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Additive manufacturing has enabled the fabrication of lightweight materials with intricate cellular archi-
tectures. These materials are interesting due to their properties which can be optimized upon the choice
of the parent material and the topology of the architecture, making them appropriate for a wide range of
applications including lightweight aerospace structures, energy absorption, thermal management, meta-
materials, and bioscaffolds. In this paper we present the simplest initial computational framework for
the analysis, design, and topology optimization of low-mass metallic systems with architected cellular
microstructures. A very efficient elastic-plastic homogenization of a repetitive Representative Volume
Element (RVE) of the microlattice is proposed. Each member of the cellular microstructure undergoing
large elastic-plastic deformations is modeled using only one nonlinear three-dimensional (3D) beam
element with 6 degrees of freedom (DOF) at each of the 2 nodes of the beam. The nonlinear coupling of
axial, torsional, and bidirectional-bending deformations is considered for each 3D spatial beam element.
The plastic hinge method, with arbitrary locations of the hinges along the beam, is utilized to study the
effect of plasticity. We derive an explicit expression for the tangent stiffness matrix of each member of
the cellular microstructure using a mixed variational principle in the updated Lagrangian corotational
reference frame. To solve the incremental tangent stiffness equations, a newly proposed Newton ho-
motopy method is employed. In contrast to the Newton’s method and the Newton–Raphson iteration
method, which require the inversion of the Jacobian matrix, our homotopy methods avoid inverting it. We
have developed a code called CELLS/LIDS (CELLular Structures/Large Inelastic DeformationS), which
provides the capabilities to study the variation of the mechanical properties of the low-mass metallic
cellular structures by changing their topology. Thus, due to the efficiency of this method we can employ
it for topology optimization design and for impact/energy absorption analyses.

1. Introduction

A lot of natural structures, such as hornbill bird beaks and bird wing bones, are architected cellular
materials, which provide optimum strength and stiffness at low density. Humankind, over the past
few years, has also fabricated cellular materials with more complex architectures in comparison with
previously developed synthetic materials like open-cell metallic foams and honeycombs [Schaedler and
Carter 2016]. Properties of these cellular structures are determined based on their parent materials
and the topology of the microarchitecture. Additive manufacturing technologies and progress in three-
dimensional (3D) printing techniques enable the design of materials and structures with complex cellular

Keywords: architected cellular microstructures, large deformations, plastic hinge approach, nonlinear coupling of
axial-torsional-bidirectional bending deformations, mixed variational principle, homotopy methods.
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microarchitectures, optimized for specific applications. In fact, one of the most interesting characteristics
of cellular structures with pore networks is that they can be designed with desirable properties, making
them appropriate for lightweight structures, metamaterials, energy absorption, thermal management, and
bioscaffolds [Schaedler et al. 2014]. For example, efforts are under way to fabricate bioscaffolds to
repair and replace tissue, cartilage, and bone [Hutmacher 2000; Mota et al. 2015; Valentin et al. 2006;
Han and Gouma 2006]. These architected materials should be fabricated in such a way that they can
meet biocompatibility requirements in addition to the mechanical properties of the tissues at the site of
implantation. Therefore, presentation of a highly efficient computational method to predict and optimize
the mechanical properties of such structures is of interest. Herein, we present a nearly exact and highly
efficient computational method to predict the elastic-plastic homogenized mechanical properties of low-
mass metallic systems with architected cellular microstructures. The framework of the methods presented
in this paper is also germane to the analysis under static as well as impact loads, design, and topology
optimization of cellular solids.

The ultralow-density metallic cellular microlattices have been recently fabricated at HRL Laboratories
[Schaedler et al. 2011; Torrents et al. 2012], suitable for thermal insulation, battery electrodes, catalyst
supports, and acoustic, vibration, or shock energy damping [Gibson and Ashby 1988; Evans et al. 2010;
Lu et al. 2005; Valdevit et al. 2011; Ashby et al. 2000; Wadley 2002]. They produced nickel cellular
microlattices, consisting of hollow tubular members, by preparing a sacrificial polymeric template for
electroless Ni deposition, and then chemically etching the sacrificial template [Schaedler et al. 2011].

Using this process, they fabricated novel nickel-based microlattice materials with structural hierarchy
spanning three different length scales: nm, µm and mm. They obtained a 93% Ni–7% P composition
by weight for microlattices using energy dispersive spectroscopic analysis. They employed quasistatic
axial compression experiments to measure macroscopic mechanical properties such as Young’s moduli
of nickel microlattices. The load P was measured by SENSOTEC load cells, and the displacement δ was
measured using an external LVDT for modulus extraction. Strain-stress curves were obtained based on
engineering stress and strain defined, respectively, as σ = P/A0 and ε = δ/L0. A0 and L0 are the initial
cross-sectional area and length of the sample, respectively.

Salari-Sharif and Valdevit [2014] extracted the Young’s modulus of a series of nickel ultralight mi-
crolattices by coupling experimental results obtained using laser Doppler vibrometry with finite element
(ABAQUS) simulations. Salari-Sharif and Valdevit [2014] fabricated a sandwich configuration by attach-
ing carbon/epoxy face sheets as the top and bottom layers of the ultralight nickel hollow microlattice
thin film [Schaedler et al. 2011]. Furthermore, Salari-Sharif and Valdevit [2014] detected the resonant
frequencies by scanning laser vibrometry and ABAQUS simulations and extracted the relation between
Young’s modulus and the natural frequencies. Then, the effective Young’s moduli of samples were
obtained in the direction normal to the face sheets [Salari-Sharif and Valdevit 2014]. It is worth noting
that for finite element (FE) modeling, a representative volume element (RVE) consisting of only four
members of the cellular microlattice with at least ten thousand of 4-node shell FEs was employed [Salari-
Sharif and Valdevit 2014], resulting in at least ten thousand nodes and, thus, sixty thousand degrees of
freedom (DOF). We should emphasize that in our methodology each member can be modeled by a single
spatial beam element. In other words, to perform a 4-member RVE analysis, we use only four spatial
beam elements and five nodes, with a total of 30 DOF and, thus, at least 2000 times less DOF than in
[Salari-Sharif and Valdevit 2014]. Since the cost of computation in a FE nonlinear analysis varies as the
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n-th power (n between 2 and 3) of the number of DOF, it is clear that we seek to present a far more efficient
analysis procedure than any available commercial software. This provides the capability to simulate the
cellular microstructure using repetitive RVEs consisting of an arbitrary number of members, enabling a
very efficient homogenization and/or direct numerical simulation (DNS) of a cellular macrostructure.

In addition, Schaedler et al. [2011] and Torrents et al. [2012] showed experimentally that nickel-
phosphorous cellular microlattices undergo large effective compressive strains through extensive rota-
tions about remnant node ligaments. Unfortunately, there are no computational studies in the literature
on the large-deformation elastic-plastic analysis of such metallic cellular structures, which is the major
concern of the present study, although there is a vast variety of studies on the large deformation analysis
of space-frames [Besseling 1986; Geradin and Cardona 1988; Mallett and Berke 1966; Izzuddin 2001]
from the era of large space structures for use in outer space. In the realm of space-frame analyses,
numerous studies have been devoted to deriving an explicit expression for the tangent stiffness matrix
of each element, accounting for arbitrarily large rigid rotations, moderately large nonrigid point-wise
rotations, and the stretching-bending coupling [Bathe and Bolourchi 1979; Punch and Atluri 1984; Lo
1992; Kondoh et al. 1986; Kondoh and Atluri 1987]. Some researchers employed displacement-based
approaches using variants of a Lagrangian for either geometrically or materially nonlinear analyses of
frames [Bathe and Bolourchi 1979; Punch and Atluri 1984; Lo 1992]. Kondoh et al. [1986] extended
the displacement approach to evaluate explicitly the tangent stiffness matrix without employing either
numerical or symbolic integration for a beam element undergoing large deformations. Later, Kondoh
and Atluri [1987] presented a formulation on the basis of assumed stress resultants and stress couples,
satisfying the momentum balance conditions in the beam subjected to arbitrarily large deformations.

