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THICKNESS EFFECTS IN THE FREE VIBRATION OF
LAMINATED MAGNETOELECTROELASTIC PLATES

CHAO JIANG AND PAUL R. HEYLIGER

A semianalytical discrete-layer approach is used to evaluate thickness effects in the free vibration of
laminated magneto-electro-elastic (MEE) plates under various lateral boundary conditions. To match
the primary physical phenomenon and simplify the study, piecewise continuous approximations are used
through the thickness direction and either continuous global polynomial or trigonometric functions are
used to simulate the deflection in axial or planar displacement fields. Thin plate models can be recovered
to predict frequency estimation for various boundary conditions and compared with continuum-based
theories using more complex approximations. Based on symmetry, the natural vibratory modes can be
grouped to optimize computation. Numerical examples are used to show the thickness effects, with
nondimensional frequencies computed for multiple plates under six lateral boundary conditions: simply
supported, clamped, and four different combinations of free and clamped/simply supported edges. Along
with the influence of electroelastic and magnetoelastic coupling, the results of these analyses clearly
illustrate the limits of thin-plate approximations.

Introduction

Kirchhoff’s plate theory yields many exact solutions that can predict the behavior of elastic deformations
and stresses near or across the interface of material layers under static and dynamic loading, but usually
only when the planar dimensions are much larger than the thickness. These methods can also be used
for solving more complicated situations for multilayered composites that are more complex than for
homogeneous elastic materials. An example of this is a plate formed with materials that combine elastic,
electric, and magnetic effects. These are typically referred to as magneto-electro-elastic (MEE) solids,
and have behavior that is significantly different than the purely elastic case.

The free vibration of purely elastic laminated plates has a very rich history with numerous contribu-
tions, with one of the most significant being the early work of Srinivas et al. [1970]. The development of
representative theories and solutions for laminates where the elastic fields are coupled with both magnetic
and electric fields are much more recent. The free vibration of MEE plates has been investigated by
several researchers. By expanding the general boundary conditions in series form, Vel and Batra [2000]
solved the static deformation of multilayered piezoelectric plates using a three-dimensional solution. The
corresponding bending vibration problem has been studied by Vel et al. [2004]. For a simply supported
multilayered MEE plate, the exact free vibration behavior using an exact closed-form solution has been
derived using the pseudo-Stroh formulation by Pan and Heyliger [2002]. The state-space formulation
is another method that has been used to analyze the static and dynamic behavior of MEE multilayered
plates [Wang et al. 2003; Chen et al. 2007]. This methodology was also used by Chen [Chen et al.
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2005] in the study of the free vibration of a nonhomogeneous isotropic MEE plate. Kondaiah, Shankar,
and Ganesan [Kondaiah et al. 2012] used the finite element method to investigate beams made of MEE-
thermo materials with different volume fractions under uniform temperature increase and clamped-free
boundary conditions. The discrete-layer (DL) and domain-discretization methods have also been widely
used in the analysis of anisotropic elastic and MEE plates and shells. The free vibration of an anisotropic
and MEE plate was worked out by Chen, Heyliger and Pan [Chen et al. 2014] corresponding to different
lateral boundary conditions.

The studies of many computational schemes for the solution of the equations of motion are based on
the early work of Demarest [1971] and Eer Nisse [1967] through algorithms for elastic and piezoelectric
parallelepipeds. However, if there is no existing closed-form solution, by expanding the displacements in
terms of reasonable approximations, Hamilton’s principle can be used to solve the weak form of the equa-
tions of motion. Furthermore, at an interface made of different materials, such as elastic, piezoelectric,
and piezomagnetic properties, additional considerations may apply. Between two dissimilar materials,
interface conditions include continuous stress, normal electric displacement, and normal magnetic in-
duction. At a region of discontinuous material properties, these cause a discontinuity in the slope of the
displacement and potential fields. The use of piecewise linear functions through the thickness with contin-
uous global polynomial or trigonometric functions in the plane parallel to the interface allows a relatively
accurate solution to be achieved. Via a semianalytical discrete-layer model, Heyliger [2000] developed
the governing equations of layered elastic and piezoelectric parallelepipeds and obtained frequencies for
a number of geometries and material combinations using this sort of approach.

Kirchhoff’s classical theory of thin plates can often give sufficiently accurate results instead of carrying
out a full three-dimensional stress analysis. But accuracy usually decreases with increasing thickness of
the plate. Many authors qualify the value of the thickness relative to the larger plate dimensions as being
“small” [Rao 2007], “much smaller” [Whitney 1987], or “significantly smaller” [Hjelmstad 1997]. Sev-
eral authors have suggested limits with numbers attached: the thickness is “less than 1/20” [Ugural and
Fenster 1995] of the lateral dimensions or that the lateral dimensions are “at least ten times” the thickness
[Szilard 1974]. There has always been significant latitude assumed in applying these limits, since they
are clearly influenced by plate geometry, the nature of the loading, and the material constitution. Such an
inherent limitation of classical plate theory for the moderately thick plates necessitated the development
of more refined theories in order to obtain reliable results for the behavior of these new materials. By
plotting the frequencies as a function of the length-to-thickness ratio a/h, the present results indicate
the level of errors influenced by thickness effects. The errors even within prior recommendations of a/h
ratios can be significant.

The objective of this study is to use Hamilton’s principle and appropriate approximations to make the
link between the thin plate theory and more accurate continuum models to determine at what a/h ratios
thin plate theory may be adequate for plates of laminated MEE material.

