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MAXWELL’S EQUIVALENT INHOMOGENEITY AND
REMARKABLE PROPERTIES OF HARMONIC PROBLEMS INVOLVING

SYMMETRIC DOMAINS

SOFIA G. MOGILEVSKAYA AND DMITRY NIKOLSKIY

This paper revisits the Maxwell concept of equivalent inhomogeneity in the context of two-dimensional
harmonic problems involving composite or porous materials of periodic structure. As previously done
for elasticity problems, here the scheme is modified to accommodate for the shape of the equivalent
inhomogeneity and for the interactions between the constituents of the cluster. New numerical results for
periodic materials with hexagonal arrangements of fibers (holes) demonstrate that, with these modifica-
tions, the scheme allows for accurate estimates of the effective material properties. It is also shown that,
as for elasticity problems, some harmonic symmetric inhomogeneities possess remarkable properties.
Under the action of uniform far-fields, the averages of the fields within these inhomogeneities preserve
the structure of the applied far-fields.

1. Introduction

This paper presents further studies of the Maxwell [1892] homogenization scheme that is based on
the concept of an equivalent inhomogeneity. The concept suggests that a cluster that represents the
material in question affects the fields at large distances away from it in the same manner as an equivalent
inhomogeneity whose properties are equal to the effective ones.

The idea has a long history (see, e.g., [Milton 2002; Torquato 2002], and the references therein) and
has been reinvented in a few later publications, e.g., [Kuster and Toksöz 1974; Hasselman and Johnson
1987; Lu and Song 1996; Lu 1998; Shen and Yi 2000; 2001; 2004]. In recent years, the concept has
attracted even more attention, (e.g., [McCartney and Kelly 2008; McCartney 2010; Koroteeva et al. 2010;
Mogilevskaya et al. 2010; 2012a; 2012b; 2013; Weng 2010; Pyatigorets and Mogilevskaya 2011; Levin
et al. 2012; Mogilevskaya and Crouch 2013; Kushch 2013; Kushch et al. 2014; Kushch and Knyazeva
2016; Kushch and Sevostianov 2016]) and, in some of these publications, was generalized to include
information on the geometrical arrangement of the constituents of the cluster and their interactions.

The original Maxwell scheme and its later modifications in application to the material with overall
isotropy adopted either a spherical (three-dimensions) or a circular (two-dimensions) shape of the equiv-
alent inhomogeneity. However, the papers [Jasiuk et al. 1992; 1994; Sevostianov and Kachanov 2011;
Kushch and Sevostianov 2015] (see also the references therein) have demonstrated that the shape has an
influence on the far-field asymptotic behavior. Some of these publications, although not directly related
to Maxwell’s concept, are relevant because the analysis of the far-fields is a cornerstone of the original
Maxwell concept.
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In the context of Maxwell’s scheme, the issue of shape was investigated in [Sevostianov and Giraud
2013; Sevostianov 2014; Kushch et al. 2014; Kushch and Sevostianov 2016; Kushch and Knyazeva 2016].
These authors studied more general cases that involved materials with overall anisotropic behavior and
suggested using a more general shape of the equivalent inhomogeneity (elliptical for two-dimensional
and ellipsoidal for three-dimensional problems). Their major arguments were based on the availability
of closed form analytical solutions for the fields due to these inhomogeneities, see [Eshelby 1957; 1959;
1961]. In [Mogilevskaya and Nikolskiy 2015], it was demonstrated numerically that, for two-dimensional
elastic materials with hexagonal symmetry, the estimates for the effective bulk and shear moduli based on
a hexagonal shape of the equivalent inhomogeneity are more accurate than those based on circular shape.
In addition, while circular-based estimates for some materials diverge with the size of the cluster, their
hexagonal counterparts converge. Also in that paper, it was numerically discovered that two-dimensional
regular polygonal and other symmetric inhomogeneities possess some remarkable properties. Under
the action of uniform far-fields, the averages of the fields within these inhomogeneities have the same
structure as that of the applied far-fields. In [Mogilevskaya and Stolarski 2015], these properties have
been rigorously proved for a wider class of two- and three-dimensional elastic problems, which included
anisotropic and nonuniform materials subjected to either far-field loads or constant transformational
strains within the inhomogeneity.

In this paper, we use the approach in [Mogilevskaya and Nikolskiy 2015] to study the issue of the
shape of Maxwell’s inhomogeneity in the context of problems governed by the Laplace equation (har-
monic problems). New developments presented here include new numerical results on the effective
properties (e.g., conductivities) of two-dimensional materials with hexagonal symmetry, including the
convergence studies. As previously done for elasticity problems in the above cited paper, some remark-
able properties of symmetric inhomogeneities are numerically discovered here for harmonic problems.

