

e=1

Z e
2

T
{ne

GP2∑
j=1

w
( j)
2 p̂(Ee( j), Ėe( j)

,2e( j),qe( j))Ne( j)
2 det Je( j)

2

}
. (85)

For reasons of brevity, the heat flux and heat source on the surface are not explained in detail:

p2(t,Θ)=
∫

A
N2qh(2h) dA+

∫
V

N2rh dV . (86)

Appendix B. Time adaptivity

Regarding computational efficiency and accuracy, methods with a constant step-size perform poorly if
the solution varies rapidly in some parts of the time interval and slowly in other parts. For this reason
the step-size should be chosen in such a way that it is large in smooth parts and small in transient parts.
This calls for a step-size control technique which relies on the approximation of the local integration
error and adjusts the time-step so that the error measure remains within a prescribed tolerance. Since an
adaptive step-size control takes the behavior of the underlying equations into account, it stabilizes the
global procedure and keeps the global error within certain limits as well. The first widely used adaptive
time-stepping strategies in the field of structural dynamics were proposed in [Zienkiewicz et al. 1984;
Zienkiewicz and Xie 1991; Zeng et al. 1992; Li et al. 1993; Riccius and Schweizerhof 1996; Riccius
1997]. These approaches are based on an a posteriori estimation of the local integration error (see (89))
for the displacement field which results from a difference between numerical solution and an improved
solution calculated in a Taylor series at tn . Further details regarding this a posteriori error estimation tech-
nique and specific numerical examples in combination with generalized-α related methods can be found
in [Kuhl 1996; Kuhl and Ramm 1999]. An a posteriori error estimation technique for displacements and
velocities is proposed in [Hulbert and Jang 1995]. Step-size control algorithms based on the “apparent
highest frequency” as well other classical approaches built on general frequency information lie out of our
scope. In this section, we focus on the possibility of incorporating an efficient step-size control, which is
based on the estimation of the local integration error (local truncation error) and can be achieved with a so-
called embedding technique [Hairer et al. 1993; Hairer and Wanner 1996; Strehmel et al. 2012]. A further
approach for the time-adaptivity of one-step methods — the Richardson extrapolation — is presented in
[Hairer et al. 1993]. Due to the necessity of repeating the time-step with 1tn/2 and comparing the results
to the computations with the time-step 1tn , a higher computational effort is required. For that reason,
local error control using the Richardson extrapolation is not of particular interest to us.

We start with recapping the coupled ODE system in (10) in explicit form

ẏ(t)= f (t,y(t)), y(t0)= y 0, (87)

with y = {u T ,v T ,ΘT ,q T
} ∈ R(2nuu+n2u+nQ).

Based on an exact value y n = y(tn) the local integration error δ in the time interval 1tn is defined by
the difference between the exact solution y(tn+1) and the numerical solution

y n+1 = y(tn)+1tnΦ(tn,y(tn),1tn), (88)
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using an arbitrary integration method of order p as

δ = y(tn+1)−y n+1 = y(tn+1)−
(
y(tn)+1tnΦ(tn,y(tn),1tn)

)
=1t p+1

n Ψ (tn,y)+O(1t p+2
n ).

(89)

Here, Φ marks the so-called increment function of the underlying integrator [Hairer et al. 1993; Strehmel
et al. 2012]. Based on Taylor series expansions of the exact solution and the numerical solution, we can
determine the order of consistency where the local truncation error can be split up into a main part
1t p+1

n Ψ (principal error) and a remainder of order p+ 2. In the following, the main part of the local
integration error δ is estimated so as to be able to control the error quantity. For this purpose, two methods
of different order p and p̂ = p− 1 are assumed:

y n+1 = y(tn)+1tnΦ(tn,y(tn),1tn),

ŷ n+1 = y(tn)+1tnΦ̂(tn,y(tn),1tn).
(90)

Each of these methods yield an expression for the local integration error

δ = y(tn+1)−y n+1 =1t p+1
n Ψ (tn,y)+O(1t p+2

n ),

δ̂ = y(tn+1)− ŷ n+1 =1t p̂+1
n Ψ̂ (tn,y)+O(1t p̂+2

n ).
(91)

Using the difference of both errors

δ− δ̂ = y err := ŷ n+1−y n+1 =1t p̂+1
n Ψ̂ (tn,y)+O(1t p̂+2

n )≈1t p̂+1
n Ψ̂ (tn,y), (92)

we are able to estimate the main part 1t p̂+1
n Ψ̂ of the local integration error of the lower order method,

i.e., we get the “second best” approximation of y(tn+1). Furthermore, we assume that the function Ψ̂
varies only slowly so that ‖Ψ̂ (tn,y)‖ ≈ C holds within 1tn . With this error estimate in hand we are able
to decide whether the error in each time step is lower than a user-specified tolerance

‖y err‖ ≈ C1t p̂+1
n ≤ εr‖ŷ n‖+ εa, (93)

where generally the tolerance value is given as combination of an absolute εa and a relative εr tolerance.
For the computation of an optimal new step-size 1tnew, we demand that the error equals the prescribed
mixed tolerance

C1t p̂+1
new = εr‖ŷ n‖+ εa. (94)

Eliminating the constant C by using the relationship in (93) and substituting it into (94), we arrive at the
desired result

1tnew =1tn

(
εr‖ŷ n‖+ εa

‖y err‖

)1/( p̂+1)

. (95)

In the numerical mathematics community it is common to advance the solution in time by using the
higher-order approximation y n+1 instead of ŷ n+1. We do so as well. The case in which the concept of
local error control is slightly abandoned is called local extrapolation (see [Hairer et al. 1993] for further
explanations). A theoretical justification for this violation is given in [Deuflhard and Bornemann 1994].

For the approximation of the local error in the case of DIRK schemes, we use a highly efficient method
which is based on an embedded Runge–Kutta scheme. For this purpose two s-stage methods of different
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T

Figure 17. Butcher-tableaus with embedding: embedded RK scheme (left) and embed-
ded RKN scheme (right).

order p and p̂ are constructed with identical stages ci , the same coefficient matrix A, but using different
weighting factors bi and b̂i . The pair of embedded RK methods share the same stage computations. Thus,
a further solution at tn+1 can be computed by using (29), (25)2–(25)4

ûn+1 =un +1tnvn +1t2
n

s∑
i=1

ˆ̄biAni , v̂n+1 = vn +1tn
s∑

i=1

b̂iAni ,

Θ̂n+1 =Θn +1tn
s∑

i=1

b̂iΘ̇ni , q̂n+1 =qn +1tn
s∑

i=1

b̂iQ̇ni ,

(96)

with the newly introduced algorithmic parameters b̂i and ˆ̄bi =
∑s

j=1 b̂ j a j i . As in [Ehlers and Ellsiepen
1998; Diebels et al. 1999], we decompose y err into the local integration error for each field variable in
order to take the different physical properties and the order of magnitude into account. Commonly, the
new weighting factors b̂i and ˆ̄bi are appended to the Butcher array to form an embedded RK scheme (see
Figure 17).

The consistency orders of the two methods differ by one (i.e., p̂ = p− 1). According to (92), a simple
hand calculation results in the following estimation formula for RK schemes:

uerr = ûn+1−un+1 =1t2
n

s∑
i=1

( ˆ̄bi − b̄i )Ani , verr = v̂n+1−V n+1 =1tn
s∑

i=1

(b̂i − bi )Ani ,

Θerr = Θ̂n+1−Θn+1 =1tn
s∑

i=1

(b̂i − bi )Θ̇ni , qerr = q̂n+1−qn+1 =1tn
s∑

i=1

(b̂i − bi )Q̇ni ,

(97)

where the stage derivatives of both integration schemes are equal on the basis of the same coefficients
ai j and āi j .

In the case of the generalized-α method we follow a proposal in [Rang 2013a]. There, the approxi-
mation of the generalized-α scheme was used as a second-order approximation (p = 2) since the error
constant is very small and since the methods in our numerical experiments (see Section 4) behave as a
second-order method [Chung and Hulbert 1993; Erlicher et al. 2002; Rang 2013a]. The Backward Euler
method can be used for a second solution of lower order p̂ = 1. To circumvent an entire calculation of
(10) by using the Backward Euler method, the necessary derivatives will be approximated by using (38),
(39), (46) and (54). The computation for the local truncation error quantities in each field variable yield

uerr = ûn+1−un+1 =un +1tnvn+1−un+1, verr = v̂n+1−vn+1 = vn +1tnan+1−vn+1,

Θerr = Θ̂n+1−Θn+1 =Θn +1tnΘ̇n+1−Θn+1, qerr = q̂n+1−qn+1 =qn +1tnq̇n+1−qn+1.
(98)
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Commonly, the estimation of 1tnew is carried out using a more efficient and computationally more stable
procedure if it is described by (95). Following the proposal in [Hairer et al. 1993; Hairer and Wanner
1996; Gustafsson 1994], we employ the relative error measures

eu :=

√√√√ 1
nuu

nuu∑
k=1

(
u k

err

εu
r |u k

n | + ε
u
a

)2

, ev :=

√√√√ 1
nuu

nuu∑
k=1

(
v k

err

εvr |v
k
n | + ε

v
a

)2

,

e2 :=

√√√√ 1
n2u

n2u∑
k=1

(
2 k

err

ε2r |2
k
n | + ε

2
a

)2

,

(99)

where u k
err, v

k
err and 2 k

err are the k-th components of the local integration error approximations uerr, verr,
Θerr, respectively. These error measures perform a componentwise weighting instead of the simple
global weighting ‖y err‖/(εr‖y n‖+εa) introduced in (94). For the local truncation error qerr in the interval
variables, Diebels et al. [1999] proposed the maximum norm

eq := max
1≤k≤nQ

∣∣∣∣ q k
err

ε
q
r |q k

n | + ε
q
a

∣∣∣∣. (100)

Furthermore, the user-defined relative εu
r , ε

v
r , ε

2
r , ε

q
r and absolute εu

a , ε
v
a , ε

2
a , ε

q
a error tolerances may

depend on the components of the field variables reflecting different magnitude and physical meaning
of these quantities [Hairer et al. 1993]. For the sake of simplicity they are chosen to be constant. The
maximum em =max(eu, ev, eθ , eq) of the weighted error measures is used to determine the new step-size,

1tnew =1tn ·
{

max( fmin, fsafetye−1/( p̂+1)
m ) if em > 1

min( fmax, fsafetye−1/( p̂+1)
m ) if em ≤ 1

, (101)

comparing em to one. In the case em ≤ 1 the computed step is accepted and the integration can march
forward with 1tnew, otherwise the step has to be repeated with a smaller step-size 1tnew. The safety factor
0< fsafety < 1 prevents oscillations in the step-size controller while fmin and fmax keep the step-size from
increasing and decreasing too fast. In practice, typical values for these factors are: 0.8 ≤ fsafety ≤ 0.9,
0.2≤ fmin ≤ 0.5, 2≤ fmax ≤ 3 [Ellsiepen and Hartmann 2001].

Although the proposed standard controller [Hairer et al. 1993] works quite well, the local error control
algorithm yields strong oscillations in the step-size behavior in phases of quickly changing dynamics
[Gustafsson et al. 1988; Gustafsson 1991; 1994; Strehmel et al. 2012]. With regard to a further stabi-
lization and an increased time integration performance of the step-size controller, several approaches
from a control theoretical point of view were studied in [Gustafsson et al. 1988; Gustafsson 1991; 1994;
Söderlind 2002]. In Section 4 we employ a modified hybrid PI-controller based on [Lang 2001], which
works according to the following step-size selection rule

1tnew =1tn ·
{

min
(

fmax,max( fmin, fsafety (1/en+1
m )K I (en

m/e
n+1
m )K P )

)
if em > 1

min
(

fmax,max( fmin, fsafety (1/en+1
m )K I )

)
if em ≤ 1

, (102)

using time-step and error data en
m from the previous time-step. K P and K I define the proportional and

the integral gain of the controller, which can also be dependent on previous time-steps sizes and on
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previously computed error data. For further details about the implementation of the proposed automatic
step-length control we refer to [Gustafsson 1994; Hairer and Wanner 1996; Lang 2001].
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COMPUTER SIMULATION OF THE EFFECTIVE VISCOSITY IN BRINKMAN
FILTRATION EQUATION USING THE TREFFTZ METHOD

JAN ADAM KOŁODZIEJ, MAGDALENA MIERZWICZAK AND JAKUB KRZYSZTOF GRABSKI

This paper presents a determination of the effective viscosity in the Brinkman equation by a numerical
simulation of an imaginary physical experiment with a viscometer. The model of a porous medium and
the applied method of solution are very simple. In the idealized problem, we consider axial flow through
an infinite array of cylindrical rods. Assuming that the flow in such a porous medium is described by the
Brinkman filtration equation, the effective viscosity can be calculated as a function of the porosity. In
this paper, a relation between the volume fraction and the effective viscosity is given for triangular and
square arrays of rods.

1. Introduction

Usually for slow viscous fluid flow in porous media, the Darcy equation,

q =−
k
µ
∇P, (1)

is used, where q is the macroscopic velocity [m/s], P is the pressure [Pa], µ is the viscosity of fluid
[Pa·s], and k is the permeability of the porous medium [m2].

For a porous medium with very high porosity in the presence of a free fluid region or wall-bounded
porous medium (see Figure 1), sometimes the Brinkman equation is applied [Chen and Wang 2014;
Cortez et al. 2010; Hill and Straughan 2009; Parvazinia et al. 2006; Tan and Pillai 2009]:

∇P =−
µ

k
q+ µ̃∇2q, (2)

where µ̃ is the effective viscosity of the porous medium [Pa·s].
Brinkman [1949] considered the viscous force exerted on a dense swarm of particles by fluid flowing

through them. The validity and theoretical justification of the Brinkman equation were presented in the
papers [Durlofsky and Brady 1987; Kim and Russel 1985; Lundgren 1972; Rubinstein 1986; Tam 1969;
Vafai and Kim 1995]. However, there are also publications in which the authors questioned the applica-
tion of the Brinkman equation as a proper mathematical description for filtration flow [James and Davis
2001; Nield 1983]. In their opinion, the main problem is related to the effective viscosity (which depends
on the flow) and the unknown boundary condition between the porous medium and the pure fluid area.

Almost all authors using the Brinkman equation assumed that the effective viscosity µ̃ was equal to
the pure fluid viscosity µ.

Keywords: porous media, Brinkman equation, effective viscosity, Trefftz method.

93

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2017.12-1
http://dx.doi.org/10.2140/jomms.2017.12.93
http://msp.org


94 JAN ADAM KOŁODZIEJ, MAGDALENA MIERZWICZAK AND JAKUB KRZYSZTOF GRABSKI
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Figure 1. Porous medium with very high porosity in the presence of free fluid region (b)
or only wall-bounded (a).

There are a limited number of papers in which the effective viscosity in the Brinkman filtration equa-
tion is determined. Brinkman [1949] suggested a possible use of Einstein’s formula to describe the
viscosity for a suspension, given as

µ̃

µ
= 1+ 2.5φ, (3)

where φ is the volume fraction of the skeleton of the porous medium (the porosity of the medium
equals 1− φ). According to (3), the effective viscosity is greater than the fluid viscosity. However,
it should be noticed that the porous medium differs significantly from the suspension. In the porous
medium, the skeleton is fixed; while in the suspension, particles move during fluid motion. The fact that
the effective viscosity is greater than the viscosity of the pure fluid is correct for the suspension. It does
not have to be correct for the porous media. In the present paper, we show that the effective viscosity
of the Brinkman equation is less than the fluid viscosity. However, it is a fact that in the literature some
authors obtained an effective viscosity that is greater than the fluid viscosity.

