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STRESS CONCENTRATION AROUND A NANOVOID
ECCENTRICALLY EMBEDDED IN AN ELASTIC LAMINA

SUBJECTED TO FAR-FIELD LOADING

CHANGWEN MI

Stress concentration is one of the major challenges threatening the health and integrity of engineering
structures. This paper analyzes the stress distributions around a spherical nanovoid near two parallel free
surfaces. The loading is all-around uniform tension at infinity, perpendicular to the axis of symmetry of
the infinite strip. Both plane surfaces of the strip assume traction free boundary conditions whereas the
spherical void surface is modeled as a mathematical thin-film of Gurtin and Murdoch type. The method
of Boussinesq’s displacement functions is used in the analysis and the solutions are expressed semianalyt-
ically in terms of infinite series of Legendre functions and improper integrals involving Bessel functions.
Numerical calculations are performed to illustrate the dependence of elastic fields on surface material
properties, model size, void radius, and eccentricity. The results suggest the likelihood of optimizing
stress concentrations in metallic materials and structures by the proper design of surface material proper-
ties, particularly of the residual surface stress.

1. Introduction

The presence of geometric defects such as holes, pits, and voids in elastic materials has received extensive
investigation in literature because of the negative impact of stress concentrations on the integrity of
engineering structures [Mura 1987]. Stress concentrations around spherically shaped voids have been
one focus of micromechanics for decades, due probably to the relative simplicity in mathematical for-
mulations. Most of these studies, however, have been concerned with spherical voids at the microscale
[Tsuchida and Nakahara 1970; 1972; 1974; 1976; Tsuchida et al. 1976; Boccardo et al. 2015]. At such
a length scale, stress concentration factors are typically independent of void radius provided that no
additional characteristic lengths are involved. For models containing more than one characteristic length,
stress concentrations typically depend on their ratios, instead of on individual length scale parameters.

Nonetheless, situations become more complicated as the characteristic length scales decrease to the
nanoscale. As summarized in recent review articles on mechanics of nanostructured materials, surface
effects dominate the mechanics and physics at small scales by introducing additional length scales [Duan
et al. 2009; Wang et al. 2011; Chen and Yao 2014; Mi and Kouris 2014]. Stress distributions show strong
dependence on void size. Several studies have been concerned with stress distributions around nanovoids
embedded in an infinitely extended medium. By integrating traditionally excluded surface/interface ener-
gies and stresses into the classical Eshelby formalism for embedded inclusions, Sharma and Ganti [2004]
first examined the size-dependent stress concentrations on the surface of a nanovoid. He and Li [2006]
investigated the influence of surface mechanics on stress concentrations near a spherical void embedded
in an infinite medium subjected to unidirectional remote load. Li et al. [2006] further solved the stress
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concentration factors around a spherical nanovoid under a few combinations of biaxial uniform loads.
Duan et al. [2009] calculated the stress concentration factors of a spherical nanovoid by supplementing the
equations of classical theory of elasticity with generalized Young–Laplace equations of surface elasticity.

More often than not, voids are found near a free surface. Therefore, displacements and stresses are
additionally disturbed due to the presence of material boundaries. By the use of a displacement functions
approach, Mi and Kouris [2013] examined the stress distributions around a nanosized void near a single
free surface. More recently, they further evaluated the stress concentration factors due to a nanovoid
equally close to two parallel free surfaces [Mi and Kouris 2015]. In both studies, a unidirectional uniform
load applied at infinity was considered. Stress concentrations due to other loading conditions are also
under development. For example, Mi et al. [2016] calculated elastic fields near a hemispherical pit at the
plane boundary of an elastic half-space subjected to statically equivalent shear tractions.

Here we examine the stress concentrations around a nanosized void embedded at an arbitrary position
in an infinite lamina of finite thickness. An all-around tensile stress field applied at the remote boundary of
the lamina is considered. In view of the symmetry in both geometry and loading, the classical method of
Boussinesq displacement functions is employed [Barber 2010] to solve the three-dimensional elastic prob-
lem. In the absence of body forces and torsional loads, two harmonic functions are sufficient to provide
a general solution to the displacement equations of equilibrium. However, multiple sets of displacement
functions are needed due to the disturbances caused by void and dual plane boundaries. For example,
the voided lamina can be treated as the common domain belonging to both a voided infinite space and a
defects-free lamina. For these domains, forms of (harmonic) displacement functions are well-known.

Based on this reasoning, a general solution was constructed by superposing a few groups of displace-
ment functions, expressed in either spherical or cylindrical coordinates. Cylindrical and spherical harmon-
ics are in the forms of improper integrals and infinite series, respectively. Consequently, they carry either
continuous or discrete unknowns, in order to make the representations general enough. Although mathe-
matically tedious and difficult, the subsequent solution principle is straightforward. Unknown functions
in cylindrical harmonics were first expressed in terms of the unknown coefficients in spherical harmonics
by imposing traction-free boundary conditions at both the upper and lower surfaces of the lamina.