The paper is structured as follows. In Section 2, the classical concept of Maxwell’s equivalent inhomo-
geneity for harmonic problems is described and the generalized Maxwell approach is briefly reviewed.
In Section 3, we consider the problem of finding the property of an arbitrarily shaped inhomogeneity
whose asymptotic far-fields’ expansions contain the same leading terms as those for the circular inho-
mogeneity of the same area. In Section 4, we analyze the obtained interrelations between the properties
of the arbitrarily shaped and circular inhomogeneities. This analysis leads to the discovery of some
remarkable properties of regular polygonal and other symmetric inhomogeneities. In Section 5, using
the results on the effective properties obtained with the use of circular equivalent inhomogeneity (see
[Mogilevskaya et al. 2012b]), we recalculate the effective properties for the periodic materials using a
hexagonal shape for that inhomogeneity. We demonstrate that these new estimates converge faster with
the size of the cluster than the corresponding circular inhomogeneity-based estimates. The discussion of
the obtained results and the direction for future work are presented in Section 6.

2. Maxwell’s scheme and a review of the generalized Maxwell approach that
accounts for interaction

The original Maxwell scheme is based on the idea that a cluster that represents the material in question
(Figure 1, left, for the two-dimensional case) affects the fields at large distances away from it in the
same manner as an equivalent circle (sphere) (Figure 1, right) whose property (e.g., thermal or electric



MAXWELL’S EQUIVALENT INHOMOGENEITY AND PROPERTIES OF HARMONIC PROBLEMS 181

K j

K

z

T∞

K

Kc

z

T∞

Figure 1. Cluster of circular inhomogeneities (left) and equivalent inhomogeneity (right).

conductivity) is equal to the effective one. The radius R of the equivalent circle/sphere is chosen such
that the ratio of the total area (volume) occupied by the constituents of the cluster to that of the equivalent
circle (sphere) reflects the volume fraction of the material.

Below we review the basics of the scheme and its generalization in the context of the steady-state heat
conduction problem. However, the scheme can be easily reformulated in terms of any harmonic problem
(e.g., antiplane elasticity in two dimensions). We assume that the cluster consists of N nonoverlapping
fibers/particles that are perfectly bonded to the material matrix. In the original Maxwell’s scheme the
fibers/particles are of circular/spherical shapes. In that scheme, the geometrical arrangement of the
fibers/particles is neglected (from large distances away, they are perceived as to be located at the same
point), and the interactions between them are not accounted for (the contribution of every fiber/particle
to the far-fields is evaluated under the assumption that this fiber/particle is the only one in the matrix).
Maxwell [1892], who considered the three-dimensional case, assumed that all particles had the same
conductivities kp that are different from the conductivity k of the matrix. The latter restriction is easy to
lift as it was done in [McCartney and Kelly 2008; Mogilevskaya et al. 2012a] for the three-dimensional
case and in [Mogilevskaya et al. 2012b] for the two-dimensional case (the latter paper considered the
scheme in the context of antiplane problem).

With the above assumptions, Maxwell’s scheme yields the following result for the effective conduc-
tivity kef of the material (both for two- and three-dimensional problems):

kef

k
=

1− (d − 1)B0

1+ B0 , B0
=

N∑
j=1

c j

(
1−

k j

k

)
1

(d − 1)+ k j/k
, (1)

in which k j is the conductivity of the j-th circular fiber (spherical particle) of radius a j , the variable d
is the dimension of the problem (d = 2 in two-dimensions, d = 3 in three-dimensions), and c j is the
so-called volume fraction of j-th particle/fiber ( j = 1, . . . , N ) that is defined as

c j =

(
a j

R

)d

. (2)

The papers [Mogilevskaya et al. 2012a; 2012b; 2013; Kushch et al. 2013; 2014; Kushch and Knyazeva
2016; Kushch and Sevostianov 2016] generalized the Maxwell scheme by precisely evaluating the
far-fields due to the cluster using semianalytical methods. These methods explicitly account for the
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geometrical arrangements of the particles/fibers in the cluster and their interactions. The effective con-
stants were obtained by comparing the dipole coefficients in the multipole expansions of far-fields with
the dipole coefficients for the equivalent inhomogeneities. The effective conductivity (that was assumed
to be the same as that of the equivalent inhomogeneity) was expressed by equations similar to that of
(1)–(2) but with different parameters, B0 (see e.g., [Mogilevskaya et al. 2012a, Equations (16)–(18)] with
B0
= A∗10 for spherical particles). In the generalized approach in [Koroteeva et al. 2010; Mogilevskaya

et al. 2012a; 2012b], the shape of the equivalent inhomogeneity was assumed to be the same (circular or
spherical) as that in the original Maxwell’s approach while [Kushch et al. 2014; Kushch and Knyazeva
2016; Kushch and Sevostianov 2016] suggested the use of an elliptical (ellipsoidal) shape when the
overall behavior of the materials is anisotropic.

