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CONJUGATE STRESS/STRAIN BASE PAIRS FOR
PLANAR ANALYSIS OF BIOLOGICAL TISSUES

ALAN D. FREED, VEYSEL EREL AND MICHAEL R. MORENO

A theoretical framework is presented for the analysis of planar membranes based upon a triangular
(as opposed to a polar) decomposition of the deformation gradient. This leads to a distillation of the
deformation gradient into three distinct modes. Each mode can, in principle, be individually activated
in an experiment. Measures of stress are shown to exist for each mode of strain so that the stress power
can be decomposed into independent additive parts. The outcome is a set of three conjugate stress/strain
base pairs (each being a pair of scalars) from which constitutive equations can be constructed for planar
solids without relying on tensor invariants to cast the theory. Explicit and implicit elastic models are
derived that, when convolved, produce a material model whose stress/strain response is indicative of
soft biological tissues. Stress/strain curves for each conjugate pairing are constructed from published
experimental data. The model describes these data.

1. Introduction

Recent advances in regenerative medicine include the ability to tune the mechanical properties of engi-
neered tissue constructs, e.g., [Amensag and McFetridge 2014; Kharaziha et al. 2013; Xie et al. 2015].
With the advent of this capability, the challenges have become these: what mechanical properties have
relevance when designing a tissue-engineered construct? What should the target values for these me-
chanical properties be? Ideally, an engineered tissue graft, say, would possess the same mechanical
properties as the native tissue, and integrate seamlessly with respect to mechanical performance. Most
efforts to characterize the mechanical properties of tissue-engineered constructs have been based on
numerous simplifying assumptions (linear, homogeneous, isotropic) that typically treat the engineered
construct as a linear elastic material. These assumptions enable uniaxial mechanical tests to be conducted
wherein, e.g., a quasielastic modulus and a tensile strength can be determined. Unfortunately, this form
of mechanical characterization is ineffective at providing insight into how well an engineered tissue
actually mimics the native tissue in vivo. Biological tissues are complex materials that typically undergo
large deformations. They also exhibit complex mechanical behaviors that likely include a nonlinear
stress/strain curve, mechanical anisotropy, and a viscoelastic response.

The utility of treating an engineered tissue construct as a linear elastic material when establishing
mechanical properties is that it enables one-to-one comparisons between materials. A quasimodulus
and the tensile strength are physical parameters, each corresponding with a specific measurable physical
property; however, the quasimodulus lacks uniqueness. The issue is this: soft tissues are not linear elastic.
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To address this nonlinearity, Fung [1993, §7.12] proposed an exponential strain-energy function of
the form

W = 1
2(q + c(eQ

− 1)),

whose parameters q and Q are quadratic forms in strain described by

q = ai jk`Ei j Ek` and Q = bi jk`Ei j Ek`,

with Ei j denoting strain components evaluated in a Lagrangian coordinate frame. There are nine con-
stants to parameterize for the planar case: c, four ai jk` and four bi jk`, because ai jk`=ak`i j and bi jk`=bk`i j

with i, j = 1, 2. Unfortunately, in this framework, there is no analog to an elastic modulus, i.e., there
is no parameter that corresponds with some unique, measurable, mechanical property. This system of
equations is indeterminable. In practice, data is gathered and a nonlinear least squares fit is used to
“solve” the system. Numerous combinations of constants (ai jk`, bi jk`, c) usually exist, each representing
a reasonable mathematical solution. Even though these parameters have utility in their ability to fit a
curve to the data, they (unfortunately) cannot be compared between fits of different materials or samples
because the model parameters themselves lack uniqueness and physical interpretation.

This unintended side effect of the Fung approach compromises its utility for the practical purpose of
designing engineered tissues with the intent of mimicking Mother Nature. Without unique and physical
material parameters, it is difficult to use such an approach for engineering synthesis, which is evident in
the apparent absence of models like Fung’s in the tissue engineering literature. This fundamental need
of the practicing tissue engineer motivated our study.

We seek a material model for planar membranes whose parameters are true material constants in that
their values are unique, physical and readily extracted from stress/strain curves. Future work will focus
on applying our model to tissue engineering. Here we focus on deriving the model.

The methodology developed herein leads to a material model described by three distinct stress/strain
curves. Each unique curve is characterized by three parameters. So our model and Fung’s model are
both described in terms of nine parameters. The difference being that our model is comprised of three
uncoupled responses, a response for each conjugate pairing, with data from each mode having sensitivity
to its three independent parameters. Whereas, Fung’s model, e.g., is described over the whole of two-
space wherein all nine parameters must be fit simultaneously, and getting a data set that is rich enough
to secure parameter sensitivity to all of its model parameters is problematic at best. The presumed
independence of the thermodynamic conjugate pairs in our approach greatly facilitates parameterization
of our model. The theory derived in this paper does not follow a conventional approach, viz., it is not
constructed from invariant theory; rather, it is founded upon the following conjecture.

Hypothesis. The governing tensors for stress and the rate of deformation can be encoded into a set of
independent conjugate base pairs wherein each stress/strain conjugate pair is a scalar pair. Individual
constitutive equations govern the response of each base pair, which may be elastic, viscoelastic, etc., as
determined from experiment. After the separate constitutive equations for all base pairs have been solved,
their constituents can be decoded to update the tensorial states of stress and the rate of deformation. An
admissible encoding/decoding algorithm is one-to-one.

The paper begins with a discussion of kinematics, including a discussion of the difference between
three frames of reference that are used: the Lagrangian frame, a material frame, and the Eulerian frame.
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In this material frame, work can be decomposed into three parts: dilation, squeeze and shear. From here
it is possible to extract three conjugate stress/strain pairs, one describing each deformation mode. They
are generalized displacements and tractions in the terminology of Hill [1978]. An encoding/decoding
algorithm is put forward that maps tensor components into conjugate base pairs and then back again. The
thermodynamic couplings of Kelvin and Poynting are addressed. Explicit and implicit elastic solids are
derived for planar membranes that, when convolved, transform into a constitutive theory that is suitable
for describing soft biological tissues. The model is demonstrated by fitting it to experimental data taken
from the literature.

There are five appendices. The first two compare the polar and triangular decompositions of the
deformation gradient for planar deformations. The third addresses acquisition of the components for
deformation and stress from planar experiments. The fourth derives stress power in terms of the triangular
decomposition. And the fifth decomposes the triangular description for deformation into three distinct
modes: dilation, squeeze and shear.

2. Kinematics

A theoretical framework is presented in this document for the analysis of materials that are planar sheets
whose utility is expected to reside in engineering design and synthesis. Experiments done on planar
membranes have a long history in the biomechanics literature, primarily studied for the purpose of
parameterizing material models [Grashow et al. 2006; Humphrey et al. 1987; Lanir and Fung 1974;
Sacks 1999; 2000; Sacks and Chuong 1993]. It is assumed that extensions and tractions are determined,
to sufficient accuracy, by the deformation of the middle surface of a sheet and, as such, the theory can be
cast in R2. Membrane thickness need not enter into the construction. Influences arising from membrane
curvature [Evans and Skalak 1979; Helfrich 1973; Humphrey 1998] are neglected because the radii of
curvature are taken to be infinite. For the interested, tension-field theory [Pipkin 1986; Steigmann 1990]
should be a viable approach to handle wrinkling, which is not addressed herein.

A material particle of interest is located at position X in a reference state at time t0 that at current
time t is located by a different position vector x. The motion of this particle is described by a vector
function x = χχχ(X, t) that is invertible in the sense that a complementary vector function X =

−1
χχχ (x, t)

exists so that X =
−1
χχχ (χχχ(X, t), t) [Truesdell and Noll 2004]. Motions are considered to be sufficiently

smooth so that the required derivatives exist. A particle traverses its path of motion χχχ through space with
a velocity of v = ∂χχχ(X, t)/∂t = ẋ.

An areal element dA of infinitesimal extent within a planar membrane consists of a dense set of point
particles filling a connected region in R2 at time t0. This same collection of material particles corresponds
with another areal element da at time t . From the conservation of mass comes dm = ρ0 dA = ρ da. This
areal element has a fixed mass of dm with planar densities ρ0 = dm/dA and ρ = dm/da at times t0 and t ,
and is considered to undergo affine motions.