Lundgren [1972] determined the ratio µ̃/µ as a function of the volume fraction of the skeleton of the
porous medium, which was modeled by the fixed particles. The term µ̃/µ rises slightly above one at
the beginning as the volume fraction increases. This ratio reaches a maximum at φ = 0.2. Koplik et al.
[1983] obtained the effective viscosity that is less than the pure fluid viscosity (calculating the dissipation
energy around the fixed particle):

µ̃

µ
= 1− 0.5φ. (4)

Ochoa-Tapia and Whitaker [1995] used the volume averaging method in order to derive the differential
equation for flow in the porous medium for the balance of momentum. They obtained the Brinkman
equation with the effective viscosity in the form

µ̃

µ
=

1
1−φ

. (5)
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That means that the effective viscosity is greater than the fluid viscosity. The effective medium theory
was used by Freed and Muthukumar [1978]. They obtained the effective viscosity for a swarm of particles
in the form

µ̃

µ
= 1+ 5

2φ−
9 ·φ3/2

2
√

2
. (6)

In this case the effective viscosity is greater than the viscosity of the pure fluid but is smaller than the
effective viscosity resulting from (3).

In [Martys et al. 1994], the authors investigated flow of the fluid in the porous medium bounded by the
free fluid region using a computer simulation. The porous medium was modeled as spherical particles,
whose size and location was determined randomly. As a result, they obtained the ratio µ̃/µ= 1.9− 4.2
at φ = 0.2− 0.5.

The effective viscosity in the Brinkman–Forchheimer equation was determined experimentally by
Givler and Altobelli [1994]. In this work, the filtration equation had the form

∇P =−
µ

k
q−

ρ · c · |q|
√

k
q+ µ̃∇2q, (7)

where ρ is the density of fluid and c is an experimentally determined constant. The authors used the
magnetic resonance in order to determine the velocity profile of flow in the porous medium bounded by
the walls. They obtained µ̃/µ= 7.5 for a Reynolds number equal to 17 and the volume fraction φ= 0.028.

The effective viscosity of the porous medium modeled by regular displaced particles of the same
diameter was determined by Starov and Zhdanov [2001] using the finite difference method. The authors
proposed the formula

µ̃

µ
=

1
(1−φ)5/2

. (8)

According to the above formula, the effective viscosity is greater than the fluid viscosity.
Beavers and Joseph [1967] published a paper about the boundary condition on the boundary between

the porous medium and the fluid. In their work, an experiment was conducted in which the volume flow
was measured in two connected channels — one with a pure fluid region and the other with fluid in the
porous medium (Figure 1a). On the basis of this experimental data, the following boundary condition
was proposed by the authors:

du
dy

∣∣∣∣
y=0
=

α
√

k
(ui − q), (9)

where u is the velocity in the fluid layer, ui is the slip velocity on the boundary between the porous
medium and the free flow area (at y = 0), k is the permeability of the porous medium, q is the filtration
velocity on the boundary between layers, and α is the dimensionless slip coefficient which depends on
the porosity and the structure of the porous medium.

Taylor [1971] noticed that the Beavers–Joseph boundary condition can be related to the Brinkman
filtration equation, but he did not develop this idea. Neale and Nader [1974] demonstrated that if the
porous layer flow is described by the Brinkman equation and the pure fluid layer flow is described by the
Poiseuille law, then the relationship α2

= µ̃/µ is satisfied. On the basis of this relationship and data from
experiments and calculations, the value of the constant α can be used to determine the effective viscosity
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of the porous medium. In the Beavers–Joseph experiment, the constant α was greater or smaller than one
and was dependent on the porous material. That implies that the effective viscosity is greater or smaller
than the fluid viscosity.

The purpose of the present paper is to determine the effective viscosity in the Brinkman filtration equa-
tion for a fibrous porous medium. This viscosity is determined by the numeric simulation of imaginary
physical experiments. The porous medium is modeled by a parallel bundle of straight fibers arranged
in regular square or triangular arrays. In this way, the relationship between the effective viscosity and
the porosity and the relationship between the effective viscosity and the structure of the porous medium
are investigated. In the Brinkman filtration equation, there are two parameters of the porous medium:
the permeability and the effective viscosity. Because of this, the determination of these parameters is
realized in two steps. In the first step, the permeability is determined by assuming an infinite bundle
of fibers. In the second step, the effective viscosity of such a medium is determined by knowing the
permeability of the porous medium. The numerical investigations are conducted for a Newtonian fluid
in a direction parallel to the fibers.

2. Imagined physical experiment for the measurement of the effective viscosity

Measurement with a rotational viscometer is one of the methods used to determine the pure fluid viscosity.
In this instrument, a fluid layer is located between two cylindrical surfaces. One of the surfaces is
immovable and the second one rotates at a constant angular speed. The fluid viscosity is determined by
measuring the torque of the rotating cylindrical surface. In this way, it is simple shear flow. It is supposed
that the effective viscosity in the Brinkman equation can be determined in a similar way.

Let us consider a layer of porous medium of width l, which is filled by a fluid and located between
two flat plates. One of the plates is immovable and the second one moves at a constant velocity U (see
Figure 2). The Brinkman equation for one-dimensional shear flow in the absence of a pressure gradient
through the porous layer has the form

µ̃
d2qz

dx2 −
µ

k
qz = 0, (10)

where qz is the filtration velocity in the direction of the fiber axis [m/s] and k is the permeability of the
porous medium [m2]. The following boundary conditions are formulated for the problem:

qz = 0 for x = 0, and qz =U for x = l. (11)

porous
region

movable wallx
U

z

immovable wall

qz

Figure 2. A porous region between two parallel plates.
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Let us introduce the nondimensional variables

Q =
qz

U
, X =

x
b
, α =

µ̃

µ
, F =

k
S
, L =

l
b
, (12)

where S = βb2 [m2] and β is a dimensionless parameter of the porous medium. Then (10) can be written
in the dimensionless form

d2 Q
dX2 −

1
αβF

Q = 0 (13)

with the boundary conditions

Q = 0 for X = 0, and Q = 1 for X = L . (14)

The exact solution of the problem takes the form

Q =
exp(X/

√
αβF)− exp(−X/

√
αβF)

exp(L/
√
αβF)− exp(−L/

√
αβF)

. (15)

The tangential stress on the movable plate can be expressed as

τ = µ̃
dqz

dx

∣∣∣∣
x=L
= µ̃

U
b

1
√
αβF

coth
(

L
√
αβF

)
. (16)

If the dimensionless permeability F and the tangential stress τ are known, then the constant α can be
obtained from (16).

2.1. Determination of the permeability. In this section, a porous medium modeled by a regular array
of parallel fibers is considered. Triangular (β = 2

√
3) and square (β = 4) arrays of fibers (see Figure 3)

are analyzed.

2b

2a

repeated element2b

2a

2b

a)

b)

c)

NA = {4, 6}Y

∂W
∂n = 0

∂W
∂Y = 0

∂W
∂X = 0

X

1

E
π/NA

W=0
↘

Figure 3. Unbounded porous medium: (a) square array, (b) triangular array, (c) repeated
element of the array.
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One of the basic methods for determining the permeability of the porous medium is an experiment in
which the flow rate (the filtration velocity at the known pressure gradient) is measured. Based on this
measurement, the permeability can be calculated.

Various authors considered longitudinal flow with respect to the fibers [Banerjee and Hadaller 1973;
DeValve and Pitchumani 2012; Drummond and Tahir 1984; Gebart 1992; Happel 1959; Larson and
Higdon 1986; Sparrow and Loeffler 1959; Wang 2002]. In the present paper, the same problem is
considered but the solution is obtained using the special-purpose Trefftz functions [Mierzwiczak and
Kołodziej 2012]. The method is semianalytical. That means that application of the method for the
problem considered in the paper gives the analytical form of the dimensionless permeability of the porous
medium, in which only the unknown coefficients of the solution are obtained numerically.

Let us consider steady, fully developed, laminar, isothermal flow of an incompressible viscous fluid
driven by a constant pressure in a system of regular parallel fibers. The flow is longitudinal with respect
to the fibers which are arranged in a regular square (Figure 3a) and triangular (Figure 3b) arrays. The
radius of the fibers is equal to a, and the distance between the fibers is equal to 2b. The fluid domain
is the whole space R3. In this case, the equation of motion is reduced to a single partial differential
equation in the form (in the polar coordinate system on the xy-plane)

∂2w

∂r2 +
1
r
∂w

∂r
+

1
r2

∂2w

∂θ2 =
1
µ

dp
dz

in �R, (17)

where w is the velocity component in the z-axis direction [m/s], dp/dz is the constant pressure gradient
[Pa/m], µ is the viscosity of the fluid [Pa·s], and �R is the repeated element of array (Figure 3). It is
convenient to introduce the dimensionless variables

W =−
w

(b2/µ)(dp/dz)
, R =

r
b
, E =

a
b
. (18)

Now the governing equation (17) has the dimensionless form

∂2W
∂R2 +

1
R
∂W
∂R
+

1
R2

∂2W
∂θ2 =−1, (19)

with the boundary conditions

W = 0 for R = E, (20)

∂W
∂θ
= 0 for θ =

{
0,
π/NA,

(21)

∂W
∂X
= 0 for X = 1, (22)

where W is the dimensionless axial velocity, NA = 6 for a triangular array and NA = 4 for a square array.
The fiber volume fraction is given by

φ =
AP

AT
=

π · E2

NA · tan(π/NA)
, (23)

where AT = 0.5 tan(π/NA) is the total area of the repeated element (areas of the fluid and the fiber
together) and AP = 0.5E2

·π/NA is the area of the fiber in the repeated element.
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The exact solution of (19) can be expressed using the special-purpose Trefftz functions in the form

W (R, θ)=− 1
4(R

2
− E2)+

1
2 ·φMAX

ln(R/E)+
N∑

k=1

Bk

(
RNAk

−
E2NAk

RNAk

)
cos(NAkθ), (24)

where φMAX is the maximal volume fraction (obtained when neighboring fibers are in contact with each
other, E = 1 : φMAX= π

√
3/6 for a triangular array NA = 6 and φMAX= π/4 for a square array NA = 4).

The solution (24) satisfies exactly the boundary conditions (20)–(21) and the balance of the pressure
and shear stress. The unknown coefficients Bk(k = 1, . . . , N ) are determined by solving the system of
linear equations that results from satisfying the boundary condition (22) using the boundary collocation
technique. Imposing these boundary conditions at N collocation points, the following set of equations
is to be solved:

N∑
j=1

Ak j · Bk = Ck, k = 1, 2, . . . , N ,

Ak j = j · NA · (cos θk)
1−NA j{cos[(NA j − 1)θk] + (φ/φMAX)

NA j
· (cos θk)

2NA j cos[(NA j + 1)θk]
}
,

Ck =
1
2 −

1
2 ·φMAX

cos2 θk, θk =
π(k− 1)

NA(N − 1)
. (25)

Using Darcy’s law (1), the longitudinal permeability can be related to the average velocity through the
repeated element of the fiber system. The longitudinal component of the filtration velocity has the form

qz =
1

AT

∫∫
AF

w · dAF , (26)

where AF = AT − AP is the region occupied by the fluid in the repeated element.
Using the definition of the nondimensional velocity given by (18), and introducing the fiber volume

fraction, the longitudinal component of the filtration velocity can be expressed as

qz =−
b2

µ
F(φ)

dp
dz
, (27)

where

F(φ)=

∫∫
AF

W (R, θ) dAF

β · AT
(28)

is the nondimensional component of the permeability tensor in the direction parallel to the fibers.
After analytical integration in (28), the dimensionless permeability becomes a function of the number

of collocation points N and can be calculated from

F =
1

4π

{
ln

1
φ
+C + 2φ−

φ2

2
+ D ·

N∑
k=1

Bk

[
Hk

NAk+ 2
+

(
φ

φMAX

)NAk Gk

NAk− 2

]}
, (29)

where

Hk =
sin
[
(NAk+ 1)π/NA

]
(NAk+ 1)

[
cos(π/NA)

]NAk+1 , Gk =
sin
[
(1− NAk)π/NA

]
(1− NAk)

[
cos(π/NA)

]1−NAk . (30)
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2.2. Determination of the effective viscosity. After determining the permeability of the porous medium,
microstructural flow in the layer of porous medium modeled by a bundle of regular arranged (triangular
or square) arrays of fibers can be considered.

Let us consider a layer of the porous medium located between two plates — the first one is fixed and
the second one is movable (Figure 4). Because the flow is driven only by the movable wall (the pressure
gradient equals zero), it is described by the Laplace equation,

∂2W
∂R2 +

1
R
∂W
∂R
+

1
R2

∂2W
∂θ2 = 0, (31)

with no-slip boundary conditions: W = 0 on the immovable wall and fibers and W = 1 on the movable
wall.

Since the array of fibers is streaked and periodic in one direction, it is sufficient to consider the problem
only in one repeated strip; depicted in Figure 5 — for the square (Figure 5a) and triangular (Figure 5b)
arrays. In both cases, the repeated strip is divided into smaller elements associated with each of the fibers,
which are called large finite elements in rest of the paper.

The flow problem is solved by means of the Trefftz method using the special-purpose Trefftz functions.
These functions are associated with the large finite elements (Figure 5). For each large finite element,
the approximate solution is expressed as

W (R, θ)= C1 ln(R/E)+
N∑

k=2

Ck

[
R(k−1)

−
E2(k−1)

R(k−1)

]
cos[(k− 1)θ ], (32)

which satisfies exactly the governing equation (31) and some of the boundary conditions (see Figure 6).
For each large finite element, the origin of the coordinates (R, θ) is placed at the center of fiber. The
unknown coefficients Ck(k = 1, 2, . . . , N ) are determined using the boundary collocation technique by
satisfying the remaining boundary conditions (in particular, the splitting boundary conditions between
the large finite elements).

After determining the unknown coefficients Ck(k = 1, 2, . . . , N ) of the approximate solution, the
tangential stress on the movable wall can be determined from

τ = µ
U
b

∫ tan(π/NA)

0

dW
dX

dY, (33)
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Figure 4. Wall-bounded porous medium: (a) square array (b) triangular array.
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Figure 5. The symmetry lane of porous medium: square (a) and triangular array (b).

where the derivative dW/dX can be easily obtained from the formula

dW
dX
=
∂W
∂R

cos(θ)−
1
R
∂W
∂θ

sin(θ). (34)

Comparing (16) and (33), the following relationship can be written:

α =
c(φ,M, N ) ·

√
αβF

coth(L/
√
αβF)

, (35)

where c(φ,M, N )=
∫ tan(π/NA)

0 (dW/dX) dX and M denotes the number of fiber rows.

3. Numerical results and discussion

The numerical calculations were performed for the fibrous porous medium with cylindrical fibers ar-
ranged according to the square and triangular arrays. The value of the viscosity and the dimensionless
effective permeability as a function of the fiber volume fraction are presented in Figures 7a and 7b,
respectively. The ratio of the effective viscosity to the viscosity of the pure fluid decreases as the volume
fraction of fibers increases, and for the square array, the ratio is greater than for the triangular array. Per-
meability F for both types of fiber arrays is similar and substantially different for φ > 0.3. The problem
was solved for N = 10 collocation points on the boundary. The dimensionless effective viscosity α was
calculated for 5 rows of fibers for the square array and 8 rows for the triangular array.

The effect of the number of rows of the fibers M = {1, 2, 3, 5} on the value of the effective permeability
for the square array was examined. In this experiment, 10 collocation points on the boundary were used.
Table 1 shows the numerical results. For a small value of the volume fraction φ, the influence of the
number of fiber rows is significant. For φ = 0.1 with 2 or more rows of fibers, the same value of α was
obtained. For φ = 0.01 the same value of α was obtained for 3 or more rows of fibers. The calculation
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W = 0

E

∂W/∂n = 0∂W/∂n = 0

Figure 6. Boundary conditions satisfied by the special-purpose Trefftz functions applied
in Equation (32).
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µ
e/
µ

φ
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square

Figure 7. Values of the dimensionless effective viscosity α and the dimensionless per-
meability F , versus the values of the volume fraction φ for the square and triangular
array.

