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INTERFACIAL MICROSCOPIC BOUNDARY CONDITIONS
ASSOCIATED WITH BACKSTRESS-BASED HIGHER-ORDER

GRADIENT CRYSTAL PLASTICITY THEORY

MITSUTOSHI KURODA

A strategy for modeling various interfacial boundary conditions associated with a higher-order gradi-
ent crystal plasticity theory is proposed. The gradient theory employed is based on the concept of the
backstress that is produced in response to the spatial variation of the geometrically necessary dislocation
densities. To set arbitrary interfacial boundary conditions for the crystallographic slip at the continuum
level, a model with a single scalar quantity that aims to control the slipping rate at an interface is in-
troduced. This scalar quantity is intended to represent the resultant effects of microscopic mechanisms
such as absorption, emission, and transmission of the dislocations at an interface or a grain boundary
(GB). As a realistic application of this basic idea, an orientation-dependent GB model is proposed,
which incorporates effects of the degree of misorientation between the adjacent grains as well as the
orientation of the GB plane relative to the grains. To illustrate capabilities of the proposed model, the
bicrystalline micropillar compression problem is considered. Finite element simulations are performed
for the bicrystalline micropillars including either a large-angle grain boundary (LAGB) or a coherent
twin boundary (CTB) parallel to the compression axis. The numerical results are qualitatively compared
with experimental observations reported in the literature. It is shown that the proposed GB model has
a capability to represent the overall material responses associated with both LAGB and CTB using the
same material parameter values.

1. Introduction

Size-dependent mechanical behaviors are usually observed in metallic materials at the micrometer or
smaller scales. Predictions of size-dependent material responses are particularly important in the fields
of small-scale electromechanical systems and nanostructured metallic materials. A considerable number
of studies have been done so far with the aim of incorporating the size-effect into plasticity theories since
the pioneering work of Aifantis [1984; 1987]. Since the studies of Kröner [1963] and Mindlin [1964],
nonlocal or higher-order gradient effects in elasticity have been discussed and investigated (e.g., [Gutkin
and Aifantis 1999; Bacca et al. 2013]).

The crystal plasticity theory (e.g., [Peirce et al. 1983; Asaro and Needleman 1985]) is a physically
based model that accounts for the mechanisms of crystallographic slips in metals. However, it does not
account for any size effects intrinsic in the materials. Extensions of the conventional crystal plasticity
theory to incorporate the size effects have been proposed in many studies so far.

One of the methods of introducing the size effects into crystal plasticity theory is to formulate plastic-
strain-gradient-dependent work hardening laws (e.g., [Acharya and Bassani 2000; Ohashi 2005]). Spatial
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gradients of plastic strain (or crystallographic slips) correspond to the densities of geometrically necessary
dislocations (GNDs) [Ashby 1970; Fleck et al. 1994]. The size effects can be introduced into conventional
crystal plasticity models by assuming that the GNDs contribute to the increase in work hardening. In
this type of modeling, only scalar quantities that represent the hardness of slip systems are augmented by
a contribution from the GNDs. Therefore, the formulation of the boundary-value problem remains the
same as that in the conventional theories. Only the tractions or prescribed displacements on the surfaces
of a body are considered as the boundary conditions, and prescribing values of slips or their gradients at
the boundaries is outside the scope.

Another method of incorporating the size effects, which is of interest in the present study, is higher-
order extensions of the conventional theory (e.g., [Gurtin 2002; 2008a; Borg 2007; Yefımov et al. 2004b;
Evers et al. 2004; Arsenlis et al. 2004; Bayley et al. 2006; Levkovitch and Svendsen 2006]). These
higher-order theories open up the possibility of modeling extra boundary conditions for slips and their
gradients at an interface or a grain boundary. Higher-order gradient crystal plasticity theories have been
developed with two different trends so far. According to the classification proposed by Kuroda and
Tvergaard [2008b], they are referred to as the “work-conjugate type” and “non-work-conjugate type”
of theories. The first type is based on the concept of higher-order stresses that are introduced as work
conjugates to spatial gradients of crystallographic slips and higher-order tractions that are postulated to
exist as work conjugates to crystallographic slips on external surfaces or internal interfaces (e.g., [Gurtin
2002; 2008a]). This type introduces, as the major premise, a virtual work principle extended with the
higher-order quantities and their work conjugates. Equilibrium or balance equations in the form of partial
differential equations are derived from this premised virtual work statement. The second type is based
on the concept of a backstress, that is, a long-range internal stress produced by an array of GNDs. The
backstress effect can be incorporated directly into the conventional framework of a crystal plasticity
theory (e.g., [Groma et al. 2003; Yefımov et al. 2004b; Evers et al. 2004; Arsenlis et al. 2004; Kuroda
and Tvergaard 2006]). According to the classical dislocation theory, the spatial gradient of GND density
is the origin of the backstress (equivalently, the internal stress), and superposition of the backstress and
the externally induced resolved shear stress is taken to be an effective shear stress that activates slip
deformations [Evers et al. 2004]. This second type of theory has a higher-order nature in the sense that
extra boundary conditions for the crystallographic slips can be imposed, but it does not directly rely on
higher-order stress quantities. Some mathematical equivalence between these two types of higher-order
gradient crystal plasticity theories has been emphasized by Kuroda and Tvergaard [2008a; 2008b].

In the context of higher-order gradient crystal plasticity theories, two kinds of extreme extra bound-
ary conditions have been mostly considered in previous applications. One is the microscopically hard
condition, which supposes situations that all dislocations stop at the boundary and consequently the slip
or its rate is fully constrained at the boundary. The other is the microscopically free condition, which
assumes that the higher-order traction is zero in the work-conjugate type formulation [Gurtin 2002] or no
GND density is required at the boundary in the non-work-conjugate type formulation [Evers et al. 2004;
Kuroda and Tvergaard 2008b]. Gurtin and Needleman [2005] proposed a model of grain boundary
behavior within the work-conjugate type framework, which accounts for a flow of the Burgers vector
across the GB, and suggested, as an example, the defect-free condition, which assumes that the Burgers
vector flow out of one grain is equal to that into the adjacent grain. Recently, Gurtin [2008b] has proposed
another model of grain boundary conditions, which accounts for grain misorientation and grain-boundary
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orientation relative to the grains. Van Beers et al. [2013] proposed a model of grain boundary interface
mechanics based on a mixed treatment of the work-conjugate and non-work-conjugate formulations, in
which the slip rates at the grain boundary are assumed to be governed by bulk-induced and energetic
interfacial higher-order microforces. Ekh et al. [2011] proposed a grain boundary model in which a
newly defined grain boundary microstress is assumed to activate the slip at the boundary, depending on
the misorientation between the adjacent grains. Wulfinghoff et al. [2013] and Bayerschen et al. [2015]
proposed a gradient plasticity model with an interface yield condition that accounts for the resistance of
grain boundaries against plastic flow occurrence. They used an equivalent strain rather than slips on the
individual slip systems as a fundamental field variable in order to simplify the formulation of the model.

Recently, for the purpose of clarifying the nature and roles of grain boundaries, experimental stud-
ies on bicrystalline micropillars have been conducted. Ng and Ngan [2009] and Imrich et al. [2014]
independently showed that a large-angle grain boundary (LAGB) can act as a strong barrier to mobile
dislocations, leading to a significant dislocation pile-up and an increase in dislocation density, for the
size range (diameter or edge length of micropillars) of 6–7µm. In contrast, Kunz et al. [2011] reported a
completely opposite observation on submicron-sized bicrystalline pillars. The grain boundaries in their
specimens seemed to act as sinks absorbing dislocations. Kim et al. [2015] stated that the LAGB in their
submicrometer-sized bicrystalline pillar showed an ability to nucleate dislocations and did not act as a
strong barrier to dislocations. These observations confirm that the nature of grain boundaries is complex
and is not simply a function of the orientation of the boundary with respect to the grains or the relative
misorientation of the grains. According to the studies of Ng and Ngan [2009], Kunz et al. [2011], and
Imrich et al. [2014], for micropillars of different sizes, the distance from the grain boundary to the free
surface may have some influence on the nature of the grain boundaries. Imrich et al. [2014] further carried
out compression tests on a bicrystalline micropillar with a size of ∼ 4µm and a coherent twin boundary
(CTB). The CTB sample showed mechanical behavior very similar to that of single-crystalline samples,
as if no grain boundary had existed. Hirouchi and Shibutani [2014] also conducted compression tests
on copper bicrystalline micropillars with 63 CTB and found that the bicrystalline micropillars exhibited
a stress-strain response and deformation behavior fundamentally similar to those of single-crystalline
micropillars having one of the crystal orientations that constitutes the bicrystalline micropillars.

