
Journal of

Mechanics of
Materials and Structures

STATIC ANALYSIS OF NANOBEAMS USING RAYLEIGH–RITZ METHOD

Laxmi Behera and S. Chakraverty

Volume 12, No. 5 December 2017

msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 12, No. 5, 2017

dx.doi.org/10.2140/jomms.2017.12.603 msp

STATIC ANALYSIS OF NANOBEAMS USING RAYLEIGH–RITZ METHOD

LAXMI BEHERA AND S. CHAKRAVERTY

Boundary characteristic orthogonal polynomials have been used as shape functions in the Rayleigh–Ritz
method for static analysis of nanobeams. The formulation is based on Euler–Bernoulli and Timoshenko
beam theories in conjunction with nonlocal elasticity theory of Eringen. Application of Rayleigh–Ritz
method converts the problem into a system of linear equations. Some of the parametric studies have been
carried out. The novelty of the method is that it can handle any set of classical boundary conditions (viz.,
clamped, simply supported and free) with ease. Although the assumed shape functions need to satisfy
the geometric boundary condition only, the final solution is for the targeted boundary condition of the
problem or domain. Deflection and rotation shapes for some of the boundary conditions have also been
illustrated.

1. Introduction

Nanosized structures such as nanobeams, nanoplates and nanoshells are commonly used as components
in nanoelectromechanical systems (NEMS) devices. The most distinct characteristic of nanostructures is
that their mechanical properties are size dependent [Ansari et al. 2013; Miller and Shenoy 2000; Xu et al.
2010]. Fundamental knowledge of their mechanical behavior is needed for proper design and application
of nanostructured materials; however, conducting experiments at nanoscale size is quite difficult. In this
regard, size dependent continuum theories came into existence. Among these theories, nonlocal elasticity
theory, pioneered by Eringen [1972], has received much attention in modeling small sized structures.
According to this theory, the stress at a specific point depends on the strain tensors of the entire body.
As such, the nonlocal stress tensor σ at a point x is expressed as [Reddy 2007]

σ =

∫
V

K (|x ′− x |, τ )t (x ′) dx ′,

where V is the volume occupied by the elastic body, τ the material constant which depends on both
internal length (lattice spacing) and external characteristic length (wavelength) and K (|x ′− x |, τ ) denotes
the nonlocal modulus. Also, |x ′− x | is the Euclidean distance and t (x) is the classical macroscopic stress
tensor at a point x and is related to strain ε(x) by Hooke’s law:

t (x)= C(x) : ε(x),

where C is the fourth-order elasticity tensor.
Since it is difficult to solve the integral constitutive relation, an equivalent differential form was pro-

posed [Reddy 2007],
(1− τ 2L2

5
2)σ = t, τ = e0a/L ,
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where e0 is material constant, a the internal characteristic length and L the external characteristic length.
Nonlocal effects considered in the nonlocal elasticity theory play an important role in the analysis and

is determined by the magnitude of nonlocal parameter e0a. The parameter e0a is the scale coefficient
that incorporates the small scale [Wang et al. 2006]. When the nonlocal parameter is zero, we obtain
the constitutive relations of the local theories. Since classical continuum theories do not consider size
effects arising from the small scale, so application of classical continuum theory is not appropriate for
the nanostructures. In this regard, nonlocal elasticity theory has been widely used in the analysis of
nanostructures.

Researchers have applied nonlocal elasticity theory in buckling [Wang et al. 2006; Mohammadi and
Ghannadpour 2010] and vibration [Peddieson et al. 2003; Xu 2006] analyses of beams. Few authors have
also applied nonlocal elasticity theory in bending analysis of beams. Some of them have been cited below.