Deformation at a particle is described by the gradient of its motion χχχ taken with respect to its posi-
tion X that produces a two-point tensor field F described by

F=
∂χχχ(X, t)
∂X

, which is commonly written as F=
∂x
∂X

. (1a)
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Its inverse F−1 exists because the Jacobian of deformation J := det F= da/dA = ρ0/ρ must be positive
from the conservation of mass, thereby allowing one to write

F−1
=
∂
−1
χχχ (x, t)
∂x

, which is commonly written as F−1
=
∂X
∂x
. (1b)

The deformation gradient is a linear transformation that maps tangent vectors between the current (Euler-
ian) and reference (Lagrangian) configurations with a push-forward map of dx = F dX and a pull-back
map of dX = F−1dx. Symmetric and upper-triangular decompositions of the deformation gradient and
its inverse are presented in Appendix A and Appendix B for the case of planar membranes.

3. Base vectors

At this point in our development we deviate from the path normally followed by decomposing the de-
formation gradient F into a product between an orthogonal rotation Q and an upper-triangular distortion
F̃, see Appendix B, instead of as a product between another orthogonal tensor R (6= Q) and a sym-
metric stretch U, see Appendix A. Specifically, we adopt a QR (Gram–Schmidt) decomposition of F
introduced into the mechanics literature by Srinivasa [2012] who expressed it as F=QF̃.1He explored
using this decomposition in lieu of adopting the polar decomposition F=RU used throughout mechanics.
Rosakis [1990] also derived an upper-triangular decomposition for the deformation gradient by consider-
ing materials with a preferred material orientation, his interests being phase transformations and twinning
in crystals. He did not use the QR matrix decomposition from linear algebra in his kinematic analysis.
Freed and Srinivasa [2015] derived the components for ln F̃, considering its applicability as a strain
measure, and have studied F̃ for a variety of boundary value problems used in material characterization.

There are three sets of orthogonal base vectors to sort out when using this approach for kinematic anal-
ysis, as depicted in Figure 1. They are rectangular Cartesian coordinate frames. There is a natural set of
Lagrangian base vectors {n1,n2}. The Lagrangian base vectors rotate from an Eulerian frame {e1, e2} via
an orthogonal matrix [R] that comes from the polar decomposition of F, viz., F=RU. The Eulerian frame
is typically considered to be fixed in space, e.g., a coordinate frame in one’s laboratory, through which
the body translates, rotates and deforms over time. There is also a set of material base vectors {m1,m2}

that rotate from the Eulerian frame via an orthogonal matrix [Q] that comes from the QR decomposition
of F, viz., F=QF̃. In the material frame {m1,m2}, direction m1 remains tangent to a physical material
line at the coordinate origin [Srinivasa 2012]. Maps between the three sets of base vectors obey

mξ = ei Qi
ξ , (2a)

nI = ei Ri
I , (2b)

nI =mξ R̃ξI =mξ [Q−1
]
ξ
i Ri

I , (2c)

and therefore R̃ :=QTR, as drawn in Figure 1. Here lower-case Latin indices associate with the Eulerian
frame {e1, e2}, upper-case Latin indices associate with the Lagrangian frame {n1,n2}, Greek indices

1 Notation QF̃ is chosen over notation QR because R is commonly used in the polar decomposition of the deformation
gradient to denote its rotational component, whereas, in the mathematics literature R in QR denotes a right-triangular matrix
that we call distortion. Srinivasa [2012] introduced his notation to avoid potential confusion within the mechanics community.
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ei

mi

θ

ni

9

R

Q

R̃=QTR

Figure 1. The Lagrangian (natural) base vectors ni are located by a rotation R through
an angle ψ measured from an Eulerian coordinate frame with base vectors ei , therefore
ni = ei R, where i = 1, 2. Rotation R is established through a polar decomposition of the
deformation gradient F= RU. Similarly, the material base vectors mi are located by a
rotation Q through an angle θ measured from the Eulerian base vectors ei , hence mi =

ei Q. Rotation Q is established through a triangular decomposition of the deformation
gradient F=QF̃. The Lagrangian frame {ni } rotates relative to the material frame {mi }

through a rotation R̃=QTR, i.e., ni =mi R̃, with angle ψ − θ . Clockwise rotations are
considered to be positive.

associate with the material frame {m1,m2}, and repeated indices sum according to Einstein’s summation
convention.

In many boundary value problems used to characterize materials, the material {mi } and natural {ni }

frames will be coincident. Pure shear is an example where all three coordinate frames are distinct [Freed
and Srinivasa 2015].

To make things more precise, and to shed some light onto the subject, we cast the contravariant vector
equation dx = F dX into its various component forms. First, consider a polar decomposition of the
deformation gradient described by components

dx i
= F i

I dX I
= Ri

J U J
I dX I. (3a)

Second, consider an upper-triangular decomposition of the deformation gradient described by

dx i
= F i

I dX I
= Qi

ξ F̃ξI dX I. (3b)

From these formulæ, it immediately follows that there also exists a displacement vector described by

dx̃ξ = F̃ξI dX I
= R̃ξJ U J

I dX I (3c)
so that

dx i
= Qi

ξdx̃ξ , (3d)

wherein distortion F̃ is decomposed into a polar form of F̃ = R̃U with dx̃ = F̃ dX . The deformation
gradient F is the same in formulæ (3a) and (3b); however, their decompositions are quite different.

We now relax our notation from that of general tensors to Cartesian tensors without loss of generality.
The rotations R and Q in (3) are two-state fields, but the states are different between them: rotation
R= Ri j ei ⊗n j vs. rotation Q= Qi j ei ⊗m j . Stretch is a Lagrangian field in that U=Ui j ni ⊗n j while
distortion is a two-point tensor F̃= F̃i j mi ⊗n j like the deformation gradient F= Fi j ei ⊗n j . The matrix
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representations for rotation [Q] and distortion [F̃] can be obtained in a straightforward manner from both
theory and experiment, see Appendix B and Appendix C.

4. Stress power

The rate at which mechanical work is being done on a planar membrane by external tractions (forces per
unit reference length), also known as the stress power, is a mechanical property that is independent of
the coordinate frame used to quantify it [Hill 1978]. In the material frame {mi }, stress power becomes
(see Appendix D for the derivation)

Ẇ = tr(S̃L̃)= S̃11 L̃11+ S̃22 L̃22+ S̃12 L̃12, (4)

where the material stress S̃ := QTSQ has symmetric components S̃i j , whereby S̃ = S̃i j mi ⊗m j with
S= Si j ei⊗e j being the symmetric Kirchhoff [1852] stress, while the material velocity gradient L̃ := ˙̃FF̃−1

has upper triangular components L̃ i j such that L̃= L̃ i j mi ⊗m j .
Substituting the decomposition for L̃ from (E.3) and (E.4) into formula (4) allows the stress power to

be decomposed into three additive components, viz.,

Ẇ = Ẇ ◦+ Ẇ + Ẇ
6
. (5a)

This result is independent of any constitutive assumption to be imposed. The three constituents are:

(1) Stress power resulting from a distortion caused by uniform dilation:

Ẇ ◦ := tr(S̃L̃◦)= (S̃11+ S̃22)
1
2(ȧ/a+ ḃ/b). (5b)

(2) Stress power resulting from a distortion caused by squeeze:

Ẇ := tr(S̃L̃ )= (S̃11− S̃22)
1
2(ȧ/a− ḃ/b). (5c)

(3) Stress power resulting from a distortion caused by shear:

Ẇ
6
:= tr(F̃−1S̃F̃L̃ 6 )= (a/b)S̃12γ̇ . (5d)

An examination of the arguments in the traces of (5) leads one to conclude that there are two stresses
to consider. One stress S̃ for the diagonal contributions, and another stress F̃−1S̃F̃ for the off-diagonal
contribution. This observation is consistent with Hill’s findings [1978].

5. Transformed state: a basis for stress and strain

Classical constructions for describing the constitutive response of a continuum are usually formulated as
an application of invariant theory [Rivlin and Smith 1969; Spencer 1972]. Criscione [2003] has argued
that although the mathematical theory of invariants is elegant, its utility is flawed because of a covari-
ance that exists between the classic invariants, thereby making parameterization of an ensuing model a
daunting task. Addressing this flaw, Criscione et al. [2000; 2003a; 2003b] put forward physically based
sets of strain invariants that are orthogonal to one another in the isotropic case, and nearly orthogonal to
one another in the anisotropic case. Unfortunately, these strain invariants have been found to be difficult
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to work with for experimentalists, and experimentalists are often the ones tasked with parameterizing
some specified material model.

Motivated by Criscione’s work, yet another approach for constitutive construction is put forward here.
It is one possible adaptation of our hypothesis. Although we are of the opinion that there is great promise
in our approach, the utility of our construction in engineering practice remains to be assessed by its users
over time. Our approach is, we believe, particularly advantageous for experimentalists, see Appendix C.