φ ↓ M→ 1 2 3 5

1.0 ·10−8 1.8182 1.0103 0.9103 0.8906
1.0 ·10−7 1.6394 0.9649 0.8886 0.8754
1.0 ·10−6 1.4551 0.9173 0.8633 0.8554
1.0 ·10−5 1.2664 0.8659 0.8319 0.8280
1.0 ·10−4 1.0729 0.8068 0.7892 0.7878
1.0 ·10−3 0.8722 0.7306 0.7246 0.7243
1.0 ·10−2 0.6604 0.6170 0.6163 0.6163
1.0 ·10−1 0.4329 0.4312 0.4312 0.4312

Table 1. Influence of the number of the rows of fibers {1, 2, 3, 5} for the square array
on the values of the dimensionless effective viscosity α = µe/µ for different values of
the volume fraction φ.

of the effective permeability of the porous medium for φ ≥ 0.01 can be reduced to the numerical model
with two rows of cylindrical fibers.

Since some of the boundary conditions are satisfied in an approximate sense for the collocation points
located on the edge of the considered small repeated element, in the next step the effect of the number
of these points on the value of the permeability F was checked. Table 2 shows the results for various
values of the fiber volume fraction φ = {0.0001, 0.001, 0.01, 0.1} for the square array of fibers. Whatever
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N ↓ φ→ 0.0001 0.001 0.01 0.1

2 0.61551076 0.43242005 0.25061461 0.08131019
3 0.61546913 0.43237843 0.25057299 0.08126870
4 0.61546816 0.43237745 0.25057202 0.08126775
5 0.61546826 0.43237756 0.25057212 0.08126785
6 0.61546825 0.43237755 0.25057211 0.08126784
7 0.61546825 0.43237755 0.25057211 0.08126784
8 0.61546825 0.43237755 0.25057211 0.08126784

Table 2. Influence the number N of collocation points (square array) on the dimension-
less permeability F , for different values of the volume fraction φ.

N ↓ φ→ 1.0 ·10−8 1.0 ·10−6 0.0001 0.001 0.01 0.1

2 0.410243 0.468108 0.565460 0.646570 0.783514 1.150752
3 0.411038 0.468957 0.566328 0.647407 0.784279 1.151888
4 0.410907 0.468816 0.566182 0.647263 0.784143 1.151706
5 0.410930 0.468841 0.566207 0.647288 0.784166 1.151726
6 0.410926 0.468836 0.566202 0.647283 0.784162 1.151724
7 0.410926 0.468837 0.566203 0.647284 0.784162 1.151724
8 0.410926 0.468837 0.566203 0.647284 0.784162 1.151724
9 0.410926 0.468837 0.566203 0.647284 0.784162 1.151724

Table 3. Values of c(φ,M, N ) for the square array, versus the number N of collocation
points, for different values of the volume fraction φ.

the value of φ, the converged results were obtained for N ≥ 6 collocation points. The present method
requires a small number of collocation points; hence, it is very effective and is not time consuming.

Table 3 presents the effect of the number of collocation points N on the constant c(φ,M, N ) for
different values of the volume fraction of fibers φ for the square array with five rows of fibers. As in the
previous case, the converged solutions for the constant c are obtained for N ≥ 6.

Comparison of the results obtained in this study by means of the Trefftz method with other works is
presented in Figure 9. The results clearly show that the ratio µ̃/µ is less than one, which means that the
effective viscosity µ̃ is less than the fluid viscosity µ.

4. Conclusions

In the Brinkman filtration equation there are two parameters of the porous medium: the permeability and
the effective viscosity. These two parameters were determined by numerical simulation of an imaginary
physical experiment. The porous medium was modeled by a parallel bundle of straight fibers arranged
in a regular triangular or square array. In order to determine the permeability, the flow driven by the
pressure gradient in an unbounded porous medium was considered. To determine the effective viscosity,
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Figure 8. Influence of the number of the rows of fibers {1, 2, 3, 5} for the square array
on the values of the dimensionless effective viscosity α for different values of the volume
fraction φ.
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Figure 9. Comparison of the effective viscosity obtained in the present study with the
others results.

the shear flow in a flat layer of porous medium was considered. In both numerical simulations, the Trefftz
method with the special-purpose Trefftz functions was applied.

In all considered cases: the square and the triangular array for different porosity, in the Brinkman
filtration equation the effective viscosity is lower than the viscosity of the pure fluid. The ratio of the
effective viscosity to the viscosity of the pure fluid decreases as the volume fraction of fibers increases
(decreasing porosity). For the same volume fraction of the fibers, both the permeability and the effective
viscosity for the triangular array is smaller than for the square array. This difference is not significant in
the permeability case, but is very important for the effective viscosity.

Parameters of the numerical method (for example the number of collocation points or the number
of rows of fibers in the layer) have inconsiderable effect on the simulation results. To determine the
permeability, a few collocation points are enough to get an accurate result (N = 6). For the effective
viscosity, the result does not change with the number of rows greater than four.

The obtained results clearly show that the effective viscosity of the porous medium should be less
than the fluid viscosity.
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NUMERICAL SIMULATIONS OF MECHANICAL PROPERTIES OF
ALUMINA FOAMS BASED ON COMPUTED TOMOGRAPHY

ZDZISŁAW NOWAK, MARCIN NOWAK, RYSZARD PĘCHERSKI,
MAREK POTOCZEK AND ROMANA ŚLIWA

The aim of this paper is to apply the results of microtomography of alumina foam to create a numerical
model and perform numerical simulations of compression tests. The geometric characteristics of real
foam samples are estimated from tomographic and scanning electron microscopy images. The perfor-
mance of the reconstructed models is compared to experimental values of elastic moduli. A preliminary
analysis of failure strength simulations under compression of alumina foam is also provided.

1. Introduction

Computed tomography is one of several rapidly developing methods of noninvasive testing that plays an
important role in medicine and in related diverse engineering applications (e.g., defect detection or the
local characterization of a material’s microstructure). Starting with an early paper by Bartholomew and
Casagrande [1957], which reported the first images characterizing the density of particles in fluidized sys-
tems, industrial applications appeared in the 1980s. The development of high speed computers allowed
large amounts of data to be processed, which enabled the creation of a new methodology called computed
tomography (CT), leading to its widespread use in phase contrast tomography; the reconstruction of
the microstructure of diverse cellular materials of polyurethane, metallic and ceramic skeletons, and
metal/ceramic composites; and the characterization of void and reinforcement distributions in engineer-
ing materials (see [Baruchel et al. 2000] for one of the first comprehensive overviews of the subject). In
[Alié et al. 2006], x-ray microtomography measurements coupled with image analysis were applied to
study the quality of alumina foams after gel drying and calcinations.

Later, a new methodology was proposed to estimate 3D displacement fields from pairs of images
obtained from x-ray computed microtomography. The method was illustrated with an analysis of a
compression test on a polypropylene solid foam [Roux et al. 2008]. The presented methodology is also
applicable to other kinds of foams (e.g., ceramic foams).

Complex ceramic shapes can be prepared through several methods, such as injection molding, slip
casting, or gelcasting combined with a foaming method. If gelcasting techniques were combined with an
emulsion template, the fabrication process of highly porous ceramics (60–95%) could be simplified and
their strength could be improved. By the gelcasting technique, porous ceramics could satisfy the criteria

Financial support of the Structural Funds in the Operational Program Innovative Economy (IE OP) financed from the European
Regional Development Fund Project “Modern material technologies in aerospace industry”, Nr POIG.01.01.02-00-015/08-00
is gratefully acknowledged.
Keywords: Alumina open-cell foam, computed tomography microstructure, Young’s modulus, compressive strength of
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of homogeneity, reproducibility, reliability, and processability required for complex commercial ceramic
foam shapes. The papers by Yang et al. [2011] and Tulliani et al. [2013] review the development and
applications of the gelcasting technique.

In [Nowak et al. 2013; 2015] and [Fey et al. 2015], the application of CT is used for the analysis of
microstructural morphology and the mechanical and thermal characterization of alumina gelcast foams
manufactured with the use of environmentally friendly gelling agents. In the literature, there is little data
of the elastic properties of such kinds of foams. Therefore, the aim of this paper is to present a numerical
model of an open-cell foam with different porosities and discuss the estimation methodology of Young’s
moduli. The applied CT approach based on finite element analysis is hard and time consuming; therefore,
the work on an optimized generation of the calculation model is essential.

The structure of cellular alumina can be characterized by its cell topology (open), morphology (i.e.,
cell size and cell spherical shape), and relative density (i.e., volume of the solid cell wall material di-
vided by the volume of the cellular material). The open-cell foam is a structure where the pores form
interconnected networks [Potoczek 2008].

It should be noticed that cellular ceramic materials are characterized by a low density combined with
outstanding mechanical, thermal and acoustic properties [Gibson and Ashby 1999]. As a consequence of
their interesting properties, open-cell foams can be used in lightweight constructions, combining energy
absorption, structural damping, sound absorption and heat insulation. In the literature, the models of
cellular materials are based on simplified skeleton geometries, notably the Gibson and Ashby cubic
cell [Gibson and Ashby 1999]. The simplification of the real cellular material structure enables an
analytical approach, reducing the requirements on computer hardware, (e.g., [Michalska and Pęcherski
2003], where further references can be found). However, the last few years have opened new research
possibilities, such as numerical analysis based on microcomputed tomography images applied to the
mechanical investigation of cellular materials.

The numerical parameters which are needed to build the unit cell model are based on the data obtained
from microtomography images of real foam. Using the procedures described in [Nowak et al. 2013], the
analysis of the microtomography images shows that the alumina foams are composed of approximately
spherical cells interconnected by circular windows [Potoczek 2008].

In this paper, a novel methodology is proposed to establish the cell and windows distribution from 2D
microcomputed tomography (µCT) scanning images of real alumina foam and how to reconstruct the
virtual model of foam geometry. Then the two-step mesh method is employed to discretize the geometri-
cal model by selecting an appropriate node, and finally the FEM of alumina foam is established directly.
This approach is used to calculate the compression performance of alumina foam with porosity 74%,
86% and 90%. The calculation of alumina foam can reflect the mechanical behavior in the compression
process of open-cell foams.

Elastic properties are predicted and compared with experimental data. The skeleton material of the
alumina foam is assumed to be isotropic and linearly elastic. In numerical simulations of the compression
test on alumina foam, the bottom surface of the sample is fully constrained and the top surface of the
sample is moved parallel to the z-axis. The Young’s modulus is estimated by numerically simulating
uniaxial compression of the alumina foam for different values of porosity. A comparison of experimental
data [Potoczek 2008] with numerical and analytical predictions [Gibson and Ashby 1999] of Young’s
modulus for Al2O3 ceramic foams of different porosity is presented.
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2. Analysis of foam structure using microtomography

A picture of foam, which was produced by gelcasting combined with a foaming method [Potoczek 2008;
Ortega et al. 2006] with 86% porosity is presented in Figure 1. The morphology of alumina foams
manufactured by gelcasting is composed of approximately spherical cells interconnected with windows.

The microstructure studies of alumina foam with a porosity of 86% are carried out using the computed
x-ray microtomograph SkyScan 1174. In order to obtain images with an optimal ratio of resolution to the
dimensions of the foam sample, the pixel size is assumed to be equal to 8.08µm. As a result, the series
of cross-section images of the foam structure (approximately 1100) with dimensions 1536× 1164 pixels
were obtained (see Figure 2). The size of the pixel is also compared to the smallest thickness of cell wall.
In the alumina foam with a porosity of 86%, this thickness is about 30µm, which in terms of pixels
gives the value of 4 px. This assumption gives the detailed structure of the foam without neglecting its
relevant characteristics.

2A. Computation of porosity. In the first step, all of the cross-section images of the foam are converted
to grayscale images where 0 represents the black color, while the value of 255 defines the white color.
Next, the threshold value of phase separation (equal to 75) is determined and applied to the series of
images. Each pixel with a value less than 75 was included in the pores of the foam (black), while pixels
with a value greater than or equal to 75 was included in the skeleton of the foam (white), see Figure 3).

Figure 1. An example of real alumina 86% porosity foam produced by gelcasting.

Figure 2. Images of cross-sections of the alumina foam with porosity of 86% obtained
using computer microtomography: cross-section of the foam at the level 1

4 of its height
(left), cross-section of the foam at the level 1

2 of its height (right) [Nowak 2014].
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Figure 3. Image of cross-section of alumina foam with porosity of 86% after process
of separation of two phases: white color — foam skeleton, black color — foam pores.

The threshold of phase separation is determined by comparing the calculated porosity of the foam
sample according to (2-1) to the value measured experimentally. If those two porosities are equal, the
value of threshold was chosen correctly.

Equation (2-1) gives the porosity of a cuboid shape sample constructed of cross-sections images and
takes the form

φ =

∑N
k=1

∑a2
i=a1

∑b2
j=b1

pix(k, i, j)∑N
k=1

∑a2
i=a1

∑b2
j=b1

, (2-1)

where N is equal to the number of analyzed images, i and j are the coordinates of the center of pixel,
and (a1, a2) and (b1, b2) are the minimum and maximum coordinates of pixel in horizontal and vertical
direction, respectively. The function pix(k, i, j) is expressed by the formula

pix(k, i, j)=
{

1 if pix(k, i, j) < 75,
0 if pix(k, i, j)≥ 75.

(2-2)

The presented formula of porosity (2-1) depends on the given values of the parameters a1, a2, b1,
and b2, which determine the minimum and maximum coordinates of the pixels and the number of ana-
lyzed images N . In other words, the porosity depends on the calculated volume of the sample. When the
volume is larger, the calculated porosity is closer to the value obtained experimentally (Figure 4). For
values of a > 2.0 mm, where a represents the dimension of the side of the cube, it can be concluded that
the effect of the volume change is negligible. Thus, the minimum size of representative volume element
(RVE) for foam with a porosity of 86% should be greater than or equal to 2.0 mm.

2B. Computation of cell and window radii. The radii of the cells and windows in the analyzed foam
based on cross-section images were obtained with a detection algorithm [Atherton and Kerbyson 1999],
available in the MATLAB image processing toolbox. The results of the performed calculations using the
program MATLAB are depicted in Figure 5.

We also developed our own procedure for detecting the distribution of the radii of cells. Calculations
were carried out in two steps. The first step involves the detection of circular areas with a maximum
radius equal to 40 pixels. The second step involves the remaining size of cells. Detection of cells using
our procedure is shown in Figure 6. Calculations were made using the open source library PIL (Python
Imaging Library) for the Python programming language.
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φ

a (mm)

Figure 4. The edges of the square areas for computation of porosities (left). Effect of
the size of a cubic volume with side a on the calculated porosities in case of sample with
average porosity 86% (right).

Figure 5. Detection of cells in a foam sample for a flat picture µCT with the use of
MATLAB for radii smaller than 40 px (left) and greater than 40 px (right).

Figure 6. Detection of cells in a foam sample for a picture µCT using the developed algorithm.
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Figure 7. Two situations of two circles: (left) disjoint circles and (right) circles inter-
secting at two points.

The computed edges of the cells give a set of overlapping circles, for which two situations can be
distinguished (Figure 7). The circles may be separate or intersect at two points. The size of the overlap
for the two circles describes the parameter k.