In the present study, an alternative strategy for treating the higher-order interfacial boundary conditions
within the non-work-conjugate type (or backstress-based) framework of the gradient crystal plasticity
theory is proposed. To treat various interfacial boundary conditions for the crystallographic slip in a
simplified manner, a model with a single scalar quantity that aims to control the slipping rate at an
interface is introduced. This scalar quantity represents the resistance of an interface or a grain bound-
ary to slip occurrence, which results from finer-scale phenomena such as absorption, emission, and
transmission of the dislocations that are not resolved in the continuum modeling of crystal plasticity.
As mentioned above, the grain boundary nature observed in experiments reported in the literature is
complex. The real mechanism by which the observed grain boundary behavior is manifested has not
been clarified sufficiently at present. Given this circumstance, the proposed model may seem to be rather
phenomenological. However, it has plenty of room for extension, which can incorporate geometric
relations of adjacent grains, grain boundary yielding, and many other phenomena that are likely to occur
at the grain boundaries and internal interfaces. The present model may also be used to represent specific
characteristics of external surfaces partially penetrable to dislocations, which may correspond to surfaces
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having fragile oxide layers or microscopically incomplete contact surfaces. The first part of the paper is
devoted to illustrating the basic idea of the proposed model and demonstration of its fundamental nature
through analysis of a typical benchmark problem, i.e., the constrained simple shear problem. In the
following parts, a generalization of the model and its application to a practical problem are presented.
The bicrystalline micropillar compression problem is adopted to illustrate the efficiency of the proposed
model.

2. Illustrations of basic idea

2.1. Backstress-based higher-order gradient crystal plasticity theory: the simplest version. To illus-
trate the fundamental nature of the proposition introduced in the present paper, we confine our attention
to a backstress-based higher-order gradient crystal plasticity theory that is as simple as possible but not
too simple [Kuroda and Tvergaard 2006]. In the subsequent sections that are devoted to its generalization
and application to a practical problem, we will employ a much more generalized version of the theory
[Kuroda and Tvergaard 2008a; 2008b].

Under a small strain assumption, the total strain rate Ė is assumed to be decomposed into elastic and
plastic parts:

Ė = (∇ ⊗ u̇)sym = Ėe
+ Ėp, (1)

where u̇ is the displacement rate vector, ∇ is the spatial gradient operator, ⊗ is the tensor product, the
subscript sym denotes the symmetric part of the tensor, the superscripts e and p stand for “elastic” and
“plastic”, respectively, and a superposed dot denotes the material-time derivative.

Hooke’s law is applied to represent elasticity,

Ėe
= C−1

: σ̇ , (2)

where C is a fourth-order elasticity modulus tensor, the superscript −1 denotes the tensor inverse, and
σ is a symmetric (Cauchy) stress. Plastic deformation is assumed to take place through a single slip:

Ėp
= γ̇ P, P = (s⊗m)sym, (3)

where γ̇ is the slip rate, s and m are the unit vectors specifying the slip direction and slip plane normal,
respectively, and P is the Schmid tensor. In this simplified theory, it is assumed that s and m constitute
a planar slip system, i.e., they are both on the X1-X2 plane and p= s×m is parallel to the X3-axis.

The yield plane in the stress space is defined by

f = |τ − τb| − g = 0, (4)

where τ , τb, and g are the resolved shear stress (RSS), backstress, and critical resolved shear stress
(CRSS) respectively given by

τ = σ : P, τb = β∇ρG · s, g = τ0+ h
∫ t

0
|γ̇ | dt. (5)

Here, ρG is the geometrically necessary dislocation (GND) density, β is a coefficient for dimensional
consistency with dimensions of [force × length], which is assumed to be constant, τ0 is an initial value
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of CRSS, h is a slip hardening modulus taken to be constant for simplicity, and t is time. The GND
density ρG must satisfy the relation [Ashby 1970; Arsenlis and Parks 1999]

ρG+
1
b
∇γ · s = 0, (6)

where b is the magnitude of the Burgers vector. Note that ρG in (5)2 and (6) represents the density of
edge-type GNDs1 as we consider the planar slip system.

For continued plastic deformation, the stress point must remain on the yield plane; therefore,

ḟ =
∂τ

∂σ
: σ̇ −β∇ρ̇G · s− hγ̇ = 0, (7)

which leads to

γ̇ =
P : C : Ė−β∇ρ̇G · s

A
, A = P : C : P + h. (8)

In the derivation of the above relation, it is assumed that the signs of γ̇ and τ − τb are identified. Sub-
stituting (8) into (3), and combining it with (2) and (1), we have the elastoplasticity constitutive relation

σ̇ = Cep
: Ė+

β

A
C : P∇ρ̇G · s, (9)

where
Cep
= C − 1

A
(C : P)⊗ (P : C). (10)

Now, we introduce an incremental form of the virtual work principle as∫
V

˙̃E : σ̇ dV =
∫

St

˙̃u · ṫ dS, ˙̃E = ( ˙̃u⊗∇)sym. (11)

Here, ˙̃u is the virtual displacement rate that takes zero on part of the surface, Su , where real displacement
rates are prescribed, otherwise it can take any arbitrary value, and ṫ is the surface traction rate prescribed
on the remaining part of the surface, St (recall that formally we write S = St ∪ Su with the total surface S
of the body under consideration). Substituting (9) into (11) gives∫

V

˙̃E : Cep
: Ė dV +

∫
V

˙̃E : C : P
β

A
∇ρ̇G · s dV =

∫
St

˙̃u · ṫ dS. (12)

Equation (12) has two independent variables, u̇ and ρ̇G, which cannot be determined by a single equation.
Now, we view (6) as an additional governing equation implying that the GND density balances with

the spatial gradient of a slip in the slip direction. A weak form of the incremental relation of (6) becomes∫
V
ρ̃ρ̇G dV −

∫
V

1
b
∇ρ̃ · sγ̇ dV =−

∫
Sγ

1
b
ρ̃n · sγ̇ dS, (13)

where ρ̃ is a virtual weighting function that is zero on part of the surface, Sρ , where ρ̇G is prescribed,
otherwise it can take any arbitrary value, n is a unit normal to the boundary, and γ̇ is a slip rate prescribed

1Different researchers sometimes use different sign conventions for the GND densities. The sign convention for the edge-
type GND density in (6) follows that introduced by Arsenlis and Parks [1999].
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on part of the surface, Sγ (formally we consider S = Sρ ∪ Sγ ), except for the special case of n · s = 0,
where γ̇ must be free of any constraint. Substituting (8) into (13) gives

−

∫
V

1
bA
∇ρ̃ · (s⊗ P) : C : Ė dV +

∫
V

[
ρ̃ρ̇G+

β

bA
∇ρ̃ · (s⊗ s) · ∇ρ̇G

]
dV =−

∫
Sγ

1
b
ρ̃n · sγ̇ dS. (14)

2.2. Treatment of microscopic boundary conditions: a proposition. In previous studies [Evers et al.
2004; Kuroda and Tvergaard 2006; 2008a; 2008b], the following two types of microscopic boundary
condition have been considered:

• Microscopically hard condition:

n · sγ̇ = 0, (15)

• Microscopically free condition:

ρ̇G = 0. (16)

In general cases of n · s 6= 0, (15) is equivalent to γ̇ = 0.
An alternative representation of the microscopic boundary conditions is considered. Suppose that the

value of γ̇ coincides with γ̇ given by (8) for n · s 6= 0. In this case, the boundary is said to be transparent,
i.e., it possesses the same property as that of the bulk part of the material. Now, we formally write the
slip rate at the boundary as

γ̇ = φγ̇ , (17)

where φ is a dimensionless scalar quantity. Then, the two extreme boundary conditions can be written as

φ = 1 for the transparent condition, (18)

φ = 0 for the microscopically hard condition. (19)

Thus, the domain of φ is naturally assumed to be

0≤ φ ≤ 1. (20)

A value of φ within 0< φ < 1 gives a relaxed microscopic boundary condition for the slip at an interface.
Substituting (17) with (8) into (14) gives

−

∫
V

1
bA
∇ρ̃ · (s⊗ P) : C : Ė dV +

∫
Sγ

φ

bA
ρ̃n · (s⊗ P) : C : Ė dS

+

∫
V

[
ρ̃ρ̇G+

β

bA
∇ρ̃ · (s⊗ s) · ∇ρ̇G

]
dV −

∫
Sγ

φβ

bA
ρ̃n · (s⊗ s) · ∇ρ̇G dS = 0. (21)

The present treatment of the boundary may also represent specific characteristics of external surfaces.
For example, a strongly passivated surface is modeled by φ = 0, and an external surface coated by an
incomplete or fragile thin oxide layer that is partially penetrable to dislocations may be modeled by
0 < φ < 1. It is noted that Yefimov et al. [2004a] have assumed a condition equivalent to φ = 1 (i.e.,
γ̇ = γ̇ ) to represent a perfect free surface of a bent foil specimen.
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σ12

X2
H

s

m

X1

σ12

Figure 1. Constrained simple shear problem of a strip with an infinite lateral length and
a single slip system whose slip direction is parallel to the thickness direction. The micro-
scopically hard condition is imposed on the bottom surface, whereas flexible boundary
conditions (0≤ φ ≤ 1) are adopted on the upper surface.