The methodology put forward is not based upon invariant theory. Instead, linear transformations are
introduced that establish a set of conjugate stress/strain basis pairs from which constitutive equations can
be formulated in a rigorous way. In other words, we seek a set of generalized displacements qi and their
conjugate tractions pi so that dW =

∑
i pi dqi provides a coordinate invariant Pfaffian [Hill 1978]. Such a

set is not unique, so conjugate pairs ought to be chosen where paired responses are observed to be indepen-
dent of one another. As with physical laws, their presumed independence cannot be proved theoretically,
only disproved experimentally, if at all. If disproved for a certain scenario, that would not necessarily
invalidate the utility of a particular conjugate pairing; rather, it would bracket its range of applicability.

An inspection of (4) suggests that one introduce a set of variables expressing the stress power as

dW = π dδ+ σ dε+ τ dγ, (6)

where {π, δ} is a stress/strain conjugate pair of scalars describing uniform dilation, {σ, ε} is a stress/strain
conjugate pair of scalars describing squeeze, and {τ, γ } is a stress/strain conjugate pair of scalars de-
scribing shear. In other words, strains δ, ε and γ comprise a set of generalized displacements, viz.,
{q} = {δ ε γ }T, while stresses π , σ and τ comprise a set of generalized tractions, viz., {p} = {π σ τ }T,
such that (6) is a coordinate-invariant description for the work of deformation dW . One admissible
encoding/decoding scheme for (6) that is in accordance with our hypothesis is introduced below.

5.1. Encoding. Inspired by Becker [1893], we consider an encoding of the conjugate tensor fields S̃
and L̃ that describes a stress basis with constituents

π := S̃11+ S̃22, (7a)

σ := S̃11− S̃22, (7b)

τ :=
a
b

S̃12, (7c)

whose conjugate strain basis (which have exact differentials for rates) has constituents

δ := ln
√

ab dδ = 1
2(da/a+ db/b), (7d)

ε := ln
√

a/b with dε = 1
2(da/a− db/b), (7e)

γ dγ, (7f)

wherein parameters a, b and γ are established from F via (B.2) or (B.4) for theory, and from Figure 2
and (C.1) for experiment. Each generalized displacement has a rate that is an exact differential. As such,
these displacements are two-state fields, independent of the path traversed between states. Consequently,
each generalized displacement defined above is a viable measure for strain. This does not, however,
imply that dW is independent of path. As for the conjugate tractions, π is commonly referred to as the
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e2 m2

e1

m1

θ0

t0

e2 m2 m2,0b
bγ

φ

e1

m1

θ
a

t

Figure 2. General kinematic analysis for the homogeneous distortion of a unit square
into a parallelogram. Extensions a and b and shear γ = tanφ are the kinematic param-
eters to be measured. Coordinate directions e1 and e2 are orthogonal, as are coordinate
directions m1 and m2. Angle θ rotates {ei } into {mi } and is drawn in its positive sense.
Directions e1 and e2 are spatial and align with the axes of the load frame. Orthogonal
axes m1 and m2 can be thought of as being painted onto the material in some reference
state t0 at a angle of θ0 from the spatial frame {ei }. In a deformed state t , material axis m1

remains the same, now rotated by an angle of θ from the spatial frame {ei }, however,
the material line originally describing the m2 direction (drawn as m2,0 in the deformed
configuration) may no longer be orthogonal to m1. The angular difference, φ, is the
angle of shear. Direction m1 will often be selected to associate with a feature of interest
in the sample being tested, e.g., a fiber direction.

surface tension, σ is the first normal stress difference found in the rheology literature [Bird et al. 1987a],
and τ is a shear stress normalized by the extent of elongation that is present. Substituting (7) into (5) and
rearranging leads to (6). No assumption has been made regarding material constitution. No application
of invariant theory has been imposed in this construction.

Evans and Skalak [1979] and Lubarda [2010] considered a multiplicative decomposition for F of
F= FaFd wherein Fa =

√
λ1λ2(e1⊗ e1+ e2⊗ e2) and Fd = (1/

√
λ1λ2)(λ1e1⊗n1+ λ2e2⊗n2), which

they call the areal and deviatoric parts of the deformation gradient, respectively, where unit vectors n1

and n2 are the eigenvectors of stretch (they are not the Lagrangian base vectors). Our decomposition is
similar in purpose to theirs, but distinct in form and physics from theirs.

5.2. Decoding. For an encoding to be admissible, there must be a unique decoding such that the overall
encoding/decoding algorithm is one-to-one. The decoding that associates with the encoding put forward
in (7) describes a distortion tensor F̃ that populates as

[F̃] =
[

eδ 0
0 eδ

] [
eε 0
0 e−ε

] [
1 γ

0 1

]
=

[
eδ+ε eδ+εγ

0 eδ−ε

]
, (8a)

with an inverse of

[F̃]−1
=

[
1 −γ
0 1

] [
e−ε 0
0 eε

] [
e−δ 0
0 e−δ

]
=

[
e−ε−δ −eε−δγ

0 eε−δ

]
, (8b)
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whose affiliated material velocity gradient L̃ populates as

[L̃] =
[
δ̇ 0
0 δ̇

]
+

[
ε̇ 0
0 −ε̇

]
+

[
0 e2εγ̇

0 0

]
=

[
δ̇+ ε̇ e2εγ̇

0 δ̇− ε̇

]
. (8c)

Because the deformation F and velocity L := ḞF−1 gradients are typically known a priori, the material
rotation Q and spin 444 := Q̇QT tensors follow immediately via

Q= FF̃−1 and 444=W− W̃, (8d)

with W := 1
2(L−LT) and W̃ := 1

2

(
L̃− L̃T

)
being their respective vorticities.

Furthermore, the material stress tensor populates according to a decoding scheme of

[S̃] = 1
2

[
π 0
0 π

]
+

1
2

[
σ 0
0 −σ

]
+

[
0 e−2ετ

e−2ετ 0

]
=

[
1
2(π + σ) e−2ετ

e−2ετ 1
2(π − σ)

]
, (9a)

where stresses π , σ and τ are usually quantified through constitutive equations, but could also be mea-
sured experimentally, see Appendix C. The material stress rate therefore populates as

[
˙̃S] =

[
1
2(π̇ + σ̇ ) e−2ε(τ̇ − 2τ ε̇)

e−2ε(τ̇ − 2τ ε̇) 1
2(π̇ − σ̇ )

]
, (9b)

that when rotated into the Eulerian frame becomes

•

S=Q ˙̃SQT,
•

S :=
dS
dt
+S444−444S where S=QS̃QT, (9c)

with S being the symmetric Kirchhoff [1852] stress, dS/dt being its material derivative, and
•

S describing
an objective corotational rate. This objective rate is akin to the polar rate of Green and Naghdi [1965]
and Dienes [1979], but with Q replacing R.

A brief discussion of rate is in order. The question to be answered is this: in what frame does the
material, not the observer, sense its environment? It is in that frame that the appropriate time derivative
to use is the partial derivative. We stipulate that it is within an embedded coordinate frame where this
occurs, as developed by Oldroyd [1950] and adopted by his followers, e.g., [Bird et al. 1987a; 1987b;
Lodge 1964; 1974]. These constructions employ general tensor fields defined over curvilinear coordinate
frames whose coordinate axes are described by the same set of material particles over time. Within the
confines of Cartesian tensors, the material frame {mi } is the closest that one can get to mimicking an
embedded curvilinear coordinate frame, because the m1 coordinate line remains tangent to the 1 material
curve, and the 12 coordinate plane with normal m1×m2 remains tangent to the 12 material surface [Freed
and Srinivasa 2015; Srinivasa 2012]. They are tangents at the origin of coordinate frame {m1,m2,m3}.
It is here where the partial derivative most accurately approximates its actual physical rate, within the
confines of employing rectangular Cartesian tensors.
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5.3. Encoding/decoding maps. To show the one-to-one mapping property of this encoding/decoding
algorithm, the generalized displacement rates obey the linear mapping

q̇1

q̇2

q̇3

 :=

δ̇

ε̇

γ̇

=
1/2 1/2 0

1/2 −1/2 0
0 0 e−2ε


L̃11

L̃22

L̃12

 , (10a)

while their associated tractions obey the linear mapping
p1

p2

p3

 :=

π

σ

τ

=
1 1 0

1 −1 0
0 0 e2ε


S̃11

S̃22

S̃12

 , (10b)

which are invertible maps in that 
L̃11

L̃22

L̃12

=
1 1 0

1 −1 0
0 0 e2ε


δ̇

ε̇

γ̇

 (11a)

and 
S̃11

S̃22

S̃12

=
1/2 1/2 0

1/2 −1/2 0
0 0 e−2ε


π

σ

τ

 , (11b)

where S̃21 = S̃12. These are maps between continuum mechanics variables and generalized thermo-
dynamic variables. They obey Ẇ = S̃11 L̃11+ S̃22 L̃22+ S̃12 L̃12 = πδ̇+ σ ε̇+ τ γ̇ , as they must. Selecting
an encoding/decoding map is key to one’s construction of a model that satisfies our hypothesis. It is akin
to selecting a set of invariants to use for constitutive construction, but no invariants have been used here.