By knowing the coordinates of the center of each circle and its radius, the radius of the window rw
can be described using the formula

rw =

√
2k
(
−

1
2 k+ ra

c
)(
−

1
2 k+ rb

c
)
(−k+ ra

c + rb
c )

−k+ ra
c + rb

c
, (2-3)

where ra
c and rb

c are the radii of circles.
When the circles intersect, the parameter k determines the size of the overlap. For neighboring circles

that do not intersect, the parameter k determines the thickness of the cell wall. The parameter k is given by

k = ra
c + rb

c −

√
(xb− xa)2+ (yb− ya)2, (2-4)

where (xa, ya) and (xb, yb) are the coordinates of the center of circles.
As a result, the distribution of the cell radius, window radius and the wall thickness were obtained

(Figure 8).
A similar study was conducted for foam having a porosity of 74% and 90%. For the obtained distri-

bution of the cell radius and window radius, the probability density functions were proposed. Due to
the lack of symmetry in the presented results (Figure 8), the log normal distribution function is assumed.
The log normal distribution is a continuous distribution in which the logarithm of a variable has a normal
distribution. Thus, its probability density function, f , can be written as

f (x)=
1

xσlog
√

2π
exp

[
−
(ln(x)−µlog)

2

2σ 2
log

]
. (2-5)

The parameters for this distribution (σlog and µlog) are determined by least squares method. Figure 9
shows the density of the probability distribution for the cell radius, rc, and the window radius, rw. When
the porosity of the foam increases the mean value of the cell, the windows radius of the foam also
increases.



MECHANICAL PROPERTIES OF ALUMINA FOAMS 113
fr

eq
ue

nc
y

rc (mm)
fr

eq
ue

nc
y

rw (mm)

fr
eq

ue
nc

y

k (mm)

Figure 8. The frequency distribution for the foam sample with 86% porosity as a func-
tion of cells radius (left), window radius (center), and wall thickness (right).
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Figure 9. The density of the log-normal probability function for the radius of the cells of
the foam (left) and the radius of the windows of the foam (right). Distribution parameters
were determined using the least squares method.

porosity (%) µlog (µm) σlog (µm)

90 256 80
80 190 33
74 78 32

Table 1. The summary of results for the mean (µlog) and standard deviation (σlog) pa-
rameters of the log-normal density function as a function of foam porosity.

A detailed list of the computed parameters for the density of the log-normal probability function is
shown in Table 1.
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Figure 10. Generated foam structure with 90% porosity: histogram of cell size distri-
bution (left); general view of the foam structure (right).

3. Numerical model of the geometry of open-cell foam with random cell structure

The structure of real foam is very complex, as shown in the 3D picture of alumina foam with 86% porosity
obtained by the gelcasting method (Figure 1). The structure of the foam needs to be simplified. This is
done by using a model with a random microstructure, which approximates the distribution and shape of
the pores in real foam.

The process is based on impacted bubble simulations of random cells, which generates a foam skeleton
that is representative of actual foam microstructures. The geometry of ceramic foams can be generated
in three steps:

(1) Diameters of spherical bubbles and windows are estimated from microtomography, see Section 2B.

(2) Coordinates for the centers of the spherical bubbles are produced by Python scripts [Nowak 2014].

(3) The intersecting bubbles are subtracted from the bulk volume of any shape.

The initial data for generating the numerical model for the distribution (2-5), the assumed maximal
and minimal values of cell diameter (rmin and rmax) for foams of porosity 74%, 86% and 90%, and the
assumed number of bubbles are presented in the paper [Nowak et al. 2013]. The particular generated
foam structure is illustrated in Figure 10.

4. Finite element modeling

Simulating a compression test by means of a finite element modeling of the random alumina foam
microstructure allows us to obtain valuable information about the kinematic state of its structure at some
of the test stages. The challenge is then to mesh a representative foam volume to obtain a optimal number
of degrees of freedom.

4A. Finite elements mesh generation. The volumetric meshing techniques based on tomographic im-
ages uses the natural discretization of the image by voxels. In this case, each voxel lying in the solid
region would correspond to an 8-node cubic element. This technique, known as the voxel-element tech-
nique, can be easily implemented and does not require any additional expense for mesh generation.
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Figure 11. An example of rendered alumina 86% porosity foam.

finite element mesh (a) (b) (c) (d)

average element size 1
5rc

1
10rc

1
20rc

1
40rc

number of elements 24446 101857 203678 326599
number of degrees of freedom 53404 192294 363157 562621

Table 2. The parameters of four generated finite element mesh networks and the num-
bers of elements and variables in the alumina 90% porosity foam.

But using this method with a large volume would generate a mesh with millions of nodes, beyond the
maximum required for convergence purposes. In another approach, an intermediate step is necessary
before meshing the solid volume. In this work, the creation of surface models from the tomographic
data is carried out automatically with the help of the advancing front method provided by the ScanIP
software [ScanIP 2014], see Figure 11. The element type is C3D10 from the ABAQUS commercial code
[ABAQUS 2013]. It is a 10-node tetrahedron with quadratic interpolation. Such second-order elements
provide higher accuracy than first-order elements for problems that involve complex stress fields. They
capture stress concentrations more effectively and are very effective in bending-dominated problems.
The dependence of the number of elements and the number of degrees of freedom on the average size of
tetrahedron elements in the case of alumina foam with 90% porosity is presented in Table 2.

Finally, the node coordinates information and element information are written into the INP file, and
imported into the ABAQUS to calculate the result. The example of meshed alumina 90% porosity foam
used in simulations is shown in Figure 12.

4B. Boundary conditions. The displacement boundary conditions are assumed. In a real uniaxial com-
pression test, the bottom sample surface remains fixed and the top one is moved parallel to the z-axis
while the lateral surfaces are free of constraint.

4C. Bulk material properties. It is assumed that the bulk material of alumina foam exhibits an elastic
behavior. The model describing the behavior of the considered alumina foam is defined in the elastic
range by Hooke’s law. Two parameters are needed to calibrate this law: Young’s modulus and Poisson’s
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Figure 12. An example of meshed alumina 90% porosity foam used in simulations.

ratio. The following material data for Al2O3 have been retained: a Young’s modulus E0 = 370 GPa and
a Poisson’s ratio ν = 0.22.

5. Size of the elementary representative volume

The elementary volume must be large enough to be representative of the overall behavior of the foam.
In practice, the elementary volume size is limited, first by the tomography resolution and second by
the hardware memory available to generate the mesh and to compute the model. To study the effect of
the size of the elementary volume, we extracted regions with different sizes and meshed them with the
same mesh density. Different cubic subvolumes with side lengths from 0.1 to 3.0 mm with step size of
0.05 mm were selected. All these volumes are meshed with a mean element volume Vel = 0.08 mm3 for
the model with an average porosity of 90%.

Each marked point on the obtained curves corresponds to one numerical simulation of the uniaxial
compression test. This leads to 150 independent numerical simulations (30 simulations per one sample).
To manage this task, a special Python script for ABAQUS/CAE was developed. In the repetitive loop,
the following steps are taken:

(a) The geometry based on tomographic images of a given size (from 0.6 mm to 2.5 mm) is created
using ScanIP [2014].

(b) The finite element model is created using ABAQUS/CAE.

(c) The numerical simulation is performed using ABAQUS/Standard.

Completion of all numerical simulations took about two weeks. The reason for this is the nonlinearly
increasing number of elements needed to discretize given sample during the repetitive loop. For example,
with an Intel workstation 8x CPU, 2.66 MHz with 12Gb RAM, the numerical simulation of the 0.6 mm
size sample took a few seconds and for the 2.5 mm size sample took a few hours.

The calculated Young’s modulus normalized by the matrix Young’s modulus (E/E0, where E0 is
for alumina matrix) and the porosity of the different models are presented in Figure 13. The calcu-
lated normalized Young’s modulus E/E0 varies between 0.003–0.019. The sample standard deviation
of the calculated normalized Young’s modulus is bounded within the limits of 0.003 and 0.014, see
Figure 14 (left). On the other hand, the sample standard deviation of the calculated porosity varies from
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Figure 13. The calculated normalized Young’s modulus and the porosity of the samples
with average porosity 90% as a function of sample size: normalized Young’s modulus
(left) and porosity (right).
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Figure 14. The sample standard deviation of the calculated normalized Young’s modu-
lus presented in Figure 13 (left) and of the porosity presented in Figure 13 (right) as a
function of the sample size.

0.05 to 0.30, see Figure 14 (right). However, the model with a sample size less than 2.0 mm is several
times faster than the FE computation and at least four times faster for the model creation. So, the sample
with the size 2.0 mm seems to be a good trade-off between the representativity of the model and the
macroscopic accuracy.

6. Summary and conclusions

The modeling methodology of the mechanical behavior of cellular materials was proposed and validated.
The actual microstructure of ceramic foam was obtained by processing microtomographic data. The
alumina skeleton of the foam was meshed with tetrahedral finite elements. Using the elastic constitutive
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Figure 15. The comparison of numerically predicted normalized Young’s modulus for
the random model, the periodic model, and the analytical results of [Gibson and Ashby
1999] as a function of porosity with the experimental data from [Potoczek 2012; Or-
tega et al. 2006] and the numerical prediction of the µCT result presented as a slightly
oscillating average-value line varying in sample size in Figure 13 (left).
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Figure 16. The magnified section of Figure 15.

equations of the bulk material, the uniaxial compression test was simulated. The ABAQUS FEM program
[ABAQUS 2013] was used to numerically predict the response of alumina foam under compression. The
macroscopic response and the local deformation mechanisms were correctly captured.

A comparison of the normalized Young’s modulus and the numerical predictions for the random model
with the experimental data for alumina foams obtained by gelcasting [Potoczek 2012; Ortega et al. 2006]
is presented in Figure 15. A comparison with the results of the numerical simulation for the periodic
structure of fcc type [Nowak 2014] is also displayed.

In Figure 16, the magnified section of Figure 15 containing the results of the numerical simulations
for a periodic structure of the skeleton, the random structure of the skeleton, and for the average µCT
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experiment [Nowak 2014]
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Figure 17. The comparison of numerically predicted failure strength for the periodic
fcc model as a function of porosity with the experimental data from [Potoczek 2012;
Nowak 2014] and the analytical results of [Gibson and Ashby 1999].

value versus the experimental data is shown. It is visible that the discrepancy between all displayed data
is very large, what seems to be typical for low density ceramic foams. At the same time, it can be also
observed that the difference between the predicted values of the relative Young’s modulus for the periodic
and random structure of the skeleton is not significant, e.g., for the porosity φ = 0.90 it is equal to 27%.
This observation leads to the hypothesis that the numerical simulation of the deformation process under
compression until failure performed for the periodic structure of fcc type, see Figure 17, can provide an
estimation of the failure strength σC

f for real alumina foams considered in the paper. The advantage of
such an approach lies in its low computational cost. The numerical simulations of the failure processes
in alumina foam with random structure, which are much more time consuming, are under development.

The present approach can be very useful for designing cellular materials. Indeed, it enables the predic-
tion of the elastic properties of the ceramic foam with feasible microstructures in order to obtain expected
mechanical properties.

The novelty of the present paper is the application of the interconnected cell random model of the
open-cell foam in simulations of elastic behavior at the microlevel. Using this model, it is possible to
estimate the stress and strain fields in the ceramic phase. It is also possible to estimate the macroscopic
properties of the foam as functions of the porosity.

The presented numerical approach in the modeling of open-cell foams has some limitations, which
should be discussed. The influence of the mesh quality is not mentioned. It is clear that the accuracy of
the finite element calculation depends on the quality of tetrahedral elements. Degenerated tetrahedrons
with small volumes may lead to large local errors. For a complex foam structures, degenerated elements
can not always be avoided. To eliminate them completely, each degenerated element has to be treated
separately, which is a cumbersome operation.

In conclusion:

• The numerical model of real Al2O3 foam predicting the dependency of Young’s modulus while vary-
ing porosity within the range from 60% to 95% is discussed and the comparison with experimental
data is shown in Figure 15.
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• The study of different unit cell sizes, Figure 13, shows that the random representative unit cell
reflects the behavior of real Al2O3 foams produced by the gelcasting method in a satisfactory way.

• The results of the analysis of failure strength for the periodic skeleton structure of fcc type as a
function of porosity are discussed, Figure 17.

• The new results obtained in the paper make a foundation for the development of an energy-based
limit criterion of ceramic foams with the application of peridynamic states approach, proposed by
Silling [2000] and, as a matter of fact, indicated much earlier by Gabrio Piola [dell’Isola et al. 2015].
The important role the criterion plays can be seen in the formula for critical energy density [Foster
et al. 2011]:

ωc =
4G
πδ4 , (6-1)

where G denotes energy release rate and δ is a material parameter corresponding to the size of a
horizon in peridynamic simulations. The analysis of foam microstructures presented in the paper
appears to be useful in estimating the parameter δ.
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[Michalska and Pęcherski 2003] J. M. Michalska and R. B. Pęcherski, “Macroscopic properties of open-cell foams based on
micromechanical modelling”, Technische Mechanik 23:24 (2003), 234–244.

[Nowak 2014] M. Nowak, Analiza deformacji i zniszczenia struktur komórkowych w zastosowaniu do symulacji procesu in-
filtracji pianki korundowej ciekłym metalem, Ph.D. thesis, 2014, available at http://www.ippt.pan.pl/_download/doktoraty/
2014nowak_m_doktorat.pdf.
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GRADIENT-ENHANCED LARGE STRAIN THERMOPLASTICITY WITH
AUTOMATIC LINEARIZATION AND LOCALIZATION SIMULATIONS

JERZY PAMIN, BALBINA WCISŁO AND KATARZYNA KOWALCZYK-GAJEWSKA

The paper deals with the thermomechanical extension of a large strain hyperelasto-plasticity model and
focuses on algorithmic aspects and localization simulations. The formulation includes the degradation
of the yield strength due to the increase of an averaged plastic strain measure and temperature, thus,
three sources for loss of stability are included in the description. A gradient-enhancement of the model
is incorporated through an additional differential equation, but localization is also influenced by heat
conduction. The finite element analysis is performed for an elongated plate in plane strain conditions,
using different finite elements and values of material parameters related to regularization (internal length
scales are related to gradient averaging as well as heat conduction). In particular, the influence of the
F-bar enrichment on the simulation results is studied. All computational tests are performed using self-
programmed user subroutines prepared within a symbolic-numerical tool AceGen which is equipped
with automatic differentiation options, allowing for automatic linearization of the governing equations.

1. Introduction

The research presented in this paper is focused on the development of a gradient-enhanced geometrically
nonlinear thermoplasticity model and its numerical analysis with special attention paid to simulation of
strain localization caused by material, thermal and geometrical softening. The phenomenon of local-
ization, in which deformation concentrates in narrow bands whereas the rest of the material specimen
experiences unloading, is closely connected with the notion of material instability, the theoretical basis
of which goes back to [Hill 1958; Thomas 1961; Rice 1976]. Significant contributions to the subject of
numerical simulation of instability and strain localization for isothermal conditions were offered among
others in [Rudnicki and Rice 1975; Belytschko and Lasry 1989; de Borst et al. 1993; Sluys 1992;
Vardoulakis and Sulem 1995; Tvergaard 1999; Menzel 2002; Forest and Lorentz 2004; Bigoni 2012;
Benallal and Marigo 2007]. On the other hand, thermomechanical coupling in the instability analysis
was discussed for instance in [Abeyaratne and Knowles 1999; Dunwoody and Ogden 2002; Rooney and
Bechtel 2004] (thermoelasticity), [Duszek et al. 1992; Steinmann et al. 1999] (thermoplasticity under the
assumption of adiabatic conditions) and [Benallal and Bigoni 2004] (analysis including heat conduction
in thermoinelastic materials).