2.3. Finite element equation. A finite element equation for the present model is derived straightfor-
wardly from (12) and (21), choosing u̇ and ρ̇G as the nodal quantities to be solved. It is written as

[
K(uu) K(uρ)
K(ρu) K(ρρ)

]{
U̇
ṖG

}
=

{
Ḟ
0

}
, (22)

where {U̇} is a vectorial array of nodal values of u̇, { ṖG} is a vectorial array of nodal values of ρ̇G, [K(ab)]

(where “a” and “b” stand for “u” or “ρ”) are the corresponding stiffness matrices, and {Ḟ} is a vectorial
array of nodal forces, which corresponds to the right-hand side of (12). Actual numerical computations
are performed using an adoptive forward Euler time integration scheme proposed by Yamada et al. [1968].

2.4. Illustrative examples. To illustrate the effects of the proposed microscopic boundary conditions,
the constrained simple shear problem is considered. A strip with a height H in the X2-direction and an
infinite length in the X1-direction is subjected to simple shear (Figure 1). This material has only one
slip system whose slip direction and slip plane normal coincide with X2- and negative X1-directions,
respectively. The bottom surface is assumed to act as a microscopically hard boundary (i.e., φ = 0),
whereas various values of φ in the range 0≤ φ ≤ 1 are applied to the top surface to see the fundamental
nature of the proposed boundary model. The displacement rate U̇ in the X1-direction on the top surface
is prescribed, and the macroscopic shear strain 0 is defined as 0 =U/H .

The thickness of the strip is discretized with 60 quadrilateral elements in the thickness (X2-) direction,
and only one element is assigned in the lateral (X1-) direction. Periodic conditions are applied to both
sides of the finite element model. The serendipity shape functions are used to interpolate the displacement
rate field, while the bilinear shape functions are employed to interpolate the GND density rate field.
The coordinates of the nodes in the bilinear four-node elements are set to be identical to those of the
corner nodes in the serendipity eight-node elements. The Gaussian quadrature with 2 × 2 points is
used for volume integrals and that with 2 points is used for surface integrals. This combination of the
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0
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φ = 0 (analytical)
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φ = 0
0.9
0.99
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0
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Figure 2. Computational results for constrained simple shear problem with relaxed
microscopic boundary conditions at the upper surface for a relative length scale of
l/H = 1.0. Distributions of slip in the thickness direction at a macroscopic shear strain
0 of 0.01 (left). Curves of shear stress versus macroscopic shear strain (right).

shape functions and the Gaussian quadrature order gives satisfactory numerical results free of volumetric
locking and unexpected stress oscillation phenomena [Kuroda 2011; 2015].

The material constants are µ/τ0 = 333.3 (µ is the shear elastic modulus) and h/τ0 = 16.67. The
coefficient β in (5)2 is formulated as

β = l2bτ0, (23)

where l is a constant material length scale.
The responses of the strip with a size of l/H = 1 are shown in Figure 2. The distributions of slip γ in

the X2-direction at 0= 0.01 are depicted2 in Figure 2 (left) for φ values of 0≤ φ ≤ 1. Curves of the shear
stress σ12 (that equals −τ ) versus 0 are plotted in Figure 2 (right). For φ = 0 (i.e., the microscopically
hard condition), the analytical solution [Bittencourt et al. 2003] is also shown to validate the quality of
the present finite element solutions. In Figure 2 (left), it is seen that the constraint on γ at X2 = H is
released with the increase in φ. The slip distribution profile for φ = 0.5 is comparable to that for φ = 0.
Even for φ = 0.9, the value of γ at X2 = H is still smaller than half of the maximum of γ . In the
range of φ > 0.9, the slip distribution profile is sensitively changed with φ. For φ = 1, the condition of
dγ̇ /dX2 = 0 (equivalently, ρ̇G = 0 in this case) is established.

The distributions of slip at 0 = 0.01 for a relative length scale of l/H = 0.3 are depicted in Figure 3.
In this case, clear boundary layers are formed. The overall behavior associated with the change in φ
is similar to that for l/H = 1. Variation of the stress-strain curves due to a change in the interfacial

2The values of γ are computed at the Gaussian points and they are constant within each element in the present problem.
The smoothly plotted curves shown in Figure 2 (left), as well as in Figure 3, are obtained using the values of γ evaluated at
the positions of the corner nodes as the average of values in the adjacent elements. However, the values at the boundaries of
the body cannot be evaluated in this manner. Thus, the computed curves do not reach the boundaries at X2/H = 0 and 1 in
Figures 2 (left) and 3.
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X2/H

γ

l/H = 0.3

φ = 1.0 0.99 0.9 0

φ = 0 (analytical)

Elasto-plasticity
Elasto-viscoplasticity (m = 0.02)

Figure 3. Distributions of slip in the thickness direction for constrained simple shear
problem with relaxed microscopic boundary conditions at the upper surface for a relative
length scale of l/H = 0.3 at 0 = 0.01.

microscopic boundary conditions is very small in the case of l/H = 0.3, and their depiction is omitted.
The trend is fundamentally the same as that shown in Figure 2 (right) for l/H = 1.0.

In addition to the rate-independent elasto-plasticity analysis, an elasto-viscoplastic version of the
theory, which has been frequently employed in previous studies [Kuroda and Tvergaard 2006; 2008a;
2008b; El-Naaman et al. 2016], is examined here. The power law relation is used, instead of the yield
condition (4), given as

γ̇ = sgn(τ − τb)γ̇0

(
|τ − τb|

g

)1/m

, (24)

where m is a rate sensitivity exponent and γ̇0 is a reference slip rate. In the present example, m is chosen
to be 0.02, which is a realistic value for common metals at room temperature, and γ̇0 is identified with
0̇ in the computations. In the limit m→ 0, (24) reduces to (4). In the finite element computations of
the elasto-viscoplastic version, (13) is directly used for the GND density analysis, as in previous studies
[Kuroda and Tvergaard 2006; 2008a; 2008b]. Equation (17) with (24) is applied to the right-hand side
of (13). It has been confirmed that the responses of an elasto-viscoplastic material governed by (24)
with the microscopic boundary conditions prescribed by the use of (17) approximate the corresponding
elasto-plasticity responses, as observed in Figure 3. Note that an extrapolation is required to evaluate a
value of γ̇ at the edge of the element at the boundary because γ̇ is computed inside the element in the
present theory. In the present simple shear problem with the finite element type used here, the value of
γ̇ is constant within each element, and this constant value has been used as the extrapolated value at the
edge of the element at the upper end of the finite element model. The effect of such extrapolation on the
solution is subordinated in an appropriately discretized finite element meshing.

2.5. Three-dimensional, multislip description of the theory. In the above, we confined our attention to
the simplified theory with a single-slip system in the two-dimensional setting to illustrate the basic idea of
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the interfacial boundary condition newly proposed. The three-dimensional form of the theory with multi-
slip systems (but still in the small strain regime [Kuroda and Tvergaard 2008b]) is briefly described below.

For multislip conditions, adoption of the viscoplastic formulation is advantageous because it is free
from the problem of the unique determination of the slip rate on each slip system, which is encountered
in rate-independent crystal plasticity analyses. Thus, (24) is extended to

γ̇ (α) = sgn(τ (α)− τ (α)b )γ̇0

(
|τ (α)− τ

(α)
b |

g(α)

)1/m

, (25)

where α is the slip system number, and

τ (α) = σ : P (α); P (α) = (s(α)⊗m(α))sym, (26)

g(α) = τ0+

∫ t

0

∑
β

h(αβ)|γ̇ (β)| dt, (27)

τ
(α)
b = l2bτ0(∇ρ

(α)
G(e) · s

(α)
+∇ρ

(α)
G(s) · p(α)). (28)

Here, h(αβ) is a slip hardening moduli matrix that can incorporates latent hardening effects3, ρ(α)G(e) is the
density of the edge-type GNDs, ρ(α)G(s) is the density of the screw-type GNDs, and p(α) = s(α) ×m(α).
In (28), interactions between the slip systems are neglected for simplicity within the present paper. More
elaborate backstress models with the slip system interactions were proposed by Evers et al. [2004] and
Bayley et al. [2006], and were used in [Kuroda and Tvergaard 2008a; 2008b] and [Kuroda 2013].