Reddy and Pang [2008] presented analytical solutions for bending analysis of beams subjected to
four sets of boundary conditions. Aydogdu [2009] developed a general nonlocal beam theory to derive
governing equations from which all the well-known beam theories may be obtained. A nonlocal shear
deformation beam theory has been proposed by Thai [2012]. Analytical solutions have also been pre-
sented for nonlocal sinusoidal shear deformation beam theory [Thai and Vo 2012]. Şimşek and Yurtcu
[2013] examined bending and buckling of functionally graded (FG) nanobeams. Bending solutions have
been presented analytically by Wang et al. [2008] for nanobeams. Some of the numerical methods such
as the Ritz [Ghannadpour et al. 2013], the differential quadrature [Civalek and Demir 2011] and the finite
element method [Alshorbagy et al. 2013; Eltaher et al. 2013] have also been developed for the bending
analysis of nanobeams. Civalek and Akgöz [Civalek et al. 2009] presented deflection shapes and bending
moments for nonlocal Euler–Bernoulli beams subjected to different boundary conditions.

The literature reveals that few works have been done on bending analysis of nanobeams based on Euler–
Bernoulli and Timoshenko beam theories. It is also revealed that few numerical methods have also been
developed for the above mentioned problem. In this article, authors have implemented Rayleigh–Ritz
method with orthogonal polynomials as basis functions. The novelty of the method is that it may handle
any set of boundary conditions with ease. Though this method has been used in classical beams and plates
[Civalek et al. 2009; Behera and Chakraverty 2014; Bhat 1985; 1991; Chakraverty et al. 1999; 2007;
Chakraverty and Petyt 1997; Singh and Chakraverty 1994; Hu et al. 2004], no works have been done in
bending analysis of nanobeams. Boundary characteristic orthogonal polynomials have been applied in
the Rayleigh–Ritz method to analyze effects of nonlocal, boundary condition and slenderness ratio on
the deflection. Nondimensional deflection and rotation shapes have also been shown for three sets of
boundary conditions.

2. Problem formulation

The study is carried out on the basis of Euler–Bernoulli and Timoshenko beam theories in conjunction
with nonlocal elasticity theory of Eringen.

A straight uniform beam with the length L and a rectangular cross-section of thickness h is considered,
as shown in Figure 1. A Cartesian coordinate system (x, y, z) is fixed on the central axis of the beam,
where x , y and z coordinates are taken along the length, width and thickness of the beams [Ansari et al.
2013]. The Rayleigh–Ritz method has been employed for bending analysis. To apply the present method,
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Figure 1. Uniform beam with rectangular cross section and its coordinate system
[Ansari et al. 2013].

we have given a summary of the energies of the structures based on Euler–Bernoulli and Timoshenko
beam theories.

2.1. Euler–Bernoulli beam theory (EBT). The strain energy us may be written as [Wang et al. 2000]

us =
1
2

∫ L

0

∫
A
σxxεxx dA dx, (1)

where L is the length of nanobeam, A is the cross sectional area, σxx is the axial stress and εxx is the
normal strain.

Normal strain εxx is given by the relation

εxx =−z
d2w

dx2 , (2)

where w is the transverse deflection at the point (x, 0) on the midplane of the beam.
Substituting (2) into (1), we get

us =−
1
2

∫ L

0
M

d2w

dx2 dx, (3)

where M is the bending moment and is defined as

M =
∫

A
zσxx dA. (4)

Assuming that the beam is subjected to a transverse load q(x), the potential energy u p may be given as
[Wang et al. 2000]

u p =−
1
2

∫ L

0
qw dx . (5)

Applying the principle of virtual displacement, we may obtain the following governing equation:

d2 M
dx2 + q = 0. (6)
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According to Eringen’s nonlocal elasticity theory, the moment-curvature relation has the following form:

M − (e0a)2
d2 M
dx2 =−E I

d2w

dx2 , (7)

where a is the internal characteristic length (e.g., lattice parameter, C-C bond length and granular dis-
tance) and e0 is a constant appropriate to each material. The magnitude of e0 is determined experimentally
or approximated by matching the dispersion curves of plane waves with those of atomic lattice dynamics.
Here e0a is the scale coefficient that incorporates the small scale effect [Wang et al. 2007]. Also E is
the Young’s modulus and I the second moment of area.

