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FRACTURE IN THREE DIMENSIONS DUE TO DIE MOTION ON
CRACK SURFACES: FRAMEWORK FOR STUDY OF

CRACK/CONTACT ZONE GEOMETRY

LOUIS M. BROCK

Dynamic steady state growth in 3D of a semi-infinite plane crack in isotropic elastic solids is considered.
Growth is driven by the translation of a rigid die between the two crack surfaces. Sliding friction is
neglected, but the possibility that crack surfaces resume contact in the wake of the die is considered.
Translation and crack growth occur at the same, constant, subcritical speed. An analytical solution is
obtained, and a criterion for fracture based on dynamic energy release rate imposed, with kinetic energy
included. A nonlinear differential equation for crack edge location and constraint equations result, and
together form a framework for study of crack and contact zone geometry.

Introduction

One result of 2D studies of dynamic fracture is an equation of motion for the crack tip [Freund 1990].
In a 3D study, such an equation must describe the contour defined by the crack edge in the crack plane.
For the dynamic steady state, this goal is considered in [Brock 2015a] for semi-infinite crack growth in
an unbounded solid. [Brock 2015b] extends this effort in two ways:

(a) Per the standard model [Freund 1990], dynamic energy release rate is equated with surface energy.

(b) The standard model is itself modified by the inclusion of kinetic energy [Gdoutos 2005].

As in [Brock 2015a], the crack remains in its original plane, and growth is caused by translation at
constant subcritical speed of compression loads on the crack faces. Such growth can be viewed as an
example of hydraulic fracture, e.g., [Mastrojannis et al. 1980]. The present article considers fracture
driven not by specified crack face loading, but by wedging, i.e., rigid die motion between faces of an
initially closed crack.

The 2D, dynamic steady state study of sliding contact, e.g., [Brock and Georgiadis 2000], shows that
for subcritical sliding speed the apex of a smooth-contoured, convex rigid die lies within the contact
zone. In subsequent 2D studies, e.g., [Brock 2004], semi-infinite crack extension by the wedging action
of such a die exhibits the same behavior. Moreover, crack closure (crack surfaces resuming contact in
the wake of the die) is possible. This paper considers the same possibility.

The problem statement and governing equations begin the analysis. The unmixed problem for (largely
unspecified) discontinuities in displacement and traction over a planar area in the same solid is then
addressed. Integral transforms are obtained, and analytical expressions for the inverses applied to the
fracture problem. As stated above, sliding contact is frictionless. For purposes of illustration and possible
application in future work, however, this part of the analysis incorporates sliding friction. A framework
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of equations is developed and its application in the frictionless limit allows study of both crack and
contact zone contours.

Problem statement and governing equations

An unbounded isotropic solid is at rest, but contains a closed slit. In Cartesian basis x = x(xk), k =
(1, 2, 3) the slit comprises semi-infinite region (x3 = 0, x1 < 0) with boundary BS (x1 = 0). A rigid
die is inserted in the slit, and its shape and placement guarantee symmetry with respect to both the
x1x2-plane and x2x3-plane. The die then translates in the positive x1-direction at subcritical constant
speed V . Translation is opposed by friction, and contact zone AC with closed boundary BC forms on
each slit face. Fracture occurs so that BS also moves, and may no longer be rectilinear. Crack closure,
i.e., surfaces resume contact [Brock 2004], is allowed in the wake of the die. Thus a crack gap exists in
region AG between BS and a contour B−C , and AC ∈ AG . The crack closure region is designated A−C , and
the nonfractured region ahead of BS is designated as AN . Contour B−C is also of infinite length, and not
necessarily rectilinear. A dynamic steady state ensues, such that (BS, BC , B−C ) no longer change shape
but translate in the positive x1-direction with speed V . Displacement u(uk) and traction T (σik) do not
vary in the moving frame of (BS, BC , B−C ). Basis x is therefore also translated with speed V so that
uk = uk(x), σik = σik(x) and the (absolute) time derivative (D f, ḟ ) can be written −V ∂1 f . Here ∂k f
signifies xk-differentiation. For convenience, the origin of x is placed in AC . Die shape and expectations
that (BS, BC , B−C ) do not intersect suggest that contours and contour gradients can be defined by single-
valued, continuous functions of (x1, x2).

The equations that govern (u, T ) in the unbounded solid are [Brock 2015a; 2015b]:

∇ · T − ρV 2∂2
1 u = 0, (1a)

1
µ

T = 2ν
1−2ν

(∇ · u)1+∇u+ u∇. (1b)

In (1) (∇,∇2, 1) respectively are gradient, Laplacian, and identity tensor. Constant (µ, ρ, ν) are shear
modulus, mass density and Poisson’s ratio. Equation (1) embodies the assumption that body forces can
be neglected, and uncoupling gives

u = uS + uD, (2a)

(∇2
− c2∂2

1 )uS = 0, (c2
D∇

2
− c2∂2

1 )uD = 0, (2b)

∇ · uS = 0, ∇ × uD = 0. (2c)

Dimensionless quantities are also introduced as

c = V/VS, cD = VD/VS =
√

m+ 1, m = 1/(1− 2ν). (3a)

Here (VS, VD) are shear and dilatational wave speeds, and

VS =
√
µ/ρ. (3b)

Conditions for x3 = 0, (x1, x2) ∈ (AN , A−C ) are

[uk] = [σ3k] = 0. (4a)
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Here [ f ] = f (+)− f (−) and f (±) signifies evaluation at x3 = 0(±). Equation (4a) therefore embodies the
assumption that slip does not occur in slit closure region A−C . Singular behavior of (T ,∇u) is expected
near BS , but not near (BC , B−C ). In AG − AC

[σ3k] = σ
(±)
3k = 0. (4b)

Mixed conditions (for infinitesimal deformation) hold in AC as

u(±)3 = (∓)U, [u1] = [u2] = 0, (4c)

σ
(±)
31 = (±)γ σ

(±)
33 , σ

(±)
32 = 0, [σ33] = 0. (4d)

Here γ is the (dimensionless) friction coefficient. Function U (x1, x2) is defined by shape and orientation
of the die, and thus is bounded, continuous and symmetric in x2. The inhomogeneous Equation (4c)
involves bounded terms, and (4c) and (4d) hold in finite region AC . Solutions (u, T ) should therefore
be finite for |x| →∞.