The encoding/decoding algorithm of (7)–(11) describes an isotropic material response in the sense
that an imposed state of uniform stress (i.e., π > 0, σ = 0 and τ = 0) will cause a uniform response
in strain (viz., δ > 0, ε = 0 and γ = 0). An encoding/decoding algorithm better suited for describing
anisotropic materials, both 2D and 3D, has been developed and will be introduced in a separate paper.

An isotropic membrane whose response is taken to be a function of the symmetric stretch tensor will
have two independent modes of deformation: dilation and shear. However, an isotropic membrane whose
response is taken to be a function of the triangular distortion tensor will have three independent modes of
deformation: dilation, squeeze and shear. This is consistent with Murnaghan’s [1954] theoretical finding
that a symmetric 2× 2 matrix has two invariants, while a triangular 2× 2 matrix has three invariants, see
Appendix A.1 and Appendix B.2.

6. Constitutive relations

An elastic solid can conduct heat, but does not convert work into heat over a closed cycle. This defines an
elastic body [Rajagopal 2011]. The second law of thermodynamics, when describing a reversible process,
as interpreted by Carathéodory [1909], implicates that an integrating factor (temperature T > 0) exists
that transforms the first law of thermodynamics, an inexact differential equation, into an exact differential
equation that becomes dS = 1/T (dU − 1/ρ0 dW ) for a solid continuum [Kestin and Rice 1970]. This is
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Figure 3. Poynting’s [1909] stress analysis of simple shear. Forces P and Q align
with the principal axes of stretch, therefore, there are no shears acting on these faces.
Their axes are rotated γ /4 radians from the ±45◦ diagonals, where γ is the extent
of shear. Forces R and T are the normal and shear forces acting on the plane of
shear. Triangle ABC is a right triangle whose sides have lengths AB = 2` and
AC =

√
2`
(
1+ 1

4γ +
3

32γ
2
)

and BC =
√

2`
(
1− 1

4γ +
3
32γ

2
)
. His analysis is accurate

to second order.

the second law of thermodynamics governing a reversible process wherein U denotes the internal energy
and S denotes the entropy, both per unit mass. Introducing the Legendre transformation A = U − TS
allows one to rewrite the second law as dT =−1/S(dA−1/ρ0 dW ), where A is the Helmholtz free energy
per unit mass, with entropy S now being the integrating factor. Theories for elasticity follow forthwith.

6.1. Thermodynamic couplings. Two couplings that exist between conjugate pairs in a thermodynamic
state are the Kelvin [Thomson 1878] and Poynting [1909] effects. The Kelvin effect is a first-order effect
where a change in temperature causes a change in volume. The Poynting effect is a second-order effect
where a shear causes a lengthening normal to the shear plane that, if constrained in the sense of a simple
shear experiment, will lead to a compressive normal stress. The former effect is well known; the latter
effect is less so. They are handled as constitutive characteristics in our approach.

The Kelvin effect is typically modeled in three space as 1V = 3α1T where a change in volume 1V
is proportional to a change in temperature 1T with α being the constant of proportionality, i.e., the
coefficient of thermal strain.

Figure 3 presents an overview of Poynting’s stress analysis for simple shear. In a change of notation,
he considered a second-order response with principle tractions of ‖P‖/AC = G1γ − (

1
2 G1−G2)γ

2 and
‖Q‖/BC = G1γ + (

1
2 G1−G2)γ

2. Applying this notation to Poynting’s analysis, he determined that
the components of traction acting upon the plane of shear are ‖T‖/AB = G1γ and ‖R‖/AB =−G2γ

2

wherein G1 is the linear shear modulus of Lamé while G2 is a second-order shear modulus introduced by
Poynting. In the material frame {mi }, traction ‖T‖/AB equates with S̃12 and traction ‖R‖/AB equates
with −S̃22, while the stress component S̃11 is zero.

6.2. Explicit elasticity. A Green [1848] elastic solid assumes that the Helmholtz free energy is a state
function whose variation is described by an exact differential in state, namely, temperature and strain
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[Ogden 1984]. In terms of the decomposition of work put forward in (6), the second law takes on a form of

ρ0

(
∂A
∂T

dT +
∂A
∂δ

dδ+
∂A
∂ε

dε+
∂A
∂γ

dγ
)
=−ρ0S dT +π dδ+ σ dε+ τ dγ, (12)

which — because the temperature T , strain from dilation δ, strain from squeeze ε, and strain from shear γ
can all be varied separately and independently of one another (at least in principle) — requires that the
coefficients to differentials dT , dδ, dε and dγ must each vanish individually, leading to the following set
of constitutive formulæ:

S =−
∂A
∂T
, π = ρ0

∂A
∂δ
, σ = ρ0

∂A
∂ε
, τ = ρ0

∂A
∂γ
. (13)

These constitutive equations govern a planar Green elastic solid within the context of our theoretical
approach. Alternatively, Srinivasa [2012] derived a Green elastic solid in terms of the six upper-triangular
components of the distortion tensor F̃ in three-space.

6.2.1. A Hooke–Kelvin–Poynting solid. Consider a planar solid whose Helmholtz free-energy function
takes on the form of

ρ0 A =−C(T ln(T/T0)− (T − T0))+ 2K (δ−α(T − T0))
2
+Mε2

+
( 1

2 G1+G2(ε− δ)
)
γ 2, (14)

where C is the heat capacity and α is Kelvin’s coefficient of thermal strain, both of which reference to
some temperature T0, while K , M and G1 are akin to the bulk modulus, the P-wave modulus, and the
shear modulus from linear elasticity, as they apply to 2-space, with G2 being Poynting’s second-order
shear modulus.

Substituting this energy function into our elastic theory (13) produces the set of constitutive formulæ:

ρ0S = C ln(T/T0)+ 4αK (δ−α(T − T0)), (15a)

π = 4K (δ−α(T − T0))−G2γ
2, (15b)

σ = 2Mε+G2γ
2, (15c)

τ = (G1+ 2G2(ε− δ))γ, (15d)

which describe an elastic planar solid in the material frame {mi } where the deformation gradient is de-
composed into an orthogonal rotation matrix and an upper-triangular distortion matrix (see Appendix B).
This model accounts for both the Kelvin [Thomson 1878] and Poynting [1909] effects.

Poisson’s Ratio: In linear elasticity, the ratio of transverse strain to axial strain caused by an axial
traction, when multiplied by minus one to make it positive valued, is a material constant known as
Poisson’s ratio ν. In nonlinear elasticity, this ratio is a response function, not a material constant. In our
analysis, ln a is the axial strain while ln b is the transverse strain in a simple extension, see Appendix B.
Because stresses π and σ in (9) are equal during such a loading, (15) describes a Poisson’s response of

ν := −
ln b
ln a

∣∣∣∣S̃22=0
S̃12=0

≡−
δ− ε

δ+ ε

∣∣∣∣π=σ
τ=0

=
2K −M
2K +M

, (16)
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so that, e.g., the ratio ν = 1
2 whenever K = 3

2 M , the ratio ν = 1
3 whenever K = M , and the ratio

ν = 0 whenever K = 1
2 M . Consequently, both K and M can be parameterized from a single uniaxial

experiment, leaving G1 and G2 to be parameterized from a shear experiment.

6.2.2. Solution strategy. This scheme assumes that one is given a temperature T and a deformation
gradient F and seeks its associated entropy density S and Kirchhoff stress S.

Begin by computing extensions a and b and shear γ from (B.4) and then calculate the trigonometric
functions cos θ and sin θ from (B.5) from which rotation Q can be established via (B.3a). Now determine
the conjugate strains {δ, ε, γ } using the encoding algorithm of (7d)–(7f). Solve the constitutive equations
(15) for the entropy S and conjugate stresses {π, σ, τ }. Using these generalized stresses and the imposed
squeeze strain ε, populate the material stress S̃ using the decoding algorithm of (9a), which rotates into
the Eulerian Kirchhoff stress S via Q according to (9c).