We now consider the two-dimensional case, assuming that shape of the equivalent inhomogeneity
may be arbitrary, and formulate the following auxiliary problem: determine the property of a noncircular
inhomogeneity such that the asymptotic expansions of the far-fields induced by it have the same leading
terms as that induced by the circular inhomogeneity.

3. The expressions for the far-fields induced by the inhomogeneity

We assume that the circular inhomogeneity of radius R and conductivity kc has its center at the origin of
the Cartesian coordinate system x1Ox2 (Figure 2, left). The counterpart problem of the inhomogeneity
D of arbitrary shape and conductivity kI is shown on Figure 2, right, where L is the boundary of that
inhomogeneity. For both problems, it is assumed that the temperature gradient T∞ = αx1 is applied
at infinity. Both problems are governed by the Laplace equation. The solution for the first problem is
well-known (see, e.g., [Honein et al. 1992]). The temperature at the point z = x1+ i x2 located inside the
matrix can be written in the form

T (z)= T∞(z)+α
1− kc/k
1+ kc/k

Re
R2

z̄
, (3)

in which z̄ = x1− i x2.
The solution for the second problem is also available in [Linkov 2002; Dobroskok and Linkov 2009]

and [Dong and Lo 2013]. The temperature at the same point z is

T (z)= T∞(z)+ (1− kI /k)Re 1
2π i

∫
L

T (τ ) dτ
τ − z

. (4)
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Figure 2. Circular inhomogeneity (left) and arbitrarily shaped inhomogeneity (right)
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Assuming that the point z is located far away from the inhomogeneity, one can obtain the following
asymptotic expansion for the complementary temperature T com(z)= T (z)− T∞(z):

T com(z)=−(1− kI /k) Im 1
2π

{
1
z

∫
L

T (τ ) dτ +
1
z2

∫
L

T (τ )τ dτ + O
(

1
z3

)}
. (5)

The comparison of (3) with the leading terms of (5) yields the following set of equations:

Re
∫
L

T (τ ) dτ = 0, (6)

Im
∫
L

T (τ ) dτ =−2πR2 α

1− kI /k
1− kc/k
1+ kc/k

. (7)

It can be shown that

Re
∫
L

T (τ ) dτ =−
∫

D

∂T (τ )
∂x2

dD, (8)

Im
∫

L
T (τ ) dτ =

∫
D

∂T (τ )
∂x1

dD, (9)

which indicates that these integrals are proportional to the corresponding average temperature gradients
within the inhomogeneity.

4. Analysis of the equations of Section 3

It follows from (6) and (8) that ∫
D

∂T (τ )
∂x2

dD = 0, (10)

which indicates that the average temperature gradient within the inhomogeneity has only the x1 compo-
nent, as is the case for the applied temperature field. Certainly, it could only be valid for the problems with
particular types of symmetry. Using virtually the same arguments as those presented in [Mogilevskaya
and Stolarski 2015], it could be proved that (10) is valid for the inhomogeneities whose shapes possess
certain types of rotational symmetry. For such problems, the interrelation between the property of the
inhomogeneity associated with the problem and that of the circular inhomogeneity can be obtained from
(7) and (9) as follows:

kI

k
= 1− 2

1− kc/k
1+ kc/k

α

4
, (11)

in which

4=
1
πR2

∫
D

∂T (z)
∂x1

dD. (12)

5. Results

5.1. Interpretation of the equations of Section 4. We now assume that the area of the inhomogeneity is
the same as that of the circle, πR2. It can be seen that the expression in the right-hand side of (12) is the
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Figure 3. Infinite hexagonal array of inhomogeneities (left), finite cluster of inhomo-
geneities and equivalent hexagonal inhomogeneity in homogeneous matrix material
(middle), finite cluster of inhomogeneities and equivalent circular inhomogeneity (right).

area average of the temperature gradient in the corresponding direction. Therefore, the conductivity of the
inhomogeneity D is expressed by (11) via the corresponding property of the circular inhomogeneity of
the same area and via the average given by (12). However, this average also depends on the conductivity
of the inhomogeneity D, which has yet to be found.

To resolve this issue, we propose the simple iteration procedure in which the boundary value problem
of the inhomogeneity of the same geometry as D but with the properties (kI )0 taken to be the same as for
the corresponding circular inhomogeneity, (kI )0 = kc, and is solved first by means of a boundary element
code. The conductivities kc were evaluated in [Mogilevskaya et al. 2012b]. The new conductivity (kI )1

obtained from (12) is then used in the next iteration. The process is terminated when the difference
between the values obtained in last two iterations becomes less than the prescribed accuracy level.