Theory

Governing equations. A plate is a structural element that is typically flat and thin. The lateral dimension
is larger than the thickness by a factor that will be directly considered in this work. The plates consid-
ered in this study are formed by multiple anisotropic layers and all constitutive relations are linear. A
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Figure 1. The geometry and coordinate system of the laminated plate.

rectangular Cartesian coordinate is used to formulate the governing equations with the origin as shown
in Figure 1.

Of primary interest in this work are the thickness effects in laminated plate vibration for plates com-
posed of MEE materials. Square laminates with lateral dimensions a = b and a total thickness h are
considered in this study. Each layer is homogeneous and each interface is perfectly bonded; therefore,
the compatibility of displacements and the potentials are enforced. Even though the elastic displacements,
electric and magnetic potentials, elastic traction, and the z-components of the electric displacement and
magnetic induction are continuous, there is a discontinuity in the z-direction gradient of the displacement
components, the electrostatic potential, and magnetostatic potential at the interface of two layers.

In a linear, isotropic MEE solid, the coupled constitutive law for each lamina can be expressed as

σi j = Ci jkl Skl − eki j Ek − qki j Hk, (1)

Dm = emkl Skl + εmk Ek + dmk Hk, (2)

Bm = qmkl Skl + dmk Ek +µmk Hk . (3)

Here σi j , Dm , and Bm are respectively the components of stress, electric displacement, and magnetic
induction; Skl , Ek , and Hk represent the components of strain, electric field and magnetic field; Ci jkl ,
εmk , and µmk indicate the elastic, dielectric, and magnetic permeability coefficients; and eki j , qki j , and
dmk are the piezoelectric, piezomagnetic, and magnetoelectric coefficients. Moreover, by setting the
values emkl or qmkl equal to zero, the results for either purely piezoelectric, piezomagnetic, or elastic
material can be achieved.

The relationship between the strain and displacement, electric (magnetic) field and its potential can
be written as

Si j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, (4)

Ek =−
∂φ

∂xk
, (5)

Hk =−
∂ψ

∂xk
. (6)

Here, ui are the infinitesimal displacement components and φ and ψ are the electric and magnetic
potentials, respectively. The components xk are related to the x , y and z in the rectangular Cartesian
coordinates for k = 1, 2, 3.
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The weak form of the equations of motion, the charge equation and the electromagnetic equation for
a MEE medium within Hamilton’s principle can be expressed as [Tiersten 1969]

δ

∫ t

t0
dt
∫

V

[ 1
2ρu̇ j u̇ j − H(Skl, Ek, Hk)

]
dV +

∫ t

t0
dt
∫

S
(Tkδuk − σδφ− I δψ) dS = 0. (7)

Here, t0 and t are two specified times, V is the volume of the plate, S is the surface that bounds V , and δ is
the variational operator. The · superscript represents differentiation with respect to time, and T , σ , and I
are surface tractions, surface charge, and surface current. H is the system enthalpy and can be written as

H = 1
2Ci jkl Si j Skl − ei jk Ei S jk −

1
2εi j Ei E j − qi jk Hi S jk −

1
2µi j Hi H j − dik Ei Hk . (8)

Based on the specific material properties used in this study, and setting x1 = x , x2 = y, and x3 = z, with
the corresponding displacement field as u, v, w, the weak form can be expanded as∫ t

t0
dt
∫

V

{
ρ(u̇δu̇+ v̇δv̇+ ẇδẇ)