Next, the Gurtin and Murdoch [1978] continuum model of surface mechanics was adopted to simulate
the mechanical response of the void surface. In essence, this model treats a solid surface as a mathematical
layer of vanishing thickness. On such a two-dimensional domain, both surface strain and surface stress
were defined and thus a surface constitutive law was proposed. Finally, surface mechanics participates in
the mechanics and physics of the problem by modifying the force balance condition across the surface.
The enforcement of the modified boundary conditions at the void surface, by the use of a system of
truncated infinite series involving Legendre polynomials, renders us the unknown coefficients in the
spherical harmonics, and thus the unknown functions in cylindrical harmonics too. As the stresses due to
the disturbance of plane boundaries are improper integrals of Howland type involving Bessel functions
and hyperbolic functions, special algorithms were adopted to ensure the convergence and accuracy of
their evaluations [Ling 1957; 1978; Ling and Lin 1971; Ling and Wu 1982].

It is worth mentioning that in the present study only the surface mechanics at the void surface is
considered. Those at both plane boundaries are ignored, due to their secondary importance. As pointed
out in [Mi and Kouris 2006], surface effects at flat surfaces may be neglected when those at one or more
curved boundaries with finite radii of curvature are taken into account.
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In terms of semianalytical series and integral expressions for stresses, extensive numerical calculations
have been performed for various combinations of surface material properties, model size, void radius,
and eccentricity. The results of the nanovoid symmetrically embedded in an elastic lamina and in an
infinite medium have been reproduced as special cases of the eccentric model. Special consideration
has been given to the determination of stress distributions in the immediate vicinity of the void due to
far-field tension, since the disturbance of geometric defects is a short-range force field [Mura 1987]. The
combined analytical and numerical analyses show that the stress concentration factors along the void
surface can differ drastically from their classical counterparts. It is therefore possible to optimize the
stress distributions by controlling the surface material properties of the void surface. At the nanoscale,
the proper control of stresses and strains is a crucial factor in self-organized growth of quantum-dot
crystals [Springholz et al. 1998].

The remainder of this paper is organized as follows. In Section 2 we outline in detail the mathe-
matical method of solution, supplemented by three Appendices documenting indispensable yet tedious
components of the solution procedure. Section 3 numerically examines the impact of surface material
properties, model size, void radius, and eccentricity on the elastic fields in the vicinity of the embedded
nanovoid. Finally, in Section 4, conclusions are drawn.

2. Method of solution

Consider a spherical nanovoid near either plane boundary of an infinite strip of finite thickness, as shown
in Figure 1. Biaxial uniform boundary loads are applied at infinity, along directions parallel to both
free surfaces. Given the geometry, cylindrical (r, θ, z) and spherical (R, ϕ, θ) coordinates will be used
alternatively in the subsequent development. The transformation rules among these coordinates and the
Cartesian one are also illustrated in Figure 1. The shear modulus G and Poisson’s ratio ν are selected
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Figure 1. Geometry of the problem.
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to represent the bulk material properties of the elastic lamina. Within the framework of the classical
theory of micromechanics, three characteristic lengths exist in this problem, i.e., the half-thickness of
the substrate d , void radius a, and the eccentricity c. Following [Gurtin and Murdoch 1978], three surface
constants are required to fully accommodate the mechanical response of the void surface. Among them,
τ0 denotes residual surface stress whereas λ0 and µ0 are surface counterparts of Lamé constants. These
surface material properties introduce a few more intrinsic length scales into the problem and thus make
the solution more difficult to tackle.

In the absence of body forces, the axially symmetric equations of equilibrium in terms of displacements
are given by

∂2ur
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(1)

Thanks to the axial symmetry, two arbitrary harmonic functions (i.e., φ0 and φ3) are sufficient to yield
the solution

2Gur =
∂φ0
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+ z

∂φ3

∂r
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+ z

∂φ3
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Such a simple combination was first proposed by Boussinesq and is a special case of the more general
Papkovich–Neuber representation [Barber 2010]. With the help of strain-displacement relationship and
Hooke’s law, the corresponding stresses read
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(3)

Spherical displacements and stresses are readily derived by using the relations

∂

∂r
= sinϕ ∂

∂R
+

cosϕ
R

∂

∂ϕ
,

∂

∂z
= cosϕ ∂

∂R
−

sinϕ
R

∂

∂ϕ
, (4)

and the coordinate transformation equations

eR = sinϕ er + cosϕ ez, eϕ = cosϕ er − sinϕ ez. (5)

Traction-free boundary conditions are imposed at both plane boundaries of the infinite strip:

(σzr )z=d−c = (σzz)z=d−c = 0, (σzr )z=−d−c = (σzz)z=−d−c = 0. (6)

At infinity,
(σrr )r→∞ = (σθθ )r→∞ = T. (7)

As mentioned before, the mechanical response of the void surface is modeled by the theory of surface
mechanics proposed in [Gurtin and Murdoch 1978]. In this context, the surface of the spherical void
is treated as a mathematical film of vanishing thickness. The key component of the model lies in the
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fact that at submicro- to nanoscales, the net traction across a solid surface is balanced by the surface
divergence of surface stress (∇S ·6):

σi j n j − T (n)
i = (∇S ·6)i , (8)

where ni are components of the outward unit normal to the surface under consideration and T (n)
i of the

external traction load, which is absent in the present case. The surface stress 6 is connected to the
displacement gradient, evaluated at the surface, by the relations

6αβ = τ0δαβ + (µ0− τ0)(uα,β + uβ,α)+ (λ0+ τ0)uγ,γ δαβ + τ0uα,β, 63α = τ0u3,α. (9)

Applying (8) and (9) to the geometry of the present problem, the boundary conditions at the void
surface (R = a) can be expressed in spherical coordinates by
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(10)

For more details on Gurtin and Murdoch’s model of surface mechanics, readers are invited to refer to
their original publications [Gurtin and Murdoch 1975; 1978] and applications of the model [Benveniste
2006; Huang and Wang 2013; Mi and Kouris 2014].