Using (6) and (7), M may be obtained as

M =−E I
d2w

dx2 −µq, (8)

where µ= (e0a)2 is the nonlocal parameter.
Combining (3) and (5), the total potential energy of the system may be written as

U = 1
2

∫ L

0

(
E I
(

d2w

dx2

)2

+µq
d2w

dx2 − qw
)

dx . (9)

2.2. Timoshenko beam theory. Based on Timoshenko beam theory, the strain energy us may be given
as [Ansari et al. 2013]

us =
1
2

∫ L

0

∫
A
(σxxεxx + σxzγxz) dA dx, (10)

where σxx is the normal stress, σxz is the transverse shear stress, L is the length of the beam and A is the
cross sectional area of the beam.

In (10), εxx and γxz are the normal and transverse shear strains respectively and are given by

εxx = z dφ
dx
, (11)

γxz = φ+
dw
dx
, (12)

where φ is the rotation due to bending and w the transverse displacement.
Substituting (11) and (12) into (10), one may obtain

us =
1
2

∫ L

0

(
M dφ

dx
+ Q

(
φ+

dw
dx

))
dx, (13)

where M and Q are the bending moment and shear force respectively and are defined as

M =
∫

A
σxx z dA, Q =

∫
A
σxz dA.

The potential energy of the transverse load u p may be described as [Ansari et al. 2013]

u p =−
1
2

∫ L

0
qw dx . (14)
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Based on nonlocal elasticity theory, nonlocal constitutive equations are as follows:

M − (e0a)2
d2 M
dx2 = E I

dφ
dx

(15)

Q = ks G A
(
φ+

dw
dx

)
, (16)

where I is the second moment of area, E is the Young’s modulus, G is the shear modulus and ks is
the shear correction factor in the Timoshenko beam theory to compensate the for error in assuming a
constant shear strain (stress) through the thickness of the beam.

Applying the principle of virtual displacement, one may obtain the following governing equations for
bending analysis:

dM
dx
= Q, (17)

dQ
dx
=−q. (18)

Using (15)–(18), bending moment M may be obtained as

M = E I dφ
dx
− (e0a)2q. (19)

Combining (13) and (14), the total potential energy of the system may be written as

U = 1
2

∫ L

0

(
E I
(dφ

dx

)2
−µq dφ

dx
+ ks G A

(
φ+

dw
dx

)2
− qw

)
dx . (20)

3. Solution methodology

Since conducting experiments at nanoscale size is quite difficult, the development of mathematical
models has become quite important. In this paper, we have studied bending of beams based on Euler–
Bernoulli and Timoshenko beam theories in conjunction with nonlocal elasticity theory. For doing so, we
have applied the Rayleigh–Ritz method with boundary characteristic orthogonal polynomials as shape
functions. Thus, displacement and rotation functions are represented by a series of admissible functions.
Substituting the unknown functions and minimizing the potential energy of the system as a function of
constants, one may find the system of linear equations. The above system of linear equations has been
solved by using MATLAB and the solutions give the deflection parameter.

We define the nondimensional variable X as

X = x/L .

Each of the unknown functions w and φ may be expressed as the sum of series of polynomials, viz.,

w(X)=
n∑

k=1

ck ϕ̂k(X), (21)

φ(X)=
n∑

k=1

dkψ̂k(X), (22)
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where n is the number of terms taken for computation, ck , dk are unknowns and ϕ̂k , ψ̂k are orthonormal
polynomials. First, orthogonal polynomials ϕk have been obtained from a linearly independent set of
functions θk = Fulk , k = 1, 2, 3 . . . , n with lk = X k−1 using the Gram–Schmidt process as follows
[Chakraverty and Petyt 1997]:

ϕ1 = θ1, ϕk = θk −

k−1∑
j=1

βk jϕ j , (23)

where

βk j =
〈θk, ϕ j 〉

〈ϕ j , ϕ j 〉
, k = 2, 3, . . . , n, j = 1, 2, . . . , k− 1.