If a constitutive model includes material softening, regularization is required to prevent the governing
equations from the loss of ellipticity and the simulation results from pathological mesh-dependence. In
a thermomechanical problem a gradient-enhancement can be applied in two ways: as an introduction
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Keywords: thermoplasticity, softening, gradient averaging, strain localization, automatic linearization, AceGen package.

123

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2017.12-1
http://dx.doi.org/10.2140/jomms.2017.12.123
http://msp.org


124 JERZY PAMIN, BALBINA WCISŁO AND KATARZYNA KOWALCZYK-GAJEWSKA

of higher order gradients of a mechanical field in the material description, e.g., gradient plasticity [Be-
lytschko and Lasry 1989; Zbib and Aifantis 1988a; 1988b; 1988c; de Borst and Mühlhaus 1992] and
gradient damage [Pijaudier-Cabot and Bažant 1987; Steinmann 1999], or as an incorporation of higher
order gradients of a temperature field (spatial or time derivatives) in, for example, the energy balance or
heat conduction equation [Müller and Ruggeri 1993; Aifantis 1992; Forest and Aifantis 2010]. It is worth
mentioning at this point that already in book [Eringen 1967] incorporation of higher order gradients of
displacements and temperature in the constitutive description is admitted. In the cited book, a material
is called simple if mechanical and thermal grades are equal to one: G(1,1). The regularizing influence
of heat conduction is discussed in several papers, e.g., in [LeMonds and Needleman 1986] or [Batra and
Kim 1991] and publications cited therein.

The mechanical part of the presented model is based on the constitutive description introduced in
[Geers 2004], which involves hyperelasto-plasticity with degradation of yield strength via a damage-
like variable. However, combinations of plasticity with continuum damage can also be considered,
e.g., [Areias et al. 2003] or [Wcisło et al. 2013]. The analysis of fully coupled thermoplasticity models
in the thermodynamic framework, which is the basis for the development of the isothermal description,
can be found in the papers by Simo, Miehe, Ortiz or Ristinmaa and their coworkers, e.g., [Simo and
Miehe 1992; Simo and Hughes 1998; Yang et al. 2006; Ristinmaa et al. 2007].

The research presented in this paper is limited to phenomenological continuum modeling with the
following assumptions: initial isotropy of the material, hyperelasticity, rate independent plasticity with
associated flow rule, strain hardening with one internal variable and degradation of the yield strength
due to the increase of temperature and of a plastic strain measure. However, the description can easily
be extended to more elaborated models of plasticity. Furthermore, the thermal part of the formulation
makes use of Fourier’s law applied to the nonstationary heat flow. All models are developed in a three-
dimensional space.

One of the aspects discussed in the paper is the application of symbolic-numerical Ace packages
[Korelc 2011] as convenient tools for the implementation of complex models and their numerical ver-
ification. In this paper, all tests are performed using self-programmed user subroutines. In particular,
an elongated plate in a plane strain regime is simulated using different finite elements and material
parameters influencing the width of the localization band. The numerical analysis is focused on the
following issues:

• the influence of finite element enhancement F-bar designed to prevent volumetric locking for vol-
ume preserving plasticity, and

• examination of the model response in the presence of gradient regularization, heat conduction and
a combination of the two.

The research reveals that in the analyzed case of a tensioned plate, the application of the F-bar finite
element enhancement influences the results only in the post peak regime, but the application of elements
without enrichment can even preclude the shear band formation. Moreover, although both types of
regularization (gradient-enhancement and heat conduction) influence the mesh-dependence of the results
and the ductility of the material response, they produce different forms of deformation.

The paper is laid out as follows. The computational strategy adopted for the analyzed model is dis-
cussed in Section 2. In particular, the application of the symbolic-numerical tools is justified and a general
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procedure used for the finite element user subroutine is presented. Section 3 deals with the constitutive
relations for the gradient-enhanced thermomechanical model of hyperelasto-plasticity. Moreover, three
governing equations (the balance of linear momentum, the balance of energy and the averaging equation)
are presented in their strong form alongside their corresponding weak formulations. Section 4 contains
a concise discussion outlining the finite element implementation of the presented coupled model within
Ace packages. The results of the numerical simulations are presented in Section 5. This section is divided
into two parts: first, the isothermal model is tested for different finite elements and internal length scales,
next the results for the thermomechanical model are included. The attention is focused mainly on the
influence of the internal length scale introduced by gradient averaging and heat conduction as well as on
the behavior of the sample when two localization limiters are applied simultaneously. The paper ends
with concluding remarks.

2. Computational strategy

The constitutive model presented in the paper includes two sources of nonlinearities: geometrical (due to
large deformations) and material (plasticity). Next, the gradient enhancement is adopted, which requires
solving an additional averaging equation. Eventually, the full thermomechanical coupling is taken into
account. All those issues produce a highly complex problem which can only be solved using user-
programmed routines for a chosen solver.

To find the solution to the nonlinear problem within the Finite Element Method (FEM), the standard
Newton–Raphson procedure is used, which guarantees the quadratic convergence of the computations.
However, this method requires derivation of the consistent tangent matrix on the basis of linearized gov-
erning equations. For such an elaborated model, the analytical derivation of linearization is very difficult
or even infeasible. Alternatively, numerical differentiation can be applied, e.g., in [Pérez-Foguet et al.
2000] that method is used for derivation of local (at the Gauss point level) and global tangent operators.

The next step after the formulation of the numerical algorithm is the implementation of the user
supplied procedure within a programming language which is required by a selected FEM engine. Usually,
standard FEM software relies on Fortran or C languages, which are not very convenient tools for matrix
operations. This standard approach also has a significant inconvenience as any modification of the model
or its development requires renewed linearization and, hence, reformulation of the numerical procedure.

To focus more on the developed model and on the behavior of the simulated material, instead of the
analytical derivations and programming, symbolic-numerical tools have been chosen for the numerical
analysis. The packages which are used in this paper are AceGen and AceFEM [Korelc 2011], which
work in the Wolfram Mathematica environment. The AceGen package is a multilanguage numerical
code generator which combines symbolic and algebraic capabilities of Mathematica, the automatic dif-
ferentiation (AD) technique (particularly important if there is a need for linearization) and simultaneous
optimization of expressions, which improves efficiency of the generated code. The work with the pro-
gram includes preparation of the code in a specific symbolic metalanguage based on the notation of
Wolfram Mathematica and generation of the code in a selected programming language (e.g., C, Fortran
or Matlab). In particular, the package supports several FEM environments, such as Abaqus or FEAP,
and also the AceFEM package which has been selected by the authors to perform the numerical tests.
Although another FEM program could also be used, application of this engine guarantees full control of
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simulations due to close collaboration between packages. The important advantage of package AceGen is
the possibility of relatively easy modifications of the model, as the tangent matrix is derived automatically
by the code generator.

The general approach to the solution of a problem using AceGen and AceFEM package is as follows.
First, the unknown field interpolation for a selected finite element has to be introduced,

d = NI · p, (2-1)

where p is a vector of nodal unknowns and NI is a vector of interpolation (shape) functions.
According to the author of the packages, the most convenient and effective approach to Ace modeling

is to define a potential 5 for the problem to be solved [Korelc 2008]. Upon the introduction of (2-1)
into the functional definition, 5 becomes a function of the degrees of freedom p. Then, for properly
formulated dependencies and with the use of Gauss integration, the finite element residual vector for the
Newton–Raphson iterative procedure can be automatically computed as

Rel =
∑
nG

wG JXG RG, RG =
∂5

∂ p
, (2-2)

where nG is the number of Gauss points, wG is the weight of a Gauss point, JXG is the Jacobian of
isoparametric mapping from the parent element to the element in the reference configuration. Accord-
ingly, the tangent operator is derived through the formula

Kel =
∂Rel

∂ p
. (2-3)

3. Presentation of model

The constitutive description of the isothermal model is based mainly on the paper by Geers [2004]. His
model covers large strain hyperelasto-plasticity and can reproduce softening and failure of the material
due to an isotropic plastic-damage variable. In this paper, the model is extended to encompass full
thermomechanical coupling, including thermal expansion, dependence of the heat flux on deformation,
production of heat due to the plastic process and thermal softening, which is understood as degradation
of the yield strength with increasing temperature.

3A. Preliminaries and kinematics. To formulate the governing equations, let us introduce the following
notation. The continuous body which deforms under an applied load is denoted by B and has a boundary
labeled with ∂B. The referential placement of the body particles at time t0 is identified with vector X ,
and the current position of particle X at time t is denoted by vector x.

The movement of the body is described by function ϕ such that x = ϕ(X, t). The deformation gradient
and its determinant are defined as usual,

F =
∂ϕ(X, t)
∂X

, J = det(F). (3-1)

Next, multiplicative decomposition of the deformation gradient is adopted basing on the concepts
applied to elastoplasticity [Lee and Liu 1967; Lee 1969; Mandel 1974; Kroner and Teodosiu 1974] and
thermomechanics [Stojanovitch et al. 1964; Lu and Pister 1975; Holzapfel 2000]. Here, the deformation
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gradient consists of three parts in order to separate the plastic and elastic deformation as well as thermal
expansion,

F = Fθ Fe F p. (3-2)

Note that the deformation gradient (3-2) can also be formulated in the forms

F = Fr F p
= Fθ Fm,

Fr
= Fθ Fe,

Fm
= Fe F p,

(3-3)

where Fr denotes reversible deformation and Fm the mechanical one. The decomposition (3-2) has been
formulated and discussed in [Wcisło and Pamin 2016].

The thermal contribution Fθ is assumed to be purely volumetric, so for the isotropic material it can
be represented as

Fθ
= (J θ )1/3 I, J θ = det(Fθ ), (3-4)

where I is the second order identity tensor, and the deformation caused by a temperature change is
determined according to Lu and Pister [1975] as

J θ = e3αT (T−T0). (3-5)

In (3-5), quantities T and T0 are the absolute temperature and the reference temperature for the stress-
and strain-free state, and αT is the coefficient of linear thermal expansion.

On the basis of the decomposition (3-3) and assumption (3-5), the mechanical part of the deformation
gradient can be derived directly as

Fm
= e−αT (T−T0)F. (3-6)

The consequence of the deformation gradient splitting into the mechanical and thermal parts is the
possible application of the algorithm for isothermal elastoplasticity presented in [Wcisło et al. 2013].
Note that in this approach the assumption of volume preserving plasticity is disregarded, contrary to the
thermoplastic models presented in [Wriggers et al. 1992; Simo and Miehe 1992; Simo and Hughes 1998].

3B. Free energy function. The state of a material is expressed by the Helmholtz free energy potential,
which is assumed in a decoupled form,

ψ(be, T, γ )= ψe(be)+ψθ (T )+ψ p(γ ), (3-7)

where the first part ψe(be) is related to the elastic response and includes thermomechanical coupling
responsible for thermal expansion, ψθ (T ) is a purely thermal part and, finally, the term ψ p(γ ) denotes
the potential of isotropic strain hardening in plasticity. In (3-7) be

= Fe(Fe)T denotes the elastic left
Cauchy–Green tensor and γ is a scalar plastic strain measure. Note that tensor be, computed from Fe,
depends on thermal expansion as presented in the third equation of (3-3) and relation (3-6).
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In particular, the parts of the free energy potential are assumed in the subsequent analysis as follows
[Simo and Hughes 1998; Miehe 1995]:

ψe(be)= 1
2 G(tr(J−1/3

be be)− 3)+ 1
2 K
( 1

2(Jbe− 1)+ 1
2 log Jbe

)
, (3-8)

ψθ (T )= c((T − T0)− T ln(T/T0)), (3-9)

ψ p(γ )= 1
2

√
2/3hiγ

2
+ (σy∞− σy0)

(
γ +

1
√

2/3δ
e−
√

2/3δγ
)
, (3-10)

where G and K are the shear and bulk moduli, Jbe is the determinant of tensor be, c is the heat capacity
at constant deformation, σy0 is the initial yield stress, σy∞ is the residual yield stress, hi is the linear
hardening coefficient whereas δ denotes the saturation parameter which governs the rate of hardening
converging to an asymptote: oblique if the linear hardening term is incorporated or horizontal for hi = 0.

In compliance with the second law of thermodynamics (which provides restrictions for the constitutive
relations) and the assumed form of the free energy potential (3-7), the state functions of the Kirchhoff
stress tensor, entropy and hardening function, are obtained:

τ = 2
∂ψ

∂be be, η =−
∂ψ

∂T
, h =

∂ψ

∂γ
. (3-11)

The heat capacity can also be derived from the laws of thermodynamics (see [Simo and Miehe 1992] or
[Miehe 1995]) as

c =−T
∂2ψ

∂T 2 . (3-12)

It can be noticed that for the adopted form of the free energy potential the heat capacity is constant. This
is valid only if we assume moderate changes of temperature [Ristinmaa et al. 2007].

3C. Constitutive relations for plasticity. To complete the constitutive description of the problem, the
yield condition which governs the plastic regime is defined:

Fp(τ , γ, T )= f (τ )−
√

2/3σy(γ, T )(1−ωp)≤ 0, (3-13)

where f (τ) is a stress measure and σy(γ, T ) denotes the evolving yield stress. The analyzed model
includes isotropic degradation of the plastic properties of material, so the yield stress is multiplied by
factor (1−ωp) depending on the plastic-damage variable ωp, which varies from 0 for the intact material
to 1 for completely damaged material. The evolution of the value of ωp can be formulated in different
ways depending on the analyzed material, see [Geers 2004]. In this paper the following form is applied:

ωp = 1− exp(−βκ), (3-14)

where β is a ductility parameter and κ is a history variable which is assumed here to be equal to
√

2/3γ ,
see [Geers 2004]. Thus, in this model the damage is assumed to begin simultaneously with the plastic
process (no damage threshold is considered).

The yield stress appearing in (3-13) is subsequently assumed to include saturation-type strain harden-
ing and linear thermal softening,

σy(γ, T )=
(
σy0+

√
2/3hiγ + (σy∞− σy0)(1− e−

√
2/3δγ )

)
(1− hT (T − T0)), (3-15)
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where hT is the thermal softening modulus. Assuming that κ =
√

2/3γ , the general formulation presented
above can be rewritten as

Fp = f (τ )−
√

2/3
(
σy0+

√
2/3hiγ + (σy∞− σy0)(1− e−

√
2/3δγ )

)
(1− hT (T − T0))e−βγ ≤ 0. (3-16)

The adopted stress measure is standard Huber–Mises–Hencky (HMH) definition, which is commonly
used to reproduce the behavior of metals, although other measures of stress can be applied as well. The
HMH function depends only on the second invariant of the deviatoric Kirchhoff stress tensor, and thus
it models volume preserving plasticity.

Following [Simo 1988], the associated flow rule is adopted through the Lie derivative of be,

1
2 Lvbe

= λ̇Nbe, (3-17)

where N = ∂Fp/∂τ and λ̇ is the plastic multiplier satisfying the standard Kuhn–Tucker conditions

λ̇≥ 0, Fp ≤ 0, λ̇Fp = 0. (3-18)

For simplicity we will now limit our considerations to the plastic flow theories for which λ≡ γ .

3D. Gradient enhancement. As it was mentioned, the model represents a plastic material, which in-
volves a softening behavior and poses difficulties with modeling since the governing equations lose their
ellipticity and the boundary valued problem becomes ill-posed [Forest and Lorentz 2004]. To obtain a
material model capable of reproducing damage properly, regularization should be applied (e.g., a nonlocal
model or higher-order gradient theory selected here) or discontinuous modeling using cohesive elements
should be introduced [Li and Chandra 2003].