Weak forms of the incremental relations of the edge- and screw-type GND density balances4 are,
respectively, ∫

V
ρ̃ρ̇

(α)
G(e) dV −

∫
V

1
b
∇ρ̃ · s(α)γ̇ (α) dV =−

∫
Sγ

1
b
ρ̃n · s(α)γ̇ (α) dS, (29)∫

V
ρ̃ρ̇

(α)
G(s) dV −

∫
V

1
b
∇ρ̃ · p(α)γ̇ (α) dV =−

∫
Sγ

1
b
ρ̃n · p(α)γ̇ (α) dS, (30)

with
γ̇ (α) = φ(α)γ̇ (α). (31)

A finite strain version of the theory has been given in [Kuroda and Tvergaard 2008a]. Equations for
the finite strain version are not repeated here for brevity.

3. Strategy for generalization of φ(α)

Consider a body composed of two parts (which may be grains), A and B, with a grain boundary (GB) or
an interface SGB (Figure 4). Under multislip situations, the expression of the present boundary model (17)
is extended to

γ̇
(α)
A = φ

(α)
A γ̇

(α)
A on SGB(A) and γ̇

(β)

B = φ
(β)

B γ̇
(β)

B on SGB(B), (32)

3Recently, a model of size-dependent latent hardening has been proposed by Bardella et al. [2013]. Such an effect has yet
to be introduced in the present model.

4Different researchers use different sign conventions for the screw-type GND density. The sign convention for the screw-
type GND density in (30) follows that used by Gurtin [2002; 2008b].
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Figure 4. Schematic illustration of a body with a grain boundary. Separated description
of grains A and B (left); grains A and B joined into a single body (right).

where the subscripts A and B denote that the corresponding quantities belongs to grain A or B, and
the superscript α and β represent the slip system number given within grains A and B, respectively,
and SGB(A) and SGB(B) are the interfacial surfaces seen from grains A and B, respectively. In general,
the continuum modeling of crystal plasticity, in which crystallographic slips are taken as a fundamental
deformation process, cannot directly resolve the individual dislocation behaviors such as absorption,
emission (or subsequent reemission), and transmission, which would be observed at a finer scale. The
resultant amount of slip rate resulting from these multiple phenomena is quantified via φ(i)I (with I = A
or B and i = α or β for brevity). The coefficient φ(i)I is said to give a mesoscopic representation of the
resistance of the interface to slip occurrence. In this modeling, the value of φ(α)A for grain A may be
determined independently of information from grain B, and vice versa, for a supposed situation where
the boundary on the grain A side acts as the dislocation sink and source, whereas the boundary on the
grain B side functions as a strong barrier to dislocations. On the other hand, it is possible to consider grain
interactions. Even in that case, it is reasonable to consider that φ(i)I does not become more than unity
because the slip behavior at a point infinitesimally close to the GB must be governed by the mechanical
conditions at that point located inside the grain. A negative φ(i)I is also inconsistent with the mechanical
conditions at the point infinitesimally close to the GB. Available experimental data is not sufficient for
formulating a unique form for the function φ(i)I . However, it is generally expected that φ(i)I will be affected
by a relative misorientation of the grains; the orientation of the GB relative to the grains; the spacing
between the GB and the external surface; the thickness, structure, and amount of precipitation of the GB;
temperature; and maybe some other factors.

In the current modeling, γ̇ (α)A at a point on the grain A side of the interface depends only on the
slip rate γ̇ (α)A in grain A. One might conceive a more elaborate and complicated formulation of γ̇ (α)A
that also incorporates the influences of the slip rates γ̇ (β)B in grain B. This coupling, which induces a
significant complexity in the formulation and computational procedure, is omitted in the present study.
Nevertheless, this simple model has the capability to represent a rather wide range of material responses
at the micrometer scale, as will be demonstrated in the next section.

In the following application, we consider a simple formulation that only takes into account the geo-
metrical configuration of the slip systems and the GB plane (i.e., the degree of misorientation between
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grains A and B, and the orientation of the GB plane relative to the grains):

φ
(α)
A = (max

β
C̄ (αβ)

AB )ν, φ
(β)

B = (max
α

C̄ (αβ)

AB )ν, (33)

where ν (≥ 0) is a scaling exponent, and the moduli C̄ (αβ)

AB represent the degree of misorientation between
the two adjacent grains and the GB orientation relative to those grains. The moduli C̄ (αβ)

AB are given by

C̄ (αβ)

AB =
∣∣s(α)A · s

(β)

B

∣∣∣∣q̄(α)A · q̄
(β)

B

∣∣,
q̄(α)A =

m(α)
A × nGB

‖m(α)
A × nGB‖

, q̄(β)B =
m(β)

B × nGB

‖m(β)

B × nGB‖
,

(34)

where nGB is the GB normal that points from grain A to grain B, and s(i)I and m(i)
I are respectively

the slip direction and the slip plane normal that constitute the slip systems in each grain. The condition
0≤ C̄ (αβ)

AB ≤ 1 leads to 0≤ φ(i)I ≤ 1. The basic idea for C̄ (αβ)

AB can be found in [Clark et al. 1992], and it has
recently been employed by Knorr et al. [2015] and Kheradmand et al. [2016] to evaluate the slip transfer
resistance of neighboring grains5 in problems of crack initiation at grain boundaries and deformation
in micrometer-sized bicrystals. Figure 5 shows a schematic diagram of the geometrical configuration
of the slip systems and the GB plane, which characterize values of C̄ (αβ)

AB . Using κ(αβ)AB to denote the
angle between intersection lines of opposite slip planes from the neighboring grains on the GB plane and
θ
(αβ)

AB to denote the angle between the slip directions of opposite slip systems of the neighboring grains,
then we can write C̄ (αβ)

AB = | cos θ (αβ)AB || cos κ(αβ)AB |. In the current formulation of (33), the slip resistance
is determined by the most orientationally favorable slip system in the neighboring grain, which has the
largest value of C̄ (αβ)

AB . One of the most critical situations described using this model may be coherent
twin boundaries (CTBs). Consider that the slip system α in grain A and the slip system β in grain B have
the same Burgers vector that is parallel to the CTB plane (i.e., a cross slip occurs across the CTB). Thus,
φ
(i)
I takes unity regardless of the value of ν since C̄ (αβ)

AB takes unity. This represents a fully transparent
characteristic of the GB showing no resistance to slip occurrence. It is noted that Gurtin [2008b] derived
similar grain interaction moduli,

C (αβ)

AB = s(α)A · s
(β)

B (m(α)
A × nGB) · (m

(β)

B × nGB) for 0≤ |C (αβ)

AB | ≤ 1,

in the context of a different modeling of the GB. The main difference between (34) and Gurtin’s moduli
is whether m(i)

I × nGB are normalized to unit vectors. The values of |C (αβ)

AB | do not reach unity for the
pair of slip systems positioned in the cross slip configuration at the GB. If |C (αβ)

AB | is used in (33), such
a model shows a GB response harder than that predicted using C̄ (αβ)

AB .
When m(i)

I is parallel to nGB, then the value of q̄(i)I is indeterminant, but simultaneously s(i)I · nGB = 0.
In this case, γ̇ (i)I is free from constraint,6 as is understood directly from (13). The interpretation that
a GB parallel to the slip plane does not act as an obstacle to slip deformation is physically acceptable
[Kuroda and Tvergaard 2008b].

5Kheradmand et al. [2016] defined the grain boundary transmission factor as ω(αβ)AB = 1−
∣∣s(α)A · s

(β)
B
∣∣∣∣q̄(α)A · q̄

(β)
B
∣∣ = 1−∣∣cos θ (αβ)AB

∣∣∣∣cos κ(αβ)AB
∣∣. The angles θ (αβ)AB and κ(αβ)AB are depicted in Figure 5. They used ω(αβ)AB in the context of the qualitative

interpretation of their experimental results, and they did not apply it to numerical simulations.
6In the actual numerical computations, use of an arbitrary value of C̄(αβ)AB for the case of s(i)I · nGB = 0 is sufficient to get

the exact solution of the interfacial slip rate.
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Figure 5. Schematic diagram of the geometrical configuration of the slip systems and
the GB plane.

When ν = 1, it is assumed that the amount of the interfacial slip depends linearly on the geometrical
configuration of the GB plane and adjacent grains. A value of the exponent ν smaller than unity gives
a more active plastic flow at the GB, whereas a large ν suppresses the plastic flow at the boundary.
Kheradmand et al. [2016] suggested that transferability of the GB rapidly decreases when the critical
condition

∣∣cos θ (αβ)AB

∣∣∣∣cos κ(αβ)AB

∣∣≤ cos 15◦ · cos 15◦ = 0.933 holds. If we postulate that a hard-type GB is
practically represented with φ ≈ 0.5, as is expected from the observation in Figure 2 (left), ν is assumed
to be ∼ 10.