−

[
C11

∂u
∂x
∂δu
∂x
+C12

∂u
∂x
∂δv

∂y
+C12

∂δu
∂x

∂v

∂y
+C13

∂u
∂x
∂δw

∂z

+C13
∂δu
∂x

∂w

∂z
+C22

∂v

∂y
∂δv

∂y
+C23

∂v

∂y
∂δw

∂z
+C23

∂δv

∂y
∂w

∂z
+C33

∂w

∂z
∂δw

∂z

+C16
∂u
∂x

(
∂δu
∂y
+
∂δv

∂x

)
+C16

∂δu
∂x

(
∂u
∂y
+
∂v

∂x

)
+C26

∂v

∂y

(
∂δu
∂y
+
∂δv

∂x

)
+C26

∂δv

∂y

(
∂u
∂y
+
∂v

∂x

)
+C36

∂w

∂z

(
∂δu
∂y
+
∂δv

∂x

)
+C36

∂δw

∂z

(
∂u
∂y
+
∂v

∂x

)
+C44

(
∂v

∂z
+
∂w

∂x

)(
∂δv

∂z
+
∂δw

∂x

)
+C55

(
∂u
∂z
+
∂w

∂y

)(
∂δu
∂z
+
∂δw

∂y

)
+C66

(
∂u
∂y
+
∂v

∂x

)(
∂δu
∂y
+
∂δv

∂x

)
+C45

(
∂v

∂z
+
∂w

∂x

)(
∂δu
∂z
+
∂δw

∂y

)
+C45

(
∂δv

∂z
+
∂δw

∂x

)(
∂u
∂z
+
∂w

∂y

)
− e15δE1

(
∂u
∂z
+
∂w

∂x

)
− e15 E1

(
∂δu
∂z
+
∂δw

∂x

)
− e24δE2

(
∂v

∂z
+
∂w

∂y

)
− e24 E2

(
∂δv

∂z
+
∂δw

∂y

)
− e31δE3

∂u
∂x
− e31 E3

∂δu
∂x

− e32δE3
∂v

∂y
− e32 E3

∂δv

∂y
− e33δE3

∂w

∂z
− e33 E3

∂δw

∂z
− q15δH1

(
∂u
∂z
+
∂w

∂x

)
− q15 H1

(
∂δu
∂z
+
∂δw

∂x

)
− q24δH2

(
∂v

∂z
+
∂w

∂y

)
− q24 H2

(
∂δv

∂z
+
∂δw

∂y

)
− q31δH3

∂u
∂x
− q31 H3

∂δu
∂x
− q32δH3

∂v

∂y
− q32 H3

∂δv

∂y
− q33δH3

∂w

∂z
− q33 H3

∂δw

∂z

− ε11 E1δE1− ε22 E2δE2− ε33 E3δE3−µ11 H1δH1−µ22 H2δH2−µ33 H3δH3

]}
dV

+

∫ t

t0
dt
∫

S
(Tkδuk − σδφ− I δψ) dS = 0. (9)

It is possible to integrate the weak form by parts and collect the coefficients with respect to δu, δv,
δw, δφ, and δψ . Since we use the Ritz method, there is no need for this step. Here the focus is on the
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quasistatic state, which means there is no electric charge or current densities across the surface. Body
forces are also assumed to be zero in the results that follow.

Ritz approximations. The five primary field variables (u, v, w, φ, and ψ) can be approximated with x ,
y, z, and t as follows:

u(x, y, z, t)=
n∑

j=1

U j (x, y, t)9u
j (z)=

m∑
i=1

n∑
j=1

U j i (t)9u
i (x, y)9u

j (z),

v(x, y, z, t)=
n∑

j=1

V j (x, y, t)9v
j (z)=

m∑
i=1

n∑
j=1

V j i (t)9v
i (x, y)9v

j (z),

w(x, y, z, t)=
n∑

j=1

W j (x, y, t)9w
j (z)=

m∑
i=1

n∑
j=1

W j i (t)9w
i (x, y)9w

j (z),

φ(x, y, z, t)=
n∑

j=1

8 j (x, y, t)9v
j (z)=

m∑
i=1

n∑
j=1

8 j i (t)9
φ
i (x, y)9φ

j (z),

ψ(x, y, z, t)=
n∑

j=1

9 j (x, y, t)9v
j (z)=

m∑
i=1

n∑
j=1

9 j i (t)9
ψ

i (x, y)9ψ

j (z).

(10)

Here, U j i , V j i , W j i , 8 j i , and 9 j i are unknown constants. 9i (x, y) are the in-plane approximation func-
tions, while 9 j are the one-dimensional Lagrangian interpolation polynomials in the thickness direction
with respect to each variable.

The corresponding virtual fields can be expressed as

δu =9u
i (x, y)9u

j (z), δv =9v
i (x, y)9v

j (z), δw =9w
i (x, y)9w

j (z),

δφ =9
φ
i (x, y)9φ

j (z), δψ =9
ψ

i (x, y)9ψ

j (z).
(11)

By assuming periodic motion, substituting these approximations into the weak form, and collecting
the coefficients of the variations of the displacements and placing the results in matrix form, the system
can be written as

[M11
] [0] [0] [0] [0]

[0] [M22
] [0] [0] [0]

[0] [0] [M33
] [0] [0]

[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]





{U }
{V }
{W }
{8}

{9}


ρω2
=


[K 11
] [K 12

] [K 13
] [K 14

] [K 15
]

[K 21
] [K 22

] [K 23
] [K 24

] [K 25
]

[K 31
] [K 32

] [K 33
] [K 34

] [K 35
]

[K 41
] [K 42

] [K 43
] [K 44

] [K 45
]

[K 51
] [K 52

] [K 53
] [K 54

] [K 55
]





{U }
{V }
{W }
{8}

{9}


. (12)

The submatrices here are related to the materials’ characteristics, which include the elastic stiffnesses,
piezoelectric coefficients, piezomagnetic coefficients, and shape functions. These matrices are given in
the Appendix.

The DL model is based on separating the field variables in the thickness direction and within the plane
of the plate. This can effectively reduce the computational effort. One-dimensional Lagrangian polyno-
mials are sufficient to describe these displacements in the thickness direction. The in-plane functions are
generated depending on the various lateral boundary conditions. These are described below.
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Boundary Conditions. The following classes of boundary conditions are discussed.

SSSS: simply supported around all edges. Srinivas [Srinivas et al. 1970] solved this problem using an
exact method. The in-plane approximation functions are treated as harmonic functions, as per Heyliger
[2000], to determine the fundamental in-plane modes.

For the simply supported condition,

w = σxx = σxy = φ = ψ = 0 at x = 0, a, (13)

w = σxy = σyy = φ = ψ = 0 at y = 0, b. (14)

To satisfy the essential boundary conditions on w, φ, and ψ , the in-plane approximations are

9u
i (x, y)= cos mπx

a
sin nπy

b
, 9v

i (x, y)= sin mπx
a

cos nπy
b
, 9w

i (x, y)= sin mπx
a

sin nπy
b
.

Here, φ and ψ have the same expression as w, and each individual pair of (m, n) contains a different
value of i .