Below, the proposed approach is used to evaluate the effective conductivities of a two-phase com-
posite material with a hexagonal arrangement of fibers (Figure 3, left). The unit cell of this material
is a hexagon that possesses desirable symmetry with respect to the coordinate axes. The problem of
hexagonal inhomogeneity was solved by using an in-house boundary element code that employs qua-
dratic approximations for the unknown temperature on each straight boundary element. Using this code,
we demonstrated numerically that the conditions of (10) are satisfied up to 11 significant digits. These
conditions, as explained above, imply that the average directional temperature gradients have the same
structure as those of the applied far-field temperature field. These “strange” properties of symmetric
inhomogeneities can be proved theoretically for more general classes of two- and three-dimensional
anisotropic and nonuniform materials using virtually the same arguments as those used in [Mogilevskaya
and Stolarski 2015] for elastic problems.

5.2. Circular fibers. The cluster of N = N (p) = 1+ 3p(p+ 1), where p ≥ 1, circular fibers (holes)
of radius r0 that forms a hexagon D is taken from an infinite double-periodic array of fibers (holes)
(Figure 3, left) and placed in an infinite matrix material (Figure 3, middle). The area |D| of the hexagon
is

|D| =
3
√

3d2

2
p2, (13)

in which d is the distance between the centers of the inhomogeneities.
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N = 7 N = 19 N = 37

N = 61 N = 91

Figure 4. Clusters of N inhomogeneities.

The volume fraction c of the fibers (holes) in the above mentioned double-periodic array is defined as

c =
2πr2

0
√

3d2
. (14)

The equivalent circular inhomogeneity (Figure 3, right), considered in [Mogilevskaya et al. 2012b], has
the same area as the hexagon. The radius of that inhomogeneity can be found from the equation

πR2
=

3
√

3d2

2
p2. (15)

The examples of five clusters of the material with N = 7, 19, 37, 61, and 91 fibers are shown in Figure 4.
Assume that k f is the conductivity of the fibers. Consider the cases:

(i) of holes, where k f /k = 0, and

(ii) of high contrast in fibers/matrix conductivities, where k f /k = 135.

The accurate estimates of the normalized effective conductivity (kper/k) were provided to us by Godin
[2013] (for both cases) and Kushch [2013] (for the second case). These authors solved the double periodic
problem using two different methods. For high-contrast composites, the results obtained by both methods
were identical up to the requested five significant digits. The estimates kc/k are obtained by the method
described in [Mogilevskaya et al. 2012b]. Note, these estimates take the full account for the interactions
among all fibers of the cluster and its geometry.

The conductivity of the hexagonal inhomogeneity, kh/k, is calculated from the iteration procedure
described in the beginning of this section. The parameter defining the accuracy level was set up as 10−5.
The values of the moduli for each iteration were obtained from (11) in which the conductivity needed
to evaluate 4 was taken from the previous iteration. The number of iterations depended on the volume
fraction and varied from 1 (for low volume fractions) to 64 (for high volume fractions). The boundary
element solution required to evaluate 4 employed 32 elements on each side of the hexagon.
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c
kc/k Periodic (kper/k),

N = 7 N = 19 N = 37 N = 61 N = 91 [Godin 2013]

0.1 0.81814 0.81814 0.81814 0.81814 0.81814 0.81818
0.2 0.66635 0.66635 0.66637 0.66638 0.66639 0.66667
0.3 0.53745 0.53748 0.53754 0.53758 0.53761 0.53844
0.4 0.42621 0.42635 0.42650 0.42660 0.42667 0.42845
0.5 0.32868 0.32901 0.32932 0.32953 0.32967 0.33281
0.6 0.24167 0.24224 0.24277 0.24313 0.24337 0.24834
0.7 0.16227 0.16308 0.16387 0.16441 0.16478 0.17208
0.8 0.08705 0.08791 0.08896 0.08970 0.09021 0.10042
0.85 0.04875 0.04940 0.05051 0.05132 0.05189 0.06383

Table 1. Normalized effective conductivity for hexagonal arrays, k f /k = 0. Circular
equivalent inhomogeneity.

c
kh/k Periodic (kper/k),

N = 7 N = 19 N = 37 N = 61 N = 91 [Godin 2013]

0.1 0.81818 0.81818 0.81818 0.81818 0.81818 0.81818
0.2 0.66661 0.66661 0.66663 0.66664 0.66665 0.66667
0.3 0.53819 0.53822 0.53828 0.53832 0.53835 0.53844
0.4 0.42773 0.42787 0.42802 0.42812 0.42818 0.42845
0.5 0.33129 0.33162 0.33192 0.33213 0.33227 0.33281
0.6 0.24569 0.24625 0.24677 0.24712 0.24736 0.24834
0.7 0.16806 0.16885 0.16962 0.17014 0.17051 0.17208
0.8 0.09506 0.09588 0.09689 0.09761 0.09812 0.10042
0.85 0.05813 0.05876 0.05983 0.06060 0.06116 0.06383

Table 2. Normalized effective conductivity for hexagonal arrays, k f /k = 0. Hexagonal
equivalent inhomogeneity.