6.3. Implicit elasticity. An implicit elastic solid assumes that the energy function A depends upon tem-
perature, strain and stress [Rajagopal 2003]. It cannot, however, depend upon both temperature and
entropy, as it depends upon both strain and stress, because either the temperature T or the entropy S is
the integrating factor for the second law, depending upon the thermodynamic potential selected. In terms
of the decomposition of work put forward in (6), the second law of thermodynamics takes on a form of

ρ0

(
∂A
∂T

dT+
∂A
∂δ

dδ+
∂A
∂π

dπ+
∂A
∂ε

dε+
∂A
∂σ

dσ+
∂A
∂γ

dγ+
∂A
∂τ

dτ
)
=−ρ0S dT+π dδ+σ dε+τ dγ (17)

which — because the temperature T , the dilation response {δ, π}, the squeeze response {ε, σ }, and the
shear response {γ, τ } can all be varied separately and independently of one another (at least in princi-
ple) — allows one to separate causalities resulting in the following set of constitutive formulæ:

S =−
∂A
∂T
, (18a)

π dδ = ρ0
∂A
∂δ

dδ+ ρ0
∂A
∂π

dπ, (18b)

σ dε = ρ0
∂A
∂ε

dε+ ρ0
∂A
∂σ

dσ, (18c)

τ dγ = ρ0
∂A
∂γ

dγ + ρ0
∂A
∂τ

dτ, (18d)

where the governing equations for the stress/strain response are now described by an implicit system of
ordinary differential equations.

As our interest from this point on resides with modeling soft biological tissues, we forgo addressing
the coupling effects of Kelvin [Thomson 1878] and Poynting [1909]. We can safely neglect the Kelvin
effect because mammals regulate their temperature. We neglect the Poynting effect as a simplification.
How this second-order geometric effect is to be accounted for in a material that itself is highly nonlinear
is a subject for future study. Furthermore, there is no experimental data known to us by which one could
substantiate such a theory.

6.3.1. Strain-limiting solid. Extrapolating the energy function put forward by Freed and Rajagopal [2016]
for an isothermal implicit strain-limiting elastic fiber into an energy function that is suitable for a planar
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elastic membrane implicates

ρ0 A = 4K δ−π +β◦πδ+ 2Mε− σ +β σε+Gγ − τ +β
6
τγ, (19)

where K , M and G are moduli describing tangent responses at zero stress and zero strain with β◦, β
and β 6 relating to their respective states of limiting strain: β◦ = 1/δmax, β = 1/εmax and β 6 = 1/γmax.
Substituting the energy function in (19) into the constitutive theory of (18) produces an implicit strain-
limiting planar elastic solid described by the following system of differential equations:

dπ
dδ
=

4K + (β◦− 1)π
1−β◦δ

, (20a)

dσ
dε
=

2M + (β − 1)σ
1−β ε

, (20b)

dτ
dγ
=

G+ (β 6 − 1)τ

1−β 6 γ
, (20c)

whose solution, by the separation of variables, describes a dilatoric response of

π =
4K
β◦− 1

(
1

(1−β◦〈δ〉)(β◦−1)/β◦ − 1
)

β◦ > 1, (21a)

a squeeze response of

σ = sgn(ε)
2M
β − 1

(
1

(1−β |ε|)(β −1)/β
− 1

)
β > 1, (21b)

and a shear response of

τ = sgn(γ )
G

β
6
− 1

(
1

(1−β 6 |γ |)(β
6
−1)/β 6

− 1
)

β
6
> 1. (21c)

These formulæ are written so strain causes stress. They can be written where stress causes strain [Freed
and Rajagopal 2016].

Formulæ (21b) and (21c) have been adjusted so that the stresses they produce are odd functions
of their respective strains. Both positive and negative squeeze and shear stresses can be supported by
membranes, provided that any negative contribution arising from squeeze is offset by a positive dilation.
In contrast, only positive dilations can be supported by a membrane. Negative dilations would wrinkle a
membrane, which is why the Macaulay bracket 〈δ〉 is introduced into formula (21a) with values for 〈δ〉
being δ whenever δ ≥ 0 and 0 otherwise. This aspect of the model could be made more robust through
an application of tension-field theory [Pipkin 1986; Steigmann 1990], but that lies beyond the scope of
the present paper.

6.3.2. Solution strategy. This scheme assumes that one is given a deformation gradient F and seeks its
associated Kirchhoff stress S. It is possible that a submitted F can be invalid, so a strategy needs to be
constructed to handle inadmissible deformation gradients. A more robust scheme would return strains
for supplied stresses, but that strategy does not align as well with finite element formulations.

Begin by computing extensions a and b and shear γ from (B.4) and then calculate the trigonometric
functions cos θ and sin θ from (B.5) from which rotation Q can be established via (B.3a). Now determine
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the conjugate strains {δ, ε, γ } using the encoding algorithm in (7d)–(7f). Test to ensure 0≤ δ < 1/β◦ and
|ε|< 1/β and |γ |< 1/β 6 . If none of these constraints are violated then continue, otherwise the supplied
deformation gradient F is inadmissible and must be handled. Solve the constitutive equations (21) for the
conjugate stresses {π, σ, τ }. Using these generalized stresses and the imposed squeeze strain ε, populate
the material stress S̃ using the decoding algorithm in (9a), which rotates into the Eulerian Kirchhoff
stress S via Q according to (9c).

6.4. A model for biological membranes. Freed and Rajagopal [2016] modeled collagen fibers as a non-
linear implicit elastic solid intertwined with a linear Hookean solid such that their compliances add,
with the outcome being a material response that is characteristic of most soft biologic materials. Here
a stress/strain curve starts out with a compliant nonlinear response and finishes up with a stiff linear
response. Their fiber model has three material constants whose values are unique, physical and visible
within a stress/strain curve, as shown in Figure 4. Their conjecture, applied here to each stress/strain
basis pair in R2, leads to the following set of three constitutive equations: one for the dilatoric response,

δ =
〈π〉

4K C +
1
β◦

(
1−

1
(1+ (β◦− 1)〈π〉/4K E)β

◦/(β◦−1)

)
β◦ > 1, (22a)

one for the squeeze response,

ε =
σ

2MC +
sgn(σ )
β

(
1−

1
(1+ (β − 1)|σ |/2M E)β /(β −1)

)
β > 1, (22b)

and one for the shear response,

γ =
τ

GC +
sgn(τ )

β
6

(
1−

1

(1+ (β 6 − 1)|τ |/G E)β
6
/(β
6
−1)

)
β
6
> 1, (22c)

which are expressed so that stresses cause strains. Moduli K C (> K E > 0) and MC (> M E > 0) and
GC (> G E > 0) are the terminating elastic moduli that describe deformation in their respective linear
regions, whereat collagen is the predominant load bearing constituent. Moduli K E, M E and G E are the
elastic moduli caused by the restoring forces of elastin that crimp the collagen fibrils in a neighborhood
surrounding zero stress and zero strain; while β◦ (= 1/δE

max) and β (= 1/εE
max) and β 6 (= 1/γ E

max) are
reciprocal measures for the three limiting states of configuration strain whereat, for soft tissues, the crimp
of collagen has been stretched taut. These are illustrated in Figure 4.

6.4.1. Solution strategy. This scheme assumes that one is given a deformation gradient F along with an
initial guess for the Kirchhoff stress S whose actual value is being sought.

Begin by computing extensions a and b and shear γ from (B.4) and then calculate the trigonometric
functions cos θ and sin θ from (B.5) from which rotation Q can be established via (B.3a). Now determine
the assigned conjugate strains {δ, ε, γ } using the encoding algorithm of (7d)–(7f). Rotate the guessed
value for Kirchhoff stress S into the material frame using Q to get S̃ according to (9c). Encode the
conjugate stresses {π, σ, τ } using (7a)–(7c) and use these to solve the constitutive equations (22) to
get predicted values for the conjugate strains {δ, ε, γ }. Use a root finding algorithm to secure a set of
conjugate stresses whose associated conjugate strains are in error with the assigned conjugate strains
by less than some specified tolerance. Using the converged values for these conjugate stresses and the
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Figure 4. Representative plot depicting the tensile response for the three modes of
model (22). Modulus E E

∈ {K E ,M E ,G E
} describes the low-stress asymptotic behavior

where elastin governs the constitutive response, while modulus EC
∈ {K C ,MC ,GC

}

describes the high-stress asymptotic behavior where collagen governs the constitutive
response. The intersection of these two asymptotic lines is the reciprocal to parameter
β ∈ {β◦, β , β

6
} with 1/β designating the strain where collagen crimp stretches straight.

imposed squeeze strain ε, populate the material stress S̃ using the decoding algorithm in (9a), which
rotates into the Eulerian Kirchhoff stress S via Q according to (9c).

7. Experiments

A procedure is outlined in Appendix C for extracting the conjugate stresses π, σ, τ and strains δ, ε, γ
from a planar experiment, along with the angular rotation θ between the material and Eulerian frames.