CCCC: clamped around all edges. The boundary conditions for this case are

u = v = w = φ = ψ = 0 at x = 0, a and at y = 0, b. (15)

Since displacements are zero at the domain endpoints, it is convenient to give the approximations along
the (x, y) directions written in the “parent” domain (ξ, η), which allows computations in terms of coor-
dinate origins. Chen et al. [2014] used this approximation for all the clamped conditions and compared
their results with frequencies from a FEM approach. The coordinates ξ and η are introduced as ξ = 2x/a
and η= 2y/b and varying from −1 to 1, with ξi and ηi being the equally spaced locations within (−1, 1).
For example, within the ξ domain, the displacements are expressed as following:

when i = 1, fx = (1− ξ)(1+ ξ);

when i = 2, fx = (1− ξ)ξ(1+ ξ);

when i = 3, fx = (1− ξ)
( 1

3 − ξ
)( 1

3 + ξ
)
(1+ ξ).

FCFC: free-clamped-free-clamped. Here two opposite sides of the plate are “free” (in that all compo-
nents of the stress-traction vector are 0, as are the electric displacement and normal flux), and the others
are clamped. In this case it is assumed that the plate is clamped along the x direction, while the y
direction is free. Therefore, the appropriate boundary conditions are

u = v = w = φ = ψ = 0 at x = 0, a, (16)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b. (17)

Demarest [1971] showed that group theory can be used to simplify vibration analysis in the case of
traction-free surfaces using Legendre polynomials. The approximations are given in even/odd forms for
these functions. The lowest three terms in the even group are 1, (3x2

− 1)/2, and (35x4
− 30x2

+ 3)/8,
while for the odd functions are shown as x , (5x3

− 3x)/2, and (63x5
− 70x3

+ 15x)/8 [Abromowitz and
Stegun 1966].
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CFFF: clamped-free-free-free. Here, only one edge is clamped; the others are free. This is also known
as the cantilever plate; boundary conditions are as follows:

u = v = w = φ = ψ = 0 at x = 0, (18)

σxx = σxy = σxz = Dx = Bx = 0 at x = a, (19)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b. (20)

Here, to match the displacements at x = 0, we use power series of at least first order along the x direction
and maintain the Legendre polynomials in the y direction.

CCFF: clamped-clamped-free-free. Here two adjacent edges are clamped, while the others are free;
boundary conditions are as follows:

u = v = w = φ = ψ = 0 at x = 0, y = 0, (21)

σxx = σxy = σxz = Dx = Bx = 0 at x = a, (22)

σyy = σxy = σyz = Dy = By = 0 at y = b. (23)

The displacements and potential along the x and y directions are extended as power series in a manner
similar to the cantilever plate.

SFSF: simple-free-simple-free. In this condition, two opposite sides are simply supported and the others
are free; boundary conditions are as follows:

w = σxx = σxy = φ = ψ = 0 at x = 0, a, (24)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b. (25)

Fourier series are used in the x direction. The only difference is specified terms for the approximate
function, as m and n are either 2i + 1 or 2i . The approximation functions in u and v are coupled
with the displacement in w, and the modes are separated into two groups (odd and even) according
to these groupings. For example, the first terms in odd group are: 9u

1 (x, y) = cos(πx/a) sin(πy/b),
9v

1 (x, y) = sin(πx/a) cos(πy/b), and 9w
1 (x, y) = sin(πx/a) sin(πy/b). The first terms in the even

group are: 9u
2 (x, y) = cos(2πx/a) sin(2πy/b), 9v

2 (x, y) = sin(2πx/a) cos(2πy/b), and 9w
2 (x, y) =

sin(2πx/a) sin(2πy/b). For all clamped-clamped and clamped-free conditions, symmetry can be used
to exploit the nature of the eigenvalue problem. By grouping the approximations according to symmetry
groups as introduced by Ohno [1976], the original complete problem can be reduced into four smaller
problems with the same result but at a lower computational cost.

Results

Isotropic plates. Several problems are first considered for the homogeneous isotropic plate to demon-
strate the accuracy of the DL model. This type of plate has a number of solutions with which to compare.

Simply supported condition. The convergence of the semianalytical discrete layer model has been ex-
plored using the natural frequencies of a square isotropic plate. For the simply supported condition, the
Navier solution gives an exact result for Kirchhoff’s plate theory. The in-plane variations in transverse
displacement are given as a single term in the sine or cosine components of the expansion. Fixing a/b= 1,
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Figure 2. The first in-plane mode of the SSSS isotropic plate (mode 7).

a/h = 10, and ν = 0.3, the natural frequencies are compared with Srinivas’s elasticity theory and Reddy’s
higher-order shear deformation theory (HSDPT) [Reddy and Phan 1985].

Equal thicknesses of each discrete layer were used. The results are presented in terms of the nondimen-
sional parameter ω = ω(ρh2/G)1/2. Each frequency was computed using 36 in-plane terms and eight
sublayers, which gave values of sufficient accuracy such that little change was observed in increasing the
numbers beyond these limits. The results are shown in Table 1. The highlights in bold indicate the in-
plane modes for which the transverse displacement is zero. The mode shapes for the bending modes are
well known and are not repeated here. The seventh mode, which is purely in-plane and is not included or
computed by Srinivas or Reddy, is shown in Figure 2 and is an example of the usefulness of continuum
theories that provide all modes rather than just those related to bending.