From the numerical point of view, the loss of well-posedness of the boundary-value problem related
to material softening causes mesh-dependence of the results, since the strains tend to localize in the
smallest possible volume of the material, which in the finite element model is determined by the size of
the element. For that reason, the outcomes for different discretizations do not converge when the mesh
is densified and the prediction of the material behavior may be wrong.

To obtain the gradient model, the local variable governing damage, κ , is replaced with its nonlocal
counterpart denoted by z, computed using the additional differential equation

z− l2
∇

2z = κ, (3-19)

with homogeneous Neumann boundary conditions [Peerlings et al. 2001].
The implicit gradient averaging formulation (3-19) was introduced first in [Peerlings et al. 1996] for

a model related to quasibrittle materials. The parameter l appearing in (3-19) is an internal length scale
which depends on the adopted material and is often related to its microstructure [Geers et al. 1999].

When the gradient enhancement is applied in the model including large deformations, a configuration
to perform the averaging has to be selected [Steinmann 1999]. Here, the material averaging has been
adopted on the basis of the analysis included in [Wcisło et al. 2013]. Thus, the gradient in (3-19) is
calculated with respect to Lagrangian coordinates and the internal length l is related to the undeformed
configuration.
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3E. Heat conduction. The constitutive assumption for heat conduction is the classic Fourier law for
isotropic materials which is formulated here for the Kirchhoff heat flux vector q,

q =−k∇T, (3-20)

where k is the heat conduction coefficient. The Kirchhoff heat flux is defined in the current configuration.
However, it is referred to the area in the undeformed state (it is the Cauchy heat flux multiplied by J
[Haupt 2002]). Thus, the temperature gradient ∇T is calculated with respect to Euler coordinates and
coefficient k is specified in the reference configuration.

3F. Governing equations and weak forms. The formulation of the problem consists of three governing
equations: the linear momentum balance, the internal energy balance and the averaging equation.

3F.1. Linear momentum balance. The linear momentum equation is formulated in the spatial description,
yet it is related to the volume of the undeformed body. Following [Simo and Miehe 1992], the local form
of the first governing equation is written as

ρ0
∂2ϕ

∂t2 = J div(τ/J )+ ρ0 B. (3-21)

In (3-21), div(·) is the divergence computed with respect to Eulerian coordinates, ρ0 is a reference
density and B is a given gravity field. For the static analysis, which is presented in the paper, the left-hand
side of (3-21) is equal to zero.

The balance of linear momentum is completed with boundary conditions for displacements u and
tractions t ,

u = û on ∂Bu,

t = τ · n= τ̂ on ϕ(∂Bτ ),
(3-22)

where
∂Bu ∪ ∂Bτ = ∂B and ∂Bu ∩ ∂Bτ =∅. (3-23)

The finite element implementation is based on weak forms of the governing equations. Applying the
standard derivation (multiplication by test function δu, integration over body B, applying the divergence
theorem and Neumann boundary conditions) the balance of linear momentum has the weak form∫

B
(∇δu : τ + δu · B) dV +

∫
ϕ(∂Bτ )

δu · τ̂ da = 0. (3-24)

In this paper B, is assumed to be zero.

3F.2. Energy balance. The second governing equation is the energy balance, which is expressed in the
temperature form [Simo and Miehe 1992]

c
∂T
∂t
= J div(−q/J )+R, (3-25)

where c is the heat capacity at constant deformation and R is a heat source density which represents
heating resulting from plastic dissipation [Wriggers et al. 1992] and is given as

R=
√

2/3χσy γ̇ . (3-26)
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Parameter χ in (3-26) denotes a dissipation heat factor, see [Taylor and Quinney 1934]. The constant
value of χ is adopted in this paper for simplicity although consistently with the thermodynamic laws for
associated plasticity, its value depends on the initial yield strength and the advancement of the plastic
process [Ristinmaa et al. 2007].

Equation (3-25) is completed with appropriate boundary conditions

T = T̂ on ∂BT ,

q · n= q̂ on ϕ(∂Bq),
(3-27)

where
∂BT ∪ ∂Bq = ∂B and ∂BT ∩ ∂Bq =∅. (3-28)

Note that the essential boundary conditions for u and T are specified in the reference configuration
whereas the natural ones for t and q are defined in the current configuration, see [Miehe 1995].

The weak form of the energy balance (3-25) is also obtained using the standard procedure and the
backward Euler scheme for time integration. The integral equation valid for the current time is obtained as∫

B

(
δT

c
1t
(T − Tn)+∇δT k∇T − δT R

)
dV +

∫
ϕ(∂Bq )

δT q̂ da = 0, (3-29)

where Tn is the value of temperature at the previous time and 1t is the time increment.

3F.3. Averaging equation. The strong form of the averaging equation has already been presented in
Section 3D whereas the weak form of the last governing equation needed for FEM implementation after
applying the standard procedure is∫

B
[(z− κ)δz+ l2

∇0z · ∇0δz] dV = 0. (3-30)

Obviously, equations (3-24), (3-29) and (3-30) must be valid for any admissible weighting functions
δu, δT and δz.

4. Finite element implementation

This section presents the aspects of implementing the formulated model with symbolic-numerical tools.
However, only necessary information is included here as the more in-depth discussion of numerical
treatment of other models within Mathematica-based packages Ace has already been presented in papers
[Wcisło et al. 2013] (gradient damage coupled to plasticity in isothermal conditions), [Wcisło and Pamin
2014; 2016], (entropic thermoelasticity and thermoplasticity with temperature averaging, respectively).

To begin with, the vector of the nodal unknowns of the finite element for the problem includes dis-
placements, temperature and nonlocal variables,

p= [uI , TI , z I ], (4-1)

where subscript I is related to nodal quantities. In this paper the interpolation of all three fields is
performed using linear shape functions NI . The order of the interpolation in multifield problems is
discussed in many papers. For example, different types of finite elements are tested in [Wcisło et al.
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2013] for a case of isothermal hyperelasto-plasticity coupled with gradient damage. The research re-
veals that in the considered examples the elements with linear interpolation and F-bar enhancement
preventing volumetric locking (which is discussed below) give the same results as elements with the
quadratic interpolation of displacements and linear interpolation of the nonlocal variable. On the other
hand, in [Simone et al. 2003] which concerns implicit gradient-enhanced continuum damage models, it
is substantiated that linear interpolation of both fields (displacement vector and nonlocal variable) can
be used. The provided reasoning can also be applied to the case of thermomechanical coupling, and
therefore linear interpolation of temperature and displacements is admissible.

For the sake of consistency with the approach convenient for the Ace packages, a potential for each
governing equation is introduced [Korelc 2008]. For the balance of linear momentum this potential is
the Helmholtz free energy function ψ (for detailed explanation see [Korelc 2009]), the specific form of
which is presented in Section 3B.

The potential for the second governing equation is proposed in the form

5en =
1
2

c
1t
(T − Tn)

2
+

1
2 k∇T · ∇T −RT . (4-2)

It is derived from of the weak form of the energy balance (3-29) in such a way that the variation of 5en

is zero. The potential presented in (4-2) is valid provided that quantities k, c and R are independent
of temperature. However, it can be observed that R, which includes plastic heating in accordance with
(3-26), does not satisfy this requirement. To solve this problem without changing potential (4-2), an
AD exception has been applied, i.e., additional information has been introduced into the AD process to
obtain the proper derivative code [Korelc 2009]. Justification of this approach can be found in [Wcisło
and Pamin 2016].

Finally, the potential for the averaging equation derived from the weak form (3-30) is proposed,

5z =
1
2((z− κ)

2
+ l2
∇0z · ∇0z). (4-3)

Therefore, the Gauss point contribution to the element residual vector RG appearing in (2-2) consists
of three parts,

RG =

[
∂ψ

∂uI
,
∂5en

∂TI
,
∂5z

∂ z I

]
, (4-4)

and the tangent matrix is computed using (2-3).
As has been mentioned in Section 3C, the Huber–Mises–Hencky yield function is a volume-preserving

plasticity model and the numerical results can be affected by the spurious effect of volumetric locking.
There are two solutions to prevent such misrepresentation of the results: the first is to increase the
interpolation order (which can cause a significant growth in the number of degrees of freedom and
computational costs) and the second is to upgrade the finite elements using a chosen methodology as
the enhanced assumed strain [Simo and Rifai 1990], selective integration or the B-bar method [Hughes
1980]. In this work the F-bar approach of de Souza Neto et al. [2008] has been applied. The method
involves replacing the deformation gradient F with its modified counterpart F̄. The formulation is based
on a multiplicative split of the deformation gradient into its volumetric and isochoric parts,

F = Fiso Fvol, (4-5)
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where
Fiso = J−1/3 F, Fv = J 1/3 I . (4-6)

The modified deformation gradient F̄ for a selected Gauss point is computed using the isochoric part
calculated at this integration point and the volumetric one derived at the centroid of the finite element.

5. Numerical tests

In this section the numerical examples simulating the response of a modeled material are presented. All
computations were performed for a rectangular plate in tension in the plane strain regime.

The isothermal model is tested first with attention focused on the influence of the internal length
scale on the material response and on the significance of element enhancement preventing the locking
phenomenon.

The fully coupled thermomechanical model is subsequently tested for different values of the heat
conduction coefficient and compared with the outcome of the model without temperature-dependence.

5A. Test parameters. The tested specimen is a plate of dimensions: L = 0.20 m, W = 0.10 m, H =
0.0025 m with a square imperfection in the center (L imp= 0.005 m). Due to the symmetry of the specimen,
only one quarter of the plate is considered. The imperfection is assumed as the decrease of the initial
yield stress to σy0,imp = 0.8σy0, and for simulations with the thermomechanical coupling an increase
of the thermal softening coefficient to HT,imp = 1.05HT is adopted additionally, see [LeMonds and
Needleman 1986]. The material parameters used in the simulations are presented in Table 1. The upper
part of the table is related to the isothermal model whereas the lower part refers to the thermal coupling.
Two nonzero values of the internal length parameter are assumed. The first one l = 0.0025 m is equal to
the plate thickness and the dimension of the imperfection in the relevant quarter of the plate. The plane
strain conditions are applied (displacements at all nodes in the thickness direction are restrained) and the
remaining mechanical boundary conditions are assumed in such a way as to allow deformation in the
width direction. The enforced maximum displacement in the length-direction is equal to umax = 0.04 m
and it is achieved after 1 s in adaptive steps.

For the coupled thermomechanical model, the whole sample is insulated, i.e., homogeneous Neumann
boundary conditions are adopted on the whole surface. However, convection on the surface can also be
considered, as in [Wcisło and Pamin 2016], where aspects of the convection implementation within
AceGen are discussed.

The numerical model is generated using hexahedral elements and two finite element discretizations
are used: 800 (mesh 1) and 3200 (mesh 2) elements, see Figure 1.

5B. Plate in tension in isothermal conditions. At the beginning the simulations are performed for the
isothermal conditions. In the first test, the response of the sample is modeled with standard hexahe-
dral elements with linear interpolation of both fields (displacements and the nonlocal variable), and no
enrichment preventing the locking phenomenon is used.

Figure 2 presents the sum of reactions vs. load multiplier. It can be observed that all results for mesh 1
and mesh 2 coincide to a certain point in the post peak regime. When the load multiplier reaches the value
0.48, the diagrams become distinct. The value of the internal length scale does not influence the results
much, and the outcomes of simulation using mesh 2 are very close to one another for each value of l.
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property symbol value unit

bulk modulus K 164.2 ·109 N/m2

shear modulus G 80.19 ·109 N/m2

initial yield stress σy0 0.45 ·109 N/m2

residual yield stress σy∞ 0.6 ·109 N/m2

hardening modulus H 129 ·106 N/m2

saturation coefficient δ 16.93 –
ductility β 1 –
internal length l 0, 0.0025, 0.005 m
density ρ 7.8 ·103 kg/m3

conductivity k 0, 100 J/(sKm)
heat capacity c 460 J/(kgK)
thermal expansion coefficient αT 12 ·10−6 1/K
thermal softening modulus HT 0.002 1/K
dissipation heat factor χ 0.9 -
reference temperature T0 273.15 K

Table 1. Material parameters.

Figure 1. Finite element discretizations of plate in tension: mesh 1 (left) and mesh 2
(right); imperfection marked with red color.

The deformed meshes with the plastic strain measure distribution at the end of the deformation process
are depicted in Figures 3 and 4. It can be noticed that the localization has the form of a neck rather than
shear band and can be described as a diffuse mode. This is also consistent with the force-displacement
diagram in the post peak regime and the little influence of the internal length on the results. Also the
differences in deformations and plastic strain distributions for two values of internal length l = 0 and
l = 0.005 m for both discretizations are minor. As expected, a smoother distribution of plastic strain is
observed for the nonzero value of l. In fact, the results are slightly different for the adopted meshes, the
introduction of the internal length scale does not prevent the results from being discretization-sensitive.

The next simulations are performed for a model with the finite element enrichment F-bar. Figure 5
shows the load-displacement relation for the nonlocal model with different values of the internal length
scale. Similarly to the previous test, the curves overlap up to the value of the displacement multiplier
equal to λ = 0.48 and subsequently diverge. However, in this case the internal length has a strong
influence on the mesh-insensitivity, for the higher value the diagrams for mesh 1 and mesh 2 are very
close, and they suggest a localized mode of deformation, which is confirmed in Figures 6 and 7, where
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shear bands are shown. It can be noticed that for the local model the strains localize in two rows of
elements. The application of the gradient enhancement (see Figure 7) prevents the results from being
affected by this pathological mesh-dependency and has a regularizing effect. To sum up, it is interesting
that the choice of the kind of finite element has such strong influence on the results, which differ not
only quantitatively but qualitatively as well.

The results obtained with the use of the finite elements with and without F-bar enrichment are com-
pared in Figure 8 for the zero internal length scale. It was expected that the response of the material
simulated with elements without enhancement would be stiffer, yet this has been confirmed only in the
post peak regime.

Results for elements without F-bar
ΣR (N)

λ (–)

l = 0, mesh 1
l = 0, mesh 2
l = 0.0025, mesh 1
l = 0.0025, mesh 2
l = 0.005, mesh 1
l = 0.005, mesh 2

Figure 2. The sum of reactions vs. displacement multiplier (isothermal model).

Max.
0.6340
Min.
0.1211

Max.
0.1069 ·101

Min.
0.1103

Figure 3. Deformed mesh with plastic strain measure γ distribution for mesh 1 (left) and
mesh 2 (right) — isothermal model, l = 0, elements without F-bar enhancement.

Max.
0.6046
Min.
0.1240

Max.
0.9081
Min.
0.1127

Figure 4. Deformed mesh with plastic strain measure γ distribution for mesh 1 (left) and
mesh 2 (right) — isothermal model, l = 0.005 m, elements without F-bar enhancement.
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Results for elements with F-bar
ΣR (N)

λ (–)

l = 0, mesh 1
l = 0, mesh 2
l = 0.0025, mesh 1
l = 0.0025, mesh 2
l = 0.005, mesh 1
l = 0.005, mesh 2

Figure 5. The sum of reactions vs. displacement multiplier (isothermal model).

Max.
0.7453 ·101

Min.
0.1081

Max.
0.8223 ·101
Min.
0.1069

Figure 6. Deformed mesh with plastic strain measure γ distribution for mesh 1 (left) and
mesh 2 (right) — isothermal model, l = 0, elements with F-bar enhancement.

Max.
0.1813 ·101

Min.
0.1112

Max.
0.2316 ·101

Min.
0.1098

Figure 7. Deformed mesh with plastic strain measure γ distribution for mesh 1 (left) and
mesh 2 (right) — isothermal model, l = 0.005 m, elements with F-bar enhancement.