4. Application to a practical problem: bicrystalline micropillar compression

4.1. Problem formulation. To illustrate the effect of the higher-order boundary conditions in a practical
problem of a small sized body, the bicrystalline micropillar compression problem is considered. The
finite element model of an f.c.c. bicrystal micropillar with a square cross section is considered, as shown
in Figure 6 (left). The aspect ratio of the gauge length H to the edge length W is selected to be 2.3
[Shade et al. 2012; Kuroda 2013]. A plane GB is assumed at X1 = 0 with an initial unit normal of nGB

0 =

(−1, 0, 0) in the undeformed configuration. The portion for X1 ≥ 0 is assigned as grain A, and that for
X1 < 0 is assigned as grain B. Although the specific material and experimental data are not strictly quoted
and no parameter fitting study is intended in the present computations, several practical conditions are
taken from the study of Imrich et al. [2014] who employed copper single- and bicrystalline micropillars.

Three models of bicrystalline micropillars with different sets of crystal orientations are considered.
The first model includes an arbitrary large-angle grain boundary (LAGB), and the other two models have
a coherent twin boundary (CTB). In the LAGB micropillar, the [3 1 0] and [1 3̄ 26] directions are chosen
to be parallel to the sample axis (the X3-direction) and X1-direction, respectively, for grain A. The [4 0 1̄]
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Figure 6. Bicrystalline micropillar compression problem. Finite element model (left);
schematic illustration of the boundary conditions (right).

and [3 1̄ 12] directions coincide with the X3- and X1-directions, respectively, for grain B. The two grains
have a difference of 22.8◦ in orientation around [1 3̄ 4]. One of the CTB micropillars, which is designated
as CTB-1, has crystal orientations such that the [1 1̄ 0] direction is parallel to the X3-direction and the
[1 1 1] direction coincides with the X1-direction. The crystal orientations of grains A and B are in mirror
symmetry about the GB plane, i.e., the orientation of grain A rotated at 180◦ around the [1 1 1] direction
coincides with that of grain B. Each grain has four potentially active slip systems that have the same
(highest) Schmid factors = 0.4082 (see [Imrich et al. 2014, Figure 6] for better understanding). Two of
these slip systems have the Burgers vectors parallel to the GB plane (φ(i)I = 1 for the two slip systems). In
the other CTB micropillar, which is designated as CTB-2, the crystal orientations considered in CTB-1
are rotated 7.5◦ about the X1-axis (counterclockwise rotation in the X2-X3 plane). Owing to this tilt, the
number of potentially active slip systems is reduced to one in each grain. This unique potentially active
slip system has a Schmid factor of 0.4553 and its Burgers vector remains parallel to the GB plane (and
also φ(i)I = 1 for this slip system). All other slip systems have Schmid factors smaller than 0.4. This
configuration is rather similar to that of a group of samples employed in [Hirouchi and Shibutani 2014].

The finite strain version of the theory [Kuroda and Tvergaard 2008a] is used. The same theory has
already been applied to single-crystal micropillar compression analysis by Kuroda [2013]. The elastic
constants are chosen to be c11= 171 GPa, c12= 122 GPa, and c44= 69.1 GPa [Berryman 2005]. The initial
slip resistance τ0 is taken to be 30 MPa for the LAGB micropillar and 50 MPa for the CTB micropillar
[Imrich et al. 2014]. The slip hardening modulus h0 (= h(αβ)) is set to zero for simplicity and also
as a reference to the experimental observation of very weak work hardening for single-crystal copper
micropillars in [Imrich et al. 2014]. The rate sensitivity parameter m is taken to be 0.05. The length
scale l is taken as l/W = 0.8.

In the finite element computations, the displacement field is solved using three-dimensional brick-type
twenty-node (serendipity) elements with 2× 2× 2 Gauss points (i.e., reduced integration) and the GND
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density field is solved using three-dimensional brick-type eight-node (bilinear) elements with 2× 2× 2
Gauss points (i.e., full integration). The coordinates of the nodes in the eight-node elements are set to
be identical to those of the corner nodes in the twenty-node elements.

The axial displacement U̇ , taken to be positive in the negative X3-direction, is assigned to the top
surface at a nominal strain rate of ε̇N = U̇/H = f (max)

S γ̇0 with f (max)
S being the highest absolute values of

the nominal Schmid factors among those for all slip systems in the bicrystalline micropillar. A schematic
illustration of boundary conditions of the micropillar model is given in Figure 6 (right). A nominal
compressive stress is defined as the sum of the nodal forces, P , in the negative X3-direction, divided
by the initial cross-sectional area W 2. Every material point (the nodes in finite element analysis) on the
top surface is free to move laterally and will be released from the rigid platen when the normal (contact)
stress at that point, which was negative (compressive) at the initial stage of loading, becomes zero. This
simply models the case where the friction between the top surface and the loading platen is very low.
Regarding the slip rates on the top surface, the microscopically hard condition (φ(α) = 0) is adopted.
The contact between the sample top and the loading platen, which are both sufficiently flat, is likely to
correspond to this condition. Very few slip lines are often observed on the top surfaces of micropillars
after testing (e.g., [Uchic et al. 2004]). This supports the validity of assuming the microscopically hard
condition on the top surface. On the traction free surfaces (i.e., on the lateral surface of the gauge region
and on the upper surface of the substrate), the microscopically free condition, which corresponds to the
null GND condition, is assumed. All the degrees of freedom for displacements on the bottom surface
of the substrate are fully constrained, and the microscopically hard condition is assumed on the bottom
surface. This setting does not much affect the computational results because essentially the slips are not
activated near the bottom surface of the substrate.

Next, we consider the microscopic boundary conditions at the boundary between grains A and B. The
following four conditions for the GB are assumed.

Hard GB: φ
(i)
I = 0,

Transparent GB: φ
(i)
I = 1,

Orientation-dependent GB I: Equations (33) and (34) with ν = 1,
Orientation-dependent GB II: Equations (33) and (34) with ν = 10.

Although the values of C̄ (αβ)

AB will vary owing to the lattice rotations in each grain under general finite
deformations, the updates of C̄ (αβ)

AB are omitted for simplicity and the initial values of C̄ (αβ)

AB are used
throughout the computations. This simplification may not significantly affect the results, because the
overall nominal compressive strain of the samples will be lower than 10%.

4.2. Results. The computed curves of nominal compressive stress versus nominal compressive strain
for the LAGB, CTB-1, and CTB-2 samples are shown in Figure 7. Computational results using the
conventional crystal plasticity model with no account of the size effect [Asaro and Needleman 1985] are
also shown in these graphs for comparison. In the case of the hard GB, high strain hardening behavior
is observed for all the cases of LAGB, CTB-1, and CTB-2. The significant hardening seen here is solely
attributed to the development of the backstresses near the hard GB, around which steep gradients of
the slips are generated owing to the constraint on the slips. This typical behavior of the backstresses
associated with the accumulation of the GNDs is illustrated in detail in Figures 9 and 10, focusing on
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Figure 7. Computed curves of nominal compressive stress versus nominal compressive
strain for bicrystalline micropillars with different GB conditions. LAGB samples (left);
CTB-1 samples (right); CTB-2 samples (bottom). The length scale is chosen to be
l/W = 0.8 unless indicated otherwise. In the graphs, “Conventional crystal plasticity”
denotes the result obtained using the conventional size-independent crystal plasticity
model of Asaro and Needleman [1985]. Orientation-dependent GB II corresponds to
ν = 10 and orientation-dependent GB I corresponds to ν = 1.

the results for CTB-2, which has the simplest deformation mechanism and is relevant for understanding
the fundamental mechanical behavior.