In order to study the elastic-plastic behavior of cellular members undergoing large deflections, we
employ the mechanism of plastic hinge developed by Hodge [1959], Ueda et al. [1968], and Ueda and
Yao [1982]. In this mechanism, a plastic hinge can be generated at any point along the member as well
as its end nodes, anywhere the plasticity condition in terms of generalized stress resultants is satisfied.
It is worthwhile to mention that contours of the von Mises stress given in [Salari-Sharif and Valdevit
2014] for the 4-member RVE with PBCs show a very high concentration of stress at the junction of
four members. The stress contours were obtained based on linear elastic FE simulations [Salari-Sharif
and Valdevit 2014]. Therefore, it clearly mandates an elastic-plastic analysis, which is undertaken in the
present study. A complementary energy approach in conjunction with the plastic hinge method has been
previously utilized to study elasto-plastic large deformations of space-framed structures [Kondoh and
Atluri 1987; Shi and Atluri 1988]. Shi and Atluri [1988] derived the linearized tangent stiffness matrix
of each finite element in the corotational reference frame in an explicit form and showed that this approach
based on assumed stresses is simpler in comparison with assumed-displacement type formulations. In
contrast to [Shi and Atluri 1988], which presents the linearized tangent stiffness, the current work derives
explicitly the tangent stiffness matrix under the nonlinear coupling of axial, torsional, and bidirectional-
bending deformations.

One of the extensively employed approaches in the literature for the analysis of nonlinear problems
with large deformations or rotations is based on variational principles. For instance, Cai et al. [2009a;
2009b] utilized the primal approach as well as the mixed variational principle [Reissner 1953] in the
updated Lagrangian corotational reference frame to obtain an explicit expression for the tangent stiffness
matrix of the elastic beam elements. Cai et al. [2009a] showed that the mixed variational principle in
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comparison to the primal approach, which requires C1 continuous trial functions for displacements, needs
simpler trial functions for the transverse bending moments and rotations. In fact, the authors assumed
linear trial functions within each element and obtained much simpler tangent stiffness matrices for each
element than those previously presented in the literature [Lo 1992; Kondoh et al. 1986; Simo 1985].
While Cai et al. [2009a] considered only a few macromembers, our analysis is applicable to metallic
cellular microlattices with an extremely large number of repetitive RVEs. Since plasticity and buckling
occur in many members of the microlattice, we found that the Newton-type algorithm that was utilized
in [Cai et al. 2009a] fails. In the present study, we discovered that only our Newton homotopy method
provides convergent solutions in the presence of the plasticity and buckling in a large number of members
of the microlattice.

To solve tangent stiffness equations, we use a Newton homotopy method recently developed to solve
a system of fully coupled nonlinear algebraic equations (NAEs) with as many unknowns as desired [Liu
et al. 2009; Dai et al. 2014]. By using these methods, displacements of the equilibrium state are iteratively
solved without the inversion of the Jacobian (tangent stiffness) matrix. Newton homotopy methods are
advantageous, particularly when the effect of plasticity is going to be studied. It is well known that the
simple Newton’s method as well as the Newton–Raphson iteration method require the inversion of the
Jacobian matrix, which fail to pass the limit load as the Jacobian matrix becomes singular, and require arc-
length methodology which are commonly used in commercial off-the-shelf software such as ABAQUS.
Furthermore, homotopy methods are useful in the following cases: when the system of algebraic equa-
tions is very large in size, when the solution is sensitive to the initial guess, and when the system of
nonlinear algebraic equations is either over- or under-determined [Liu et al. 2009; Dai et al. 2014].

The paper is organized as follows. The theoretical background including the nonlinear coupling of
axial, torsional, and bidirectional-bending deformations for a typical cellular member under large defor-
mation; mixed variational principle in the corotational updated Lagrangian reference frame; the plastic
hinge method; and the equation-solving algorithm accompanying Newton homotopy methods are summa-
rized in Section 2. Section 3 is devoted to the validation of our methodology: a three-member rigid-knee
frame, the Williams toggle problem, and a right-angle bent including the effect of plasticity are compared
with the corresponding results given in the literature. Section 4 analyzes the mechanical behavior of two
different cellular microlattices subjected to tensile, compressive, and shear loading. Throughout this
section, it is shown that our calculated results (Young’s modulus and yield stress) under compressive
loading are very comparable with those measured experimentally by Schaedler et al. [2011] and Torrents
et al. [2012]. Moreover, the progressive development of plastic hinges in the cellular microlattice as
well as its deformed structure are presented. Finally, a summary and conclusion are given in Section 5.
Appendices A, B, C, and D follow.

2. Theoretical background

Throughout this section, the concepts employed to derive nearly exact and highly efficient elastic-plastic
homogenization of low-mass metallic systems with architected cellular microstructures are given. Nonlin-
ear coupling of axial, torsional, and bidirectional-bending deformations; strain-displacement; and stress-
strain relations in the updated Lagrangian corotational frame are described in Section 2.1. Section 2.2 is
devoted to deriving an explicit expression for the tangent stiffness matrix of each member of the cellular
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structure, accounting for large rigid rotations, moderate relative rotations, the bending-twisting-stretching
coupling and elastic-plastic deformations. A solution algorithm is also given in Section 2.3.

2.1. The nonlinear coupling of axial, torsional, and bidirectional-bending deformations for a spatial
beam element with a tubular cross-section. A typical 3D member of a cellular structure is considered,
spanning between nodes 1 and 2 as illustrated in Figure 1. The element is initially straight with arbitrary
cross section and is of the length l before deformation. As seen from Figure 1, three different coordinate
systems are introduced:

(1) the global coordinates (fixed global reference) x̄i with the orthonormal basis vectors ēi ,

(2) the local coordinates for the member in the undeformed state x̃i with the orthonormal basis vectors ẽi ,
and

(3) the local coordinates for the member in the deformed state (current configuration) xi with the or-
thonormal basis vectors of ei (i = 1, 2, 3).

Local displacements at the centroidal axis of the deformed member along ei -directions are denoted
as ui0, (i = 1, 2, 3). Rotation about x1-axis (angle of twist) is denoted by θ̂ , and those about xi -axes,
i = 2, 3, (bend angle) are denoted by θi0, i = 2, 3, respectively. It is assumed that nodes 1 and 2 of
the member undergo arbitrarily large displacements, and rotations between the undeformed state of the
member and its deformed state are arbitrarily finite. Moreover, it is supposed that local displacements
in the current configuration (xi coordinates system) are moderate and the axial derivative of the axial
deflection at the centroid, ∂u10/∂x1 is small in comparison with that of the transverse deflections at the
centroid, ∂ui0/∂x1 (i = 2, 3).