The results for kh/k are tabulated in Tables 2 and 4 (the corresponding results for kc/k are given in
Tables 1 and 3). Graphical representation of the results is presented in Figure 5. It could be seen that,
while both circular- and hexagon-based estimates seem to converge with the size of the cluster, the latter
estimates are more accurate. This is true for both cases of contrast in fiber and matrix conductivities. To
better illustrate this fact, the relative errors δ = |kI − kper|/kper are plotted in Figure 6 for cases (i) and (ii)
with volume fractions c = 0.6 and 0.85. The results indicate that both estimates converge linearly, i.e.,

lim
p→∞

|k(p+1)
I − kper|

|k(p)I − kper|
= λ > 0, (16)
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c
kc/k Periodic (kper/k),

N = 7 N = 19 N = 37 N = 61 N = 91 [Godin 2013; Kushch 2013]

0.1 1.2187 1.2187 1.2187 1.2187 1.2187 1.2186
0.2 1.4915 1.4915 1.4915 1.4915 1.4914 1.4908
0.3 1.8426 1.8424 1.8423 1.8421 1.8420 1.8393
0.4 2.3131 2.3124 2.3116 2.3111 2.3107 2.3016
0.5 2.9814 2.9786 2.9760 2.9742 2.9730 2.9464
0.6 4.0179 4.0090 4.0008 3.9954 3.9917 3.9165
0.7 5.8849 5.8582 5.8321 5.8145 5.8026 5.5744
0.8 10.5035 10.4135 10.3056 10.2313 10.1800 9.2521
0.85 17.4471 17.2641 16.9526 16.9526 16.5806 13.9231

Table 3. Normalized effective conductivity for hexagonal arrays, k f /k = 135. Circular
equivalent inhomogeneity.

c
kh/k Periodic (kper/k),

N = 7 N = 19 N = 37 N = 61 N = 91 [Godin 2013; Kushch 2013]

0.1 1.2186 1.2186 1.2186 1.2186 1.2186 1.2186
0.2 1.4910 1.4910 1.4910 1.4910 1.4909 1.4908
0.3 1.8402 1.8400 1.8399 1.8397 1.8396 1.8393
0.4 2.3053 2.3046 2.3038 2.3033 2.3029 2.3016
0.5 2.9592 2.9564 2.9539 2.9521 2.9510 2.9464
0.6 3.9561 3.9475 3.9397 3.9346 3.9311 3.9165
0.7 5.6970 5.6724 5.6486 5.6325 5.6216 5.5744
0.8 9.7125 9.6377 9.5483 9.4865 9.4438 9.2521
0.85 15.0606 14.9286 14.7037 14.5444 14.4333 13.9231

Table 4. Normalized effective conductivity for hexagonal arrays, k f /k = 135. Hexagonal
equivalent inhomogeneity.

where k(p)I is the conductivity of the equivalent inhomogeneity representing a cluster containing N =
N (p) inhomogeneities. The convergence analysis of the tabulated results suggests that the hexagon-based
estimates converge with λ≈ 0.8, which is faster than the circle-based estimates with λ≈ 0.95.

6. Conclusions

In this paper, we studied the shape of Maxwell’s equivalent inhomogeneity for two-dimensional harmonic
problems. For problems with hexagonal symmetry, we report new tabulated and graphically illustrated
numerical results that are obtained with the use of the modified Maxwell’s scheme that accounts for
the interactions within the cluster and employs the hexagonal equivalent inhomogeneity. By performing
convergence studies, we demonstrated that this scheme provides more accurate estimates for the effective
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Figure 5. Normalized effective conductivity for hexagonal arrays: a) circular equivalent
inhomogeneity, k f /k = 0; b) hexagonal equivalent inhomogeneity, k f /k = 0; c) circular
equivalent inhomogeneity, k f /k = 135; d) hexagonal equivalent inhomogeneity, k f /k = 135.
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Figure 6. Relative error of normalized effective conductivity δ = |kc− kper|/kper for circular
equivalent inhomogeneity, δ = |kh − kper|/kper for hexagonal equivalent inhomogeneity.
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properties of the materials than that employing circular shape. In addition, we demonstrated numerically
that hexagonal inhomogeneities possess remarkable properties. Under the action of a uniform temper-
ature gradient, the averages of the temperature within the inhomogeneity preserves the structure of the
applied far-fields. These “strange” properties of symmetric inhomogeneities can be proved theoretically
for more general classes of two- and three- dimensional anisotropic and nonuniform harmonic materi-
als using virtually the same arguments as those used in [Mogilevskaya and Stolarski 2015] for elastic
problems.

Acknowledgments

The first author gratefully acknowledges the support from the Theodore W. Bennett Chair, University of
Minnesota. Special thanks to Volodymyr I. Kushch and Yuri A. Godin for providing benchmark results
for hexagonal arrays.