All-clamped condition. The natural frequencies of an all clamped isotropic (ν = 0.3) plate have been
computed by Liew et al. [1993] using the Rayleigh–Ritz procedure to solve the energy function derived
from Mindlin’s plate theory. The frequency parameter was given as ω = (ωa2/π2)

√
ρh/D, where

D = Eh3/[12(1− ν2)] and h is the total thickness. Using 36 in-plane terms with eight layers, results are
shown in Table 2. Once again, the present model captures in-plane modes (listed in bold face) that were
not considered by the previous authors. It is clear that as the thickness increases, the in-plane frequencies
are reduced and approach the lowest bending frequency given by simpler theories.

frequency [Srinivas et al. 1970] HSDPT present solution

number [Reddy and Phan 1985] N = 4 N = 8 N = 16

1 0.0932 0.0931 0.0939 0.0933 0.0932
2, 3 0.226 0.2222 0.2245 0.2231 0.2227
4 0.3421 0.3411 0.3452 0.3429 0.3423

5, 6 0.4171 0.4158 0.4211 0.4182 0.4174
7 – – 0.4443 0.4443 0.4443

8, 9 0.5239 0.5221 0.5292 0.5253 0.5243
10 – 0.6545 0.6642 0.6589 0.6575

Table 1. The first ten nondimensional frequencies of an isotropic square plate under the
simply supported boundary condition (SSSS) with ν = 0.3 and a/h = 10, normalized
by ω = ω(ρh2/G)1/2.
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frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 3.2954 3.3297 2.6875 2.7370
2 6.2858 6.3633 4.6907 4.7940
3 6.2858 6.3633 4.6907 4.7940
4 8.8098 8.9295 – 6.2751
5 10.3788 10.5316 – 6.2751
6 10.4778 10.6316 6.2985 6.4484
7 – 12.5221 7.1767 7.3598
8 – 12.5221 – 7.4371
9 12.5529 12.7474 7.2759 7.4621
10 12.5529 12.7474 8.5155 8.7416

Table 2. The first ten nondimensional frequencies of an isotropic square plate under the
CCCC boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 2.0904 2.1094 1.7772 1.8061
2 2.4342 2.4533 2.0151 2.0429
3 3.9055 3.9312 – 2.9771
4 5.3392 5.3996 3.1652 3.2004
5 5.7811 5.8408 4.0413 4.1242
6 – 5.9501 4.3472 4.4262
7 6.9368 6.9834 – 5.3326
8 7.3046 7.3757 – 5.4493
9 9.6241 9.7567 5.3813 5.4827
10 9.9989 10.0960 5.3813 5.4831

Table 3. The first ten nondimensional frequencies of an isotropic square plate under the
FCFC boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

FCFC condition. Table 3 lists the first ten nondimensional natural frequencies of isotropic square plates
for the FCFC condition. This case was also considered by Liew et al. [1993] and the DL results provide
frequency predictions that are close to but slightly above those numbers.

CFFF condition. The cantilever plate is an extremely important case that has numerous practical appli-
cations. Liew et al. [1993] gave results without showing the mode shapes. Frequencies are given in
Table 4. The present model again consistently gives bending and torsional frequencies that are slightly
larger than those of the Mindlin results compared to the previous work. The in-plane frequencies are
normally smaller.

CCFF Condition. Results for this case are computed using four terms in both x and y directions together
with four layers through the thickness. Comparison of frequencies is demonstrated in Table 5 and indicate
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frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 0.3476 0.3573 0.3384 0.3471
2 0.8168 0.8401 0.7445 0.7637
3 2.0356 2.1111 – 1.1181
4 2.5836 2.2349 1.7806 1.8451
5 2.8620 2.9795 2.2765 2.5154
6 4.8162 3.0007 2.4205 2.5742
7 5.4834 5.3357 3.8851 2.6689
8 5.7769 5.4769 4.3168 2.9809
9 6.2381 5.9619 4.5996 4.3811
10 7.9181 7.9682 4.8966 4.8979

Table 4. The first ten nondimensional frequencies of an isotropic square plate under the
CFFF boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 0.6762 0.6946 0.6328 0.6489
2 2.2438 2.3246 1.9221 1.9856
3 2.5049 2.6055 2.1499 2.2313
4 4.2557 4.5059 – 2.6032
5 5.5633 5.2043 – 3.3287
6 5.8188 6.6564 3.4217 3.5729
7 7.2399 7.9353 4.3468 3.9720
8 7.5055 7.9449 4.5533 5.3123
9 9.9651 8.6372 5.4276 5.6800
10 10.1661 9.5767 5.6539 6.1263

Table 5. The first ten nondimensional frequencies of an isotropic square plate under the
CCFF boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

slightly larger discrepancies that those of prior predictions. Some of this may be differences in actual
bending frequencies, but other gaps may exist because the model of Liew et al. [1993] may not capture
some of the nonbending modes, especially as the plate becomes thick.

SFSF condition. Table 6 shows the comparison with Liew et al.’s results [1993]. It again appears that the
model of the previous authors captures only the bending frequencies under the SFSF condition. Hence
at a minimum, the lower modes can be directly compared.

Composite MEE plates. There are three primary features associated with the results in this section. The
first is a direct comparison with one of the few models of laminated MEE plates to ensure accuracy of
the results that follow. The second is a collection of results for laminated MEE plates under a variety of
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frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 0.9565 0.9593 0.9102 0.9139
2 1.5593 1.5670 1.4280 1.4342
3 3.4307 3.4808 – 2.4697
4 3.6838 3.7036 2.9521 2.9845
5 4.3358 4.3634 3.1684 3.1994
6 – 4.9400 3.6435 3.6777
7 6.2971 6.4010 – 4.6127
8 6.7071 6.9051 5.0216 5.0994
9 7.7648 7.8291 5.3173 5.4507
10 8.3513 8.4230 – 5.6993

Table 6. The first ten nondimensional frequencies of an isotropic square plate under
SFSF boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

CCCC [Chen et al. 2014] present FCFC [Chen et al. 2014] present

1 0.3332 0.3332 1 0.2193 0.2193
2 0.5987 0.5987 2 0.2572 0.2572
3 0.5987 0.5987 3 0.3798 0.3798
4 0.7459 0.7459 4 0.3967 0.3967
5 0.7459 0.7459 5 0.5182 0.5182
6 0.8138 0.8138 6 0.5656 0.5656

Table 7. The first six nondimensional frequencies of an elastic square plate with hexag-
onal materials under CCCC and FCFC conditions, normalized by ω = ωh

√
ρ/C11.

lamination schemes and boundary conditions. Finally, the influence of the a/h ratio on the frequencies
for these plates are explored.