At present, there is no single experimental data set that we are aware of that would allow one to quantify
all three modes of planar deformation introduced in this paper. Consequently, a parameterization of our
model (22) using data extracted from a single experiment possessing sensitivity to all model parameters
is not currently possible, nor is it for Fung’s [1993, p. 304] planar model, in that regard. Both are
constitutive equations in nine parameters under isothermal conditions. Plans have been put into motion
to address this deficiency from which the data set will be rich enough to provide sensitivity sufficient
for quantifying all model parameters. As for now, we are content with demonstrating that our material
model (22) is reasonable and worthy of further consideration and scrutiny.

Ideally, one would perform three separate experiments: one for each mode or conjugate pair. One
where {π, δ} vary and the other fields are held fixed, one where {σ, ε} vary and the other fields are held
fixed, and one where {τ, γ } vary and the other fields are held fixed. Here we analyze published data for
dilation and shear, but there is no published data where squeeze is the sole mechanism of deformation.
Fortunately, there is data where dilation exists both by itself and in conjunction with squeeze so that the
response of both modes can be extracted and studied.

Figure 5 presents data acquired from a double-lap shear test done on porcine myocardium by Dokos
et al. [2002, Figure 4], tabulated in [Freed 2014, Table 7.3]. They represent a passive shear response
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Figure 5. Loading behavior of a porcine myocardium under simple shear. The points
represent experimental data. The curve represents the response of model (22c) with
GC
= 15 kPa, G E

= 0.5 kPa and β 6 = 2.5.
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Figure 6. Dilation behavior of a porcine visceral pleural membrane under equibiaxial
loading conditions. The points represent experimental data. The curve represents the
response of model (22a) with K C

= 1, 875 N/m, K E
= 7 N/m and β◦ = 4.1.

for muscle. Only the loading portion of the curve is shown. Viscoelastic effects will be addressed in a
future paper. Our shear model (22c) does an excellent job of describing the nonlinear behavior exhibited
by these data.

Figure 6 presents data from an equibiaxial test done on porcine visceral pleura by Freed, Liao and
Einstein [2014]. Our dilation model (22a) does a nice job of describing the nonlinear behavior displayed
by these data, too.

A planar biaxial loading sequence was imposed on a visceral pleural membrane in the study cited
above. Specifically, an equibiaxial 1:1 loading was followed in sequence by two proportional loadings
with orthogonal traction ratios of 2:1 and 1:2. Figure 7 presents the squeeze response from these three



236 ALAN D. FREED, VEYSEL EREL AND MICHAEL R. MORENO

st
re

ss
,σ
(N
/
m
)

strain, ε

1 : 1
2 : 1
1 : 2
model

Squeeze Response
Visceral Pleural Membrane

Figure 7. Squeeze behavior of a porcine visceral pleural membrane under three propor-
tional loading conditions. The points represent experimental data. The curve represents
the response of model (22b) with MC

= 2500 N/m, M E
= 5 N/m and β = 17.

experiments. The response from the 2:1 traction ratio produced the data in the first quadrant, while the
response from the 1:2 traction ratio produced the data in the third quadrant. The equibiaxial experiment
produces noise around the origin in the squeeze domain, as it ought; dilation and squeeze are independent
deformation modes according to our theory. Our squeeze model (22b) provides a nice description for
these data as well.

There is a very large difference in the strain limits for dilation and squeeze in the visceral pleural
membrane, viz., 1/β◦ = 0.24 and 1/β = 0.06, respectively. This lends further credence to our conjecture
that these two modes of deformation are independent of one another.

Equation (16) is applicable for establishing Poisson’s ratio in a neighborhood around zero stress, in
which case we found ν = 0.47 because K E

= 7 N/m and M E
= 5 N/m. This is consistent with values

reported throughout the literature on Poisson’s ratio for soft biological tissues.
To further substantiate our methodology, the dilations from these three proportional experiments are

shown in Figure 8 along with the model correlation from Figure 6. The response from the 2:1 protocol is
in reasonable agreement with the equibiaxial experiment. The 1:2 protocol was the last leg executed in
the loading sequence imposed on this sample. Several slip-stick events caused by tissue tearing at suture
incision points occurred during the 1:2 loading leg [Freed, Liao and Einstein 2014] and are a likely cause
for why their dilation data in Figure 8 are offset from those of the other two protocols. Tearing also had
an effect on the squeeze response recorded in Figure 7 causing a small translation of the strain response
toward the origin in the third quadrant, but it is less noticeable there.

8. Summary

An elastic theory for planar biological membranes has been derived from thermodynamics and applied
to data reported in the literature. The theory is unique in that it is based upon conjugate stress/strain basis
pairs, not invariants. These pairs are generalized thermodynamic variables. Constitutive equations were
derived for explicit and implicit elastic solids that, when combined, produce a model suitable for soft
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Figure 8. Dilation behavior of a porcine visceral pleural membrane under three propor-
tional loading conditions. The points represent experimental data. The curve represents
the model response taken from Figure 6.

tissues. The resulting constitutive formulæ produce a power-law response through the toe and heel regions
that culminate with a linear terminal response, indicative of the behavior exhibited by most soft biological
tissues whose extracellular matrix consists of collagen fibers intertwined with an elastin network. Data
from biaxial experiments done on myocardium and visceral pleura substantiate the model.

Appendix A: Polar decomposition of F

Because det F> 0 from the conservation of mass, the deformation gradient F will have a unique matrix
decomposition of [F] = [R][U] where matrix [R] has orthonormal columns and matrix [U] is symmetric
with positive eigenvalues [Noll 1955].

Quantifying a polar decomposition of the deformation gradient, i.e., F= RU, see [Simo and Hughes
1998], begins with computing the eigenvalues for stretch via

λ1 =

√
1
2

(
(C11+C22)+

√
(C11+C22)2− 4(C11C22−C2

12)
)
, (A.1a)

λ2 =

√
1
2

(
(C11+C22)−

√
(C11+C22)2− 4(C11C22−C2

12)
)
, (A.1b)

where the symmetric Cauchy deformation tensor C= FTF has components C= Ci j ni ⊗n j evaluated in
the Lagrangian frame {n1,n2}. Knowing the principal stretches, one can populate the matrices for the
Lagrangian stretch [U] and its inverse [U]−1 via the formulæ [Ting 1985]:

[U] =
1
I
(II [I] + [C]), (A.2a)

[U]−1
=

1
I II

((I 2
− II )[I] − [C]), (A.2b)
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where the two invariants I and II of stretch are described by

I = λ1+ λ2 and II = λ1λ2. (A.3)

The rotation matrix [R] determined from [R] = [F][U]−1 becomes

[R] =
[

cosψ sinψ
−sinψ cosψ

]
, (A.4a)

wherein, from (A.1)–(A.3),

ψ =

{
sin−1(

[(I 2
− II −C22)F12−C12 F11]/(I II )

)
,

sin−1(
[(C11− I 2

+ II )F21+C12 F22]/(I II )
)
,

(A.4b)

where ψ is a rotation angle that orients the natural frame {ni } relative to the Eulerian frame {ei }, as drawn
in Figure 1, and is positive for clockwise rotations and negative for counterclockwise rotations.

A.1. Invariants. A symmetric 2× 2 matrix, say [A], with elements

[A] =
[

a c
c b

]
(A.5a)

in some coordinate frame {e1, e2}, rotates via some orthogonal matrix [R] into another coordinate frame
{ê1, ê2}where êi = ei R with the matrix mapping as [Â]= [R]T[A][R]. A function of matrix [A], say f (A),
is invariant under arbitrary rotations provided that

f (A)= f (Â)= f (RTAR). (A.5b)

It is well known that the trace and determinant obey this condition, resulting in the two invariants

I1 = a+ b and I2 = ab− c2, (A.5c)

wherein I1 := tr(RTAR)= tr(RRTA)= tr(A) and I2 := det(RTAR)= det(RT) det(A) det(R)= det(A)
and therefore tr(A2)= I 2

1 − 2I2. In the case of stretch, (A.3) and (A.5c) are equivalent, with (A.3) being
described in principal (spectral) coordinates.

Appendix B: QR decomposition of F

Because det F> 0 from the conservation of mass, the deformation gradient F will have another unique
matrix decomposition of [F] = [Q][F̃] where matrix [Q] has orthonormal columns (distinct from [R])
and matrix [F̃] is upper triangular with positive diagonal elements [Stewart 1973].