Constraints also apply:

(I) Traction in AC is finite and continuous.

(II) Normal traction is nontensile in (AC , A−C ) and tensile near BC in AN .

(III) Normal traction in AC is invariant with respect to resultant compressive force on AC [Brock 2012].

(IV) The dynamic energy release rate criterion [Freund 1972] governs, with kinetic energy included
[Gdoutos 2005; Brock 2015b].

Related problem: translating discontinuities

As in [Brock 2015a; 2015b], an unmixed problem for translation of discontinuities in displacement and
traction on the x1x2-plane is considered first. Equations (1)–(3) again hold, and the solution is also
bounded for |x| →∞. ([uk], [σ3k]) vanish for (x1, x2) /∈ AG , and are piecewise continuous functions of
(x1, x2) ∈ AG . Equations (4c) and (4d) are therefore replaced by

[uk] = [σ3k] = 0 (x1, x2) /∈ AG . (5)

For (x1, x2) ∈ AG components of [u] are bounded, but near BC components of [σ3k] can be singular. The
double bilateral transform [Sneddon 1972] is now introduced as

f̂ =
∫∫

12
f (x1, x2) exp(−p1x1− p2x2) dx1 dx2. (6)

Symbol 12 signifies integration over the x1x2-plane. Application of (6) to (1)–(3) gives

ûS = V (±) exp(−B|x3|), ûD = U (±)
D exp(−A|x3|). (7)
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Superscript (±) signifies x3 ≥ 0 and x3 ≤ 0, respectively, and

p1V (±)
1 + p2V (±)

2 (∓)BV (±)
3 = 0, (8a)

(UD)
(±)
1 = p1U (±)

D , (UD)
(±)
2 = p2U (±)

D , (UD)
(±)
3 = (∓)A±U (±)

D , (8b)

B =
√

c2
1− p2

1 − p2
2, A =

√
c2

1/c
2
D − p2

1 − p2
2, c1 = cp1. (8c)

Here (V (±)
1 , V (±)

2 ,U (±)
D ) are arbitrary functions of (p1, p2), and bounded behavior of (7) as |x3| →∞

requires that Re(B, A) ≥ 0 in the cut (p1, p2)-planes. Use of (5)–(8) gives six equations for finding
(V (±)

1 , V (±)
2 ,U (±)) in terms of ([ûk], [σ̂3k]). Solutions are given in Appendix A by (A.1) and (A.2).

Together with the transform of (1b) they generate (A.3).

Transform inversion — general formulas

Equations (4c) and (4d) indicate that application of related problem results to the crack growth problem
requires expressions that relate ([uk], [σ3k], σ

(+)
3k ). Therefore (A.3) is subjected to the inversion operation

corresponding to (6). This results in three equations of the general form∑
j

∫∫
G

f j dξ1 dξ2

( 1
2π i

)2
∫∫

dp1 dp2 C j exp[p1(x1− ξ1)+ p2(x2− ξ2)] = 0. (9)

Here f j (ξ1, ξ2) represents ([uk], [σ3k], σ
(+)
3k ) and C j (p1, p2), coefficient of the corresponding transform

in (A.3). Subscript G signifies integration over AG , and the remaining integrals are taken over the entire
Im(p1)- and Im(p2)-axes. Results in [Brock 2012; 2015a; 2015b] suggest use of transformations

p1 = p cosψ, p2 = p sinψ, (10a)[
x
y

]
=

[
cosψ sinψ
− sinψ cosψ

] [
x1

x2

]
,

[
ξ

η

]
=

[
cosψ sinψ
− sinψ cosψ

] [
ξ1

ξ2

]
. (10b)

Here Re(p) = 0+, |Im(p), x, y, ξ, η| < ∞ and |ψ | < π/2. Parameters (p, ψ), (x, ψ; y = 0) and
(ξ, ψ; η = 0) resemble quasipolar coordinates, i.e.,

dx1 dx2 = |x | dx dψ, dξ1 dξ2 = |ξ | dξ dψ, dp1 dp2 = |p| dp dψ. (10c)

In (8) and (A.1)–(A.3), quantities (A, B, T, DR, DN , DM) can be written as products of functions of p
and, respectively, factors as

A =
√

1− c̄2/c2
D, B =

√
1− c̄2, T = c̄2

− 2, (11a)

R = 4AB− T 2, N = 2AB+ T, M = 2N + c̄2 (11b)

c̄ = c cosψ. (11c)

For Re(A, B) ≥ 0 the requirement that Re(
√
±p) > 0 respectively, in the cut p-plane with branches

Im(p)= 0, Re(p) < 0 and Im(p)= 0, Re(p) > 0 guarantees that (7) is bounded. However Re(A, B)≥ 0
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requires 0 < c < 1, i.e., translation speed is restricted to range 0 < V < VS . Equation (9) assumes the
general form

∑
j

1
iπ

∫
9

C j dψ
∫

Gη
dη
∫

Gξ
f j dξ 1

2π i

∫
|p|
p

dp
(

1,
√
−p
√

p

)
exp p(x − ξ)= 0. (12a)

Now f j = f j (x, ψ; η) represents (∂[uk]/∂ξ, [σ3k], σ
(+)
3k ) and C j = C j (ψ). Integration is along the

positive side (Re(p) = 0+) of the entire Im(p)-axis, and p-dependence is seen to be of two types.
Symbol 9 signifies integration over range |ψ |<π/2. Symbols (Gξ,Gη) signify integration with respect
to (ξ, η) over AG . Performance of the p-integration [Brock 2015a; 2015b] gives

∑
j

∫
9

C j dψ
∫

Gη
dη
(

f j ,
1
π

∫
Gξ

f j dξ
ξ − x

)
= 0. (12b)

The first (nonintegral) term in parentheses vanishes for x /∈ Gξ and appears for x ∈ Gξ ; the integral
(second term) is then evaluated in the principal value (vp) sense. It is noted that (AG, AC , A−C , AN ) and
(∂[uk]/∂ξ, [σ3k], σ

(+)
3k ) can be defined completely in terms of (x, ψ), and that

f (x, ψ)=− ∂

∂x

∫
Gη

dη
∫

Gξ
dξ f (ξ, ψ)δ(x − ξ)δ(η). (12c)

Here δ is the Dirac function. These results imply that form (12b) is satisfied when

∑
C j (ψ)

[
f j (x, ψ),

1
π

∫
Gξ

f j (ξ, ψ)
dξ
ξ−x

]
= 0.