We examine large deformations for a cylindrical member with an unsymmetrical cross section around
x2- and x3-axes and constant cross section along x1-axis subjected to torsion T around x1-axis and
bending moments M2 and M3 around x2- and x3-axes, respectively. It is assumed that the warping
displacement u1T (x2, x3) due to the torsion T is independent of x1 variable, the axial displacement at the
centroid is u10(x1), and the transverse bending displacements at the origin (x2 = x3 = 0) are x20(x1) and

e~~x

node 1

node 1

node 2

node 2

,3 3

e~x ,2 2

e~

~

ex ,2

u30 u20
u102

ex ,1 1

ex ,3 3
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l
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ex ,1 1
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Figure 1. Nomenclature for the reference frames corresponding to the global, unde-
formed, and deformed states.
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x30(x1) along e2- and e3-directions, respectively. The reason for the consideration of the nonlinear axial,
torsional, and bidirectional-bending coupling for each spatial beam element is the frame-like behavior of
these cellular metallic microlattices. The scanning electron microscopy (SEM) images of microlattices
given by Torrents et al. [2012] show the formation of partial fracture at nodes (for a microlattice with
t = 500 nm), localized buckling (for a microlattice with t = 1.3µm), and plastic hinging at nodes (for
a microlattice with t = 26µm). Therefore, the 3D displacement field for each spatial beam element in
the current configuration is considered as follows using the normality assumption of the Bernoulli–Euler
beam theory:

u1(x1, x2, x3)= u1T (x2, x3)+ u10(x1)− x2
∂u20(x1)

∂x1
− x3

∂u30(x1)

∂x1
,

u2(x1, x2, x3)= u20(x1)− θ̂x3,

u3(x1, x2, x3)= u30(x1)+ θ̂x2.

(1)

The Green–Lagrange strain components in the updated Lagrangian corotational frame ei (i = 1, 2, 3) are

εi j =
1
2(ui, j + u j,i + uk,i uk, j ), (2)

where the index notation •,i denotes ∂ •/∂xi and k is a dummy index. Replacement of (1) into (2) results
in the following strain components:

ε11 = u1,1+
1
2(u1,1)

2
+

1
2(u2,1)

2
+

1
2(u3,1)

2
≈ u10,1+

1
2(u20,1)

2
+

1
2(u30,1)

2
− x2u20,11− x3u30,11,

ε22 = u2,2+
1
2(u1,2)

2
+

1
2(u2,2)

2
+

1
2(u3,2)

2
=

1
2(u1T,2− u20,1)

2
+

1
2 θ̂

2
≈ 0,

ε33 = u3,3+
1
2(u1,3)

2
+

1
2(u2,3)

2
+

1
2(u3,3)

2
≈ 0,

ε12 =
1
2(u1,2+ u2,1)+

1
2 u3,1u3,2 ≈

1
2(u1T,2− θ̂,1x3),

ε13 =
1
2(u1,3+ u3,1)+

1
2 u2,1u2,3 ≈

1
2(u1T,3+ θ̂,1x2),

ε23 =
1
2(u2,3+ u3,2)+

1
2 u1,2u1,3 ≈ 0.

(3)

By defining the following parameters:

2= θ̂,1, N22 =−u20,11, N33 =−u30,11,

ε0
11 = u10,1+

1
2(u20,1)

2
+

1
2(u30,1)

2
= ε0L

11 + ε
0N L
11 , (4)

and employing them into (3), strain components can be rewritten as

ε11 = ε
0
11+ x2N22+ x3N33, ε12 =

1
2(u1T,2−2x3),

ε13 =
1
2(u1T,3+2x2), ε22 = ε33 = ε23 = 0,

(5)

and in the matrix notation as

ε = εL
+ εN , (6)
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in which

εL
=

ε
L
11

εL
12

εL
13

=
u10,1+ x2N22+ x3N33

1
2(u1T,2−2x3)

1
2(u1T,3+2x2)

 , (7)

εN
=

ε
N
11

εN
12

εN
13

=
1

2(u20,1)
2
+

1
2(u30,1)

2

0
0

 . (8)

Similarly, the member generalized strains are determined in the matrix form as

E = EL
+ EN

=


ε0

11
N22

N33

2

 , (9)

where EL
= [u10,1 − u20,11 − u30,11 θ̂,1]

T and EN
=
[ 1

2(u20,1)
2
+

1
2(u30,1)

2 0 0 0
]T .

We consider for now that the member material is linear elastic, thus the total stress tensor (the second
Piola–Kirchhoff stress tensor) S is calculated as

S= S1
+ τ 0. (10)

Here τ 0 is the preexisting Cauchy stress tensor, and S1 is the incremental second Piola–Kirchhoff stress
tensor in the updated Lagrangian corotational frame ei given by

S1
11 = E ε11, S1

12 = 2µε12,

S1
13 = 2µε13, S1

22 = S1
33 = S1

23 ≈ 0,
(11)

in which µ is the shear modulus, µ = E/(2(1+ v)), E is the elastic modulus, and v is the Poisson’s
ratio. Using (5) and (11), the generalized nodal forces for the member shown in Figure 1 subjected to
the twisting and bending moments are calculated as

N11 =

∫
A

S1
11 dA = E(Aε0

11+ I2N22+ I3N33),

M22 =

∫
A

S1
11x2 dA = E(I2ε

0
11+ I22N22+ I23N33),

M33 =

∫
A

S1
11x3 dA = E(I3ε

0
11+ I23N22+ I33N33),

T =
∫

A
(S1

13x2− S1
12x3) dA = µIrr2,

(12)

where A is the area of the cross section; Ii and Ii j (i, j = 2, 3) are the first moment and the second
moment of inertia of the cross section, respectively; I2 =

∫
A x2 dA, I3 =

∫
A x3 dA, I22 =

∫
A x2

2 dA,
I33 =

∫
A x2

3 dA, I23 =
∫

A x2x3 dA, and Irr is the polar moment of inertia, Irr =
∫

A(x
2
2 + x2

3) dA. Using
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the element generalized strains E the element generalized stresses σ are also determined in the matrix
form as

σ = DE, (13)

in which

σ =


N11

M22

M33

T

 , (14)

D =


E A E I2 E I3 0
E I2 E I22 E I23 0
E I3 E I23 E I33 0
0 0 0 µIrr

 . (15)

2.2. Explicit derivation of tangent stiffness matrix undergoing large elasto-plastic deformation. In
this section, the mixed variational principle in the corotational updated Lagrangian reference frame and
a plastic hinge method are employed to obtain explicit expressions for the tangent stiffness matrix of each
member shown in Figure 1. The stiffness matrix is calculated for each member by accounting for large
rigid rotations; moderate relative rotations; the nonlinear coupling of axial, torsional, and bidirectional-
bending deformations; and the effect of plasticity. The functional of the mixed variational principle in the
corotational updated Lagrangian reference frame and the trial functions for the stress and displacement
fields within each element are given in Section 2.2.1. Plastic analysis using the plastic hinge method is
described in Section 2.2.2. The explicit expression of the stiffness matrix in the presence of plasticity
for each cellular member is also presented in Section 2.2.3.