To develop a solution to the present problem, forms of the two harmonic functions must be determined
in advance. A few groups of displacement functions are proposed to construct the solution, the first of
which is

φ0 =
1−ν

2(1+ν)
(r2
− 2z2)T, φ3 =−

z
(1+ν)

T. (11)

In view of (3), this set corresponds to the applied load at infinity, σrr = σθθ = T . The far-field boundary
conditions in (7) are thus identically satisfied. Additional groups of displacement functions accommo-
dating the disturbed elastic fields due to the presence of void and plane boundaries are also required. Let
us first consider the disturbance caused by the void. In view of the solution to the harmonic equation
defined outside of a sphere of radius a, we may try

φ0 = T
∞∑

n=0

An
dn+3

Rn+1 Pn[µ], φ3 = T
∞∑

n=0

Bn
dn+2

Rn+1 Pn[µ], (12)

where Pn[µ] denote Legendre functions of the first kind of order n and µ = cosϕ. These functions
were normalized with respect to the half-thickness d and the far-field tension T to make the unknown
coefficients (An and Bn) dimensionless. Two additional sets of displacement functions are necessary to
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accommodate the nature of finite thickness of the infinite strip:

φ0 = T
∫
∞

0
ψ1[λ]J0[λr ] cosh[λz] dλ, φ3 = T
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where J0[λr ] is a Bessel function of the first kind of zeroth order and ψ1[λ], ψ2[λ], ψ1[λ] and ψ2[λ]

are unknown functions of the integral variable, to be determined by satisfying the boundary conditions
in (6). The displacement functions (13) and (14) represent the symmetric and antisymmetric components
of the disturbance due to both free surfaces, respectively.

The displacement functions in (12) are expressed in spherical coordinates. In order to satisfy the
boundary conditions at the plane boundaries in (6), they need be transformed into cylindrical coordinates.
From [Gradshteyn and Ryzhik 2014], an integral representation of the azimuthally independent spherical
harmonics can be found for the half-space z > 0:
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Replacing (z) with (−z), (µ) with (−µ), and employing the parity property of the Legendre function
[Arfken et al. 2013], it can be found that for z < 0,
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At this point, the expressions for stresses at the upper surface of the strip can be developed by the
superposition of the displacement functions (13), (14), and (16). Those at the lower surface are derived
from (13), (14), and (18). The enforcement of the plane boundary conditions in (6) yields the following
relations:
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+
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where

I± =
1

sinh[2x] − 2x
±

1
sinh[2x] + 2x

, J± = I± sinh[2cx/d], K± = I± cosh[2cx/d],

L± = I±e−2x , M± = I±e−2x sinh[2cx/d], N± = I±e−2x cosh[2cx/d], x = dλ.
(23)

Next, we impose the boundary conditions at the void surface R = a, given in (10). For this purpose,
the displacement functions (13) and (14) must be transformed into spherical coordinates. With the help
of the series representations of cylindrical harmonics [Gradshteyn and Ryzhik 2014],
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Equations (13) and (14) can be combined into a single group,
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Substituting (19)–(22) into (26), we obtain
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∞∑
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d
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( c

d
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1
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(
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,

β2n =

∞∑
m=0

A2mq2n
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+

∞∑
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+
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+
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+
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c
d
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+

∞∑
m=0

B2m+1q2n+1
2m+1

{
(3− 4ν)(K+2m+2n+2− I−2m+2n+2)− L+2m+2n+2+ N−2m+2n+2

+ (2m+ 2n+ 3)
(

K+2m+2n+3− I−2m+2n+3−
c
d

J+2m+2n+3

)}
,

where

qn
m =

(m+ n)!
m!n!2m+n+1 , I±k =

2k

k!

∫
∞

0
I±xk dx, J±k =

2k

k!

∫
∞

0
I±xk sinh[2cx/d] dx,

K±k =
2k

k!

∫
∞

0
I±xk cosh[2cx/d] dx, L±k =

2k

k!

∫
∞

0
I±e−2x xk dx,

M±k =
2k

k!

∫
∞

0
I±e−2x xk sinh[2cx/d] dx, N±k =

2k

k!

∫
∞

0
I±e−2x xk cosh[2cx/d] dx .

(31)

These integrals are known as Howland type. Their evaluations are nontrivial and separately documented
in Appendix A.

Given the displacement functions (11), (12), and (25), both the stresses and the surface divergence of
surface stresses at the void surface can be evaluated. The boundary conditions in (10) then become
∞∑

n=0

{(
iS A1+ i A1

dn+3

an+3

)
An +

(
iSB1+ iB1

dn+1

an+1

)
Bn−1+
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dn+3

an+3

)
Bn+1

+

(
iSα1+ iα1

an−2

dn−2

)
αn +

(
iSβ1+ iβ1

an−2

dn−2

)
βn−1+

(
iSβ2+ iβ2

an

dn

)
βn+1

}
Pn[µ]

=
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2τ0

aT
−

2
3
+

2(1− 2ν)(2λ0+ 2µ0+ τ0)

3aG(1+ ν)

}
P0[µ] +

{
2
3
+

2(λ0+µ0− τ0)