In light of this equality, together with (10)–(12) and (A.3), the three equations in (A.3) give for x3 = 0(+),
|ψ |< π/2:

∂

∂x
[u1] =

cosψ
µR
[σ33] +

2
µRπ

∫
G X

dξ
ξ − x

[
g1(σ

(+)
31 − [σ31]/2)+ g12(σ

(+)
32 − [σ32]/2)

]
, (13a)

∂

∂x
[u2] =

sinψ
µR
[σ33] +

2
µRπ

∫
G X

dξ
ξ − x

[
g12(σ

(+)
31 − [σ31]/2)+ g2(σ

(+)
32 − [σ32]/2)

]
, (13b)

∂

∂x
[u3] =

N
µR

[
[σ31] cosψ + [σ32] sinψ

]
−

2c̄2 A
µRπ

∫
G X

dξ
ξ − x

(σ
(+)
33 − [σ33]/2), (13c)

g1 = M/B sin2 ψ + c̄2 B, g2 = M/B cos2 ψ + c̄2 B, g12 =−M/B sinψ cosψ. (13d)

Subscript G X signifies integration over those segments of Gξ in which integrand terms do not vanish.
In (11) and (13), R is the Rayleigh function, where R → 0+ (c̄ = 0), R = −1 (c̄ = 1) and R = 0
(c̄ = cR, 0 < cR < 1). Term c̄ < c for |ψ | < π/2 in (11c), so that restriction 0 < V < VR now applies,
where VR = cR VS is the Rayleigh speed.
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Basic solution to crack growth problem

In view of (5), (10) and conditions (4) imposed on (AG, AC) and (BS, BC , B−C ), the geometry of these
regions on x3 = 0 can be defined for |ψ |< π/2 as

AC : −r−(ψ) < x < r+(ψ), (14a)

AG : −r−C (ψ) < x < rS(ψ), (14b)

AG − AC : −r−C (ψ) < x <−r−(ψ), r+(ψ) < x < rS(ψ), (14c)

A−C : x <−r−C (ψ), AN : x > rC(ψ). (14d)

Here (r±, rS, r−C ) > 0, and a continuous boundary BC requires that r+(±π/2) = r−(∓π/2). In view
of, e.g., [Brock 2004], it is reasonable to expect that (rS, r−C )� r±, but this expectation plays no role
until the basic solution is illustrated for a specific die geometry. Equations (4) and (10) indicate that for
x3 = 0(+), |ψ |< π/2

AC : [σ32] = [σ33] = σ
(+)
32 = 0, ∂

∂x
[u1] =

∂

∂x
[u2] = 0, (15a)

AG − AC : [σ3k] = σ
(+)
3k = 0, k = (1, 2, 3), (15b)

(A−C , AN ) : [σ3k] =
∂

∂x
[uk] = 0, k = (1, 2, 3). (15c)

In addition, properties assumed for the die suggest that

AN : σ
(+)
31 = σ

(+)
32 = 0, (16a)

AC : [u3] = 2u(+)3 , [σ31] = 2σ (+)31 . (16b)

Equations (13a) and (13b) are thus satisfied when ([u1], [u2]) ≡ 0. Notation (σ (±)33 → σ, ξ → t) is
introduced in (13c), which in view of (4c) and (10) gives

A−C : (vp)
∫

C−

σ dt
t−x
+

∫
C

σ dt
t−x
+

∫
N

σ dt
t−x
= 0, (17a)

A0 : −
2c̄2 A
µRπ

[∫
C−

σ dt
t−x
+ (vp)

∫
C

σ dt
t−x
+

∫
N

σ dt
t−x

]
+

2N
µR

γ σ cosψ =−2∂U
∂x
, (17b)

AN :

∫
C−

σ dt
t−x
+

∫
C

σ dt
t−x
+ (vp)

∫
N

σ dt
t−x
= 0. (17c)

Subscripts (C−,C, N ) respectively signify integration over range t <−r−C , −r− < t < r+ and t > rS .
Solution of set (17) for (x, ψ) ∈ AC and (x, ψ) ∈ (A−C , AN ) respectively, is

σ

µ
=

R
S

[
∂U
∂x

cosπ�+ sinπ�

√
x + r−C
rS − x

(r+− x)1+�

(x + r−)�
(vp)QC

(∂U
∂x
; x
)]
, (18a)
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σ

µ
=

R
S

√
x + r−C
x − rS

(x − r+)1+�

(x + r−)�
QC

(∂U
∂x
; x
)
, (18b)

QC( f ; ξ)=
1
π

∫
C

f
√

rS − t
t + r−C

(t + r−)�

(r+− t)1+�
dt

t − ξ
. (18c)

Equation (18a) satisfies constraint I when∫
C

∂U
∂t

√
rS − t
t + r−C

(
t + r−
r+− t

)� dt
t − r+

= 0. (18d)

In (18a) and (18b) terms (�, S) are defined as

�=− 1
2 +0 < 0, 0 =

1
π

tan−1
(
−γ N cosψ

c̄2 A

)
> 0, (19a)

S =
√
(γ N cosψ)2+ (c̄2 A)2. (19b)