For LAGB, the computation with the hard GB has predicted high strain hardening behavior, which
seems to be consistent with that observed in the experimental stress–strain curve [Imrich et al. 2014]. The
orientation-dependent GB II (with ν = 10) also leads to high amounts of strain hardening comparable to
that predicted by the hard GB, because the values of φ(i)I computed with C̄ (αβ)

AB values of 0< C̄ (αβ)

AB < 1
are significantly decreased by the exponent ν = 10. The values of φ(i)I for the primary slip systems on the
grains A and B sides are respectively 0.360 and 0.525, which give sufficiently hard interface responses
as expected from the slip distribution profile shown in Figure 2 (left). The correspondence between the
current numerical and the experimental results partly supports the view that LAGB functions as a barrier
to dislocations. On the other hand, the orientation-dependent GB I (with ν = 1) and the transparent GB
predict a rather low strain hardening behavior.
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In the cases of the CTB-1 and CTB-2 samples that have the crystal orientations with the mirror sym-
metry about the GB plane, the nominal stress-strain curves are nearly linear. The computations with the
orientation-dependent GBs (both I and II) exhibit very weak (or almost no) hardening that is consistent
with that observed in the experimental stress-strain curves reported in [Imrich et al. 2014] and [Hirouchi
and Shibutani 2014]. These curves are close to those for the transparent GB. In the CTB-1 sample, there
are four active slip systems in each grain, which have the same highest Schmid factor. Two of these have
the Burgers vectors whose directions are parallel to the GB. Even on these slip systems, large amounts of
backstresses are produced owing to pileups of screw GNDs when the hard GB is assumed (i.e., a strong
slip gradient is produced in the direction perpendicular to the Burgers vector on the slip plane). In the
cases of the orientation-dependent GBs (both I and II), these slip systems have φ(i)I = 1, and thus the GB
exhibits no resistance to slips. Such a transparent nature of CTB has already been suggested by Imrich
et al. [2014]. The CTB-2 sample explains this condition more clearly due to its simplicity. The CTB-2
sample has only one active slip system whose Burgers vector is parallel to the GB plane in each grain.
Hirouchi and Shibutani [2014] conducted compression tests on bicrystalline micropillars having active
slip systems nearly parallel to the GB, which are similar to those in the CTB-2 samples. They observed
that their stress-strain curves were fundamentally equivalent to those for the single-crystalline samples
that showed minimal (almost no) strain hardening. This coincidence supports the view that the CTBs
have fundamentally no resistance to slips.

Figure 8 shows the deformations and contours of slips on the primary slip systems whose Burgers
vectors are parallel to the GB surface for the CTB-2 samples at a nominal compressive strain of 0.06.
The deformation modes predicted with the transparent GB (Figure 8b), the orientation-dependent GB I
(Figure 8c) and the orientation-dependent GB II (Figure 8d) are composed of two outer dead zones
and one distinct central shear zone that fully penetrates the body of the pillar. This deformation mode
is fairly consistent with the experimental observation by Hirouchi and Shibutani [2014] and it is also
similar to that of a single-slip single-crystal micropillar. Comparing the results shown in Figures 8b,
8c, and 8d, the samples with the orientation-dependent GBs (both I and II) exhibited more activated
slips on the primary slip systems than the sample with the transparent GB. In these cases, only φ(i)I
for the slip systems positioned in the cross slip configuration (including the primary slip system) show
unity. Smaller values of φ(i)I for the other slip systems (including the secondary and tertiary slip systems)
indicate the suppression of slip activations at the GB. In the case of the transparent GB, all slip systems
have φ(i)I = 1; thus, the secondary and tertiary slip systems could be activated much more easily than those
in the case of the orientation-dependent GBs. Such a distinct appearance of the shear zone may support
the properness of the present orientation-dependent GB models. The hard GB does not lead to a visible
shear zone and causes less amounts of slip, as shown in Figure 8a. The conventional theory provides no
constraint of the slip at every boundary because it has no higher-order microscopic boundary conditions.
The conventional theory does not predict the fully penetrating uniform shear zone, but predicts a weakly
concentrated and heterogeneous shear area (Figure 8e). Introduction of both the gradient effect and
the microscopic boundary conditions is necessary to reproduce the typical deformation mode with the
penetrating shear zone, as emphasized by Kuroda [2013].

Figure 9 shows the distributions of the screw GND densities on the primary slip systems in the CTB-2
samples with different GB conditions. In the case of the hard GB (Figure 9 (upper-left)), the screw
GNDs significantly accumulate at the GB. In the cases of the transparent GB (Figure 9 (upper-right)),
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Figure 8. Deformed meshes and contours of slip on the primary slip systems for CBT-2
samples with different GB conditions at a nominal compressive strain of 0.06. The length
scale is chosen to be l/W = 0.8. The Burgers vectors of the primary slip systems are
parallel to the grain boundary. Hard GB (a); transparent GB (b); orientation-dependent
GB I (ν= 1) (c); orientation-dependent GB II (ν= 10) (d); conventional size-independent
crystal plasticity model (e).
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the orientation-dependent GB I (Figure 9 (lower-left)), and the orientation-dependent GB II (Figure 9
(lower-right)), the screw GND densities are much lower than that for the hard GB case. Figure 10
depicts the distributions of the backstresses on the primary slip systems in the CTB-2 samples with
different GB conditions. Significant amounts of backstresses were produced at the GB in the case of the
hard GB (Figure 10 (upper-left)). The influence of the backstress produced near the GB is observed as
apparently strong strain hardening in the stress–strain curves (Figure 7). The backstresses produced in
the transparent GB sample (Figure 10 (upper-right)), the orientation-dependent GB I sample (Figure 10
(lower-left)), and the orientation-dependent GB II sample (Figure 10 (lower-right)) are much smaller than
that produced in the hard GB samples. Consequently, very small amounts of strain hardening appear in
the stress-strain relations and this trend is consistent with experimental observations.

The length scale of l/W = 0.8 has been used thus far in the present application shown above. Results
for a different value of the length scale, l/W = 0.4, are additionally shown in Figure 7 (bottom) for
comparison. The nominal stress for the hard GB sample is significantly lowered by the decrease in the
length scale. The nominal stresses for the transparent GB sample, the orientation-dependent GB I sample
and the orientation-dependent GB II sample become close to that for the conventional plasticity result.
But, the overall deformation behaviors of the samples with l/W = 0.4 are very similar to those shown
in Figures 8–10, although their depictions are omitted.

5. Discussion

5.1. On the predictability of the model. From the comparison of the present numerical results of the
micropillar compression problem with experimental observations in the literature, it can be said that the
GB has the transparent nature if the opposite slip systems from the neighboring grains are positioned
in the cross slip configuration. The GB models given by (33) with (34), i.e., the orientation-dependent
GB I (with ν = 1) and orientation-dependent GB II (with ν = 10) in the application, represent this
nature. The experimentally observed mechanical response of the samples with CTB is characterized by
these models. The orientation-dependent GB II (with ν = 10) also predicts the experimentally observed
material response of the LAGB sample showing the significant amount of strain hardening. This finding
partly supports the soundness of the assumption that the amount of slip at the GB nonlinearly depends on
the moduli C̄ (αβ)

AB . As mentioned in the Introduction, however, opposite observations have been reported
[Kunz et al. 2011; Kim et al. 2015], i.e., LAGBs in submicrometer-sized bicrystalline pillars did not act
as strong barriers to moving dislocations nor caused additional strain hardening. Such behavior can be
apparently described with a low value of ν (e.g., ν ≈ 1 or lower), although its physical mechanism is not
known at present.

The present model only considers the geometrical configuration of the slip systems and the GB plane.
Incorporation of other possible effects, e.g., yielding of the GB at a certain stage of deformation, temper-
ature dependence, and interaction between the GB and the external surface, is left for future studies.

As mentioned in Section 3, in the current model, γ̇ (α)A at a point on the grain A side of the interface
is determined only by the slip rate γ̇ (α)A in grain A. A more elaborate formulation of γ̇ (α)A that also
considers the influences of the slip rates γ̇ (β)B in grain B may be conceived. Such coupling induces a
significant complexity in the formulation and also in the computational procedure that demands the use
of a kind of joint element. This results in a tremendous increase in the size of the system of the equations



212 MITSUTOSHI KURODA

GB

X1

X3

GB

GB GB

Figure 9. Contours of the screw GND densities (nondimensionalized as ρ(α)G(s)bl) on
the primary slip systems in the middle cross section (X1-X3 plane views) for CTB-
2 samples with different GB conditions at a nominal compressive strain of 0.06. The
Burgers vectors of the primary slip systems are parallel to the grain boundary. The length
scale is chosen to be l/W = 0.8. Hard GB (upper-left); transparent GB (upper-right);
orientation-dependent GB I (ν = 1) (lower-left); orientation-dependent GB II (ν = 10)
(lower-right).

especially in cases of three-dimensional analysis of a polycrystal. The proposed model with the omission
of this coupling is simple. Nevertheless, it has the capability to represent the overall material responses
associated with both LAGB and CTB using the same material parameter values.

The present treatment of the microscopic boundary conditions may also efficiently represent peculiar
microscopic characteristics of external surfaces. For example, an external surface coated by an incom-
plete or fragile thin oxide layer that is partially penetrable to dislocations may be modeled by 0<φ(α)< 1
with appropriate constitutive modeling of φ(α). This is also left for future studies.
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Figure 10. Contours of the backstresses on the primary slip systems in the middle cross
section (X1-X3 plane views) for CTB-2 samples with different GB conditions at a nom-
inal compressive strain of 0.06. The Burgers vectors of the primary slip systems are
parallel to the grain boundary. The length scale is chosen to be l/W = 0.8. Hard GB
(upper-left); transparent GB (upper-right); orientation-dependent GB I (ν = 1) (lower-
left); orientation-dependent GB II (ν = 10) (lower-right).