3aG

}
P2[µ],

∞∑
n=1

{(
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dn+3

an+3

)
An +

(
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dn+1
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)
Bn−1+
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dn+3

an+3

)
Bn+1

+

(
lSα1+ lα1

an−2

dn−2

)
αn +

(
lSβ1+ lβ1
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)
βn−1+

(
lSβ2+ lβ2
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)
βn+1

}
P ′n[µ]

=

{
(λ0+ 3µ0− τ0)

3aG
−

1
3

}
P ′2[µ],

(32)

where iS A1, i A1, iSB1, iB1, iSB2, iB2, iSα1, iα1, iSβ1, iβ1, iSβ2, iβ2, lS A1, lA1, lSB1, lB1, lSB2, lB2, lSα1,
lα1, lSβ1, lβ1, lSβ2, and lβ2 are all dimensionless functions of the order number n, void radius a, half-
thickness d, shear modulus G, Poisson’s ratio ν, and the three surface material constants. For brevity,
their expressions are provided in Appendix B. Equating the coefficients of Legendre functions Pn[µ] and
their derivatives P ′n[µ] lead to a system of linear equations for the unknown constants An and Bn . The
solution is obtained by solving the linear system.

A careful examination of (32) and those coefficients defined in Appendix B reveals that the strength
of the void surface is governed by four intrinsic dimensionless parameters: λ′0 = λ0/aG, µ′0 = µ0/aG,
τ ′0 = τ0/aG, and τ ′′0 = τ0/aT . The impact of surface mechanics becomes significant when any of these
parameters approaches the order of magnitude of unity, or at least to one tenth. For smaller magnitudes,
the inclusion of the model of surface mechanics only brings negligible modifications to the classical
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solution. By a combined analytical and numerical analysis, Mi and Kouris [2014] recently analyzed the
relative importance of these four dimensionless quantities. For a metal system, the last of these four
parameters (τ ′′0 = τ0/aT ) dominates since the shear modulus of a metal is about two orders of magnitude
higher than its yield strength. The other three parameters become relatively more important in models
composed of soft materials such as gelatin gels and rubbers [Mi et al. 2016].

Subsequently, by the superposition of the expressions that can be developed from all displacement
functions, all stresses and displacements can be calculated in both cylindrical and spherical coordinates.
Nonetheless, difficulties arise when evaluating stresses due to the displacement functions (13) and (14).
As can be seen from the expansions in (24), in spherical coordinates the displacement functions in (25)
are valid solutions to the harmonic equation only in regions near the void. For regions far away from the
void, both series diverge. As a result, the representations in (25) are most helpful to the enforcement of
the boundary conditions at the void surface.

On the other hand, when directly evaluating stresses from (13) and (14), integrals involving more
complicated integrands than those shown in (31) are encountered. They can be represented by 24 integrals
of Howland type, possessing an additional Bessel function and a hyperbolic function in the integrands.
The evaluations of these integrals require special consideration, which are presented in Appendix C.

3. Results and discussion

Several numerical experiments were performed when all-around tension at infinity was considered. The
infinite strip is assumed to be an isotropic continuum made of nickel, whose shear modulus and Poisson’s
ratio are respectively G = 76 GPa and ν = 0.31. The far-field tensile stress field was chosen so as to
ensure that no yielding is resulted: T = 100 MPa. Stresses and displacements were calculated for various
combinations of surface material properties, model size, eccentricity, and void radius.

Based on the dimension analysis presented at the end of last section, it is obvious that the effects of
surface mechanics are both material and load dependent. For practical applications of the developed
solution, the values of these four parameters and therefore the strength of surface mechanics must be
informed from both the bulk and surface material properties of the given physical model. Even for
crystalline metals, it is a primary challenge to determine accurate values for the residual surface stress
and the two surface Lamé constants. Nonetheless, molecular simulations demonstrate that both the
residual surface stress and the stiffness constants of a crystalline surface have a magnitude of about
1 N/m [Gumbsch and Daw 1991; Shenoy 2005; Mi et al. 2008], though either sign is possible. For a
nanovoid of radius 10 nm, τ0/a, λ0/a, µ0/a ∼ 100 MPa, whose magnitude is reasonably close to the
practical loads of most engineering materials. In view of this fact, we have based our calculations merely
on several plain crystalline surfaces and two nominal models to investigate the physical significance of
surface elasticity. These case studies are sufficiently representative.

3.1. Convergence test. It can be observed that the displacement functions (12) and (25) are complete
and the convergence of the series is guaranteed. However, these displacement functions are in the form of
infinite series. As a result, the fulfillment of boundary conditions results in an infinite set of simultaneous
linear equations; see (32). It is not possible to analytically solve such an infinite system without truncation.
We therefore must truncate the infinite series in (32) at a finite order N, which inevitably introduces
numerical approximation to the solution.
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Figure 2. Variation of the l2-norm of the error vector of the linear system (32) as a
function of the number of terms included in the series after truncation.

In order to numerically test the convergence of the solution as a function of the number of terms kept
in the truncated series, we computed the l2-norm of the error vector of the linear system (32). The error
vector is formed by the residuals of all linear equations after truncation. As a convention, the square root
of the error vector is defined as the l2-norm.