For r+ < x < rS and −r−C < x <−r− respectively in AG − AC

∂

∂x
[u3] =

2c̄2 A
S

√
x + r−C
rS − x

(x − r+)1+�

(x + r−)�
QC

(
∂U
∂x
; x
)
, (20a)

∂

∂x
[u3] = −

2c̄2 A
S

√
x + r−C
rS − x

(r+− x)1+�

(−x − r−)�
QC

(
∂U
∂x
; x
)
. (20b)

Knowledge of ([u3], ∂1[u3]) for r+ < x < rS will be required. Equations (10) and (20a) provide ingredi-
ents for this with

[u3] = −
2c̄2 A
Sπ

∫
C

∂U
∂t

dt
√

rS − t
t + r−C

(t + r−)�

(r+− t)1+�

∫
+

√
τ + r−C
rS − τ

(τ − r+)1+�

(τ + r−)�
dτ
τ − t

, (21a)

∂1 f = cosψ
∂ f
∂x
−

sinψ
|x |

∂ f
∂ψ

, ∂2 f = sinψ
∂ f
∂x
+

cosψ
|x |

∂ f
∂ψ

. (21b)

Symbol + signifies integration over range x < τ < rS . As is appropriate, (21a) vanishes for x→ rS−.

Constraint (I, II, III): preliminary observations

Contour parameters r±(ψ), rS(ψ) and r−C (ψ) remain to be determined. Equation (18d) provides one
equation, and (18a) must satisfy (unilateral) constraint II. If such is indeed the case, the resultant force
on each contact zone AC is

−

∫
9

dψ
∫

C
|x |σ(x, ψ) dx . (22a)

Constraint III requires that σ be invariant with respect to the force, i.e., for arbitrary (δx, δψ)

δσ =
∂σ

∂x
δx +

∂σ

∂ψ
δψ = 0. (22b)
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Therefore for −r− < x∗ < r+

∂σ

∂x
(x∗, ψ)= 0,

∂σ

∂ψ
(x∗, ψ)= 0. (22c)

Equation (22) is examined below in terms of specific die geometry (U ).

Constraint IV: dynamic energy release rate

In this study kinetic energy is considered [Brock 2015b; Gdoutos 2005]. Nevertheless known procedures,
e.g., [Freund 1972], can be used to derive the balance equation required by constraint IV:

D
∫∫

G
eG dx1 dx2 =

∫∫
0
[σ3k u̇k] dx1 dx2+ D

∫∫∫
123

ρ

2
u̇k u̇k dx1 dx2 dx3. (23)

Subscript 123 signifies integration over the unbounded solid. Subscript 0, integration over a thin strip
that straddles crack edge BS and subscript G, integration over gap surface AG . Term eG is the surface
energy per unit area of AG , and is treated as constant [deBoer et al. 1988; Skriver and Rosengaard 1992;
Freund 1990]. The presence of operators ( ḟ , D f ) signifies fixed basis x. Use of translating basis x and
Green’s theorem [Malvern 1969], imposition of the dynamic steady state, and use of (10) give for the
first term in (23),

V eG

∫
9

√
r2

S + (r
′

S)
2 cosψ dψ. (24a)

Here f ′ signifies d f/dψ and it is noted that the radical in (24a) can be written as

rS

√
D2

S + D2
C , (24b)

with

DS =
1
rS
(rS sinψ)′, DC =

1
rS
(rS cosψ)′. (24c)

Because ([u1], [u2])≡ 0, use of (10) gives for the second integral in (23),

µV
∫
9

dψ
∫
+

−

|x | dx σ∂1[u3]. (25)

Here ± signifies integration limits rS±. Term (σ, [u3])= 0 for r+ < x < rS and x > rS , respectively. In
view of (18b) and (20a), however:

σ

µ
≈

R
S

GC

π
√

x − rS
(x→ rS+), (26a)

∂

∂x
[u3] ≈ −

2c̄2 A
S

GC

π
√

rS − x
(x→ rS−), (26b)

GC =
√

lG
(rS − r+)1+�

(rS + r−)�

∫
C

∂U
∂t

(t + r−)�

(r+− t)1+�
dt

√

t + r−C
√

rS − t
, lG = rS + r−C . (26c)

Equation (26a) must give positive σ (constraint II), and this requires that GC > 0. Distance between
BS and B−C , measured along a line passing through (x1, x2)= 0, is lG . In view of (21b), ∂1[u3] exhibits
(26b), but also the derivative of (21a) with respect to ψ . Chain/product-rule differentiation is required for
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this. Quantity U and parameters involving (�, c̄) are given functions of ψ , but (r±, rS, r−C ) are not. For
x→ rS− however, the dominant contribution involves r ′S , and ∂[u3]/∂rS =−∂[u3]/∂x . Equation (21b)
then gives

∂1[u3] ≈ −
2c̄2 A

S
GC DS

π
√

rS − x
(x→ rS−). (27a)

In view of (26a) and (27a) the x-integrand exhibits Dirac function δ(x − rS) [Freund 1972], so that (25)
gives

µV
2π

∫
9

dψ
R
S

G2
CrS DS. (27b)

Singular behavior as x → rS and rapid decay as |x | → ∞ seen in (26) are manifest in ∇u generally.
Therefore integration in the third term in (23) can be confined to a tube of radius rB→ 0 that encloses
BS . Term u̇k = −V ∂1uk in translating basis x for the dynamic steady state, and 3D expressions for
√

(x − rS)
2
+ x2

3 < rB , |ψ | < π/2 are required. Equations (A.1) and (7) lead to û(p1, p2, x3), and
relevant components are given in Appendix B. In light of (B.1) and (10), (∂(ui )D/∂x, [uk], [σ3k]) are
related by three equations of general form (compare (12a)):∑

j

C j
∂

∂x

∫
G X

dξ f j

∫
|p|
p

dp
(

x3

|x3|
,

√
−p
√

p

)
exp[p(x − ξ)− A

√
−p
√

p|x3|] = 0. (28)