Here, 〈 , 〉 denotes the inner product of two functions and we define inner product of two functions, say
ϕi and ϕk , as

〈ϕi , ϕk〉 :=

∫ 1

0
ϕi (X)ϕk(X) dX. (24)

Similarly, the norm of the function ϕk is defined as

‖ϕk‖ =

√∫ 1

0
ϕ2

k (X) dX .

Then normalized functions ϕ̂k may be obtained by using the following relation:

ϕ̂k =
ϕk

‖ϕk‖

One may note that same procedure may be followed to obtain ψ̂k . Fu and Fv are the boundary functions
corresponding to unknown functions w and φ, respectively. It may be noted that the boundary polynomial
specifies support conditions, particularly essential boundary conditions. Since ϕ̂k and ψ̂k are sets of
orthogonal polynomials in the interval [0, 1], more rapid convergence and better stability in the numerical
computation may be accomplished.

In Euler–Bernoulli beam theory, Fu = X r (1− X)s , where r will take values of 0, 1, 2 accordingly as
the edge X = 0 is free, simply supported or clamped, respectively. The same justification can be given
to s for the edge X = 1. For Timoshenko beam theory, the following conditions should be satisfied by
the boundary conditions; as such, the boundary functions used for the above said boundary conditions
are given in Table 1:

• W = M = 0 at X = 0 and 1 for simply supported-simply supported (SS),

• W = φ = 0 at X = 0 and 1 for clamped-clamped (CC), and

• W = φ = 0 at X = 0 and W = M = 0 at X = 1 for clamped-simply supported (CS).

Substituting (21) into (9) and minimizing the potential energy of the system as a function of constants
(i.e., ∂U/∂c j = 0), one may obtain following system of linear equations for EBT:

n∑
j=1

ai j c j = Pbi , (25)
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boundary condition Fu Fv

S-S X (1− X) 1
C-S X (1− X) X
C-C X (1− X) X (1− X)

Table 1. Boundary functions used for different edge conditions (TBT).

where ai j =
∫ 1

0 ϕ̂i
′′
ϕ̂ j
′′ dX , bi =

∫ 1
0 ϕ̂i −µ/L2ϕ̂i

′′ dX , i = 1, 2, . . . , n and P = q L4/(E I )
Similarly, substituting (21) and (22) into (20) and minimizing the potential energy of the system as a

function of constants (i.e., ∂U/∂c j = 0 and ∂U/∂d j = 0; j = 1, 2, . . . , n), one may find the following
system of linear equations for Timoshenko beam theory:

[K ]{Y } = P{B}, where K =
[

k1 k2

k3 k4

]
. (26)

Here, k1, k2, k3 and k4 are submatrices and are given by

k1(i, j)=
∫ 1

0
2ks G Aϕ̂i

′
ϕ̂ j
′ dX, k2(i, j)=

∫ 1

0
2ks G ALϕ̂i

′
ψ̂ j dX,

k3(i, j)=
∫ 1

0
2ks G ALψ̂i ϕ̂ j

′ dX, k4(i, j)=
∫ 1

0
(2ks G AL2ψ̂i ψ̂ j + 2E I ψ̂i

′

ψ̂ j
′

) dX.

In (26), Y = {c1 c2 . . . cn d1 d2 . . . dn}
T and B = {b1 b2}

T , where

b1(i)=
∫ 1

0
ϕi dX, b2(i)=

∫ 1

0
µq Lψi

′ dX.