To evaluate numerically the semianalytical solution and analyze its sensitivity to the truncation param-
eter, we here take a quite general model as an example. The three characteristic lengths of the model
were chosen as d = 20 nm, a = 6 nm, and c = 10 nm. In addition, we chose to model the void surface
by the mechanical behavior of a crystalline copper surface whose normal is defined by the crystalline
direction [111]. A pair of square brackets is often used to denote a crystalline direction in crystallography.
In this analysis, values of the truncation that number up to 100 were considered. A semilogarithmic plot
with the l2-norm of the error vector is presented in Figure 2. It can be concluded from the plot that
the l2-norm decreases exponentially as the truncation number N increases. For both the classical and
the modified solutions, no more than 20 terms are needed to satisfy the boundaries conditions at the
void surface, with an accuracy up to five significant figures for displacements and stresses. We therefore
assume the truncation number N = 20 from now on.

3.2. Effects of surface material properties. To investigate the influence of surface material properties,
we first examined the stress disturbances caused by a nanovoid of radius 6 nm, eccentrically embedded
(c= 10 nm) in an infinite strip with half-thickness d = 20 nm. In addition to the classical case (λ0 =µ0 =

τ0 = 0), six additional surface models were considered. The values of the three surface constants in these
models were taken or designed on the basis of [Mi et al. 2008; Shenoy 2005]. For example, we chose
to treat the void surface as a plain crystalline copper or nickel surface with two representative surface
orientations in four surface models. In crystallography notation, a pair of parentheses is typically used to
stand for a crystalline surface. For example, the combination (111) represents a crystalline surface with
the crystalline direction [111] as its surface normal. In the remaining two models, we assigned simple
nominal values to all three surface constants, i.e., λ0=µ0= τ0= 1 and λ0=µ0= τ0=−1. The rationale
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Figure 3. Distribution of hoop, left, and tangential stresses, right, along the void surface
(R = a). Both subfigures consider six surface models, in addition to the classical solution.
Three characteristic lengths of the model are chosen as: d = 20 nm, a = 0.3d , and c= 0.5d .
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Figure 4. Variation of σrr and σθθ along the axis of symmetry (a ≤ z ≤ d − c) as a
function of nondimensionalized coordinate z/d . In addition to the classical solution, six
surface models are considered. Three characteristic lengths of the model are chosen as:
d = 20 nm, a = 0.3d , and c = 0.5d.

behind such simple choices is as follows. Both experimental measurements [Cammarata 1994] and
atomistic calculations [Mi et al. 2008; Shenoy 2005] have demonstrated that all surface elastic properties
of a crystalline surface/interface are roughly in the order of magnitude 1 N/m. Their sign, surprisingly,
can be either positive or negative. The possibility of negative surface constants, particularly of negative
surface Lamé parameters, is out of expectation and has been extensively discussed [Cammarata 1994;
Mi et al. 2008; Shenoy 2005].

Figure 3 shows the hoop (σθθ ) and tangential (σϕϕ) stresses along the void surface R = a. For all
surface models, stress concentration factors reach high tensile values at the north pole A of the void.
The stress concentrations at the south pole C are slightly less severe, due to the eccentricity of the void.
Low tensile/compressive values of the stress concentration factors were found near but not exactly on
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the equator of the void, due again to the eccentricity of the void. It can be seen that stress distributions in
the top half of the strip are more disturbed by the presence of infinite plane boundaries. For this reason,
we further plotted both the cylindrical radial (σrr ) and hoop (σθθ ) stresses along the positive z-axis, as
shown in Figure 4. Along the symmetry axis, these two stress components are identical.

From the various cases shown in Figures 3 and 4, it is obvious that stress distributions depend strongly
on particular models of surface mechanics. Ni (111) and one of the two nominal models (λ0 = µ0 =

τ0 =−1) resulted in more severe stress concentrations than the classical solution. The other four surface
models help to reduce the stress concentrations. Among them, the nominal model (λ0 = µ0 = τ0 =−1)
and Cu (100) represent the worst and best scenarios, respectively. In the latter case, compressive hoop
and tangential stresses were found in most regions of the void surface, except in the immediate vicinity
of the void poles A and C . This is quite impressive, given the fact that the remote boundary loading is
purely tensile.

Based on the previous dimension analysis on the four intrinsic dimensionless parameters for a metal
system, the residual surface stress alone is far more important than surface elasticity. Consequently, it is
reasonable to approximate the stresses around a nanovoid embedded in an infinite substrate subjected to
all-around far-field tension by

σR R

T
=

2τ0

T a
a3

R3+
2
3
−

2
3

a3

R3−

{
2
3
−

10(5−ν)
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}
P2[µ].

(33)

The above solution is a simple superposition of the classical solution with the effects due to the residual
surface stress alone. It now becomes obvious that for nanosized voids the first term in any stress compo-
nent is in the same order of magnitude as the other ones and therefore must be taken into account. The
dependence of stress distributions on surface models in Figures 3 and 4 can be qualitatively explained
by (33). The values of residual surface stress are τ0 = −1, −0.11 (Ni (111)), 0 (classical), 0.7 (Ni
(100)), 0.95 (Cu (111)), 1, and 1.41 N/m (Cu (100)) for the seven curves in each subfigure of Figures
3 and 4. The trend is very clear that stress distributions are significantly affected by the value of the
residual surface stress. Positive values of τ0 help to reduce stress levels whereas the negative ones tend
to intensify the stress concentrations. For compressive far-field loading, the conclusions should obviously
be reversed. It should also be noted that (33) cannot be used to quantitatively predict the curves in Figures
3 and 4. The errors represent the disturbances introduced by both the top and bottom plane boundaries.