The integration range for f j = ∂(ui )D/∂x is |ξ−rS|< rB , for f j = [uk] is r+< ξ < rS and for f j = [σ3k]

is −r− < ξ < r+. Three similar equations in terms of ∂(ui )S , with A replaced by B, follow from (B.2).
Integration with respect to p [Brock 2015a; 2015b] and use of (10) give expressions ∂uk/∂x that are valid
for (|x3| ≈ 0, x→ rS−). The results for x3 ≈ 0(+) are given in Appendix C by (C.1)–(C.3). Expressions
for ∂1[u3](|x3| ≈ 0, x → rS−) can then be developed in a manner similar to that involving ∂1uk . The
last term in (23) entails integration over the tube with radius rB → 0. A standard polar coordinate
system (r, φ), centered on BC , is therefore defined for given ψ in the xx3-plane by

r =
√
(x − rS)

2
+ x2

3 , φ = tan−1 x3

x − rS
(|φ|< π). (29)

Combining (24b), (24c), (26) and (29) with the formulas based on (C.1)–(C.3) and corresponding for-
mulas for x3 ≤ 0 results in (C.4). Use of Green’s theorem [Malvern 1969] in the dynamic steady state
with translating basis x produce for the last term in (23) an integral over the tube surface. Use of (C.4)
and (C.5) then gives for this term

−µV
∫
9

dψ rS

√
D2

S + D2
C

(
c̄3 A
π S

GC DS

)2 ∫
8

E cosφ dφ, (30a)

with

E =
(

T A+
2AA8

+
B B+
B8

)2

+

(
T A−
2A8

+
B−
B8

)2

. (30b)

Symbol 8 signifies integration over range |φ| < π . Parameter c̄ ≤ c < cR < 1. Therefore, for speeds
V which are rapid but well below Rayleigh value VR = cR VS , first order expansions for (A, B) in (11c)
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and (A8, B8) in (C.5) allow approximations

E = 2c̄4 sin2 φ

2

[
1

c4
D
+ 4

(
1−

1
c2

D

)2
sin4 φ

2
cos2 φ

]
+ O(c̄6), (31a)∫

8

E cosφ dφ =−πc4
1 E8, E8 =

1
4

[
1

c4
D
+

23
8

(
1−

1
c2

D

)2
]
. (31b)

Equations (24), (27) and (30a) all involve integration with respect to ψ and exhibit speed V as factor, so
that (23), (24a), (27b), (30a) and (31) give

cosψ
√

D2
S + D2

C − PC G2
C M DS = 0, (32a)

PC =
µ

πeG

R
2S
, M = 1+ 2

(c̄2 A)2

S R
c̄2 E8DS

√
D2

S + D2
C . (32b)

For |ψ |< π/2, (32a) and (24c) define a nonlinear differential equation for rS(ψ), but parameters r−C (ψ)
and r±(ψ) are also involved. Equation (18c) and continuity requirements r+(±π/2)= r−(∓π/2) also
serve as constraints upon (32a).

Comment on effects of kinetic energy

In the limit as c̄→ 0
c̄2 A

S
→ 1, 2

c̄2 A
R
→

c2
D

c2
D − 1

. (33)

Thus the effect of kinetic energy (E8) in (32a) is proportional to c̄2, i.e., V 2. The term M is a magnifi-
cation factor for this effect. Setting M = 1 in (32a) leads for |ψ |< π/2 to

DS −
DC cosψ

√

P2
G − cos2 ψ

= 0 (PG = PC G2
C > cosψ). (34)

Particular case: disk-shaped die

Consider the die to be a disk in the shape of ellipsoid of revolution

x2
1 + x2

2 +C3x2
3 = r2

0 ,

where (C3 � 1). Length r0 is the disk radius, and there should be clearance between disk edge and
(BS, B−C ). Moreover span lC of AC is assumed to be small. Thus for |ψ |< π/2

lC = r++ r−� 2r0, (rS, r−C ) > r0. (35a)

In view of (4c) and (10)
∂U
∂x
=−

x
√

C3r0
. (35b)
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If the expectation that (rS, r−C )� r± is now also imposed, series expansions for functions of (rS, r−C , r±)
can be introduced. In particular integration in (18d) and (26c) can be performed analytically, and con-
straint I and key parameter GC have asymptotic forms

r++�lC − 1/2rS(1+ rS/r−C )
[
(r++�lC/2)(r++�lC)+

3
2�lCr−

]
= 0, (36a)

GC =
√

rS/C3

√
1+ rS/r−C

π S
c̄2 Ar0

(D0 I0+ D1 I1+ D2 I2). (36b)

The (D, I )-terms in (36b) are given in Appendix D. Letting (rS, r−C )→∞ for |ψ |< π/2 in (36a) gives
the result found for sliding on a half-space by an axially symmetric die [Brock 2012]:

r+ =−�lC , r− = (1+�)lC . (37)

Use of (35b) and (36b) in (22) yield asymptotic results x∗+ r−+�lC = 0 and

σ(x∗)= σ ∗ =−
µR

S
√

C3

lC(1+�)1+�

r0(−�)�

[
1+

1
2rS

(1+ rS/r−C )(r++�lC)

]
. (38)

The right hand side of (38) is negative, in accordance with constraint II. Constraint III requires that (38)
be invariant for |ψ |< π/2.

For the disk, the framework developed for study is now seen to consist of:

(a) Properties of the disk (r0,C3, c), disk-solid (γ ) and solid, e.g., (µ, cD, cR, eG).

(b) Values of c such that V is well below VR , but not negligible.