References

[Dobroskok and Linkov 2009] A. A. Dobroskok and A. M. Linkov, “Complex variable equations and the numerical solution of
harmonic problems for piecewise-homogeneous media”, J. Appl. Math. Mech. 73:3 (2009), 313–325.

[Dong and Lo 2013] C. Y. Dong and S. H. Lo, “An integral equation formulation of anti-plane inhomogeneities”, Eng. Anal.
Bound. Elem. 37:11 (2013), 1416–1425.

[Eshelby 1957] J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems”, Proc.
R. Soc. A. 241 (1957), 376–396.

[Eshelby 1959] J. D. Eshelby, “The elastic field outside an ellipsoidal inclusion”, Proc. R. Soc. A 252 (1959), 561–569.

[Eshelby 1961] J. D. Eshelby, “Elastic inclusions and inhomogeneities”, pp. 87–140 in Progress in solid mechanics, vol. 2,
edited by I. N. Sneddon and R. Hill, North-Holland, Amsterdam, 1961.

[Godin 2013] Y. A. Godin, “Effective complex permittivity tensor of a periodic array of cylinders”, J. Math. Phys. 54:5 (2013),
053505.

[Hasselman and Johnson 1987] D. P. H. Hasselman and L. F. Johnson, “Effective thermal conductivity of composites with
interfacial thermal barrier resistance”, J. Compos. Mater. 21:6 (1987), 508–515.

[Honein et al. 1992] E. Honein, T. Honein, and G. Herrmann, “On two circular inclusions in harmonic problems”, Quart. Appl.
Math. 50:3 (1992), 479–499.

[Jasiuk et al. 1992] I. Jasiuk, J. Chen, and M. F. Thorpe, “Elastic properties of two-dimensional composites containing polygo-
nal holes”, pp. 61–73 in Processing, fabrication and manufacturing of composite materials, vol. 35, edited by T. S. Srivatsan
and E. L. Lavernia, ASME, New York, 1992.

[Jasiuk et al. 1994] I. Jasiuk, J. Chen, and M. F. Thorpe, “Elastic moduli of two dimensional materials with polygonal and
elliptical holes”, Appl. Mech. Rev. 47:1S (1994), S18–S28.

[Koroteeva et al. 2010] O. Koroteeva, S. G. Mogilevskaya, S. Crouch, and E. Gordeliy, “A computational technique for evalu-
ating the effective thermal conductivity of isotropic porous materials”, Eng. Anal. Bound. Elem. 34:9 (2010), 793–801.

[Kushch 2013] V. I. Kushch, Micromechanics of composites: multipole expansion approach, Butterworth Heinemann, Amster-
dam, 2013.

[Kushch and Knyazeva 2016] V. I. Kushch and A. G. Knyazeva, “Finite cluster model and effective conductivity of a composite
with non-randomly oriented elliptic inclusions”, Acta Mech. 227:1 (2016), 113–126.

[Kushch and Sevostianov 2015] V. I. Kushch and I. Sevostianov, “Effective elastic moduli of a particulate composite in terms
of the dipole moments and property contribution tensors”, Int. J. Solids Struct. 53 (2015), 1–11.

[Kushch and Sevostianov 2016] V. I. Kushch and I. Sevostianov, “Maxwell homogenization scheme as a rigorous method of
micromechanics: application to effective conductivity of a composite with spheroidal particles”, Int. J. Eng. Sci. 98 (2016),
36–50.

http://dx.doi.org/10.1016/j.jappmathmech.2009.07.008
http://dx.doi.org/10.1016/j.jappmathmech.2009.07.008
http://dx.doi.org/10.1016/j.enganabound.2013.07.007
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1098/rspa.1959.0173
http://dx.doi.org/10.1063/1.4803490
http://dx.doi.org/10.1177/002199838702100602
http://dx.doi.org/10.1177/002199838702100602
http://dx.doi.org/10.1115/1.3122813
http://dx.doi.org/10.1115/1.3122813
http://dx.doi.org/10.1016/j.enganabound.2010.03.009
http://dx.doi.org/10.1016/j.enganabound.2010.03.009
http://dx.doi.org/10.1016/B978-0-12-407683-9.00001-1
http://dx.doi.org/10.1007/s00707-015-1413-4
http://dx.doi.org/10.1007/s00707-015-1413-4
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.032
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.032
http://dx.doi.org/10.1016/j.ijengsci.2015.07.003
http://dx.doi.org/10.1016/j.ijengsci.2015.07.003


190 SOFIA G. MOGILEVSKAYA AND DMITRY NIKOLSKIY

[Kushch et al. 2013] V. I. Kushch, S. G. Mogilevskaya, H. Stolarski, and S. Crouch, “Evaluation of the effective elastic moduli
of particulate composites based on Maxwell’s concept of equivalent inhomogeneity: microstructure-induced anisotropy”, J.
Mech. Mater. Struct. 8:5-7 (2013), 283–303.