3.3. Effects of model size. Because the impact of surface mechanics is strongly model dependent, we
decided to choose a representative model (λ0=µ0= τ0= 1) in the subsequent development as a means of
exploring general trends. Figures 5–8 aim to investigate the influence of surface mechanics on samples
of different sizes, when both the void radius to half-thickness ratio and eccentricity are kept constant. As
expected, in the absence of surface mechanics, stress distributions are independent of model sizes and are
solely functions of ratios among characteristic lengths, i.e., a/d and c/d. This is not the case, however,
when the nominal model of surface mechanics is incorporated. From Figures 5–8, it is clear that the
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Figure 5. Distribution of hoop, left, and tangential stresses, right, along the void surface
(R = a). The remaining adjustable parameters are set to: a = 0.3d, c = 0.6d, and
λ0 = µ0 = τ0 = 1 for nonclassical cases.
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Figure 6. Variation of σrr and σθθ along the axis of symmetry (a ≤ z ≤ d − c) as a
function of nondimensionalized coordinate z/d. The remaining adjustable parameters
are set to: a = 0.3d , c = 0.6d, and λ0 = µ0 = τ0 = 1 for nonclassical cases.

strength of surface mechanics decays monotonically with the model size d. The smaller the model size,
the more significant the difference between the classical and modified solutions becomes.

Similar to Figures 3 and 4, Figures 5 and 6 also show the stress concentrations along the void surface
and the positive z-axis, respectively. In the latter case (ϕ = 0), cylindrical and spherical stresses are
connected: σrr = σϕϕ and σzz = σR R . Again, the strength of surface mechanics can be qualitatively
analyzed by the solution due to a nanovoid embedded in an infinite matrix:

(σrr/T )ϕ=0 = (σθθ/T )ϕ=0 =−
τ0

T a
a3

R3 + 1−
(1− 5ν)
(7− 5ν)

a3

R3 +
6

(7− 5ν)
a5

R5 . (34)

As before, in the above equation the contribution due to surface elasticity has been neglected because of
its secondary importance.
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Figure 7. Variation of radial, left, and hoop stresses, right, along the top boundary (z =
d−c) as a function of nondimensionalized radial coordinate r/d . The remaining adjustable
parameters are set to: a = 0.3d , c = 0.6d , and λ0 = µ0 = τ0 = 1 for nonclassical cases.

Figure 7 shows variations of the radial and hoop stresses on the upper surface of the infinite strip.
For all three model sizes, the void surface effects resulted in compressive stress states in the central
region of the upper boundary. The compressive domain decreases with model size. Due to symmetry,
the maximum compressive stress always occurs at the center O of the upper boundary. The discrepancies
among the classical and modified solutions are confined to only a few times the radius of the void. This
is because the void defect itself is a short-range force field.

Stress distributions on the x-y plane as a function of the model size were also investigated, as shown in
Figure 8. The influence of surface mechanics behaves again as a monotonic function. It is interesting to
observe that high tensile normal stresses develop on and near the void surface (Figure 8a). In particular,
the normal stress σR R at the free surface of the void becomes nonzero due to the inclusion of surface
effects. By the essence of surface mechanics, this stress is equilibrated by the surface divergence of the
surface stress (−2τ0/a). In contrast, low tensile or even compressive σθθ and σϕϕ are produced near
the void, representing a relieved stress state. It is no surprise to find that all stresses converge to their
far-field counterparts in regions R ≥ 3a. Once again, the qualitative behavior of the above analysis can
be accurately predicted by the closed-form approximations
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(35)

Recall that both surface elasticity and the plane boundaries have been ignored in the above equations.

3.4. Effects of void size. Three cases of different void radii were examined, when both the strip half-
thickness (d = 20 nm) and eccentricity (c = 6 nm) were fixed. This is a typical parametric study that



STRESS AROUND A NANOVOID EMBEDDED IN AN ELASTIC LAMINA SUBJECTED TO LOADING 345

σ
RR
/

T

R/a

σ
θ
θ
/

T

R/a

σ
ϕ
ϕ
/

T

R/a

d = 20 nm (classical)
d = 20 nm (modified)
d = 60 nm (classical)
d = 60 nm (modified)
d = 100 nm (classical)
d = 100 nm (modified)

Figure 8. Variation of radial, left; hoop, right; and tangential stresses, bottom, as a
function of nondimensionalized radial coordinate R/a. The polar coordinate is kept
constant: ϕ = 90◦. The remaining adjustable parameters are set to: a = 0.3d, c = 0.6d,
and λ0 = µ0 = τ0 = 1 for nonclassical cases.

was performed for a nanovoid embedded in an infinite domain [He and Li 2006; Mi and Kouris 2014].
Emphasis was given to the stress concentrations along the void surface. The hoop (σθθ ) and tangential
(σϕϕ) stresses for nanovoids of radius a= 3, 6, and 9 nm are shown in Figure 9. The three classical curves
vary from one to another due to the presence of eccentricity. The stress distributions are almost symmetric
about the x-y plane for the case of a = 3 nm. For larger voids, asymmetry in both stress components
becomes obvious. The dependence of stress concentration factors on surface effects is quite clear and
is as expected. The smaller the nanovoid, the more pronounced the surface effects become. Benefiting
from the positive residual surface stress (τ0 = 1 nm) in the selected nominal model, improvements in
stress concentrations were observed in all three cases.