2.2.1. Mixed variational principle in the corotational updated Lagrangian reference frame. Consider-
ation of S1

i j and ui , respectively, as the components of the incremental second Piola–Kirchhoff stress
tensor and the displacement field in the updated Lagrangian corotational frame, the functional of the
mixed variational principle in the same reference frame with orthonormal basis vectors ei is obtained as

HR =

∫
V

{
−B[S1

i j ] +
1
2τ

0
i j uk,i uk, j +

1
2 Si j (ui, j + u j,i )− ρbi ui

}
dV −

∫
Sσ

T̄i ui dS, (16)

where V is the volume in the current corotational reference state, Sσ is the part of the surface with
the prescribed traction, T̄i = T̄ 0

i + T̄ 1
i (i = 1, 2, 3) are the components of the boundary tractions, and

bi = b0
i + b1

i (i = 1, 2, 3) are the components of body forces per unit volume in the current configuration.
The displacement boundary conditions prescribed at the surface Su are also considered as ūi (i = 1, 2, 3),
assumed to be satisfied a priori. Equation (16) is a general variational principle governing stationary
conditions, which with respect to variations δS1

i j and δui results in the following incremental equations
in the corotational updated Lagrangian reference frame:

∂B
∂S1

i j
=

1
2(ui, j + u j,i ), (17)

[S1
i j + τ

0
iku j,k], j + ρb1

i =−τ
0
i j, j − ρb0

i , (18)
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n j [S1
i j + τ

0
iku j,k] − T̄ 1

i =−n jτ
0
i j + T̄ 0

i on Sσ , (19)

where n is the outward unit normal on the surface Sσ . For a group of members Vm (m = 1, 2, . . . , N )
with common surfaces ρm , (16) can be written as

HR =
∑

m

(∫
Vm

{
−B[S1

i j ] +
1
2τ

0
i j uk,i uk, j +

1
2 Si j (ui, j + u j,i )− ρbi ui

}
dV −

∫
Sσm

T̄i ui dS
)
,

m = 1, 2, . . . , N . (20)

If the trial function ui and the test function ∂ui for each member Vm (m = 1, 2, . . . , N ) are chosen in such
a way that the interelement displacement continuity condition is satisfied at ρm a priori, then stationary
conditions of HR for a group of finite elements lead to

∂B/∂S1
i j =

1
2(ui, j + u j,i ) in Vm, (21)

[S1
i j + τ

0
iku j,k], j + ρb1

i =−τ
0
i j, j − ρb0

i in Vm, (22)

[ni (S1
i j + τ

0
iku j,k)]

+
+ [ni (S1

i j + τ
0
iku j,k)]

−
=−[niτ

0
i j ]
+
− [niτ

0
i j ]
− at ρm, (23)

n j [S1
i j + τ

0
iku j,k] − T̄ 1

i =−n jτ
0
i j + T̄ 0

i on Sσm . (24)

Here, + and − denote the outward and inward quantities at the interface, respectively. The continuity of
the displacement at the common interface ρm between elements is determined by

u+i = u−i on ρm . (25)

Applying (5) and (13) into (20) and integrating over the cross sectional area of each element gives

HR =

N∑
m=1

{∫
l

(
−

1
2σ

T D−1σ
)

dl +
∫

l
N 0

11
1
2(u

2
20,1+ u2

30,1) dl

+

∫
l
(N̂11ε

0L
11 + M̂22N22+ M̂33N33+ T̂2) dl − Q̄q

}
, (26)

in which σ 0
= [N 0

11 M0
22 M0

33 T 0
]
T is the initial member generalized stress in the corotational refer-

ence coordinates ei , σ̂ = σ + σ 0
= [N̂11 M̂22 M̂33 T̂ ]T is the total member generalized stress in the

coordinates ei , Q̄ is the nodal external generalized force vector in the global reference frame ēi , and
q is the nodal generalized displacement vector in the coordinates ēi . Equation (26) can be simplified
by applying integration by parts to the third integral term on the right-hand side of the equation. More
details on how to perform the integration are given in Appendix A. Stationary conditions for HR given
in (26) result in

D−1σ = E,

N̂11,1 = 0 in Vm,

T̂,1 = 0 in Vm,

M̂22,11+ [N 0
11u20,1],1 = 0 in Vm,

M̂33,11+ [N 0
11u30,1],1 = 0 in Vm,

(27)
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and the nodal equilibrium equations are obtained from the following relation:

N∑
m=1

{
N̂11δu10|

l
0+ M̂22,1δu20|

l
0− M̂22δu20,1|

l
0+ M̂33,1δu30|

l
0− M̂33δu30,1|

l
0+ T̂ δθ̂ |l0

+ (N 0
11u20,1)δu20|

l
0+ (N

0
11u30,1)δu30|

l
0− Q̄δq

}
= 0. (28)

Herein, the trial functions for the stress and displacement fields within each member Vm (m= 1, 2, . . . , N )
are discussed. We assume that the components of the member generalized stress σ obey the following
relation:

σ = Pβ, (29)

where

P =


1 0 0 0 0 0
0 −1+ x1/ l −x1/ l 0 0 0
0 0 0 1− x1/ l x1/ l 0
0 0 0 0 0 1

 , (30)

β = [n 1m3
2m3

1m2
2m2 m1]

T . (31)

Similarly, the components of the initial member generalized stress σ 0 are determined as

σ 0
= Pβ0, (32)

where
β0
= [n0 1m0

3
2m0

3
1m0

2
2m0

2 m0
1]

T . (33)

Note that i m2(
i m0

2) and i m3(
i m0

3) are, respectively, bending moments (initial ones) around the x2- and
x3-axes at the i-th node. Here, n(n0) and m1(m0

1) are the (initial) axial force and the (initial) twisting
moment along the element, respectively. Therefore, the incremental internal nodal force vector B for the
element shown in Figure 1, with nodes 1 and 2 at the ends, can be expressed as

B = [1 N 1m1
1m2

1m3
2 N 2m1

2m2
2m3]

T , (34)

which can be written as
B =Rβ, (35)

with

R=



1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0


. (36)

From (26), it is seen that only the squares of u20,1 and u30,1 appear within each member. Therefore, we
assume the trial functions for the displacement field in such a way that u20,1 and u30,1 become linear for
each member. Moreover, we suppose that the bend angles around the x2- and x3-axes along the member
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shown in Figure 1 change with respect to the nodal rotations iθ20 and iθ30 (i = 1, 2) via the following
relation:

uθ = Nθ aθ =

[
1− x1/ l 0 x1/ l 0

0 1− x1/ l 0 x1/ l

]
1θ20
1θ30
2θ20
2θ30

 . (37)

Therefore, the nodal generalized displacement vector of the member can be expressed in the updated
Lagrangian corotational frame ei as

a = [1a 2a]T , (38)

where i a (i = 1, 2) is the displacement vector of the i-th node:

i a = [i u10
i u20

i u30
i θ̂ iθ20

iθ30]
T . (39)

The nodal generalized displacement vector of the member a is related to the vector aθ by

aθ = Tθ a, (40)

in which

Tθ =


0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

 . (41)

Applying the trial functions of the stresses, (29) into the (26), the functional of the mixed variational
principle in the corotational updated Lagrangian reference frame can be rewritten as

HR =−HR1+HR2+HR3−HR4. (42)

Here,

HR1 =

N∑
m=1

∫
l

( 1
2σ

T D−1σ
)

dl =
N∑

m=1

∫
l

( 1
2β

T PT C Pβ
)

dl, (43)

HR2 =

N∑
m=1

{
2N 2u10−

1N 1u10+
1
l
(1m3−

2m3)(
2u20−

1u20)+
2m3

2θ30−
1m3

1θ30

+
1
l
(2m2−

1m2)(
2u30−

1u30)+
2m2

2θ20−
1m2

1θ20+
2m1

2θ̂ − 1m1
1θ̂
}

=

N∑
m=1

{BTTa} =
N∑

m=1

{βTRTTa}, (44)

HR3 =

N∑
m=1

∫
l

N 0
11
[ 1

2(u20,1)
2
+

1
2(u30,1)