The application of elements with F-bar enhancement causes a softer response of the material and
admits a jump into a localized shear band mode, while the standard finite elements seem to prevent
localization and favor the diffuse deformation. To make the matters worse, the plane strain tests (e.g., 3D
ones) are as a rule more sensitive to volumetric locking, but in our test the boundary conditions are
imposed in such a way that globally the plate can extend while preserving the volume. Thus, it seems
that the influence of the isochoric constraint manifests itself rather at the level of shear band formation.

5C. Plate in tension simulated with thermomechanical model. In this section the coupled model is
tested using material properties presented in Table 1. Apart from the two sources of instabilities which
have been discussed in the previous section (geometrical and material), now the third one is going to
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Results for mesh 2
ΣR (N)

λ (–)

elements without F-bar

elements with F-bar

Figure 8. The sum of reactions vs. displacement multiplier (isothermal model).

be taken into account: reduction of the yield stress with temperature (thermal softening). Due to the
complexity of the model and the large amount of tests which could be performed for different material
and test parameters, the paper focuses solely on the presentation of the results of simulations carrier out
for the following cases.

First, the finite elements without F-bar are used for simulations. The results for only one value of
the internal length l = 0.005 m are discussed due to the fact that in the isothermal case the diffuse
mode was obtained and this deformation pattern (with very slight differences) is also observed for the
thermomechanical coupling with different values of conductivity k and internal length l listed in Table 1.

In the next step, the elements with F-bar enrichment are tested. Here more cases are studied. We start
by testing the influence of heat conduction for the model with zero internal length scale, next the effect
of the internal parameter for the adiabatic case is examined, and finally the simulations are performed
with two regularization effects (heat conduction and gradient averaging) included simultaneously.

5C.1. Finite elements without F-bar. The results obtained for the finite elements without enhancement
are presented in Figures 9 and 10. The diagram presents the load-displacement paths for the nonlocal
model with the internal length equal to l = 0.005 m for three cases: isothermal, adiabatic k = 0 and heat
conduction k = 100 J/(sKm). The differences between these graphs are minor but the outcome for mesh
1 is stiffer than for the finer mesh. For the coarse mesh the diagrams for the adiabatic case and heat
conduction coincide (red and green solid lines) so the influence of heat conduction is negligible. Also
for the finer mesh that difference is insignificant.

Figure 10 presents the deformed mesh with temperature distribution. It can be observed that the
presence of thermal softening does not influence significantly the shape of the deformation plot and the
differences in temperature are also small.

5C.2. Finite elements with F-bar. First, the results are compared for zero internal length and different
values of heat conduction to confirm that the conductivity has a regularizing effect in the absence of
another length scale. The sum of reactions vs. enforced load multiplier for the analyzed cases are
presented in Figure 11. It can be observed that the diagrams for heat conduction for the coarse mesh are
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Results for elements without F-bar, l = 0.005 m
ΣR (N)

λ (–)

isoth. mesh 1
isoth. mesh 2
adiab. mesh 1
adiab. mesh 2
k = 100, mesh 1
k = 100, mesh 2

Figure 9. The sum of reactions vs. displacement multiplier.

Max.
0.3030 ·103

Min.
0.2771 ·103

Max.
0.3008 ·103

Min.
0.2771 ·103

Figure 10. The deformed mesh with temperature distribution for k = 0 (left) and k =
100 J/(sKm) (right) — elements without F-bar enhancement, l = 0.005 m, mesh 2.

very close to the adiabatic case although some fluctuations are visible. Next, the response of the material
with heat conduction was analyzed with the finer mesh. Just after the peak point the response is close to
the adiabatic case, yet a convex curve is observed further on.

Figures 12 and 13 present the deformed meshes at the end of the elongation process with temperature
distribution for the adiabatic case and heat conduction, respectively. As it was expected, in the first
case, in which no regularization is applied the deformation is strongly localized and mesh-dependent.
The generated shear band is inclined 45 degrees with respect to the longitudinal axis. However, if heat
conduction is taken into account, see Figure 13, the shear band is wider but also bent. The deformations
for the two considered discretizations differ slightly but have the same character — curved shear band
with a narrowing in the middle of the modeled sample. When the evolution of the plastic strain measure
is investigated along the line perpendicular to the initial shear band for mesh 2, it turns out that the shear
band moves slightly, see Figure 14. In the first diagram we can observe a stationary shear band whereas
for the case with heat conduction an evolving localization zone.

Now the influence of the internal length parameter will be examined for the adiabatic case to inves-
tigate the regularizing effect of the gradient averaging in the absence of heat conduction. Figure 15
presents the load-displacement diagrams for zero internal length scale and for l = 0.005 m. The results
for isothermal variant are also presented for comparison. It can be noticed that the addition of thermal
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Results for elements with F-bar, l = 0
ΣR (N)

λ (–)

isoth. mesh 1
isoth. mesh 2
adiab. mesh 1
adiab. mesh 2
k = 100, mesh 1
k = 100, mesh 2

Figure 11. The sum of reactions vs. displacement multiplier.

Max.
0.3250 ·103

Min.
0.2770 ·103

Max.
0.3218 ·103

Min.
0.2769 ·103

Figure 12. The deformed mesh with temperature distribution for mesh 1 (left) and mesh
2 (right) — elements with F-bar enhancement, k = 0, l = 0.

Max.
0.3091 ·103

Min.
0.2770 ·103

Max.
0.3082 ·103

Min.
0.2769 ·103

Figure 13. The deformed mesh with temperature distribution for mesh 1 (left) and mesh
2 (right) — elements with F-bar enhancement, k = 100 J/(sKm), l = 0.

softening indeed causes a less stiff response of the material, though its influence is stronger for the model
without averaging. The diagrams showing the model with regularization are very close for each mesh
and exhibit higher ductility.

Figure 16 presents the deformed meshes with temperature distribution. The response of the sample is
very similar to the isothermal deformation. The shear band has a constant width and the solution does
not depend on the adopted mesh.

When the results for the two regularizations (heat conduction and gradient averaging) are compared,
it must be stated that, although both of them influence the discretization-dependence and increase the
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γ (–)

x (m)

γ (–)

x (m)

Figure 14. The evolution of the plastic strain measure γ along line A-B in reference
configuration for k = 0 (top left) and k = 100 J/(sKm) (top right) — elements with F-bar
enhancement, l = 0.

l = 0, mesh 1, isoth.
l = 0, mesh 2, isoth.
l = 0, mesh 1, adiab.
l = 0, mesh 2, adiab.
l = 0.005, mesh 1, isoth.
l = 0.005, mesh 2, isoth.
l = 0.005, mesh 1, adiab.
l = 0.005, mesh 2, adiab.

ΣR (N)

λ (–)

Results for elements with F-bar, k = 0

Figure 15. The sum of reactions vs. displacement multiplier.

ductility of the response, there are differences in the shape of the localization zone — the internal param-
eter l visibly governs the width of the band whereas for heat conduction the band has no regular form
(exhibits a variable width and a curved shape).

Finally, the results of the test performed for heat conduction and gradient averaging active simulta-
neously are discussed. Figure 17 presents the force-displacement diagram which compares the results
for two regularizations acting together (red lines) with the previous results involving only one internal
length. It can be observed that the outcome is close to the response obtained for the model with gradient
averaging. In this test the results for mesh 1 also exhibit fluctuations which are apparently absent in the
case of finer discretization. The material modeled with gradient averaging gives a slightly softer response
for mesh 2 than the model with two nonzero scales (i.e., l = 0.005 m and k = 100 J/(sKm)). Figure 18
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Max.
0.3229 ·103

Min.
0.2771 ·103

Max.
0.3350 ·103

Min.
0.2770 ·103

Figure 16. The deformed mesh with temperature distribution for mesh 1 (left) and mesh
2 (right) — elements with F-bar enhancement, k = 0, l = 0.005 m.

Results for elements with F-bar
ΣR (N)

λ (–)

l = 0.005, k = 100, mesh 1
l = 0.005, k = 100, mesh 2
l = 0, k = 100, mesh 1
l = 0, k = 100, mesh 2
l = 0.005, k = 0, mesh 1
l = 0.005, k = 0, mesh 2

Figure 17. The sum of reactions vs. displacement multiplier for k = 100 J/(sKm) and
l = 0.005 m — elements with F-bar enhancement.

Max.
0.3098 ·103

Min.
0.2771 ·103

Max.
0.3099 ·103

Min.
0.2770 ·103

Figure 18. The deformed mesh with temperature distribution for mesh 1 (left) and mesh
2 (right) — elements with F-bar enhancement, k = 100 J/(sKm), l = 0.005 m.

shows the deformations of the sample for two discretizations. The results are similar for both meshes
and it can be observed that the shear band width is governed by the internal length scale, but it is also
bent due to heat conduction. When the diagram presented in Figure 19 is analyzed, it turns out that the
band also evolves.

6. Conclusion

This paper presents an analysis of the nonisothermal large-strain model of hyperelasto-plasticity with
the yield strength degradation due to damage-like variable. The thermomechanical coupling, apart from
thermal expansion and plastic heating, introduces also thermal softening as the third source of the loss of
stability alongside the geometrical and material effects. To prevent the pathological mesh-dependence of
simulation results, gradient averaging is incorporated in the model. This treatment introduces the internal
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γ (–)

x (m)

Figure 19. The evolution of the plastic strain measure γ along line A-B in reference
configuration for k = 100 J/(sKm) and l = 0.005 m — elements with F-bar enhancement.

length parameter which influences the ductility of the material response and the width of the shear band.
Furthermore, heat conduction in the coupled thermomechanical model also has regularizing properties
for the nonadiabatic case.

The developed model was implemented within FEM and tested using the elongated rectangular plate
in plane strain conditions. The aims of the numerical analysis of the presented model were to examine the
influence of the incorporated localization limiters on the simulation results and, moreover, to investigate
how the results depend on the adopted finite elements with or without the enhancement preventing the
locking phenomenon which might be encountered in a volume-preserving plasticity model.

Firstly, the isothermal analysis was carried out for different meshes, finite elements and values of the
internal length scale. Although the volume-preserving plasticity was implemented, the results do not
differ for the finite elements with and without F-bar enhancement in the plastic regime prior to strain
localization. However, for the simulations with the finite elements without enrichment the response in
the post peak zone has a diffuse form, practically independent of the internal length scale, whereas the
F-bar enhancement involves strong localization of strains in a shear band. In the latter case the gradient
averaging significantly influences the ductility of the material response removes the mesh-dependence.

The next step involved taking into account the nonisothermal model. The behavior of the sample
simulated using the finite elements without F-bar enhancement is similar to the response in the isothermal
conditions. What is more, the results actually do not depend on heat conduction. On the other hand,
the response of the plate in tension modeled with the enriched elements exhibits the localized form
of deformation, strongly discretization-dependent in the absence of regularization. The application of
gradient averaging influences the shear band width whereas the heat conduction produces an irregular
and evolving localization zone (with a changeable width and a curved shape). Thus, although both
heat conduction and gradient averaging have regularizing properties, they affect deformation in different
manners. The simultaneous presence of the heat conduction and gradient regularization results in the
combination of these two effects.

Comparison of the obtained results shows that incorporation of finite element enhancement to avoid
volumetric locking influences strongly the post peak behavior of the material, and its absence can prevent
the localized form of deformation.
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Finally, it is worth emphasizing the significance of the programming environment applied for the
numerical treatment of the complex model. The package AceGen, involving automatic differentiation,
is a convenient tool which allows researchers to focus on the model development and its examination
instead of analytical derivation and programming.

To sum up, the new developments in the paper are:

• thermomechanical extension of the hyperelasto-plastic model including yield stress degradation and
gradient averaging of the plastic strain measure,

• development of the algorithms for the symbolic-numerical tool AceGen based on the potential ap-
proach and performing automatic linearization of the governing equations,

• investigation of the influence of the finite element enhancement called F-bar, preventing the volu-
metric locking phenomenon on the results of the numerical simulations of shear band instability,

• analysis of the regularizing effects produced by heat conduction as well as gradient averaging and
of the behavior of the sample in the simultaneous presence of two internal length parameters.

References

[Abeyaratne and Knowles 1999] R. Abeyaratne and J. K. Knowles, “On the stability of thermoelastic materials”, J. Elasticity
53:3 (1999), 199–213.

[Aifantis 1992] E. C. Aifantis, “On the role of gradients in the localization of deformation and fracture”, Int. J. Eng. Sci. 30:10
(1992), 1279–1299.

[Areias et al. 2003] P. M. A. Areias, J. C. de Sá, and C. C. ao António, “A gradient model for finite strain elastoplasticity
coupled with damage”, Finite Elements in Analysis and Design 39:13 (2003), 1191–1235.

[Batra and Kim 1991] R. C. Batra and C. H. Kim, “Effect of thermal conductivity on the initiation, growth and bandwidth of
adiabatic shear bands”, Int. J. Eng. Sci. 29:8 (1991), 949–960.

[Belytschko and Lasry 1989] T. Belytschko and D. Lasry, “A study of localization limiters for strain-softening in statics and
dynamics”, Comput. Struct. 33:3 (1989), 707–715.

[Benallal and Bigoni 2004] A. Benallal and D. Bigoni, “Effects of temperature and thermo-mechanical couplings on material
instabilities and strain localization of inelastic materials”, J. Mech. Phys. Solids 52:3 (2004), 725–753.

[Benallal and Marigo 2007] A. Benallal and J.-J. Marigo, “Bifurcation and stability issues in gradient theories with softening”,
Modelling Simul. Mater. Sci. Eng. 15:1 (2007), S283–S295.

[Bigoni 2012] D. Bigoni, Nonlinear solid mechanics: bifurcation theory and material instability, Cambridge University Press,
2012.

[de Borst and Mühlhaus 1992] R. de Borst and H.-B. Mühlhaus, “Gradient-dependent plasticity: formulation and algorithmic
aspects”, Int. J. Num. Methods Eng. 35:3 (1992), 521–539.

[de Borst et al. 1993] R. de Borst, L. Sluys, H. Muhlhaus, and J. Pamin, “Fundamental issues in finite element analyses of
localization of deformation”, Eng. Comput. 10:2 (1993), 99–121.

[de Souza Neto et al. 2008] E. de Souza Neto, D. Peric, and D. Owen, Computational methods for plasticity: theory and
applications, Wiley, Chichester, England, 2008.

[Dunwoody and Ogden 2002] J. Dunwoody and R. Ogden, “On the thermodynamic stability of elastic heat-conducting solids
subject to a deformation-temperature constraint”, Math. Mech. Solids 7:3 (2002), 285–306.

[Duszek et al. 1992] M. Duszek, P. Perzyna, and E. Stein, “Adiabatic shear band localization in elastic-plastic damaged solids”,
Int. J. Plast. 8:4 (1992), 361–384.

[Eringen 1967] A. Eringen, Mechanics of Continua, Wiley, New York, 1967.

http://dx.doi.org/10.1023/A:1007513631783
http://dx.doi.org/10.1016/0020-7225(92)90141-3
http://dx.doi.org/10.1016/S0168-874X(02)00164-6
http://dx.doi.org/10.1016/S0168-874X(02)00164-6
http://dx.doi.org/10.1016/0020-7225(91)90168-3
http://dx.doi.org/10.1016/0020-7225(91)90168-3
http://dx.doi.org/10.1016/0045-7949(89)90244-7
http://dx.doi.org/10.1016/0045-7949(89)90244-7
http://dx.doi.org/10.1016/S0022-5096(03)00118-2
http://dx.doi.org/10.1016/S0022-5096(03)00118-2
http://dx.doi.org/10.1088/0965-0393/15/1/S22
http://dx.doi.org/10.1017/CBO9781139178938
http://dx.doi.org/10.1002/nme.1620350307
http://dx.doi.org/10.1002/nme.1620350307
http://dx.doi.org/10.1108/eb023897
http://dx.doi.org/10.1108/eb023897
http://dx.doi.org/10.1002/9780470694626
http://dx.doi.org/10.1002/9780470694626
http://dx.doi.org/10.1177/108128602027736
http://dx.doi.org/10.1177/108128602027736
http://dx.doi.org/10.1016/0749-6419(92)90055-H


144 JERZY PAMIN, BALBINA WCISŁO AND KATARZYNA KOWALCZYK-GAJEWSKA

[Forest and Aifantis 2010] S. Forest and E. C. Aifantis, “Some links between recent gradient thermo-elasto-plasticity theories
and the thermomechanics of generalized continua”, Int. J. Solids Struct. 47:25-26 (2010), 3367–3376.