4. Results and discussions

A numerical code has been developed in MATLAB to compute numerical results. Material and geometric
properties of the carbon nanotubes are taken from [Alshorbagy et al. 2013], and are given in Table 2. A
uniformly distributed load (q = 1) has been taken into consideration for three different boundary condi-
tions. The letters C, S and F refer to clamped, simply supported and free edge conditions, respectively.
It is a well-known fact that nondimensional maximum deflection is evaluated at the center of the beam,
which is given by Wmax =−w× 102(E I/(q L4)). Before presenting and discussing the new results, it
is necessary to perform a convergence study and also to validate the present method with other methods
presented in the literature.

Therefore, a convergence study has been carried out for the nondimensional maximum deflection Wmax

of the EBT nanobeam with C-S support. As such, Figure 2 shows convergence of the nanobeam with
L/h = 10 and µ= 1.5 nm2. As can be seen from the figure, n = 4 is sufficient for converged results. It
may be noted that previous published results [Ghannadpour et al. 2013] also show the same number of
terms required for computation.

In order to validate the results obtained by the present method, the nondimensional maximum deflec-
tion is compared in Table 3 with those reported in [Alshorbagy et al. 2013]. In this table, the results are
presented for nonlocal beams with boundary conditions at two ends which are of a variety of combinations
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properties value

E 30 · 106

h 1
ks 5/6
ν 0.19

Table 2. Material properties of the carbon nanotubes.
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Figure 2. Convergence of nondimensional maximum center deflection for EBT.

C-S C-C

µ present [Alshorbagy et al. 2013] present [Alshorbagy et al. 2013]

0 0.50 0.54 0.24 0.26
1 0.52 0.58 0.24 0.26
2 0.59 0.61 0.24 0.26
3 0.60 0.65 0.24 0.26

Table 3. Comparison of nondimensional maximum center deflection (Wmax) for C-S
and C-C boundary conditions.

such as C-S and C-C. Results have been shown for different values of a nonlocal parameter. It is noted
that the results reported by Alshorbagy et al. [2013] are obtained by the finite element model. It can be
seen that there is an excellent agreement between the obtained results in this paper and those reported in
the previous work.

Next, we have carried out some of the parametric studies which are discussed below. One may note
unless mentioned that deflection and rotation would refer to nondimensional maximum center deflection
and nondimensional maximum center rotation respectively.

4.1. Effect of slenderness ratio. Figure 3 illustrates the effect of the slenderness ratio (L/h) on the
deflection of nanobeams. In this figure, we have shown the variation of deflection with slenderness ratio
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Figure 3. Effect of the slenderness ratio on the dimensionless deflection.
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Figure 4. Effect of the nonlocal parameter on the dimensionless deflection.

for both local and nonlocal theories. Here, the slenderness ratio varies from 10 to 50 and the boundary
condition is considered as C-S. Local results may be computed by taking the nonlocal parameter (µ) as
zero. One may note that nonlocal results have been computed for µ = 1 nm2. We have presented the
graphical results for nanobeams based on both EBT and TBT beam theories. One may observe that in
the case of nanobeams based on local EBT, the slenderness ratio has no effect on the beam deflection
whereas in nonlocal EBT, deflection is dependent on the slenderness ratio. It may also be noticed that
in case of nanobeams based on both local and nonlocal TBT, deflection is dependent on the slenderness
ratio. The dependency of the responses on the slenderness ratio for local TBT is uniquely due to the effect
of shear deformation and this dependency becomes strong with the effect of small scale. As slenderness
ratio decreases, the difference between the solutions of EBT and TBT becomes highly important.