3.5. Effects of eccentricity. The last numerical experiment we performed focuses on the influence of
eccentricity. Figure 10 illustrates stress concentrations along the surface of a void of radius a = 6 nm.
Three eccentricities, i.e., c = 0, 6, and 12 nm, were considered. For all cases, high tensile values of
stress concentration factors were found at the two poles of the void. Low tensile/compressive values
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Figure 9. Distribution of hoop, left, and tangential stresses, right, along the void surface
(R = a). The remaining adjustable parameters are taken to be: d = 20 nm, c = 0.3d , and
λ0 = µ0 = τ0 = 1 for nonclassical cases.
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Figure 10. Distribution of hoop, left, and tangential, right, stresses along the void sur-
face (R = a). The remaining adjustable parameters are assumed to be: d = 20 nm,
a = 0.3d , and λ0 = µ0 = τ0 = 1 for nonclassical cases.

occur near (but not on) the equator of the void, approaching from the north hemisphere. The dependence
of stress distributions on the degree of eccentricity is very clear.

As expected, complete symmetry in stress distributions was found for the case of c = 0. Due also to
the small ratio of void radius to half-thickness (a/d = 0.3), both the classical and modified solutions for
this case can be reasonably approximated by those due to an infinite substrate. For example, the stress
concentration factors at the poles are very close to σθθ/T = σϕϕ/T =−τ0/T a+ 12/(7− 5ν). Those on
the equator of the void surface are well approximated by σθθ/T = −τ0/T a+ 3(4− 5ν)/(7− 5ν) and
σϕϕ/T =−τ0/T a− 3/(7− 5ν), respectively. For cases with nonzero eccentricities, however, stress dis-
tributions on the north hemisphere are significantly disturbed. The disturbance is much less pronounced
on the south hemisphere, as can be seen from Figure 10.
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4. Concluding remarks

Within the framework of Gurtin and Murdoch’s continuum model of surface mechanics, we successfully
developed a semianalytical solution, in the forms of infinite series and improper integrals, to the stress con-
centration problem of a nanosized void embedded in an infinite strip. All-around tensile loads applied at
infinity were considered. The method of displacement functions was employed to explore displacements
and stresses as functions of void surface material properties, model size, void radius, and eccentricity.
The major challenge of the proposed method lies in the evaluation of a number of integrals of Howland
type, particularly of those involving Bessel functions. Following extensive numerical experiments, a few
observations and conclusions can be summarized:

• Stress distributions were found to depend strongly on the combination of surface material properties.
Dimension analysis suggests that for a metallic system the residual surface stress τ0 is far more
crucial than the surface Lamé constants. Positive τ0 helps to reduce the stress concentration whereas
negative values worsen the situation.

• The effects of void surface mechanics are important only for those models whose characteristic
lengths are less than 100 nm. Beyond this scale, the void radius to half-thickness ratio (a/d) and
relative eccentricity (c/d) govern the strength of stress concentrations.

• Not surprisingly, the impact of void surface mechanics on stress concentrations is in inverse pro-
portion to void radius. For reasonably small ratios a/d , stress distributions degenerate to those of a
nanovoid embedded in an infinite medium.

• Eccentricity plays an indispensable role in the determination of stress distributions. As the void
approaches the upper boundary, stress concentration factors at the north pole of the void become
unbounded for both the classical and modified solutions.

Appendix A: Evaluation of integrals of Howland type

To perform numerical experiments, the integrals defined in (31) must be evaluated. The integrals I±n and
L±n have previously been computed [Ling and Lin 1971; Ling 1978] to 25 significant figures. It is worth
noticing that as n approaches infinity, I+n and L+n tend to 2 and 1

2
k
, respectively. On the other hand, both

I−n and L−n tend to zero.
Now, let us expand sinh[2cx/d] into the power series of its argument; the integrals J±n then become

J±n =
∞∑

m=0

( c
d

)2m+1 (n+ 2m+ 1)!
n!(2m+ 1)!

I±n+2m+1.

Since I+n tends to 2 as the integer n tends to infinity, J+n is a slowly convergent series. In order to improve
the convergence, a Kummer transformation may be enforced [Ling 1957]:

J+n =
{(1+ c/d)n+1

− (1− c/d)n+1
}

(1− c2/d2)
n+1 +

∞∑
m=0

( c
d

)2m+1 (n+ 2m+ 1)!
n!(2m+ 1)!

(I+n+2m+1− 2).
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In contrast, the series J−n converges rapidly to zero with increasing n. Following the same strategy, the
integrals K±n can be evaluated as

K+n =
{(1+ c/d)n+1

+ (1− c/d)n+1
}

(1− c2/d2)
n+1 +

∞∑
m=0

( c
d

)2m (n+ 2m)!
n!(2m)!

(I+n+2m − 2),

K−n =
∞∑

m=0

( c
d

)2m (n+ 2m)!
n!(2m)!

I−n+2m .

Benefiting from the rapid convergence of both L+n and L−n , series expansions of the hyperbolic sine
and cosine functions are sufficient for evaluating the integrals M±n and N±n :

M±n =
∞∑

m=0

( c
d

)2m+1 (n+ 2m+ 1)!
n!(2m+ 1)!

L±n+2m+1, N±n =
∞∑

m=0

( c
d

)2m (n+ 2m)!
n!(2m)!

L±n+2m .