Comparison with existing results. The free vibration of composite MEE plates under CCCC and FCFC
conditions has been extensively studied by Chen, Heyliger and Pan [Chen et al. 2014] for a fixed a/h
ratio. These simulations all used properties for either a purely elastic hexagonal material, the piezoelectric
material barium titanate (BaTiO3), denoted in this work by the letter B, and the magnetostrictive material
cobalt ferrite (CoFe2O4), denoted in this study by the letter F. All plates are assumed to have three layers
of equal thickness. In the case of homogeneous MEE materials, either BBB or FFF are used to denote
the differing materials. Composites use FBF or BFB to indicate the lamination scheme. The material
properties are given in [Chen et al. 2014]. These results were repeated here to ensure accuracy for MEE
media and are summarized in Table 7. Excellent agreement was found for all cases.

For the remaining examples, the nondimensional frequencies are calculated by ω = ωh
√
ρmax/cmax

and are typically plotted using the parameter �= ω(a2/h)
√
ρmax/cmax. Here ρmax is the largest value

of material density in the laminate and cmax is the largest component of the elastic stiffness tensor in the
laminate.
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�
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a/h

Figure 3. The relative differences of fundamental frequencies of the SSSS plate compared
to the thin plate limit for the five different material combinations as a function of a/h.

SSSS condition. The influence of a/h for very thick plates was first studied for the five basic lamination
schemes (hexagonal, BBB, FFF, FBF, and BFB). In this case, all frequencies were normalized by their
respective values for the thin plate, taken as the frequency computed at a/h = 30. Beyond this point
there was very little change in the dimensionless frequency for all plates considered. The results of this
analysis are shown in Figure 3 for the fundamental frequency and show that the level of difference with
thin plate limits are ordered as FFF > FBF > BFB > BBB > hex. Hence the purely magnetostrictive
plate has stronger thickness effects than the purely elastic hexagonal plate.

Figure 4 displays the influence of slenderness for the first six frequencies of a hexagonal material
along with the corresponding mode shapes. It appears that there are only four curves, but this is because

�

a/h

dimensionless frequency variation

mode 1 mode 2

mode 3 mode 4

mode 5 mode 6

Figure 4. Frequency variation as a function of a/h and the first six mode shapes (a/h= 10)
for the anisotropic elastic square SSSS plate.
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�

a/h

Figure 5. Dimensionless frequency variation as a function of a/h for the SSSS square
BFB plate.

frequencies
B material F material

[Chen et al. 2014] present [Chen et al. 2014] present

1 1.7817 1.7817 1.3667 1.3667
2 2.9486 2.9486 2.2311 2.2311
3 2.9486 2.9486 2.2311 2.2311
4 3.2195 3.2195 2.7905 2.7905
5 3.2195 3.2195 2.2311 2.2311
6 3.7120 3.7120 2.9345 2.9345

Table 8. The first six nondimensional frequencies of square plates composed of BBB
and FFF materials under the CCCC condition, normalized by ω = ωa

√

ρmax/Cmax.

several of the modes for this boundary condition are repeated. The horizontal dashed lines indicate the
asymptote of each frequency which is again chosen using the value at a/h = 30. Figure 5 shows the
frequency arrangement of BFB materials. The arrangements are similar for other stacking sequences.
The character of all of the curves are very similar in nature, with slight differences in value and mode
order sometimes occurring. Table 9 lists the first six frequencies at a/h ratios of 30 for reference since
these values are used for all plots and can be used as thin plate predictions using other models. As was
the case for the very thick plates, an increased amount of F material results in larger differences in the
thin plate limits. Yet for an a/h ratio larger than 20, the differences are within 3 percent.

CCCC condition. The differences of the first frequency with respect to a/h for the five stacking se-
quences are shown in Figure 6. The differences between the thin-plate limits are all slightly higher than
those of the SSSS condition, with differences of about 10 percent when a/h = 10. Figure 7 gives the
first six frequencies of the hexagonal plate as a function of a/h ratio and the corresponding mode shapes.
It is clear that as the slenderness increases, the fifth and the sixth frequencies are identical.
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bending mode hex BBB FFF BFB FBF

1 1.17 ·10−4 2.92 ·10−4 1.83 ·10−4 1.73 ·10−4 1.97 ·10−4

2 2.92 ·10−4 7.24 ·10−4 4.55 ·10−4 4.31 ·10−4 4.88 ·10−4

3 2.92 ·10−4 7.24 ·10−4 4.55 ·10−4 4.31 ·10−4 4.88 ·10−4

4 4.65 ·10−4 1.16 ·10−3 7.24 ·10−4 6.88 ·10−4 7.79 ·10−4

5 5.79 ·10−4 1.44 ·10−3 9.01 ·10−4 8.52 ·10−4 9.68 ·10−4

6 5.79 ·10−4 1.44 ·10−3 9.01 ·10−4 8.52 ·10−4 9.68 ·10−4

Table 9. Frequencies for homogeneous plates composed of five stacking sequences un-
der the SSSS condition at a/h = 30.