[Kushch et al. 2014] V. I. Kushch, I. Sevostianov, and V. S. Chernobai, “Effective conductivity of composite with imperfect
contact between elliptic fibers and matrix: Maxwell’s homogenization scheme”, Int. J. Eng. Sci. 83 (2014), 146–161.

[Kuster and Toksöz 1974] G. T. Kuster and M. N. Toksöz, “Velocity and attenuation of seismic waves in two-phase media, part
I: theoretical formulations”, Geophys. 39:5 (1974), 587–606.

[Levin et al. 2012] V. Levin, S. Kanaun, and M. Markov, “Generalized Maxwell’s scheme for homogenization of poroelastic
composites”, Int. J. Eng. Sci. 61 (2012), 75–86.

[Linkov 2002] A. M. Linkov, Boundary integral equations in elasticity theory, Kluwer, Dordrecht, 2002.

[Lu 1998] S.-Y. Lu, “Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model”, J.
Appl. Phys. 84:5 (1998), 2647–2655.

[Lu and Song 1996] S. Lu and J. Song, “Effective conductivity of composites with spherical inclusions: effect of coating and
detachment”, J. Appl. Phys. 79:2 (1996), 609–618.

[Maxwell 1892] J. C. Maxwell, Treatise on electricity and magnetism, vol. 1, 3rd ed., Clarendon Press, Oxford, United King-
dom, 1892.

[McCartney 2010] L. N. McCartney, “Maxwell’s far-field methodology predicting elastic properties of multiphase composites
reinforced with aligned transversely isotropic spheroids”, Philos. Mag. 90:31-32 (2010), 4175–4207.

[McCartney and Kelly 2008] L. N. McCartney and A. Kelly, “Maxwell’s far-field methodology applied to the prediction of
properties of multi-phase isotropic particulate composites”, Proc. R. Soc. A 464:2090 (2008), 423–446.

[Milton 2002] G. W. Milton, The theory of composites, Cambridge Monographs on Applied and Computational Mathematics
6, Cambridge University Press, 2002.

[Mogilevskaya and Crouch 2013] S. G. Mogilevskaya and S. L. Crouch, “Combining Maxwell’s methodology with the BEM
for evaluating the two-dimensional effective properties of composite and micro-cracked materials”, Comput. Mech. 51:4
(2013), 377–389.

[Mogilevskaya and Nikolskiy 2015] S. G. Mogilevskaya and D. V. Nikolskiy, “The shape of Maxwell’s equivalent inhomo-
geneity and ‘strange’ properties of regular polygons and other symmetric domains”, Quart. J. Mech. Appl. Math. 68:4 (2015),
363–385.

[Mogilevskaya and Stolarski 2015] S. G. Mogilevskaya and H. K. Stolarski, “On ‘strange’ properties of some symmetric
inhomogeneities”, Proc. R. Soc. A. 471:2179 (2015), art. id 2015157.

[Mogilevskaya et al. 2010] S. G. Mogilevskaya, S. L. Crouch, H. K. Stolarski, and A. Benusiglio, “Equivalent inhomogeneity
method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects”,
Int. J. Solids Struct. 47:3-4 (2010), 407–418.

[Mogilevskaya et al. 2012a] S. G. Mogilevskaya, V. I. Kushch, O. Koroteeva, and S. L. Crouch, “Equivalent inhomogeneity
method for evaluating the effective conductivities of isotropic particulate composites”, J. Mech. Mater. Struct. 7:1 (2012),
103–117.

[Mogilevskaya et al. 2012b] S. G. Mogilevskaya, H. K. Stolarski, and S. L. Crouch, “On Maxwell’s concept of equivalent
inhomogeneity: when do the interactions matter?”, J. Mech. Phys. Solids 60:3 (2012), 391–417.

[Mogilevskaya et al. 2013] S. G. Mogilevskaya, V. I. Kushch, H. K. Stolarski, and S. L. Crouch, “Evaluation of the effective
elastic moduli of tetragonal fiber-reinforced composites based on Maxwell’s concept of equivalent inhomogeneity”, Int. J.
Solids Struct. 50:25-26 (2013), 4161–4172.

[Pyatigorets and Mogilevskaya 2011] A. V. Pyatigorets and S. G. Mogilevskaya, “Evaluation of effective transverse mechanical
properties of transversely isotropic viscoelastic composite materials”, J. Compos. Mater. 45:25 (2011), 2641–2658.

[Sevostianov 2014] I. Sevostianov, “On the shape of effective inclusion in the Maxwell homogenization scheme for anisotropic
elastic composites”, Mech. Mater. 75 (2014), 45–59.