(c) For these inputs, formulas for parameters (r±, rS, r−C ) are to be determined from (32)–(38), Appen-
dix D and invariance of (38). As is noted at the outset, this paper considers frictionless sliding
contact. This does not mean that friction is a negligible effect: parameter � in (19a) plays a key
role in solution formulas derived above, and calculations in Table 1 for various c and (γ, ψ) suggest
that friction effects, while small, become noticeable as sliding/crack growth speed V increases. For
purposes of illustrating the use of the framework, and to take advantage of the low-speed kinetic

(ψ, γ )↓ c→ 0.05 0.1 0.2 0.3

(ψ, 0) −0.5 −0.5 −0.5 −0.5
(0◦, 0.2) −0.48424 −0.48399 −0.48367 −0.48306
(0◦, 0.4) −0.46855 −0.46807 −0.46742 −0.46621
(30◦, 0.2) −0.48634 −0.48608 −0.48594 −0.48556
(30◦, 0.4) −0.47274 −0.47221 −0.47194 −0.47118
(45◦, 0.2) −0.48813 −0.48868 −0.48861 −0.4884
(45◦, 0.4) −0.47629 −0.47739 −0.47725 −0.47682
(60◦, 0.2) −0.49211 −0.49212 −0.49201 −0.49192
(60◦, 0.4) −0.48422 −0.48424 −0.48403 −0.48385
(90◦, γ ) −0.5 −0.5 −0.5 −0.5

Table 1. Parameter � for various c and (ψ, γ ).



170 LOUIS M. BROCK

energy parameter result (31b) however, calculations for the disk are now presented for the case
�=−0.5 (γ = 0).

Crack/contact zone contours: key equations

The algebraic manipulations involved in studying the geometry of crack and contact zone contours with
the formulas derived thus far are simpler if performed, in part, in terms of parameters

lC = r++ r−, dC = r+− r−, β = rS/r−C . (39)

Equations (36a) and (38) now give for |ψ |< π/2,

lC

r0
= χ/3[1+ 2β − (1+β/2)

√
1+β

√
(χr0)/(6rS) ], (40a)

dC

r0
=−

3
16(χ/3)

2(1+β)(1+ 2β)2r0/rS, (40b)

χ =
2c̄2 A
µR

√
C3|σ

∗
|(χ, r0/rS) < 1. (40c)

In appropriate fashion (lC , dC , r±) = 0 when |σ ∗| = 0 (χ = 0). The quantity dC = 0 when rS →∞,
a result consistent with (37) when γ = 0. Use of (36a), (39) and (40) in (32) when γ = 0 gives for
|ψ |< π/2:

cosψ
√

D2
S + D2

C − P Mr0/rS DS = 0. (41)

In (41) we have

M = 1+
2c̄4 A

R
E8DS

√
D2

S + D2
C , (42a)

P =
π

C3

µr0

eG

R
2c̄2 A

(χ/4)4 F(β)
(

P
r0

rS
> cosψ

)
, (42b)

F(β)= (2
3β)

2(1+β)(1+ 2β)4. (42c)

For ψ = 0 (41) and (42) give

rS

r0
= P1 M1,

r−C
r0
=

rS

β1r0

(
rS

r0
,

r−C
r0

)
> 1, (43a)

M1 = 1+
2c4 A1

E8
, (43b)

P1 =
π

C3

µr0

eG

R1

2c2 A1
(χ1/4)4 F(β1), χ1 =

2c2 A1

µR1

√
C3|σ

∗
|< 1. (43c)

Subscript 1 signifies that c̄→ c in (11a) and (11b).
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For |ψ | → π/2,

rS ≈
hS

cosψ
, r−C ≈

h−C
cosψ

, (44a)

hS

r0
= P2 M2,

h−C
r0
=

hS

β2r0
, (44b)

M2 = 1+
c2

Dc2

c2
D − 1

E8, (44c)

P2 =
π

C3

µr0

eG
(1− 1/c2

D)
3
(√

C3

4µ
|σ ∗|

)4

F(β2). (44d)

Subscript 2 signifies that c̄→ 0 in (11).
Equations (10) and (44) show that points on (BS, B−C ) approach rectilinear asymptotes that parallel

the x2-axis at great distances from the path of the die. That is,

BS : x1→ hC , |x2| →∞, (45a)

B−C : x1→−h−C , |x2| →∞. (45b)

Term M in (32) and (42a) is the magnification factor for the effect of kinetic energy, and (M1,M2) are
limit cases. To illustrate their behavior, consider a generic solid with properties [Brock and Georgiadis
2000; deBoer et al. 1988; Skriver and Rosengaard 1992]:

µ= 79 GPa, |σY | = 250 MPa, eG = 2.2 J/m2

VS = 3094 m/s, cD = 2.0, cR = 0.933.

Here |σY | is the magnitude of the yield stress in compression. Calculations of (43b) and (44c), based
on these properties, are given in Table 2 for various values of c. Entries show that the kinetic energy
effect in M1 and M2 reaches 17% and 14%, respectively, when V = 0.536VR . In view of (31) therefore,
subsequent calculations are restricted to range 0< c < 0.5.

Crack/contact zone contours: calculations

Table 2 indicates that kinetic energy is a perturbation in the study of crack and contact zone contours
for ψ = 0 and |ψ | → π/2. Equation (34) and rearrangement of (32a) however show that kinetic energy
serves as a singular perturbation in the governing differential equation for 0< |ψ |< π/2,

D2
C +

[( rS

r0 P
cosψ −

2c̄4 A
R

E8D2
S

)2
− 1

]
D2

S = 0. (46a)

c 0.05 0.1 0.2 0.5

M1 1.00139 1.00563 1.02304 1.1734
M2 1.0014 1.0056 1.0224 1.1394

Table 2. Parameters (M1,M2) for various c.
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c 0.05 0.1 0.2 0.4 0.5

C∗3 5.67(104) 5.56(104) 5.34(104) 4.36(104) 3.65(104)

Table 3. C∗3 (χ1 = 1, |σ ∗| = |σY |).

Study of (46a) near ψ ≈ 0 for a given ratio β = rS/r−C suggests asymptotic solution

rS

r0
≈

µr0

C3eG

πF(β1)

cosψ

(
χ1

4

)4( R1

2c2 A1
+ c2 E8

)
. (46b)

This result agrees with (43) at ψ = 0 and approximates the asymptotic behavior of (43a) for |ψ | → π/2.
In view of (10) therefore asymptotic formulas for contours (BS, B−C ) are, respectively√

x2
1 + x2

2 ≈ rS (x1 > 0),
√

x2
1 + x2

2 ≈ r−C (x1 < 0). (46c)

Equations (44a) and (46c) suggest a results similar to that described in [Brock 2015b]. The crack gap
lies in a band which bulges outward from the die along its path, but forms a strip of finite width far away
from the path.