2] dl =
N∑

m=1

∫
l
σ 0

1
[ 1

2(θ20)
2
+

1
2(θ30)

2] dl

=

N∑
m=1

∫
l

1
2σ

0
1 uT

θ uθ dl =
N∑

m=1

∫
l

1
2σ

0
1 aT Ann a dl, (45)
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HR4 =

N∑
m=1

(aT F− aTTTRβ0), (46)

where

C = D−1, (47)

T=



−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 1/ l 0 −1 0 0 0 −1/ l 0 0 0
0 −1/ l 0 0 0 −1 0 1/ l 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 −1/ l 0 0 0 0 0 1/ l 0 1 0
0 1/ l 0 0 0 0 0 −1/ l 0 0 0 1


, (48)

Ann = T T
θ NT

θ NθTθ . (49)

Invoking the variational form for the functional of the mixed variational principle results in the following
equation:

N∑
m=1

δβT
(
−

∫
l
(PT C Pβ) dl+RTTa

)
+

N∑
m=1

δaT
(
TTRβ+σ 0

1

∫
l

Ann a dl− F+TTRβ0
)
= 0. (50)

By letting H =
∫

l PT C P dl, G =RTT, KN = σ
1
0

∫
l Ann dl, F0

= GTβ0, (50) can be rewritten as

N∑
m=1

δβT (−Hβ + Ga)+
N∑

m=1

δaT (GTβ + KN a− F+ F0)= 0. (51)

2.2.2. Plasticity effects in the large deformation analysis of members of a cellular microstructure. For
an elastic-perfectly plastic material, the incremental work done on the material per unit volume is dw =
σi j (dε

p
i j + dεe

i j ) in which εe
i j and ε p

i j are elastic and plastic components of strain, respectively, and σi j are
the stress components. Using the plastic hinge method, the plastic deformation is developed along the
member wherever the plasticity condition is satisfied. Therefore, the total work expended in deforming
the material of the body is

W =
∫

V
σi j (dε

p
i j + dεe

i j ) dv =
∫

V
U (εe

i j ) dV +
∑

i

dW p
i , (52)

where U (εe
i j ) is the elastic strain energy density function, and dW p

i is the increment of plastic work at
the i-th plastic hinge. When the theory of plastic potential is applied, the plasticity condition in terms of
the stress components at the i-th node is expressed as

fi (σxi , σyi , . . . , τxyi , . . . , σY )= 0, (53)
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the increment of plastic work at the i-th node can be expressed as

dW p
i = dupT

x, (54)

in which dup, the increment of plastic nodal displacement at the i-th node, is explained in terms of the
function fi (x, σY ):

dup
= dλiφi , (55)

φi =

[
∂ fi (x, σY )

∂x

]
, (56)

where x is the nodal force, and δλi is a positive scalar. Therefore, (52) can be rewritten as

W =
∫

V
U (εe

i j ) dV +
∑

dλiφ
T
i

∣∣
lp

x, (57)

where x̂l = lp is the location of the plastic hinge. A variational form for the plastic work can be written
as

δ

{ N∑
m=1

(∑
dλiφ

T
i

∣∣
lp

)
(Pβ0
+Pβ)

}
=

N∑
m=1

δ
(∑

dλiφ
T
i

∣∣
lp

)
(Pβ0
+Pβ)+

(∑
dλiφ

T
i

∣∣
lp

)
Pδβ

=

N∑
m=1

∑
δ dλiφ

T
i

∣∣
lp
(Pβ0
+Pβ)+

(∑
dλiφ

T
i

∣∣
lp

)
Pδβ

=

N∑
m=1

∑
δdλiφ

T
i

∣∣
lp
(Pβ0
+Pβ)+ δβT PT

(∑
dλiφ

T
i

∣∣
lp

)T
. (58)

2.2.3. Explicit derivation of tangent stiffness accompanying plasticity effects. Using the functional of
the mixed variational principle given in Section 2.2.1, (42)–(46), (57) is expressed as

W =
N∑

m=1

{
−

∫
l

( 1
2β

T PT C Pβ
)

dl+(βTRTTa)+
∫

l

1
2σ

0
1 aT T T

θ NT
θ NθTθ a dl−(aT F−aTTTRβ0)

+

(∑
dλiφ

T
i

∣∣
lp

)
(Pβ0

+ Pβ)
}
. (59)

Then, invoking δW = 0 and using (51) and (58), (51) can be modified to include the effect of plasticity
by introducing new determined matrices β̂, Ĥ , and Ĝ by means of

N∑
m=1

δβ̂T (−Ĥβ̂ + Ĝa)+
N∑

m=1

δaT (ĜT β̂ + KN a− F+ F0)= 0, (60)

with

β̂T
= [βT dλ], Ĥ =

[
H A12

AT
12 0

]
, ĜT

= [GT 0], (61)–(63)
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in which

AT
12 =

[
∂ f
∂N

∂ f

∂ M̂3

(
−1+

lp

l

)
∂ f

∂ M̂3

(
−

lp

l

)
∂ f

∂ M̂2

(
1−

lp

l

)
∂ f

∂ M̂2

lp

l
∂ f

∂ M̂1

]
. (64)

Since δβ̂T in (60) are independent and arbitrary in each element, we have

Ĥβ̂ = Ĝa, (65)

β̂ = Ĥ−1Ĝa. (66)

By letting
∑N

m=1 δaT (ĜT β̂ + KN a− F+ F0)= 0 and substituting β̂ from (66), we obtain

(ĜT Ĥ−1Ĝ+ KN )a− F+ F0
= 0, (67)

Therefore, the stiffness matrix K in the presence of plasticity is derived explicitly as

K= ĜT Ĥ−1Ĝ+KN = GT H−1G+KN−GT H−1 A12CT G= K−GT H−1 A12CT G= K−KP , (68)

where

K = GT H−1G+ KN = KL + KN , (69)

KP = GT H−1 A12CT G, (70)

CT
= (AT

12 H−1 A12)
−1 AT

12 H−1. (71)

Since we are studying the nonlinear coupling of axial, torsional, and bidirectional-bending deformations
for each element, the plasticity condition is introduced by fi (N , M̂1, M̂2, M̂3)= 0 at the location of the
i-th plastic hinge; then

φi =

[
∂ fi

∂N
∂ fi

∂ M̂1

∂ fi

∂ M̂2

∂ fi

∂ M̂3

]T

(72)

and ∑
dλiφ

T
i

∣∣
lp
=

[∑
dλi

∂ fi

∂N

∣∣
lp

∑
dλi

∂ fi

∂ M̂1

∣∣
lp

∑
dλi

∂ fi

∂ M̂2

∣∣
lp

∑
dλi

∂ fi

∂ M̂3

∣∣
lp

]
= [HP θ∗P1 θ

∗

P2 θ
∗

P3], (73)

in which HP is the plastic elongation and θ∗Pi , i = (1, 2, 3) are the plastic rotations at the location of
plastic hinges. Components of the element tangent stiffness matrices, KN , KL , and KP , are presented
in Appendix B. Transformation matrices relating coordinate systems corresponding to the deformed and
undeformed states to the global coordinates system (Figure 1) are given in Appendix C.