5.2. On the formulation of the model. The non-work-conjugate type (or backstress-based) strain gradi-
ent plasticity formulation, on which the current theory is based, can be converted to the work-conjugate
type representation, as has been discussed by Kuroda and Tvergaard [2006; 2008a; 2008b] and Ertürk
et al. [2009]. A virtual work expression that is the basis of the latter type is derived as follows. We use
mathematical expressions for the finite strain conditions, referring to [Kuroda and Tvergaard 2008a], but
the fundamental points do not differ from those of its small strain version [Kuroda and Tvergaard 2008b].
According to the kinematics of crystal plasticity, the virtual velocity gradient L̃ can be represented by

L̃ = ˙̃u⊗∇ = L̃e
+

∑
α

˙̃γ (α) s̄(α)⊗ m̄(α), (35)



214 MITSUTOSHI KURODA

where ˙̃u is a virtual velocity, ∇ is redefined as the spatial gradient operator with respect to the current
(deformed) configuration, L̃e is a virtual elastic distortion rate, ˙̃γ (α) is a virtual slip rate, and s̄(α) and
m̄(α) are the slip direction and slip plane normal vectors in the deformed configuration, respectively
(a superposed bar denotes that the quantity is evaluated in the deformed configuration). Using the elastic-
plastic decomposition of L̃ in (35), the conventional virtual work principle is written as∫

V

(
σ : L̃e

+

∑
α

τ (α) ˙̃γ (α)
)

dV =
∫

S
t · ˙̃u dS. (36)

Here, V and S are respectively the volume and the boundary surface of the body in the deformed config-
uration.

If the backstress on each slip system can be expressed as the divergence of a vector quantity 7, ξ (α), i.e.,

τ
(α)
b =−∇ · ξ

(α), (37)

then we can rewrite the yield condition as

τ (α)+∇ · ξ (α) = π (α) (38)

with the definition π (α)= sgn(τ (α)+∇·ξ (α))g(α), where g(α) is the CRSS of each slip system. Substituting
(38) into (36) and applying the divergence theorem and integration by parts, (36) can be further expressed
as ∫

V
σ : L̃e dV +

∑
α

∫
V
(π (α) ˙̃γ (α)+ ξ (α) · ∇ ˙̃γ (α)) dV =

∫
S

t · ˙̃u dS+
∑
α

∫
S

n̄ · ξ (α) ˙̃γ (α) dS. (39)

This equation exactly corresponds to the virtual work principle expression introduced by Gurtin [2002]
as the major premise of the theory. In (39), the quantities ξ (α) may be viewed as microscopic stresses
that are work-conjugate to the slip rate gradients, and the quantities n̄ · ξ (α) appearing on the boundary
are considered as microscopic tractions.

Next, we consider two pieces of material, grains A and B, as shown in Figure 4 (left), which will
form a single body with a GB, as illustrated in Figure 4 (right). The virtual work expression of (39) is
applied to each of the grains shown in Figure 4 (left), recognizing the potential GB surfaces SGB(A) and
SGB(B) with unit normal n̄GB and −n̄GB, which are respectively expediently distinguished from the outer
surfaces SA and SB:∫

VA

σ : L̃e dV +
∑
α

∫
VA

(π (α) ˙̃γ (α)+ ξ (α) · ∇ ˙̃γ (α)) dV

=

∫
SA

t · ˙̃u dS+
∫

SGB(A)

t · ˙̃u dS+
∑
α

(∫
SA

n̄ · ξ (α) ˙̃γ (α) dS+
∫

SGB(A)

n̄GB · ξ
(α) ˙̃γ (α) dS

)
, (40)

7If we assume that ξ (α) = −l2bτ0
[
ρ̄
(α)
G(e) s̄

(α)
+ ρ̄

(α)
G(s) p̄(α)

]
, the backstress relation becomes τ (α)b = l2bτ0(∇ρ̄

(α)
G(e) · s̄

(α)
+

∇ρ̄
(α)
G(s) · p̄(α) + ρ̄(α)G(e)∇ · s̄

(α)
+ ρ̄

(α)
G(s)∇ · p̄(α)). The last two terms in parentheses on the right-hand side, ρ̄(α)G(e)∇ · s̄

(α) and

ρ̄
(α)
G(s)∇ · p̄(α), were omitted in the numerical computations performed in the present paper. These terms do not have any notable

effect when there is only a moderate amount of deformation [Kuroda and Tvergaard 2008a].
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VB

σ : L̃e dV +
∑
α

∫
VB

(π (α) ˙̃γ (α)+ ξ (α) · ∇ ˙̃γ (α)) dV

=

∫
SB

t · ˙̃u dS+
∫

SGB(B)

t · ˙̃u dS+
∑
α

(∫
SB

n̄ · ξ (α) ˙̃γ (α) dS−
∫

SGB(B)

n̄GB · ξ
(α) ˙̃γ (α) dS

)
. (41)

Here we assume that no displacement gap (no sliding nor crack opening) at the GB occurs, i.e., ˙̃u|A= ˙̃u|B
and σ |A · n̄GB− σ |B · n̄GB = 0. Now, we bond grains A and B as depicted in Figure 4 (right), and then
consider the addition of (40) and (41),

∫
V
σ : L̃e dV+

∑
α

∫
V
(π (α) ˙̃γ (α)+ξ (α) ·∇ ˙̃γ (α)) dV

=

∫
S

t · ˙̃u dS+
∑
α

(∫
S

n̄·ξ (α) ˙̃γ (α) dS
)
+

∑
α

(∫
SGB

[
(n̄GB ·ξ

(α) ˙̃γ (α))|A−(n̄GB ·ξ
(α) ˙̃γ (α))|B

]
dS
)
. (42)

According to the expression of (42), we may view the power expenditure at the GB per unit area as∑
α

{[[n̄GB · ξ
(α)γ̇ (α)]]}, (43)

where [[•]] = (•)|A− (•)|B indicates the jump across SGB.
Gurtin and Needleman [2005] proposed another expression for the power expenditure at the GB in

the small strain context, ∑
α

{[[n̄GB · ξ
(α)γ̇ (α)]]} = K : [[Ḣp

· (n̄GB×)]] ≥ 0, (44)

where K is an internal force tensor distributed over the GB, which is defined as a power-conjugate to
the tensor8

[[Ḣp
· (n̄GB×)]], where Ḣp

I =
∑

α γ̇
(α)
I s̄(α)I ⊗ m̄(α)

I (the subscript I stands for A or B) and the
sign of inequality indicates the dissipation condition. In particular, the ideal condition [[Ḣp

]](n̄GB×)= 0
represents a balanced Burgers vector flow, which means that the flow out of grain A is equal to that
into grain B. Gurtin and Needleman [2005] called this the defect-free condition. Okumura et al. [2007]
performed finite element analysis of a two-dimensional polycrystal (16 f.c.c. grains) unit cell model with
adoption of the defect-free condition at the GBs, and reported that the defect-free condition led to a
result rather similar to that predicted with a microfree condition n̄GB · ξ

(α)
I = 0. Later, Gurtin [2008b]

proposed another GB model in which constitutive relations are given to the interfacial microforces, λ(α)A ≡

n̄GB · ξ
(α)
|A and λ(α)B ≡ −n̄GB · ξ

(α)
|B (that appear in (42) and (43)), via thermodynamic consideration

based on the GB free energy newly proposed and defined. Computational applications of this GB model
have been reported in [Özdemir and Yalçinkaya 2014].

In contrast, in the non-work-conjugate approach on which the current model is based, the weak form
of the GND density evolution equation (i.e., (13), (29) and (30)) with the surface integral term gives a
deduction of the concomitant boundary conditions. In this context, it is natural to consider directly the
boundary conditions for the interfacial slip rate, which can be assumed to represent the resultant effects
of absorption, emission, and transmission of the dislocations at the GB.

8(a× )i j = eik j ak , where a is a vector and eik j is the permutation symbol.
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6. Conclusions

In the present paper, a basic strategy for setting arbitrary interfacial microscopic boundary conditions
associated with a backstress-based (non-work-conjugate type) higher-order gradient crystal plasticity
theory was proposed. A simple model of the GB behavior was considered, which incorporates a nonlinear
dependence of a geometrical correlation between orientations of the slip systems and the GB plane on
the amount of slip rate at the GB. The model was examined in analyses of the bicrystalline micropillar
compression problem. According to qualitative comparison with the experimental results reported in the
literature, the model has the capability to represent the overall material responses associated with both
LAGB and CTB using the same material parameter values.
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[Ertürk et al. 2009] İ. Ertürk, J. A. W. van Dommelen, and M. G. D. Geers, “Energetic dislocation interactions and thermody-
namical aspects of strain gradient crystal plasticity theories”, J. Mech. Phys. Solids 57:11 (2009), 1801–1814.