Results (43)–(45) and related calculations for ψ = 0 and |ψ | → π/2 by themselves allow insight
into contour geometry. Parameter σ ∗ is the maximum compressive stress in contact zone AC formed
by the disk, and for the ellipsoidal disk, 1/

√
C3 is the disk thickness-diameter ratio. These are coupled

in (χ, χ1), where χ1 > χ (0< |ψ |< π/2). Analysis is elastic, so |σ ∗|< |σY |, and approximation (40)
requires that χ < 1. Limit case (χ1 = 1, |σ ∗| = |σY |) examination shows that constraint C3 < C∗3 applies.
Calculations of C∗3 for the generic solid in Table 3 imply that the disk can be essentially flat. These
observations suggest examining parameters (lC , dC) for contact zone AC , and (β1, β2) for crack gap AG .

For the same generic solid we choose subcritical values |σ ∗| = 150 MPa and C3 = 10000, with disk
radius r0 = 0.05 m and clearance ratios

rS

r0
= 4 (ψ = 0),

hS

r0
= 1 (|ψ | → π/2).

In Tables 4 and 5 values of, respectively, lC/r0 and dC/r0, for ψ = 0 are given for various (c, β1).
Corresponding values β2 follow from (43a) and (44b) as roots of

F(β2)−
M1

M2

[
2c2 A1

R1

(
1−

1
c2

D

)]3

F(β1)= 0. (47)

c↓ β1→ 0.01 0.1 0.2 0.5 0.8

0.05 0.075 0.091 0.107 0.154 0.201
0.1 0.077 0.092 0.108 0.155 0.203
0.2 0.82 0.096 0.114 0.165 0.215
0.5 0.094 0.112 0.115 0.19 0.248

Table 4. lC/r0 (rS/r0 = 4, ψ = 0).
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c↓ β1→ 0.01 0.1 0.2 0.5 0.8

0.05 −0.0034 −0.00052 −0.00077 −0.00194 −0.004
0.1 −0.00035 −0.00053 −0.00077 −0.002 −0.004
0.2 −0.0004 −0.0006 −0.00088 −0.0022 −0.0046
0.5 −0.00053 −0.00081 −0.0012 −0.003 −0.0062

Table 5. dC/r0 (rS/r0 = 4, ψ = 0).

β1 0.01 0.1 0.2 0.5 0.8 1.0
β2 0.00271 0.0564 0.117 0.275 0.55 0.825

lC/r0 0.0756 0.084 0.093 0.118 0.16 0.205

Table 6. Values of (β1, β2, lC/r0) for rS/r0 = 4, hS/r0 = 2 and c = 0.2.

Study of (42c) for β > 0 shows that F > 0, with rapid monotonic growth. Thus numerical determination
of roots is not difficult. Based on (47) therefore, a snapshot of how gap-die clearance ratios (β1, β2)

compare is given in Table 6. Corresponding values of lC/r0 (|ψ | → π/2) are also given (dC = 0).

Some observations

This paper considered crack growth in the dynamic steady state caused by the translation of a rigid,
smooth die between the surfaces of an initially closed slit. Analysis produced a nonlinear differential
equation for the radial distance rS(ψ) from the die center to the crack edge, where ψ is the angle with
respect to the path of die translation. Equation coefficients, however, depend on radial distances r±(ψ)
and r−C (ψ) to the contours of respectively the crack/die contact zone and the closure zone, i.e., the region
in the wake of the die where crack surfaces resume contact. Moreover, the sliding contact aspects of the
process lead to algebraic constraints. A framework of equations for the process is thus generated, and
was studied to gain insight into the geometry of crack and contact zone behavior. In addition to various
formulas:

(a) Calculations in Table 1 show that neglect of sliding friction could affect solution behavior as
die/crack growth speed increases.

(b) Calculations in Table 2 show that inclusion of kinetic energy is a perturbation for significant, but
clearly subcritical, die/crack growth speeds.

(c) Calculations in Table 3 illustrate the relationship between thickness of a disk-shaped die and maxi-
mum allowable die/crack contact zone compression.

(d) Calculations in Tables 4 and 5 show that contact zone width and location of its center with respect
to die center are sensitive to die/crack growth speed. They are also sensitive to the relative distances,
measured along the die path, from die center to crack edge and crack closure contour. For example,
consider in Table 4 the die speed that is 20% of the shear speed in the solid: if the closure contour
is 100 times further away from the die center than is the crack edge, contact zone width is 8.2% of
the die radius. If it is only 1.25 times further away, the ratio is 24.9%.
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(e) Calculations in Tables 4–6 show that the relative distances measured along the die path are greater
than relative distances far away from the die path. This observation, together with formulas, show
that the gap opened up by die-induced fracture is an infinitely long slit of finite width; its contours
bulge out from the die near its path, but are rectilinear and parallel far away.

Die sliding was frictionless, but friction was considered in derivation of the framework. A complete
solution for the nonlinear differential equation was not attempted. Thus, The framework was not fully uti-
lized here. However, general conclusions concerning the geometry of crack and contact zones did emerge.
These conclusions and the equations themselves could provide the basis for a more general investigation.