2.3. Solution algorithm. To solve the incremental tangent stiffness equations, we employ a Newton
homotopy method [Liu et al. 2009; Dai et al. 2014]. One of the most important reasons that we use the
newly developed scalar homotopy method is that this approach does not need to invert the Jacobian matrix
(the tangent stiffness matrix) to solve NAEs. In the case of complex problems (such as elastic-plastic
analyses of large deformations and near the limit-load points in post-buckling analyses of geometrically
nonlinear frames) where the Jacobian matrix may be singular, the iterative Newton’s methods become
problematic and necessitate the use of arc-length methods found in software such as ABAQUS.
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One of the other advantages of the recently developed homotopy methods is the improved perfor-
mance over the Newton–Raphson method when the Jacobian matrix is nearly singular or is severely
ill-conditioned. For instance, when we considered the problem discussed in Section 3.1 (three-member
rigid-knee frame) using the Newton–Raphson algorithm, the provided code couldn’t converge to capture
the critical load, while it converged rapidly after switching to the homotopy algorithm. Moreover, we
discovered that while the Newton-type algorithm fails to converge, the Newton homotopy method pro-
vides convergent solutions in the presence of plasticity and buckling in a large number of members of
the microlattice. As another benefit of the employed algorithm, our developed CELLS/LIDS code is not
sensitive to the initial guess of the solution vector, unlike the Newton–Raphson method.

The homotopy method was first introduced by Davidenko [1953] to enhance the convergence rate
from a local convergence to a global one for the solution of the NAEs of F(X) = 0; where X ∈ Rn

is the solution vector. This methodology was based on the employment of a vector homotopy func-
tion H(X, t) to continuously transform a function G(X) into F(X). The variable t (0 ≤ t ≤ 1) was
the homotopy parameter, treated as a time-like fictitious variable, and the homotopy function was any
continuous function such that H(X, 0)= 0⇔ G(X)= 0 and H(X, 1)= 0⇔ F(X)= 0. More details
on the vector homotopy functions are given in Appendix D. To improve the vector homotopy method,
Liu et al. [2009] proposed a scalar homotopy function h(X, t) such that h(X, 0)= 0⇔‖G(X)‖ = 0 and
h(X, 1)= 0⇔‖F(X)‖ = 0. They introduced the following scalar fixed-point homotopy function:

h(X, t)= 1
2(t‖F(X)‖2− (1− t)‖X − X0‖

2), 0≤ t ≤ 1. (74)

Later, Dai et al. [2014] suggested more convenient scalar homotopy functions which hold for t ∈ [0,∞)
instead of t ∈ [0, 1]. We consider the following scalar Newton homotopy function to solve the system of
equations F(X)= 0:

hn(X, t)= 1
2‖F(X)‖2+ 1

2Q(t)
‖F(X0)‖

2, t ≥ 0, (75)

resulting in

Ẋ =−1
2

Q̇‖F‖2

Q‖BT F‖2
BT F, t ≥ 0, (76)

where B is the Jacobian (tangent stiffness) matrix evaluated with B = ∂F/∂X and Q(t) is a positive
and monotonically increasing function to enhance the convergence speed. Various possible choices of
Q(t) can be found in [Dai et al. 2014]. Finally, the solution vector X can be obtained by numerically
integrating (76) or using iterative Newton homotopy methods discussed in Appendix D.

3. Representative approach and its validation

This section is devoted to considering the validity of our proposed methodology. To this end, three
different problems are analyzed and compared with results from other methods given in the literature.
The critical load of the three-member rigid-knee frame is computed in Section 3.1. Section 3.2 examines
the classical Williams toggle problem. Section 3.3 is devoted to considering the accuracy and efficiency of
the calculated stiffness matrix in the presence of plasticity by solving the problem of the right-angle bent.
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Figure 2. The geometry of three-member rigid-knee frame and the cross section of elements.
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Figure 3. Load versus displacement at the location of point load.

3.1. Three-member rigid-knee frame. The geometry of the three-member rigid-knee frame and the
cross section of elements are shown in Figure 2. Using the CELLS/LIDS (CELLular Structures/Large
Inelastic DeformationS) code, the longer element is divided into 6 elements and shorter elements are
divided into 3 elements. A transverse perturbation loading 0.001P is also applied at the midpoint of
the longer member. Load versus displacement at the location of point load is plotted in Figure 3 and is
compared with the corresponding results presented by Shi and Atluri [1988]. As it is observed, there is
a good agreement between present calculated results and those obtained in [Shi and Atluri 1988]. Please
note that Shi and Atluri [1988] have also mentioned that their computed critical load is a little higher
than that obtained by Mallett and Berke [1966].

3.2. Classical Williams toggle problem. Williams [1964] developed a theory to study the behavior of
the members of a rigid jointed plane framework and applied it to the case of the rigid jointed toggle.
The classical toggle problem is exhibited in Figure 4, consisting of two rigidly jointed elements with
equal lengths L and anchored at their remote ends. The angle between the element and the horizontal
axis b is related to the length of the elements via the relation L sin(b)= 0.32. The characteristics of the
cross section of elements are also included in Figure 4. The structure is subjected to an external load W
along the z-direction at the apex, as illustrated in Figure 4. The deflection of the apex versus the applied
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Figure 5. Displacement at the apex of toggle versus the applied load.

load is calculated and compared with results given by Williams [1964] in Figure 5. As it is seen, good
correspondence is obtained.

3.3. Elastic-plastic right-angle bent. Throughout this section, the accuracy and efficiency of our method-
ology to consider the effect of plasticity is investigated. To this end, the problem of right-angle bent is
calculated and compared with the results from other works. Two equal members of length l with square
cross sections are located in the xy-plane and are subjected to an external load F along the z-direction
at the midpoint of one element, as shown in Figure 6. Both members are anchored at their remote ends.
Therefore, they are under both bending M and twisting T . The yielding condition for such a perfectly
plastic material subjected to bending and twisting is (M/M0)

2
+ (T/T0)

2
= 1, in which M0 and T0

are, respectively, fully plastic bending and twisting moments. Employing our CELLS/LIDS code, each
member is simulated by four elements. The formation of plastic hinges via the increase of external load
is presented in Figure 6 and the calculated amounts of Fl/M0 at the onset of plastic hinges are compared
with the results given by Shi and Atluri [1988]. The variation of δ× E I/(M0l2) with respect to Fl/M0 is
also plotted in Figure 7. Here, δ is the displacement of the tip of the right-angle bent along the z-direction,
and E is the Young’s modulus. The results also show good agreement with those in [Hodge 1959].

4. Low-mass metallic systems with architected cellular microstructures

This section is devoted to the computational study of large elastic-plastic deformations of the nickel-
based cellular microlattices fabricated at HRL Laboratories [Schaedler et al. 2011; Torrents et al. 2012].
To mimic the fabricated cellular microstructures, we model repetitive RVEs constructed by the strut
members with the same geometry and dimension as the experiment. Each member of the actual cellular
microstructure undergoing large elastic-plastic deformations is modeled by a single spatial beam finite
element with 12 DOF, providing the capability to decrease considerably the number of DOF in compar-
ison with the same simulation using commercial FE software. The strut members are connected in such
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a way that the topology of the fabricated cellular material is achieved. In the following, more details
on the formation of RVE mimicking the actual microstructural samples are given. The properties of
nickel as the parent material of the architected material is introduced within the CELLS/LIDS code by
the Young’s modulus E s