4.2. Nonlocal parameter effect. In order to investigate the effect of the nonlocal parameter on the de-
flection, variation of deflection with the scale coefficient has been demonstrated in Figure 4 for different
values of the slenderness ratio (L/h). In this figure, we have considered TBT nanobeams with the C-S
edge condition. Graphical results have been shown for different values of slenderness ratio. It is seen
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Figure 5. Effect of the nonlocal parameter on the dimensionless deflection for different
boundary conditions.

from the figure that deflection varies nonlinearly with the scale coefficient. One may also observe that
all responses of nanobeams with lower aspect ratios are strongly affected by the nonlocal parameter than
those of nanobeams with relatively higher aspect ratios. From these computations, it may be explained
that modeling based on the local beam models may not be suitable, whereas the nonlocal beam models
show an adequate approximation for the nanosized structures [Şimşek and Yurtcu 2013]. It is also noticed
that deflection increases with the scale coefficient, while it is not true in case of buckling and vibration
[Şimşek and Yurtcu 2013]. One may conclude here that the nonlocal beam model produces a larger
deflection than the classical (local) beam model. Therefore, the small scale effects (or nonlocal effects)
should be considered in the analysis of the mechanical behavior of nanostructures.

4.3. Boundary condition effect. Deflections of nanobeams under uniform load have been computed for
different boundary conditions and are shown in Figure 5. In this figure, the effect of deflection on the scale
coefficient has been shown for three sets of boundary conditions, viz., S-S, C-S and C-C. In doing so, we
have taken the slenderness ratio as 10. We observe that C-C has the smallest deflection for a particular
value of the nonlocal parameter. One may note that in the case of C-C edge condition, there is no effect of
the nonlocal parameter on the deflection, whereas in the case of S-S and C-S supports, deflection increases
with an increase in the nonlocal parameter. Hence, the effect of the nonlocal parameter on the deflection
is inconsistent for different boundary conditions. We state some other observations in Section 4.4.

4.4. Deflection and rotation shapes. In this subsection, we examine the behavior of deflection and rota-
tion shapes of nanobeams along its length for different boundary conditions. Figures 6–8 show variation
of deflection with length for S-S, C-S and C-C edge conditions, respectively. It is observed from the
figures that deflection of S-S and C-S nanobeams increases with increases in the nonlocal parameter. It
is due to the fact that increasing nonlocal parameter causes an increase in the bonding force of atoms and
this force is constrained by its boundaries, which increases deflection. Another observation is seen in
that the nonlocal parameter has no effect on the deflection of C-C nanobeams because of its constrained
nature [Alshorbagy et al. 2013]. Next, we have shown variation of rotation with length for S-S, C-S and
C-C edge conditions, respectively in Figures 9–11. It may be noticed that the rotation behaves differently
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Figure 6. Static deflection of S-S nanobeams for different nonlocal parameters.
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Figure 7. Static deflection of C-S nanobeams for different nonlocal parameters.
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Figure 8. Static deflection of C-C nanobeams for different nonlocal parameters.
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Figure 9. Static rotation of S-S nanobeams for different nonlocal parameters.
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Figure 10. Static rotation of C-S nanobeams for different nonlocal parameters.
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Figure 11. Static rotation of C-C nanobeams for different nonlocal parameters.
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than that of deflection. Increasing the nonlocal parameter decreases rotation of S-S and C-C nanobeams
up to midlength and afterwards increases in the nonlocal parameter increases rotation. One may also
notice that the nonlocal parameter has no effect on the rotation of C-C nanobeams.

5. Concluding remarks

Boundary characteristic orthogonal polynomials as shape functions have been implemented in the Rayleigh–
Ritz method for static analysis of nanobeams. The formulation is based on both Euler–Bernoulli and
Timoshenko beam theories in conjunction with nonlocal elasticity of Eringen. A system of linear equa-
tions is formed by the applying the present method. The following conclusions may be derived from the
present analysis:

• Slenderness ratio has no effect on the beam deflection in the case of local EBT, whereas in the case
of nonlocal EBT, deflection is dependent on the slenderness ratio.

• It is seen that bending responses vary nonlinearly with the nonlocal parameter. One may also observe
that bending responses of nanobeams with lower aspect ratios are strongly affected by the nonlocal
parameter than those of the nanobeams with relatively higher aspect ratios.

• The nonlocal parameter has no effect on the deflection of C-C nanobeams, whereas in case of S-S
and C-S supports, deflection increases with increases in the nonlocal parameter.
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