Appendix B: Expressions of dimensionless functions defined in (32)

i A1 = (n+1)(n+2), iB1 =
n(n2
+3n−2ν)
(2n−1)

, iB2 =
(n+1)(n+2)(n+5−4ν)

(2n+3)
,

iS A1 =
(n+1)(n+2)(2λ0+2µ0+(n+1)τ0)

2aG
dn+3

an+3 ,

iSB2 =
(n+1)(n+2)(n+5−4ν)(2λ0+2µ0+(n+1)τ0)

2aG(2n+3)
dn+3

an+3 ,

iSB1 =
n{(n2

−n(1−4ν)+2−4ν)(2λ0+2µ0)+(n3
+n2(6−4ν)−n(1−4ν)−2)τ0}

2aG(2n−1)
dn+1

an+1 ,

lA1 = (n+2), lB1 =
(n2
−2+2ν)
(2n−1)

, lB2 =
(n+2)(n+5−4ν)

(2n+3)
,

lS A1 =
(n+2)((n+1)λ0+2nµ0+2τ0)

2aG
dn+3

an+3 ,

lSB2 =
(n+2)(n+5−4ν)((n+1)λ0+2nµ0+2τ0)

2aG(2n+3)
dn+3

an+3 ,

lSB1 =
{n(n2

−n(1−4ν)+2−4ν)λ0+2(n3
−n2(2−4ν)−2n+4−4ν)µ0+2(n2

+4(n−1)(1−ν))τ0}

2aG(2n−1)
dn+1

an+1 ,

iα1 = n(n−1), iβ1 =
n(n−1)(n−4+4ν)

(2n−1)
, iβ2 =

(n+1)(n2
−n−2−2ν)

(2n+3)
,

iSα1 =
n(n−1)(2λ0+2µ0−nτ0)

2aG
an−2

dn−2 ,

iSβ1 =
n(n−1)(n−4+4ν)(2λ0+2µ0−nτ0)

2aG(2n−1)
an−2

dn−2 ,

iSβ2 =
(n+1){(n2

+n(3−4ν)+4−8ν)(2λ0+2µ0)−(n3
−n2(3−4ν)−2n(5−6ν)−4+8ν)τ0}

2aG(2n+3)
an

dn ,
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lα1 =−(n− 1), lβ1 =−
(n− 1)(n− 4+ 4ν)

(2n− 1)
, lβ2 =−

(n2
+ 2n− 1+ 2ν)
(2n+ 3)

,

lSα1 =
(n− 1)(nλ0+ 2(n+ 1)µ0− 2τ0)

2aG
an−2

dn−2 ,

lSβ1 =
(n− 1)(n− 4+ 4ν)(nλ0+ 2(n+ 1)µ0− 2τ0)

2aG(2n− 1)
an−2

dn−2 ,

lSβ2 =

{
(n+ 1)(n2

+ n(3− 4ν)+ 4− 8ν)λ0+ 2
(
n3
+ n2(5− 4ν)+ n(5− 8ν)− 3

)
µ0

− 2(n2
− n(2− 4ν)− 7+ 8ν)τ0

}
2aG(2n+ 3)

an

dn .

Appendix C: Evaluation of integrals of Howland type involving a Bessel function

The 24 integrals that were encountered when evaluating stresses in cylindrical coordinates from (13) and
(14) are as follows:{

I S±m,n
I C±m,n

}
=

1
n!

∫
∞

0

{
sinh[zx/d]
cosh[zx/d]

}
I±xn Jm[r x/d] dx,{

J S±m,n
JC±m,n

}
=

1
n!

∫
∞

0

{
sinh[zx/d]
cosh[zx/d]

}
I±xn sinh[2cx/d]Jm[r x/d] dx,{

K S±m,n
K C±m,n

}
=

1
n!

∫
∞

0

{
sinh[zx/d]
cosh[zx/d]

}
I±xn cosh[2cx/d]Jm[r x/d] dx,{

L S±m,n
LC±m,n

}
=

1
n!

∫
∞

0

{
sinh[zx/d]
cosh[zx/d]

}
I±e−2x xn Jm[r x/d] dx,{

M S±m,n
MC±m,n

}
=

1
n!

∫
∞

0

{
sinh[zx/d]
cosh[zx/d]

}
I±e−2x xn sinh[2cx/d]Jm[r x/d] dx,{

N S±m,n
NC±m,n

}
=

1
n!

∫
∞

0

{
sinh[zx/d]
cosh[zx/d]

}
I±e−2x xn cosh[2cx/d]Jm[r x/d] dx .

Take the first group of the above integrals as an example. Consider the auxiliary integrals

I±m,n =
1
n!

∫
∞

0
I±xn Jm[r x/d] dx .

Following [Ling and Wu 1982], we replace the Bessel function by its usual series representation and
integrate:

I±m,n =
∞∑

k=0

(−1)k(n+m+ 2k)!
n!k!(m+ k)!2n

( r
4d

)m+2k
I±n+m+2k .

Since the limit of I+n is 2 as n tends to infinity, the convergence of I+m,n may again be improved by the
use of a Kummer transformation. Finally, the first group of the 24 integrals can be evaluated in terms of
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the auxiliary integrals

I S±m,n =
∞∑

k=0

(n+ 2k+ 1)!
n!(2k+ 1)!

( z
d

)2k+1

I±m,n+2k+1, I C±m,n =
∞∑

k=0

(n+ 2k)!
n!(2k)!

( z
d

)2k
I±m,n+2k .

Although tedious, the remaining integrals can be evaluated in a procedure similar to the one described
above.
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