Quantifying a QR decomposition of the deformation gradient, i.e., [F] = [Q][F̃], leads to a distortion
[F̃] and its inverse [F̃]−1 that populate via [Freed and Srinivasa 2015]

[F̃] =
[

a aγ
0 b

]
and [F̃]−1

=

[
1/a −γ /b

0 1/b

]
, (B.1)

whose constituents are established through a Cholesky factorization of C = FTF = F̃TF̃ leading to
[Srinivasa 2012]

a =
√

C11, γ = C12/C11, b =
√

C22−C2
12/C11, (B.2)
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m2

m1

m2

m1

tt0

γ

φ

b

a

Figure 9. The homogeneous distortion of a unit square into a parallelogram. Extensions
a and b and shear γ = tanφ are the kinematic parameters to be measured in a planar
experiment to quantify distortion F̃ via (B.1) in the {mi } coordinate frame.

where parameters a, b and γ are physical quantities that can be extracted from experiment (see Appen-
dix C). Measurements are to be made in accordance with Figure 9. Parameter a is the extension ratio
in the m1 direction, viz., a = `1(t)/`1(t0). Parameter b is the extension ratio in the m2 direction, viz.,
b = `2(t)/`2(t0). Parameter γ measures the extent that a material line originally aligned with the m2 di-
rection rotates in the m1 direction — an extent described by γ = tanφ, wherein φ is the shear angle.
Extensions a and b and stretches λ1 and λ2 are coincident only in the absence of shear γ , otherwise they
are distinct quantities. Rosakis [1990, Lemma 5.1] has proven that λ1 ≥ a ≥ λ2, where λ1 and λ2 are the
eigenvalues of stretch given in (A.1).

The rotational contribution [Q] arising from an upper-triangular decomposition of the deformation
gradient is determined from [Q] = [F][F̃]−1 and (B.1) and (B.2) leading to

[Q] =
[

cos θ sin θ
−sin θ cos θ

]
, (B.3a)

wherein

θ =

{
−sin−1(F21/a),
sin−1((F12− γ F11)/b

)
,

(B.3b)

with θ being the angle that the material frame {mi } rotates relative to the Eulerian frame {ei } with positive
rotations occurring in a clockwise sense, see, Figure 1.

Recall that the angle of rotation of the Lagrangian frame {ni } relative to the Eulerian frame {ei } is ψ ,
see (A.4). Consequently, angle ψ− θ establishes the angle of rotation of the Lagrangian frame {ni } about
the material frame {mi }, see, Figure 1.

B.1. Derived from the deformation gradient. Alternatively, one can use the components of the deforma-
tion gradient [F] to directly quantify extensions a and b and shear γ , the building blocks of distortion [F̃],
plus the angle θ that determines rotation [Q] between the Eulerian {ei } and material {mi } coordinate
frames via

a =
√

F2
11+ F2

21, γ =
F11 F12+ F21 F22

F2
11+ F2

21
, b =

F11 F22− F12 F21√
F2

11+ F2
21

, (B.4)
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with
sin θ =

−F21√
F2

11+ F2
21

and cos θ =
F11√

F2
11+ F2

21

, (B.5)

thereby foregoing any need to construct the Cauchy deformation tensor C.

B.2. Invariants. An upper-triangular 2× 2 matrix, say [A], with elements

[A] =
[

a c
0 b

]
(B.6)

has three unitary invariants [Murnaghan 1954]:

Ī1 = tr(A)= a+ b, Ī2 = tr(A2)= a2
+ b2, Ī3 = tr(ATA)= a2

+ b2
+ c2, (B.7)

where Ī1, Ī2 and Ī3 are invariant of coordinate rotations because tr(RTAR)= tr(RRTA)= tr(A)= Ī1 and
tr((RTAR)(RTAR)) = tr(RTAAR) = tr(RRTA2) = tr(A2) = Ī2, and because tr((RTAR)T(RTAR)) =
tr(RTATRRTAR) = tr(RTATAR) = tr(RRTATA) = tr(ATA) = Ī3. It follows that det A = 1

2( Ī
2
1 − Ī2).

The extra invariant follows because matrix [A] is upper triangular and therefore [A]2 is upper triangular
whereas [A]T[A] is symmetric.

Appendix C: Experimentation

Lanir and Fung [1974], Humphrey et al. [1987], Sacks [1999; 2000] and others have been perfecting
the planar biaxial-stretch experiment for over four decades, as it applies to testing soft biological tissues.
Our analysis of this experiment assumes homogeneous deformation and incorporates an upper triangu-
lar decomposition of the deformation gradient to quantify deformation and stress from experimental
observations.

C.1. Deformation. An experimental assessment of deformation is straightforward. Extensions a and b
and shear γ = tanφ are the kinematic parameters to be acquired. Their values are directly observed and
readily measured in accordance with Figure 2. Once they are known, the distortion matrix [F̃] can be
populated according to (B.1). Coordinate directions e1 and e2 are orthogonal, as are coordinate directions
m1 and m2. Angle θ rotates {ei } into {mi } and is drawn in its positive sense in Figure 2. With θ measured
and known, one can populate the rotation matrix [Q] according to (B.3a).

Axes m1 and m2 can be thought of as being painted onto the material in some reference state t0
oriented at an angle of θ0 with respect to the spatial frame {ei } so that initially

[F0] =

[
cos θ0 sin θ0

−sin θ0 cos θ0

]
. (C.1a)

In a deformed state t , material axis m1 remains a material axis, now rotated by an angle of θ from the
spatial frame {ei }, however, the material line originally drawn in the m2 direction (drawn as m2,0 in
Figure 2) may no longer be orthogonal to m1 at times t > t0. Any angular difference (from being a right
angle) is caused by shear and quantified by φ = tan−1 γ . The deformation gradient is now given by

[F] = [Q][F̃] =
[

cos θ sin θ
−sin θ cos θ

] [
a aγ
0 b

]
=

[
a cos θ b sin θ + aγ cos θ
−a sin θ b cos θ − aγ sin θ

]
. (C.1b)
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e2 m2

m2,0

t2

tτ
b

bγ

φ
t12

t1

e1

θ

m1

a

t

Figure 10. In-plane loading of a sample that was originally square and has undergone bi-
axial extension through orthogonal tractions f1 and f2 applied in the e1 and e2 directions,
respectively, and have also undergone a shear through a traction fτ applied in the e1 direc-
tion, e.g., in the geometric sense of a double-lap shear. These three tractions have units of
force per unit undeformed length of line, as measured in a reference state at time t0 where
a = b = 1 and γ = 0. In a deformed state, say at current time t , the actual tractions are
t1= f1/b

√
1+ γ 2 and t2= f2/a and tτ = fτ/a and have units of force per unit deformed

length of line, where γ = tanφ. Traction t12 is an internal reaction caused by the grips.
It cannot be controlled by the experimentalist. It exists to conserve angular momentum.

Direction m1 will often be selected to associate with a feature of interest in the sample being tested, e.g.,
aligned with a fiber direction.

This kinematic assessment is valid for any homogeneous planar deformation. It is general.

C.2. Stress. Stresses are more challenging to get, but the process is fairly straightforward. Cauchy’s
[1827] fundamental theorem for stress implies that t=Tn where t= ti ei is a traction vector, T= Ti j ei⊗e j

is Cauchy’s stress tensor, and n= ni ei is a unit normal to the surface upon which traction t acts. All fields
are defined in the Eulerian frame {e1, e2}. The symmetric Kirchhoff [1852] stress, also an Eulerian field, is
defined by S :=det(F)T= Si j ei⊗e j , where det F=ab for membranes. Cauchy’s theorem for stress rotates
into the material frame {mi } to become t̃ = 1/(ab) S̃ñ wherein t̃ =QT t and ñ =QTn and S̃=QTSQ.
It is formula t̃ = 1/(ab) S̃ñ that we choose to apply to quantify stress in the material frame {m1,m2}.

When it comes to stress, each experiment is a separate boundary value problem. There is no general
result like there is for deformation. Here we consider the experiment illustrated in Figure 10. Data
extracted from such an experiment would be rich enough to ensure sensitivity for all parameters in our
material model (22), hence our interest in this experiment.

To aid in avoiding wrinkling over a range of interest in shear strain, a sample would ideally be exposed
to positive tractions in the 1 and 2 directions, denoted as t1 and t2 in Figure 10. After the membrane
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is supporting surface tension, to offset the onset of wrinkling, one would impose a traction of shear tτ
through, e.g., a double-lap shear gripping configuration (traction t12 present in Figure 10 is not under the
control of an experimentalist. It is an internal traction caused by the grips).