Appendix A

U (±)
D =

−1
2c2

1 A

[
T [û3] +

1
µ
(p1[σ̂31] + p2[σ̂32])

]
(±)

1
c2

1

(
p1[û1] + p2[û2] +

[σ̂33]

2µ

)
, (A.1a)

V (±)
1 =

p1 B
c2

1
[û3] +

1
2µBc2

1

[
p1 p2[σ̂32] − (p2

2 + B2)[σ̂31]
]
(±) 1

2

(
[û1] −

p1[σ̂33]

µc2
1

)
∓

p1

c2
1
(p1[û1] + p2[û2]), (A.1b)

V (±)
2 =

p2 B
c2

1
[û3] +

1
2µBc2

1

[
p1 p2[σ̂31] − (p2

1 + B2)[σ̂32]
]
(±) 1

2

(
[û2] −

p2[σ̂33]

µc2
1

)
∓

p2

c2
1
(p1[û1] + p2[û2]). (A.1c)

Equation (8c) holds for (A.1), and it is noted that p1V̂ (±)
1 + p2V̂ (±)

2 gives

B
c2

1

[
(p2

1 + p2
2)[û3]−

1
2µ
(p1[σ̂31]+ p2[σ̂32])

]
(±)

1
2c2

1

[
T (p1[û1]+ p2[û2])− B(p2

1 + p2
2)
[σ̂33]

µ

]
. (A.2)

For x3 = 0(+) use of (A.1) and (A.2) lead to

[û1] −
1

µDR B
(p2

2 DM − c2
1 B2)

(
2σ̂ (+)31 − [σ̂31] −

DN

c2
1 B

p1[σ̂33]

)
+ p1 p2

DM

µDR B

(
2σ̂ (+)32 − [σ̂32] −

DN

c2
1 B

p2[σ̂33]

)
= 0, (A.3a)

[û2] −
1

µDR B
(p2

1 DM − c2
1 B2)

(
2σ̂ (+)32 − [σ̂32] −

DN

c2
1 B

p2[σ̂33]

)
+ p1 p2

DM

µDR B

(
2σ̂ (+)31 − [σ̂31] −

DN

c2
1 B

p1[σ̂33]

)
= 0, (A.3b)

[û3] −
c2

1 A
µDR

[
2σ̂ (+)33 − [σ̂33] −

DN

c2
1 B
(p1[σ̂32] + p2[σ̂32])

]
= 0. (A.3c)
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Terms (DR, DN , DM) in (A.3) are given by

DR = T 2
+ 4(p2

1 + p2
2)AB, DN = T − 2AB, DM = 2DN + c2

1, (A.4a)

T = (c2
− 2)p2

1 − 2p2
2. (A.4b)

Appendix B

In view of (15)–(17), Equations (A.1) and (7) give for x3 > 0(−) and x3 < 0(+),

(û1)D +
p1

2c2
1 A
(T [û3] + p1[σ̂31]/µ) exp(−A|x3|)= 0, (B.1a)

(û2)D +
p2

2c2
1 A
(T [û3] + p1[σ̂31]/µ) exp(−A|x3|)= 0, (B.1b)

(û3)D(∓)
1

2c2
1
(T [û3] + p1[σ̂31]/µ) exp(−A|x3|)= 0. (B.1c)

(û1)S −
1
c2

1

[
p1 B[û3] −

1
2B
(p2

2 + B2)[σ̂31]/µ

]
exp(−B|x3|)= 0, (B.2a)

(û2)S −
1
c2

1

(
p2 B[û3] −

p1 p2

2B
[σ̂31]/µ

)
exp(−B|x3|)= 0, (B.2b)

(û3)S(∓)
1
c2

1

[
(p2

1 + p2
2)[û3] −

p1

2
[σ̂31]

]
exp(−B|x3|)= 0. (B.2c)

Appendix C

∂u(+)1

∂x
≈−

A cosψ
π2S

∫
C

∂U
∂t

√
rS − t
t + r−C

(t + r−)� dt
(r+− t)1+�

ReQ+(i2P12, t), (C.1a)

∂u(+)2

∂x
≈−

A sinψ
π2S

∫
C

∂U
∂t

√
rS − t
t + r−C

(t + r−)� dt
(r+− t)1+�

ReQ+(i2P12, t), (C.1b)

∂u(+)3

∂x
≈

A
π2S

∫
C

∂U
∂t

√
rS − t
t + r−C

(t + r−)� dt
(r+− t)1+�

ImQ+(i2P3, t). (C.1c)

Q+( f, t)=
∫
+

√
τ + r−C
rS − τ

f (τ − r+)1+�

(τ + r−)�(t − τ)
dτ. (C.2)

In (C.2) integration subscript + signifies range r+ < τ < rS , and in (C.1)

P12 =
T

2A(z A− τ)
+

B
zB − τ

, P3 =
T

2(z A− τ)
+

1
zB − τ

, (C.3a)

z A = x + i A|x3|, zB = x + i B|x3|. (C.3b)
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In light of (24a), (24c), (26c) and (29) results for r→ 0, |φ|< π , |ψ |< π/2 are

∂1u1→−
cosψ
√

2r

2A
π S

GC DS

(
T

2A
A+
A8
+ B

B+
B8

)
sgn(φ), (C.4a)

∂1u2→−
sinψ
√

2r

2A
π S

GC DS

(
T

2A
A+
A8
+ B

B+
B8

)
sgn(φ), (C.4b)

∂1u3→−
1
√

2r

2A
π S

GC DS

(
T
2

A−
A8
+

B−
B8

)
. (C.4c)

A8 =
√

1− c̄2/c2
D sin2 φ, A± =

√
A8± cosφ, (C.5a)

B8 =
√

1− c̄2 sin2 φ, B± =
√

B8± cosφ. (C.5b)

Appendix D

D0 = 1− 1/rS(r++�lC)+�(1+�)(lC/(2rS))
2, (D.1a)

D1 = 1/(2rS)(rS/r−C − 1)[1− 2/rS(r++�lC)], (D.1b)

D2 = 1/(2r2
S)
[ 3

4(rS/r−C − 1)2+ rS/r−C
]
. (D.1c)

I0 = r++�lC , (D.2a)

I1 = r2
+
+�r+lC −�/2(1−�)l2

C , (D.2b)

I2 = r3
+
+ 3�r2

+
lC − 3�/2(1−�)r+l2

C +�/6(1−�)(2−�)l
3
C . (D.2c)
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