�
/
�

A

a/h

Figure 6. The relative differences of fundamental frequencies of the CCCC plate compared
to the thin plate limit for the five different material combinations as a function of a/h.

�

a/h

dimensionless frequency variation

mode 1 mode 2

mode 3 mode 4

mode 5 mode 6

Figure 7. Frequency variation as a function of a/h and the first six mode shapes (a/h= 10)
for the anisotropic elastic square CCCC plate.
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�

a/h

Figure 8. Dimensionless frequency variation as a function of a/h for the CCCC square
BFB plate.

bending mode hex BBB FFF BFB FBF

1 2.12 ·10−4 5.32 ·10−4 3.37 ·10−4 3.16 ·10−4 3.61 ·10−4

2 4.31 ·10−4 1.07 ·10−3 6.76 ·10−4 6.39 ·10−4 7.24 ·10−4

3 4.31 ·10−4 1.07 ·10−3 6.76 ·10−4 6.39 ·10−4 7.24 ·10−4

4 6.33 ·10−4 1.57 ·10−3 9.86 ·10−4 9.31 ·10−4 1.06 ·10−3

5 7.67 ·10−4 1.90 ·10−3 1.19 ·10−3 1.13 ·10−3 1.28 ·10−3

6 7.67 ·10−4 1.92 ·10−3 1.20 ·10−3 1.13 ·10−3 1.29 ·10−3

Table 10. Frequencies for homogeneous plates composed of five stacking sequences
under the CCCC condition at a/h = 30.

Figure 8 shows the effect of the length-to-thickness ratio for the first six frequencies for BFB plates
under all-clamped conditions. The levels of difference with the thin-plate limits are similar to those of the
fully simply supported condition. Frequencies are repeated and lines are coincident for modes 2 and 3.
Table 10 lists the first six frequencies of the five stacking sequences under the all-clamped condition with
a/h equal to 30.

FCFC condition. Figure 9 shows the frequency response for the five stacking sequences under the FCFC
condition. Figure 10 shows the influence of a/h ratio for the hexagonal material along with the lowest
six mode shapes. Figure 11 gives the slenderness effects for BFB materials. Table 11 gives the values of
the first seven frequencies according to five stacking sequences at slenderness of a/h = 30. Reductions
are smaller for the piezoelectric and piezomagnetic plates in the sixth frequency. This is apparent from
the different curvature of each frequency lines. As a/h ratios approach 20, the percentage differences
are within 5 percent.

CFFF condition. Figure 12 shows the difference of the five stacking sequences with respect to the funda-
mental frequency. Reductions are less variable under this condition than several other support conditions.
Even with a/h = 10, the BFB plate still maintains a 5 percent reduction from the thin-plate estimates.
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Figure 9. The relative differences of fundamental frequencies of the FCFC plate compared
to the thin plate limit for the five different material combinations as a function of a/h.
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mode 3 mode 4

mode 5 mode 6

Figure 10. Frequency variation as a function of a/h and the first six mode shapes
(a/h = 10) for the anisotropic elastic square FCFC plate.

bending mode hex BBB FFF BFB FBF

1 1.33 ·10−4 3.20 ·10−4 2.07 ·10−4 1.94 ·10−4 2.22 ·10−4

2 1.62 ·10−4 3.77 ·10−4 2.42 ·10−4 2.28 ·10−4 2.59 ·10−4

3 2.67 ·10−4 6.21 ·10−4 3.96 ·10−4 3.74 ·10−4 4.25 ·10−4

4 3.63 ·10−4 8.70 ·10−4 5.62 ·10−4 5.30 ·10−4 6.04 ·10−4

5 4.03 ·10−4 9.49 ·10−4 6.09 ·10−4 5.76 ·10−4 6.57 ·10−4

6 4.77 ·10−4 1.13 ·10−3 7.24 ·10−4 6.88 ·10−4 7.79 ·10−4

Table 11. Frequencies for homogeneous plates composed of five stacking sequences
under the FCFC condition at a/h = 30.
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�

a/h

Figure 11. Dimensionless frequency variation as a function of a/h for the FCFC square
BFB plate.
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Figure 12. The relative differences of fundamental frequencies of the CFFF plate compared
to the thin plate limit for the five different material combinations as a function of a/h.

Figure 13 displays the first eight frequencies as a function of a/h ratio and the first six mode shapes
under CFFF condition. Once again the straight dashed lines represent the in-plane modes. The mode
shapes are almost the same as isotropic plates under this boundary condition. Figure 14 gives the config-
uration of frequencies of the BFB stacking sequence. Table 12 lists the frequency values of the first six
bending modes at a/h = 30. The differences are quite small for this condition, with the percent difference
being below 10 percent even up to the fifth frequency with a/h = 10. When the length-to-thickness ratio
is 20, the sixth frequency reductions are nearly 2 percent.

CCFF condition. Figure 15 demonstrates the reduction for the lowest frequency for various a/h ratios.
At a/h of 6, percent differences are within 10 percent for each material. Figure 16 shows the first nine
frequencies and the first six mode shapes of the plates made of anisotropic materials under CCFF condi-
tion. More in-plane modes appear within these bending frequencies than for prior conditions, indicating
increased stiffening in bending. Figure 17 gives the influence of slenderness for the first nine frequencies
for the plate composed with BFB materials. Even as a/h is equal to 20, the reductions are still over 5
percent. Table 13 gives the first six modes at a/h = 30 for reference.