[Sevostianov and Giraud 2013] I. Sevostianov and A. Giraud, “Generalization of Maxwell homogenization scheme for elastic
material containing inhomogeneities of diverse shape”, Int. J. Eng. Sci. 64 (2013), 23–36.

http://dx.doi.org/10.2140/jomms.2013.8.283
http://dx.doi.org/10.2140/jomms.2013.8.283
http://dx.doi.org/10.1016/j.ijengsci.2014.03.006
http://dx.doi.org/10.1016/j.ijengsci.2014.03.006
http://dx.doi.org/10.1190/1.1440450
http://dx.doi.org/10.1190/1.1440450
http://dx.doi.org/10.1016/j.ijengsci.2012.06.011
http://dx.doi.org/10.1016/j.ijengsci.2012.06.011
http://dx.doi.org/10.1007/978-94-015-9914-6
http://dx.doi.org/10.1063/1.368377
http://dx.doi.org/10.1063/1.360803
http://dx.doi.org/10.1063/1.360803
http://dx.doi.org/10.1080/14786431003752142
http://dx.doi.org/10.1080/14786431003752142
http://dx.doi.org/10.1098/rspa.2007.0071
http://dx.doi.org/10.1098/rspa.2007.0071
http://dx.doi.org/10.1017/CBO9780511613357
http://dx.doi.org/10.1007/s00466-012-0735-5
http://dx.doi.org/10.1007/s00466-012-0735-5
http://dx.doi.org/10.1098/rspa.2015.0157
http://dx.doi.org/10.1098/rspa.2015.0157
http://dx.doi.org/10.1016/j.ijsolstr.2009.10.007
http://dx.doi.org/10.1016/j.ijsolstr.2009.10.007
http://dx.doi.org/10.2140/jomms.2012.7.103
http://dx.doi.org/10.2140/jomms.2012.7.103
http://dx.doi.org/10.1016/j.jmps.2011.12.008
http://dx.doi.org/10.1016/j.jmps.2011.12.008
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.008
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.008
http://dx.doi.org/10.1177/0021998311401091
http://dx.doi.org/10.1177/0021998311401091
http://dx.doi.org/10.1016/j.mechmat.2014.03.003
http://dx.doi.org/10.1016/j.mechmat.2014.03.003
http://dx.doi.org/10.1016/j.ijengsci.2012.12.004
http://dx.doi.org/10.1016/j.ijengsci.2012.12.004


MAXWELL’S EQUIVALENT INHOMOGENEITY AND PROPERTIES OF HARMONIC PROBLEMS 191

[Sevostianov and Kachanov 2011] I. Sevostianov and M. Kachanov, “Elastic fields generated by inhomogeneities: far-field
asymptotics, its shape dependence and relation to the effective elastic properties”, Int. J. Solids Struct. 48:16-17 (2011), 2340–
2348.

[Shen and Li 2004] L. Shen and J. Li, “A numerical simulation for effective elastic moduli of plates with various distributions
and sizes of cracks”, Int. J. Solids Struct. 41:26 (2004), 7471–7492.

[Shen and Yi 2000] L. Shen and S. Yi, “New solutions for effective elastic moduli of microcracked solids”, Int. J. Solids Struct.
37:26 (2000), 3525–3534.

[Shen and Yi 2001] L. Shen and S. Yi, “An effective inclusion model for effective moduli of heterogeneous materials with
ellipsoidal inhomogeneities”, Int. J. Solids Struct. 38:32-33 (2001), 5789–5805.

[Torquato 2002] S. Torquato, Random heterogeneous materials: microstructure and macroscopic properties, Interdisciplinary
Applied Mathematics 16, Springer, New York, 2002.

[Weng 2010] G. J. Weng, “A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates”, Mech. Mater. 42:9
(2010), 886–893.

Received 4 Apr 2016. Revised 6 Oct 2016. Accepted 12 Oct 2016.

SOFIA G. MOGILEVSKAYA: mogil003@umn.edu
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Drive SE,
Minneapolis, MN 55455, United States

DMITRY NIKOLSKIY: nikol047@umn.edu
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Drive SE,
Minneapolis, MN 55455, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.ijsolstr.2011.04.014
http://dx.doi.org/10.1016/j.ijsolstr.2011.04.014
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.016
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.016
http://dx.doi.org/10.1016/S0020-7683(99)00124-9
http://dx.doi.org/10.1016/S0020-7683(00)00370-X
http://dx.doi.org/10.1016/S0020-7683(00)00370-X
http://dx.doi.org/10.1007/978-1-4757-6355-3
http://dx.doi.org/10.1016/j.mechmat.2010.06.004
mailto:mogil003@umn.edu
mailto:nikol047@umn.edu
http://msp.org



	1. Introduction
	2. Maxwell's scheme and a review of the generalized Maxwell approach that accounts for interaction
	3. The expressions for the far-fields induced by the inhomogeneity
	4. Analysis of the equations of Section 3
	5. Results
	5.1. Interpretation of the equations of Section 4
	5.2. Circular fibers

	6. Conclusions
	Acknowledgments 
	References