[Evers et al. 2004] L. P. Evers, W. A. M. Brekelmans, and M. G. D. Geers, “Non-local crystal plasticity model with intrinsic
SSD and GND effects”, J. Mech. Phys. Solids 52:10 (2004), 2379–2401.

[Fleck et al. 1994] N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, “Strain gradient plasticity: theory and
experiment”, Acta Metall. Mater. 42:2 (1994), 475–487.

[Groma et al. 2003] I. Groma, F. F. Csikor, and M. Zaiser, “Spatial correlations and higher-order gradient terms in a continuum
description of dislocation dynamics”, Acta Mater. 51:5 (2003), 1271–1281.

[Gurtin 2002] M. E. Gurtin, “A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary
dislocations”, J. Mech. Phys. Solids 50:1 (2002), 5–32.

[Gurtin 2008a] M. E. Gurtin, “A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on
densities of geometrically necessary dislocations”, Int. J. Plasticity 24:4 (2008), 702–725.

[Gurtin 2008b] M. E. Gurtin, “A theory of grain boundaries that accounts automatically for grain misorientation and grain-
boundary orientation”, J. Mech. Phys. Solids 56:2 (2008), 640–662.

[Gurtin and Needleman 2005] M. E. Gurtin and A. Needleman, “Boundary conditions in small-deformation, single-crystal
plasticity that account for the Burgers vector”, J. Mech. Phys. Solids 53:1 (2005), 1–31.

[Gutkin and Aifantis 1999] M. Y. Gutkin and E. C. Aifantis, “Dislocations in the theory of gradient elasticity”, Scripta Mater.
40:5 (1999), 559–566.

[Hirouchi and Shibutani 2014] T. Hirouchi and Y. Shibutani, “Mechanical responses of copper bicrystalline micro pillars with
63 coherent twin boundaries by uniaxial compression tests”, Mater. Trans. 55:1 (2014), 52–57.

[Imrich et al. 2014] P. J. Imrich, C. Kirchlechner, C. Motz, and G. Dehm, “Differences in deformation behavior of bicrystalline
Cu micropillars containing a twin boundary or a large-angle grain boundary”, Acta Mater. 73 (2014), 240–250.

[Kheradmand et al. 2016] N. Kheradmand, A. F. Knorr, M. Marx, and Y. Deng, “Microscopic incompatibility controlling
plastic deformation of bicrystals”, Acta Mater. 106 (2016), 219–228.

[Kim et al. 2015] Y. Kim, S. Lee, J. B. Jeon, Y.-J. Kim, B.-J. Lee, S. H. Oh, and S. M. Han, “Effect of a high angle grain
boundary on deformation behavior of Al nanopillars”, Scripta Mater. 107 (2015), 5–9.

[Knorr et al. 2015] A. F. Knorr, M. Marx, and F. Schaefer, “Crack initiation at twin boundaries due to slip system mismatch”,
Scripta Mater. 94 (2015), 48–51.

[Kröner 1963] E. Kröner, “On the physical reality of torque stresses in continuum mechanics”, Int. J. Eng. Sci. 1:2 (1963),
261–278.

[Kunz et al. 2011] A. Kunz, S. Pathak, and J. R. Greer, “Size effects in Al nanopillars: single crystalline vs. bicrystalline”, Acta
Mater. 59:11 (2011), 4416–4424.

[Kuroda 2011] M. Kuroda, “On large-strain finite element solutions of higher-order gradient crystal plasticity”, Int. J. Solids
Struct. 48:24 (2011), 3382–3394.

[Kuroda 2013] M. Kuroda, “Higher-order gradient effects in micropillar compression”, Acta Mater. 61:7 (2013), 2283–2297.

http://dx.doi.org/10.1016/S0022-5096(02)00081-9
http://dx.doi.org/10.1016/S0022-5096(02)00081-9
http://dx.doi.org/10.1016/j.euromechsol.2006.09.006
http://dx.doi.org/10.1016/0956-716X(92)90173-C
http://dx.doi.org/10.1016/0956-716X(92)90173-C
http://dx.doi.org/10.1007/s00707-010-0403-9
http://dx.doi.org/10.1007/s00707-010-0403-9
http://dx.doi.org/10.1016/j.ijplas.2015.08.008
http://dx.doi.org/10.1016/j.ijplas.2015.08.008
http://dx.doi.org/10.1016/j.jmps.2009.08.003
http://dx.doi.org/10.1016/j.jmps.2009.08.003
http://dx.doi.org/10.1016/j.jmps.2004.03.007
http://dx.doi.org/10.1016/j.jmps.2004.03.007
http://dx.doi.org/10.1016/0956-7151(94)90502-9
http://dx.doi.org/10.1016/0956-7151(94)90502-9
http://dx.doi.org/10.1016/S1359-6454(02)00517-7
http://dx.doi.org/10.1016/S1359-6454(02)00517-7
http://dx.doi.org/10.1016/S0022-5096(01)00104-1
http://dx.doi.org/10.1016/S0022-5096(01)00104-1
http://dx.doi.org/10.1016/j.ijplas.2007.07.014
http://dx.doi.org/10.1016/j.ijplas.2007.07.014
http://dx.doi.org/10.1016/j.jmps.2007.05.002
http://dx.doi.org/10.1016/j.jmps.2007.05.002
http://dx.doi.org/10.1016/j.jmps.2004.06.006
http://dx.doi.org/10.1016/j.jmps.2004.06.006
http://dx.doi.org/10.1016/S1359-6462(98)00424-2
http://dx.doi.org/10.2320/matertrans.MA201312
http://dx.doi.org/10.2320/matertrans.MA201312
http://dx.doi.org/10.1016/j.actamat.2014.04.022
http://dx.doi.org/10.1016/j.actamat.2014.04.022
http://dx.doi.org/10.1016/j.actamat.2016.01.006
http://dx.doi.org/10.1016/j.actamat.2016.01.006
http://dx.doi.org/10.1016/j.scriptamat.2015.05.005
http://dx.doi.org/10.1016/j.scriptamat.2015.05.005
http://dx.doi.org/10.1016/j.scriptamat.2014.09.015
http://dx.doi.org/10.1016/0020-7225(63)90037-5
http://dx.doi.org/10.1016/j.actamat.2011.03.065
http://dx.doi.org/10.1016/j.ijsolstr.2011.08.008
http://dx.doi.org/10.1016/j.actamat.2012.12.038


218 MITSUTOSHI KURODA

[Kuroda 2015] M. Kuroda, “Strain gradient plasticity: a variety of treatments and related fundamental issues”, Chapter 9,
pp. 199–218 in From creep damage mechanics to homogenization methods: a liber amicorum to celebrate the birthday of
Nobutada Ohno, edited by H. Altenbach et al., Advanced Structural Materials 64, Springer, Cham, 2015.

[Kuroda and Tvergaard 2006] M. Kuroda and V. Tvergaard, “Studies of scale dependent crystal viscoplasticity models”, J.
Mech. Phys. Solids 54:9 (2006), 1789–1810.

[Kuroda and Tvergaard 2008a] M. Kuroda and V. Tvergaard, “A finite deformation theory of higher-order gradient crystal
plasticity”, J. Mech. Phys. Solids 56:8 (2008), 2573–2584.

[Kuroda and Tvergaard 2008b] M. Kuroda and V. Tvergaard, “On the formulations of higher-order strain gradient crystal
plasticity models”, J. Mech. Phys. Solids 56:4 (2008), 1591–1608.

[Levkovitch and Svendsen 2006] V. Levkovitch and B. Svendsen, “On the large-deformation- and continuum-based formula-
tion of models for extended crystal plasticity”, Int. J. Solids Struct. 43:24 (2006), 7246–7267.

[Mindlin 1964] R. D. Mindlin, “Micro-structure in linear elasticity”, Arch. Rational Mech. Anal. 16 (1964), 51–78.

[Ng and Ngan 2009] K. S. Ng and A. H. W. Ngan, “Deformation of micron-sized aluminium bi-crystal pillars”, Philos. Mag.
89:33 (2009), 3013–3026.

[Ohashi 2005] T. Ohashi, “Crystal plasticity analysis of dislocation emission from micro voids”, Int. J. Plasticity 21:11 (2005),
2071–2088.

[Okumura et al. 2007] D. Okumura, Y. Higashi, K. Sumida, and N. Ohno, “A homogenization theory of strain gradient single
crystal plasticity and its finite element discretization”, Int. J. Plasticity 23:7 (2007), 1148–1166.
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