= 200 GPa and the yield stress σ s
y = 450 MPa. The considered RVE is a Bravais

lattice formed by repeating octahedral unit cells without any lattice members in the basal plane, as shown
in Figure 8. The lattice constant parameter of the unit cell is a; see Figure 8. The RVE is constructed by a
node-strut representation and includes the nodes coordinate and the nodes connectivity, which determines
the length of the members as well as the topology of the microlattice. Furthermore, the present RVE
approach accurately captures the microstructural length scale by introducing the area, the first and the
second moments of inertia, and the polar moment of inertia of the symmetrical/unsymmetrical cross
section of the hollow tube member within the formulation. Periodic boundary conditions (PBCs) are
considered along the x- and y-directions of the RVE, which are the directions perpendicular to the depth
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Figure 8. The unit cell of RVE consisting of an octahedron as well as the geometry of
strut members.

of the thin film microlattice. PBCs are involved by i a|x=0 =
j a|x=na along the x-direction and by

k a|y=0 =
l a|y=ma along the y-direction, in which αa(α = i, j, k, l) is the displacement vector of the α-th

node (39) on the boundary of the RVE, and n or m is determined based on the size of the RVE along
the x- or y-direction, respectively. For example, for the Na × Ma × K a RVE, n = N and m = M .
The depth of the RVE is modeled to be equal to the thickness of the thin film. Section 4.1 studies
the 1a × 1a × 2a RVE including 20 nodes and 32 strut members, and Section 4.2 examines both the
2a × 2a × 2a RVE with 60 nodes and 128 strut members and the 1a × 1a × 4a RVE with 36 nodes
and 64 members. We study the mechanical behavior of the thin film cellular microlattice under tension,
compression, and shear loadings. To this end, nodes on both the top and bottom faces of the RVE are
loaded accordingly. Microlattice members are cylindrical hollow tubes, the dimensions of which are also
included in Figure 8. Torrents et al. [2012] tested samples with the strut member length of L = 1–4 mm,
strut member diameter of D = 100–500µm, wall thickness of t = 100–500 mm, and inclination angle of
θ = 60◦. In Sections 4.1 and 4.2, we analyze the mechanical behavior of two different fabricated cellular
microlattices in which the geometry of their strut members (L , D, t , and θ) are explained, respectively.
Since nonlinear coupling of axial, torsional, and bidirectional-bending deformations is considered for
each member, the plasticity condition is determined by the following relation:

f (N11,M22,M33, T )= 1
M0
{M2

22+M2
33+ T 2

}
1/2
+

N 2
11

N 2
0
− 1= 0, (77)

where M0 and N0 are the fully plastic bending moment and fully plastic axial force, respectively.

4.1. Architected material with more flexibility as compared to parent material. An RVE including
20 nodes and 32 members with PBCs along the x- and y-directions is employed to model a cellular thin
film with the thickness of 2a; see Figure 9. This figure shows the application of the external compressive
loading, which changes according to tensile as well as shear loads. The dimensions of each member in
the microlattice is as follows: L = 1050µm, D = 150µm, and t = 500 nm.

The engineering stress as a function of the engineering strain is presented in Figure 10 for the nickel
cellular microlattice under compressive, tensile, and shear loads. The stress-strain curves corresponding
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Figure 9. 1a× 1a× 2a RVE including 20 nodes and 32 strut members.
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Figure 10. Stress-strain curve of the cellular microlattice subjected to tension, compres-
sion, and shear.

to the tensile and compressive loads result in the overall yield stress of the RVE σy = 15.117 kPa and
the Young’s modulus E = 2.291 MPa. Torrents et al. [2012] measured the respective values σy = 14.2±
2.5 kPa and E = 1.0± 0.15 MPa for their tested microlattice labeled with G (L = 1050± 32µm, D =
160± 24µm, t = 0.55± 0.06µm). The results calculated from our computational methodology agree
excellently with those obtained from experiment by Torrents et al. [2012]. It is found that this architected
material shows a yield stress much smaller than the parent material, which offers more flexibility in
tailoring the response to impulsive loads. In addition, we are able to calculate the shear modulus of the
cellular microlattice from our obtained stress-strain curve corresponding to the shear load, resulting in
G = 1.773 MPa.

The progressive development of plastic hinges as the tensile and compressive loads increase is shown
in Figure 11. The total deformation of the RVE considering the effect of plasticity corresponding to the
step B of compressive loading, step F of tensile loading, and step G of shear loading is also given in
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Figure 11. Progressive development of plastic hinges in cellular microlattice under ten-
sion and compression at different steps of loading shown in Figure 10. Left: plastic
hinges formed at steps A and C . Middle: plastic hinges formed at steps B and D. Right:
plastic hinges formed at step E .

 
 

Figure 12. Total elastic-plastic deformation of the cellular microstructure in red color
at different steps of loading shown in Figure 10. Left: at step B of the compressive
loading. Middle: at step F of the tensile loading. Right: at the step G of shear loading.
The initial unloaded state is also shown (dashed lines).

Figure 12. Since plastic deformation can absorb energy, this architected material will be appropriate for
protection from impacts and shockwaves in applications varying from helmets to vehicles and sporting
gear [Schaedler and Carter 2016].

4.2. Architected material with further increased relative density. In this case, the fabricated sample
is computationally modeled using an RVE consisting of 60 nodes and 128 members with PBCs along
the x- and y-directions; see Figure 13. The strut member dimensions are L = 1200µm, D = 175µm
and t = 26µm. The wall thickness of the member in this case is 52 times greater than that of the
previous case in Section 4.1. The RVE is subjected to both tensile and compressive loading in order to
study the mechanical properties of the architected material. The engineering stress-engineering strain
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Figure 13. 2a× 2a× 2a RVE including 60 nodes and 128 strut members.
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Figure 14. Stress-strain curve of the cellular microlattice subjected to tension and compression.

curve is plotted in Figure 14. Stress analysis shows bilinear elastic moduli for this cellular microlattice
subjected to both tension and compression. Elastic modulus for the first phase is calculated as 0.619 GPa
under both tensile and compressive loading. For the second phase it is calculated to be 0.284 GPa under
tension and 0.364 GPa under compression. The yield stress is obtained as 7.2222 MPa and 6.8519 MPa
subjected to tensile and compressive loading, respectively. Plastic hinges emanate at the stress level
6.6667 MPa when the microlattice is under tension and originate at the stress level 6.8519 MPa when the
microlattice is subjected to compression. It is found that both Young’s modulus and the yield stress of
the cellular microlattice increase significantly by increasing the strut thickness. It is well-known that the
elastic modulus and the yield strength of the cellular materials increase with the increase of their relative
density [Gibson and Ashby 1988]. Relative density is calculated as ρ/ρs , where ρ is the mass of the lattice
divided by the total bounding volume v and ρs is the mass of the lattice divided by only the volume of the
constituent solid material vs . Therefore, ρ/ρs = (m/v)/(m/vs)= vs/v in which vs = # of members×
π
[(1

2 D + t
)2
−
( 1

2 D
)2]
× L and v = 8a3 or 2a3 for a 2a × 2a × 2a RVE or a 1a × 1a × 2a RVE,
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Figure 15. 1a× 1a× 4a RVE consisting of 36 nodes and 64 strut members.

respectively. We calculate the relative densities of the cellular microlattices examined through this section
and Section 4.1 as 0.03511 and 0.00066, respectively. Torrents et al. [2012] extracted experimentally
the strain-stress curve of this microlattice (labeled A) under compression. They measured the Young’s
modulus E = 0.58±0.003 GPa and the yield stress σy = 8.510±0.025 MPa for the tested microlattice with
strut diameter D = 175± 26µm, strut length L = 1200± 36µm, and wall thickness t = 26.00± 2.6µm.
We see that there is a very good correspondence between our calculated mechanical properties of the
sample under compressive loading and those measured experimentally by Torrents et al. [2012].