In accordance with Figure 10, an application of Cauchy’s theorem to the two edges of the areal element
in that figure, solving for stress components in the {mi } coordinate frame, leads to{

t1 cos θ + t12 sinφ
t1 sin θ + t12 cosφ

}
=

1
ab

[
S̃11 S̃12

S̃21 S̃22

]{
cosφ
−sinφ

}
(C.2a)

and {
−t2 sin θ + tτ cos θ

t2 cos θ + tτ sin θ

}
=

1
ab

[
S̃11 S̃12

S̃21 S̃22

]{
0
1

}
(C.2b)

that comprise a linear system of equations which, when solved for the components of stress S̃i j , yields

S̃11 = a(cos θ f1+ bγ t12)+ bγ (cos θ fτ − sin θ f2), (C.3a)

S̃12 = S̃21 = b(cos θ fτ − sin θ f2), (C.3b)

S̃22 = b(sin θ fτ + cos θ f2), (C.3c)

where, from symmetry of S̃, i.e., S̃21 = S̃12, one determines that

t12 =
−a sin θ cosφ f1− b sin(θ +φ) f2+ b cos(θ +φ) fτ

ab cosφ
, (C.3d)

wherein tractions f1, f2 and fτ have units of force per unit undeformed length of line. They associate
with tractions t1, t2 and tτ , which have units of force per unit deformed length of line, via the formulæ

f1 = b secφt1, f2 = at2, fτ = atτ . (C.4)

From (7a)–(7c), one finds that the conjugate stresses have values of

π = a(cos θ f1+ bγ t12)+ b((sin θ + γ cos θ) fτ + (cos θ − γ sin θ) f2), (C.5a)

σ = a(cos θ f1+ bγ t12)− b((sin θ − γ cos θ) fτ + (cos θ + γ sin θ) f2), (C.5b)

τ = a(cos θ fτ − sin θ f2), (C.5c)

and therefore an experimentalist needs to measure the three tractions f1, f2 and fτ and the three defor-
mations a, b and γ in order to quantify the three conjugate states of stress π , σ and τ .

These formulæ will simplify under a variety of special conditions, e.g., whenever θ = φ= 0 and fτ = 0,
(C.5) simplifies to

π = a f1+ b f2, σ = a f1− b f2, τ = 0, (C.6)

which describe the boundary condition used in the experiments of Lanir and Fung [1974], Humphrey
et al. [1987], Sacks [1999; 2000], Billiar and Sacks [2000b; 2000a], Freed, Liao and Einstein [2014] and
numerous others.
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Appendix D: Derivation of Equation (4)

We begin with the well known description for stress power [Ogden 1984]:

Ẇ = tr(PTḞ), (D.1)

and then apply properties of the trace. This allows one to rewrite the above expression as

Ẇ = tr(PTḞ)= tr(FPTḞF−1)= tr(SL), (D.2)

because stress S is symmetric and therefore S= PFT
= FPT. Incorporating the triangular decomposition

of the deformation gradient established in Appendix B permits one to rewrite the above equation as

Ẇ = tr(SL)= tr(SḞF−1)= tr(SQ̇F̃F̃−1Q−1)+ tr(SQ ˙̃FF̃−1Q−1). (D.3)

The first trace on the right-hand side is zero because the Kirchhoff stress S= Si j ei⊗e j is symmetric while
spin 444 = Q̇QT

= 4i j ei ⊗ e j is skew symmetric, therefore tr(SQ̇F̃F̃−1Q−1) = tr(SQ̇QT) = tr(S444) = 0.
Rearranging the second trace leads to

Ẇ = tr(QTSQ ˙̃FF̃−1)= tr(S̃L̃), (D.4)

wherein S̃ :=QTSQ= S̃i j mi ⊗m j and L̃ := ˙̃FF̃−1
= L̃ i j mi ⊗m j , as established in (E.4). Because S̃ is

symmetric and L̃ is upper triangular,

tr
([

S̃11 S̃12

S̃12 S̃22

] [
L̃11 L̃12

0 L̃22

])
= S̃11 L̃11+ S̃12 L̃12+ S̃22 L̃22, (D.5)

which proves (4).

Appendix E: Decomposition of distortion F̃

The distortion tensor F̃ in (B.1) can be decomposed into a product of three fundamental modes of defor-
mation, e.g., F̃= F̃◦F̃ F̃ 6 with matrix components

[F̃◦][F̃ ][F̃6 ] =
[√

ab 0
0
√

ab

]
︸ ︷︷ ︸

dilation

[√
a/b 0
0
√

b/a

]
︸ ︷︷ ︸

squeeze

[
1 γ

0 1

]
︸ ︷︷ ︸

shear

=

[
a aγ
0 b

]
= [F̃], (E.1)

where dilation F̃◦ is a uniform contribution to distortion, squeeze F̃ is an extrusion-like contribution to
distortion2, and shear F̃ 6 is an angular contribution to distortion. The distortions of dilation and squeeze
commute, because they are diagonal, and as such F̃◦F̃ = F̃ F̃◦. The distortions of squeeze and shear are
isometric, because they preserve area, and as such det F̃ = det F̃6 = 1.

2 Freed and Srinivasa [2015] refer to F̃ as extrusion. Here we call it squeeze to give it a more intuitive terminology to a
wider audience. It describes an isometric deformation that maps a square into a rectangle of the same area. It is similar to
(but distinct from) pure shear [Freed and Srinivasa 2015].
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E.1. Rates of distortion. Differentiating the decomposition of distortion (E.1) by the product rule gives

˙̃F= ˙̃F◦F̃ F̃ 6 + F̃◦ ˙̃F F̃ 6 + F̃◦F̃ ˙̃F6

=
˙̃F◦F̃ F̃ 6 + ˙̃F F̃◦F̃ 6 + F̃◦F̃ ˙̃F6

=
˙̃F◦(F̃◦)−1F̃+ ˙̃F (F̃ )−1F̃+ F̃(F̃ 6 )−1 ˙̃F6

= L̃◦F̃+ L̃ F̃+ F̃L̃6 ,

(E.2)

where, to advance from the first line to the second, we use the fact that F̃◦ and F̃ commute. Identities,
e.g., I = (F̃◦)−1F̃◦, along with (E.1) advance the second line to the third. Going from the third line to
the fourth is done by defining velocity gradients for the three modes comprising the rate of distortion:

(1) For dilation, define L̃◦ := ˙̃F◦
(
F̃◦
)−1
=
(
F̃◦
)−1 ˙̃F◦ whose matrix components are

[L̃◦] =
1
2

(
ȧ
a
+

ḃ
b

)[
1 0
0 1

]
. (E.3a)

(2) For squeeze, define L̃ := ˙̃F
(
F̃
)−1
=
(
F̃
)−1 ˙̃F whose matrix components are

[L̃ ] =
1
2

(
ȧ
a
−

ḃ
b

)[
1 0
0 −1

]
. (E.3b)

(3) For shear, define L̃6 := ˙̃F 6
(
F̃6
)−1
=
(
F̃6
)−1 ˙̃F6 whose matrix components are

[L̃6 ] =
[

0 γ̇

0 0

]
. (E.3c)

It turns out that the material velocity gradients L̃◦, L̃ and L̃6 commute in the products that define them.
The three material velocity gradients that are defined in (E.3) sum according to (E.2) to form a log-like

rate of distortion that is defined by L̃ := ˙̃FF̃−1
= L̃◦+ L̃ + F̃L̃6 F̃−1 with matrix components3

[L̃] =
[

ȧ/a aγ̇ /b
0 ḃ/b

]
. (E.4)

The Eulerian velocity gradient L := ḞF−1 and the material velocity gradient L̃ := ˙̃FF̃−1 relate to one
another through the expression

L̃=QT(L−444)Q,

=QTLQ−444,
wherein [444] =

[
0 θ̇

−θ̇ 0

]
(E.5)

with spin 444 := Q̇QT, an Eulerian field, designating the rate at which the material frame {mi } rotates
about the Eulerian frame {ei } with θ being defined in (B.3b) and drawn in Figure 1. The skew symmetric
part of (E.5) produces the useful result

444=W− W̃, (30)

3 Freed and Srinivasa [2015] define L̃ as F̃−1 ˙̃F, whereas we define it as ˙̃FF̃−1. They derived the logarithm of distortion ln F̃
whose rate is not L̃. The diagonal components of L̃ and ln F̃ are the same; it is in the off-diagonal components that they differ.
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stated in (8d), where W := 1
2(L−LT) and W̃ := 1

2(L̃− L̃T) are the spatial and material vorticities.

Remark. An important but subtle point is that L̃ is not integrable, because F̃L̃6 F̃−1 is not integrable,
and therefore L̃ is not a viable measure for strain rate. Strain is a field that depends only upon its two
end states, and not upon the path traversed to get from one state to the other. Consequently, strain rate
must be described by an exact differential, and L̃ is not an exact differential.
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