[Forest and Lorentz 2004] S. Forest and E. Lorentz, “Localization phenomena and regularization methods”, pp. 311–371 in
Local approach to fracture (Paris), edited by J. Besson, Ecole d’été “Mécanique de l’endommagement et approche locale de
la rupture” (MEALOR), Les presses de l’ecole des mines de paris, 2004.

[Geers 2004] M. Geers, “Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient
framework”, Computer Methods in Applied Mechanics and Engineering 193:30-32 (2004), 3377–3401.

[Geers et al. 1999] M. Geers, R. Borst, W. Brekelmans, and R. Peerlings, “Validation and internal length scale determination
for a gradient damage model: application to short glass-fibre-reinforced polypropylene”, Int. J. Solids Struct. 36:17 (1999),
2557–2583.

[Haupt 2002] P. Haupt, Continuum mechanics and theory of materials, 2nd ed., Advanced Texts in Physics, Springer, Berlin,
2002.

[Hill 1958] R. Hill, “A general theory of uniqueness and stability in elastic-plastic solids”, J. Mech. Phys. Solids 6 (1958),
236–249.

[Holzapfel 2000] G. A. Holzapfel, Nonlinear solid mechanics: a continuum approach for engineering, Wiley, Chichester,
England, 2000.

[Hughes 1980] T. J. R. Hughes, “Generalization of selective integration procedures to anisotropic and nonlinear media”, Int. J.
Num. Methods Eng. 15:9 (1980), 1413–1418.

[Korelc 2008] J. Korelc, Nonlinear finite element methods, Springer, Berlin, 2008.

[Korelc 2009] J. Korelc, “Automation of primal and sensitivity analysis of transient coupled problems”, Comput. Mech. 44:5
(2009), 631–649.

[Korelc 2011] J. Korelc, “AceGen and AceFEM user manual”, Technical report, University of Ljubljana, 2011, Available at
http://symech.fgg.uni-lj.si/.

[Kroner and Teodosiu 1974] E. Kroner and C. Teodosiu, “Lattice defect approach to plasticity and viscoplasticity”, in Problems
of plasticity (Leiden, Netherlands, 1972), edited by A. Sawczuk, 1974.

[Lee 1969] E. Lee, “Elastic-plastic deformation at finite strains”, J. Appl. Mech. (ASME) 36:1 (1969), 1–6.

[Lee and Liu 1967] E. Lee and D. Liu, “Finite-strain elastic-plastic theory with application to plane-wave analysis”, J. Appl.
Phys. 38:1 (1967), 19–27.

[LeMonds and Needleman 1986] J. LeMonds and A. Needleman, “Finite element analyses of shear localization in rate and
temperature dependent solids”, Mech. Mater. 5:4 (1986), 339–361.

[Li and Chandra 2003] H. Li and N. Chandra, “Analysis of crack growth and crack-tip plasticity in ductile materials using
cohesive zone models”, Int. J. Plasticity 19:6 (2003), 849–882.

[Lu and Pister 1975] S. Lu and K. Pister, “Decomposition of deformation and representation of the free energy function for
isotropic thermoelastic solids”, Int. J. Solids and Struct. 11:7 (1975), 927–934.

[Mandel 1974] J. Mandel, “Thermodynamics and plasticity”, in Foundations of continuum thermodynamics, edited by J. Del-
gado, Macmillan, New York, 1974.

[Menzel 2002] A. Menzel, Modelling and computation of geometrically nonlinear anisotropic inelasticity, Ph.D. Thesis, Uni-
versity of Kaiserslautern, 2002, Available at https://kluedo.ub.uni-kl.de/frontdoor/index/index/year/2002/docId/1334.

[Miehe 1995] C. Miehe, “Entropic thermoelasticity at finite strains: aspects of the formulation and numerical implementation”,
Comput. Methods Appl. Mech. Eng. 120:3-4 (1995), 243–269.

[Müller and Ruggeri 1993] I. Müller and T. Ruggeri, Extended thermodynamics, Springer Tracts in Natural Philosophy 37,
Springer, New York, 1993.

[Peerlings et al. 1996] R. Peerlings, R. de Borst, W. Brekelmans, and J. de Vree, “Gradient enhanced damage for quasi-brittle
materials”, Int. J. Num. Methods Eng. 39:19 (1996), 3391–3403.

[Peerlings et al. 2001] R. Peerlings, M. Geers, R. de Borst, and W. Brekelmans, “A critical comparison of nonlocal and gradient-
enhanced softening continua”, Int. J. Solids Struct. 38:44-45 (2001), 7723–7746.

http://dx.doi.org/10.1016/j.ijsolstr.2010.07.009
http://dx.doi.org/10.1016/j.ijsolstr.2010.07.009
https://hal.archives-ouvertes.fr/hal-00164479
http://dx.doi.org/10.1016/j.cma.2003.07.014
http://dx.doi.org/10.1016/j.cma.2003.07.014
http://dx.doi.org/10.1016/S0020-7683(98)00123-1
http://dx.doi.org/10.1016/S0020-7683(98)00123-1
http://dx.doi.org/10.1007/978-3-662-04775-0
http://dx.doi.org/10.1016/0022-5096(58)90029-2
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471823198.html
http://dx.doi.org/10.1002/nme.1620150914
http://dx.doi.org/10.1007/978-3-540-71001-1_12
http://dx.doi.org/10.1007/s00466-009-0395-2
http://symech.fgg.uni-lj.si/
http://dx.doi.org/10.1115/1.3564580
http://dx.doi.org/10.1063/1.1708953
http://dx.doi.org/10.1016/0167-6636(86)90039-6
http://dx.doi.org/10.1016/0167-6636(86)90039-6
http://dx.doi.org/10.1016/S0749-6419(02)00008-6
http://dx.doi.org/10.1016/S0749-6419(02)00008-6
http://dx.doi.org/10.1016/0020-7683(75)90015-3
http://dx.doi.org/10.1016/0020-7683(75)90015-3
https://kluedo.ub.uni-kl.de/frontdoor/index/index/year/2002/docId/1334
http://dx.doi.org/10.1016/0045-7825(94)00057-T
http://dx.doi.org/10.1007/978-1-4684-0447-0
http://dx.doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
http://dx.doi.org/10.1016/S0020-7683(01)00087-7
http://dx.doi.org/10.1016/S0020-7683(01)00087-7


GRADIENT-ENHANCED LARGE STRAIN THERMOPLASTICITY 145

[Pérez-Foguet et al. 2000] A. Pérez-Foguet, A. Rodríguez-Ferran, and A. Huerta, “Numerical differentiation for local and
global tangent operators in computational plasticity”, Comput. Methods in Appl. Mech. Eng. 189:1 (2000), 277–296.

[Pijaudier-Cabot and Bažant 1987] G. Pijaudier-Cabot and Z. P. Bažant, “Nonlocal damage theory”, J. Eng. Mech. 113:10
(1987), 1512–1533.

[Rice 1976] J. R. Rice, “The localization of plastic deformation”, pp. 207–220 in Proceedings of the 14th international congress
on theoretical and applied mechanics, edited by W. Koiter, North-Holland Publishing Company, 1976.

[Ristinmaa et al. 2007] M. Ristinmaa, M. Wallin, and N. Ottosen, “Thermodynamic format and heat generation of isotropic
hardening plasticity”, Acta Mech. 194:1-4 (2007), 103–121.

[Rooney and Bechtel 2004] F. J. Rooney and S. E. Bechtel, “Constraints, constitutive limits, and instability in finite thermoe-
lasticity”, J. Elasticity 74:2 (2004), 109–133.

[Rudnicki and Rice 1975] J. Rudnicki and J. Rice, “Conditions for the localization of deformation in pressure-sensitive dilatant
materials”, J. Mech. Phys. Solids 23:6 (1975), 371–394.

[Simo 1988] J. C. Simo, “A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multi-
plicative decomposition, I: Continuum formulation”, Comput. Methods Appl. Mech. Eng. 66:2 (1988), 199–219.

[Simo and Hughes 1998] J. C. Simo and T. J. R. Hughes, Computational inelasticity, Interdisciplinary Applied Mathematics 7,
Springer, New York, 1998.

[Simo and Miehe 1992] J. Simo and C. Miehe, “Associative coupled thermoplasticity at finite strains: formulation, numerical
analysis and implementation”, Comput. Methods Appl. Mech. Eng. 98:1 (1992), 41–104.

[Simo and Rifai 1990] J. C. Simo and M. S. Rifai, “A class of mixed assumed strain methods and the method of incompatible
modes”, Int.. J. Num. Methods Eng. 29:8 (1990), 1595–1638.

[Simone et al. 2003] A. Simone, H. Askes, R. Peerlings, and L. Sluys, “Interpolation requirements for implicit gradient-
enhanced continuum damage models”, Commun. Numer. Methods Eng. 19:7 (2003), 563–572. Errata in 20 (2004), 163–165.

[Sluys 1992] L. Sluys, Wave propagation, localization and dispersion in softening solids, Ph.D. Thesis, Delft University of
Technology, 1992, Available at http://resolver.tudelft.nl/uuid:0f9b3de9-e0ec-4d9b-a42f-fcf704d5d40e.

[Steinmann 1999] P. Steinmann, “Formulation and computation of geometrically non-linear gradient damage”, Int. J. Num.
Methods Eng. 46:5 (1999), 757–779.

[Steinmann et al. 1999] P. Steinmann, K. Runesson, and R. Larsson, “On the analysis of adiabatic strong discontinuities
within thermoplastic solids”, in IUTAM Symposium on micro- and macrostructural aspects of thermoplasticity (Dordrecht,
Netherlands), edited by O. Bruhns and E. Stein, Kluwer Academic Publisher, 1999.

[Stojanovitch et al. 1964] R. Stojanovitch, S. Djuritch, and L. Vujoshevitch, “On finite thermal deformations”, Arch. Mech. 16
(1964), 103–108.

[Taylor and Quinney 1934] G. I. Taylor and H. Quinney, “The latent energy remaining in a metal after cold working”, Proc.
Royal Soc. Lond. A 143:849 (1934), 307–326.

[Thomas 1961] Y. Thomas, Plastic flow and fracture of solids, Academic Press, New York, 1961.

[Tvergaard 1999] V. Tvergaard, “Studies of elastic-plastic instabilities”, J. Appl. Mech. (ASME) 66:1 (1999), 3–9.

[Vardoulakis and Sulem 1995] I. Vardoulakis and J. Sulem, Bifurcation Analysis in Geomechanics, Blackie Academic & Pro-
fessional, 1995.

[Wcisło and Pamin 2014] B. Wcisło and J. Pamin, “Entropic thermoelasticity for large deformations and its AceGen imple-
mentation”, pp. 319–326 in Recent advances in computational mechanics, edited by T. Łodygowski et al., CRC Press, London,
2014.

[Wcisło and Pamin 2016] B. Wcisło and J. Pamin, “Local and non-local thermomechanical modeling of elastic-plastic materials
undergoing large strains”, Int. J. Num. Methods Eng. 65 (2016).

[Wcisło et al. 2013] B. Wcisło, J. Pamin, and K. Kowalczyk-Gajewska, “Gradient-enhanced damage model for large deforma-
tions of elastic-plastic materials”, Arch. Mech. 65:5 (2013), 407–428.

[Wriggers et al. 1992] P. Wriggers, C. Miehe, M. Kleiber, and J. C. Simo, “On the coupled thermomechanical treatment of
necking problems via finite element methods”, Int. J. Num. Meth. Eng. 33:4 (1992), 869–883.

http://dx.doi.org/10.1016/S0045-7825(99)00296-0
http://dx.doi.org/10.1016/S0045-7825(99)00296-0
http://dx.doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
http://dx.doi.org/10.1007/s00707-007-0448-6
http://dx.doi.org/10.1007/s00707-007-0448-6
http://dx.doi.org/10.1023/B:ELAS.0000033864.58356.38
http://dx.doi.org/10.1023/B:ELAS.0000033864.58356.38
http://dx.doi.org/10.1016/0022-5096(75)90001-0
http://dx.doi.org/10.1016/0022-5096(75)90001-0
http://dx.doi.org/10.1016/0045-7825(88)90076-X
http://dx.doi.org/10.1016/0045-7825(88)90076-X
http://dx.doi.org/10.1016/0045-7825(92)90170-O
http://dx.doi.org/10.1016/0045-7825(92)90170-O
http://dx.doi.org/10.1002/nme.1620290802
http://dx.doi.org/10.1002/nme.1620290802
http://dx.doi.org/10.1002/cnm.597
http://dx.doi.org/10.1002/cnm.597
http://resolver.tudelft.nl/uuid:0f9b3de9-e0ec-4d9b-a42f-fcf704d5d40e
http://dx.doi.org/10.1002/(SICI)1097-0207(19991020)46:5<757::AID-NME731>3.0.CO;2-N
http://link.springer.com/chapter/10.1007%2F0-306-46936-7_24
http://link.springer.com/chapter/10.1007%2F0-306-46936-7_24
http://dx.doi.org/10.1098/rspa.1934.0004
http://dx.doi.org/10.1115/1.2789166
http://dx.doi.org/10.1201/b16513-41
http://dx.doi.org/10.1201/b16513-41
http://dx.doi.org/10.1002/nme.5280
http://dx.doi.org/10.1002/nme.5280
http://am.ippt.pan.pl/am/article/view/v65p407
http://am.ippt.pan.pl/am/article/view/v65p407
http://dx.doi.org/10.1002/nme.1620330413
http://dx.doi.org/10.1002/nme.1620330413


146 JERZY PAMIN, BALBINA WCISŁO AND KATARZYNA KOWALCZYK-GAJEWSKA

[Yang et al. 2006] Q. Yang, L. Stainier, and M. Ortiz, “A variational formulation of the coupled thermo-mechanical boundary-
value problem for general dissipative solids”, J. Mech. Phys. Solids 54:2 (2006), 401–424.

[Zbib and Aifantis 1988a] H. M. Zbib and E. C. Aifantis, “On the localization and postlocalization behavior of plastic defor-
mation, I: On the initiation of shear bands”, Res Mechanica 23 (1988), 261–277.

[Zbib and Aifantis 1988b] H. M. Zbib and E. C. Aifantis, “On the localization and postlocalization behavior of plastic defor-
mation, II: On the evolution and thickness of shear bands”, Res Mechanica 23 (1988), 279–292.

[Zbib and Aifantis 1988c] H. M. Zbib and E. C. Aifantis, “On the localization and postlocalization behavior of plastic defor-
mation, III: On the structure and velocity of Portevin – Le Chatelier bands”, Res Mechanica 23 (1988), 293–305.

Received 1 Mar 2016. Revised 17 Jun 2016. Accepted 31 Aug 2016.

JERZY PAMIN: jpamin@L5.pk.edu.pl
Institute for Computational Civil Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

BALBINA WCISŁO: bwcislo@L5.pk.edu.pl
Institute for Computational Civil Engineering, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland

KATARZYNA KOWALCZYK-GAJEWSKA: kkowalcz@ippt.pan.pl
Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warszawa, Poland
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