SFSF condition. Figure 18 shows the differences of the fundamental frequency for the five cases. This
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Figure 13. Frequency variation as a function of a/h and the first six mode shapes
(a/h = 10) for the anisotropic elastic square CFFF plate.

�

a/h

Figure 14. Dimensionless frequency variation as a function of a/h for the CFFF square
BFB plate.

configuration is similar to the all simply supported condition; however, reductions are slightly smaller
for the same a/h conditions. Figure 19 demonstrates the configuration of the first seven frequencies and
the first six modes of anisotropic materials under SFSF condition. The straight dashed line corresponds
to the in-plane mode 6. Figure 20 shows frequency variation as a function of a/h. These are almost
the same as those for anisotropic plates except that the difference between the third and fourth bending
frequencies, which are the bending modes along simply supported edges and the bending mode along
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bending mode hex BBB FFF BFB FBF

1 2.09 ·10−5 5.19 ·10−5 3.45 ·10−5 3.29 ·10−5 3.72 ·10−5

2 5.57 ·10−5 1.22 ·10−4 7.85 ·10−5 7.30 ·10−5 8.40 ·10−5

3 1.31 ·10−4 3.15 ·10−4 2.08 ·10−4 1.90 ·10−4 2.22 ·10−4

4 1.93 ·10−4 4.58 ·10−4 2.96 ·10−4 2.74 ·10−4 3.17 ·10−4

5 2.01 ·10−4 4.53 ·10−4 2.95 ·10−4 2.75 ·10−4 3.13 ·10−4

6 3.91 ·10−4 8.58 ·10−4 5.48 ·10−4 5.17 ·10−4 5.87 ·10−4

Table 12. Frequencies for homogeneous plates composed of five stacking sequences
under the CFFF condition at a/h = 30.
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Figure 15. The relative differences of fundamental frequency of the CCFF plate compared
to the thin plate limit for the five different material combinations as a function of a/h.
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Figure 16. Frequency variation as a function of a/h and the first six mode shapes
(a/h = 10) for the anisotropic elastic square CCFF plate.
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�
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Figure 17. Dimensionless frequency variation as a function of a/h for the CCFF square
BFB plate.

bending mode hex BBB FFF BFB FBF

1 4.36 ·10−5 1.01 ·10−4 6.63 ·10−5 6.08 ·10−5 7.12 ·10−5

2 1.53 ·10−4 3.50 ·10−4 2.28 ·10−4 2.10 ·10−4 2.44 ·10−4

3 1.60 ·10−4 3.99 ·10−4 2.64 ·10−4 2.42 ·10−4 2.82 ·10−4

4 3.11 ·10−4 7.24 ·10−4 4.67 ·10−4 4.38 ·10−4 5.00 ·10−4

5 6.82 ·10−4 1.50 ·10−3 9.43 ·10−4 9.01 ·10−4 1.02 ·10−3

6 7.06 ·10−4 1.73 ·10−3 1.12 ·10−3 1.07 ·10−3 1.20 ·10−3

Table 13. Frequencies for homogeneous plates composed of five stacking sequences
under CCFF condition at a/h = 30.
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Figure 18. The relative differences of fundamental frequencies of the SFSF plate compared
to the thin plate limit for the five different material combinations as a function of a/h.

free edges, are much smaller. With a/h = 10, the differences are within 10 percent. At a/h = 20, the
percent differences are smaller than 2 percent. Table 14 gives the first six modes at a/h = 30.
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Figure 19. Frequency variation as a function of a/h and the first six mode shapes
(a/h = 10) for the anisotropic elastic square SFSF plate.
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Figure 20. Dimensionless frequency variation as a function of a/h for the SFSF square
BFB plate.

Conclusions

A discrete-layer model was used to approximate the natural frequencies of laminated isotropic and MEE
plates under various boundary conditions. There are three primary conclusions related to this work:

(1) The current DL model gives excellent agreement with most existing solutions for both isotropic and
layered MEE plates. The main discrepancies arise for specific combinations of boundary conditions
that have seen very little study in the literature.
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bending mode hex BBB FFF BFB FBF

1 5.86 ·10−5 1.39 ·10−4 8.89 ·10−5 8.40 ·10−5 9.49 ·10−5

2 1.04 ·10−4 2.30 ·10−4 1.45 ·10−4 1.38 ·10−4 1.56 ·10−4

3 2.34 ·10−4 5.61 ·10−4 3.60 ·10−4 3.41 ·10−4 3.86 ·10−4

4 2.57 ·10−4 5.76 ·10−4 3.66 ·10−4 3.47 ·10−4 3.93 ·10−4

5 2.88 ·10−4 6.69 ·10−4 4.27 ·10−4 4.05 ·10−4 4.58 ·10−4

6 4.78 ·10−4 1.05 ·10−3 6.69 ·10−4 6.33 ·10−4 7.18 ·10−4

Table 14. Frequencies for homogeneous plates composed of five stacking sequences
under the SFSF condition at a/h = 30.

(2) From all results and all cases considered in this study, the thin-plate limit of a/h = 10 does not give
sufficient accuracy for a wide enough range of lamination schemes and boundary conditions. An
a/h ratio of 20 gives a far better limit for using any thin-plate kinematic assumption.

(3) The results contained herein for all boundary conditions can be used for purposes of comparison
using other simplified theories of MEE plate behavior.
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