 

 

 

Figure 16. Elastic-plastic deformation of the cellular microstructure in red color at dif-
ferent steps of loading shown in Figure 14. Left: at step A of tensile loading. Right: at
step B of compressive loading. The initial unloaded state is also shown (dashed lines).
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To investigate the effect of the size of the RVE on the macroscale response of the cellular microlattice,
the depth of the 2a× 2a× 2a RVE (Figure 13) is increased by a factor of two. Due to the PBCs along
the x- and y-directions, the size of the RVE along these directions is considered to be 1a. Therefore,
a 1a× 1a× 4a RVE consisting of 36 nodes and 64 strut members is modeled (see Figure 15), and the
corresponding stress-strain curve under compression is included in Figure 14. The stress analysis of this
1a×1a×4a RVE also exhibits bilinear elastic behavior with the elastic moduli of 0.7841 GPa for the first
linear phase and 0.4721 GPa for the second linear phase. The yield stress is calculated to be 7.3704 MPa,
which comes closer to the corresponding experimental value, σy = 8.510± 0.025 MPa, in comparison
with 6.8519 MPa calculated for a 2a× 2a× 2a RVE. Figure 16 shows the elastic-plastic deformation of
the 2a× 2a× 2a RVE under tension and compression.

5. Conclusion

We presented a computational approach for the large elastic-plastic deformation analysis of low-mass
metallic systems with architected cellular microstructures. Studies on this class of materials are of
interest since they can be optimized for specific loading conditions by changing the base material as
well as the topology of the architecture. The repetitive RVE approach is utilized to mimic the fab-
ricated cellular microlattices. The RVE is generated by a node-strut representation consisting of the
coordinate of nodes and the connectivity of nodes. Therefore, we can easily study the effect of the
change of topology on the overall mechanical response of the cellular material by changing both the
coordinates and connectivity of nodes. Moreover, the microstructural length scale of the cellular mate-
rial is accurately captured by introducing the area, the first and the second moments of inertia, and the
polar moment of inertia of the symmetrical/unsymmetrical cross section of the strut member within the
formulation.

In the current methodology, each member of the actual microlattice undergoing large elastic-plastic
deformations is modeled by a single FE with 12 DOF, which enables the study of the static and dynamic
behavior of the macrostructure directly and efficiently by using an arbitrarily large number of members.
We study the nonlinear coupling of axial, torsional, and bidirectional-bending deformations for each 3D
spatial beam element. The effect of plasticity is included by employing the plastic hinge method, and the
tangent stiffness matrix is explicitly derived for each member, utilizing the mixed variational principle in
the updated Lagrangian corotational reference frame. To avoid inverting the Jacobian matrix, we employ
homotopy methods to solve the incremental tangent stiffness equations.

The proposed methodology is validated by comparing the results of the elastic and elastic-plastic large
deformation analyses of some problems with the corresponding results given in the literature. Moreover,
two fabricated cellular microlattices with different dimensional parameters including the unit cell size
and the strut thickness are modeled using different RVEs. We study their mechanical behaviors under
all tensile, compressive, and shear loading. The comparison of the calculated mechanical properties
utilizing the present methodology with the corresponding experimental measurements available in the
literature reveals a very good agreement. Using this developed computational approach, we can homog-
enize any cellular structure easily, and we can design the topology of microstructure for any designated
properties.
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Appendix A. Toward the simplification of (26)

∫
l

N̂11ε
0L
11 dl =

∫
l

N̂11u10,1 dl =−
∫

l
N̂11,1u10 dl + N̂11u10

∣∣l
0, (A.1)∫

l
M̂22N22 dl =−

∫
l

M̂22u20,11 dl =−
∫

l
M̂22,11u20 dl + M̂22,1u20

∣∣l
0− M̂22u20,1

∣∣l
0, (A.2)∫

l
M̂33N33 dl =−

∫
l

M̂33u30,11 dl =−
∫

l
M̂33,11u30 dl + M̂33,1u30

∣∣l
0− M̂33u30,1

∣∣l
0, (A.3)∫

l
T̂2 dl =

∫
l
T̂ θ̂,1 dl =−

∫
l
T̂,1θ̂ dl + T̂ θ̂

∣∣l
0. (A.4)

Appendix B. Expressions for KN , KL and K P

KN =
l
6
σ 0

1



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0
2 0 0 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0

symm. 0 0 0 0
0 0 0

2 0
2



. (B.1)

To write KL and KP we split them into blocks:

KL =

[
K 11

L K 12
L

K 12
L K 22

L

]
, (B.2)

with

K 11
L =

E
l A



A2 0 0 0 AI3 −AI2

12(−I 2
2+AI22)

l2
12(−I2 I3+AI23)

l2
0 6(I2 I3−AI23)

l
6(−I 2

2+AI22)

l
12(−I 2

3+AI33)

l2
0

6(I 2
3−AI33)

l
6(−I2 I3+AI23)

l
AµIrr

E
0 0

symm. (−3I 2
3 + 4AI33) (3I2 I3− 4AI23)

(−3I 2
2 + 4AI22)


, (B.3)
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K 12
L =

E
l A



−A2 0 0 0 −AI3 AI2

12(I 2
2−AI22)

l2
12(I2 I3−AI23)

l2
0 6(I2 I3−AI23)

l
6(−I 2

2+AI22)

l
12(I 2

3−AI33)

l2
0

6(I 2
3−AI33)

l
6(−I2 I3+AI23)

l
symm. −

AµIrr

E
0 0

(−3I 2
3 + 2AI33) (3I2 I3− 2AI23)

(−3I 2
2 + 2AI22)


, (B.4)

K 22
L =

E
l A



A2 0 0 0 AI3 −AI2

12(−I 2
2+AI22)

l2
12(−I2 I3+AI23)

l2
0 6(−I2 I3+AI23)

l
6(I 2

2−AI22)

l
12(−I 2

3+AI33)

l2
0

6(−I 2
3+AI33)

l
6(I2 I3−AI23)

l
symm. AµIrr

E
0 0

(−3I 2
3 + 4AI33) (3I2 I3− 4AI23)

(−3I 2
2 + 4AI22)


. (B.5)

To express KP we first define

S = M0{M2
1 +M2

2 +M2
3 }

1/2, (B.6)

D1 = E
(
−3I 2

3 (l − 2lp)
2 M2

2 N 4
0 − 6I2 I3(l − 2lp)

2 M2 M3 N 4
0

+
(
−3I 2

2 (l − 2lp)
2 M2

3 + 4A(l2
− 3llp + 3l2

p)(I33 M2
2 + 2I23 M2 M3+ I22 M2

3 )
)
N 4

0

+ 4AI3l2 M2 N N 2
0S + 4AI2l2 M3 N N 2

0S + 4A2l2 N 2S2
)
+ AIrr l2 M2

1 N 4
0v, (B.7)

N1 = I3 M2 N 2
0 + I2 M3 N 2

0 + 2ANS, (B.8)

N2 =−AI23 M2+ I2 I3 M2+ I 2
2 M3− AI22 M3, (B.9)

N3 = I 2
3 M2− AI33 M2− AI23 M3+ I2 I3 M3, (B.10)

N4 =
(
−3I 2

3 (l − 2lp)M2− 3I2 I3(l − 2lp)M3+ 2A(2l − 3lp)(I33 M2+ I23 M3)
)
N 2

0 + 2AI3l NS, (B.11)

N5 =
(
−3I2(l − 2lp)(I3 M2+ I2 M3)+ 2A(2l − 3lp)(I23 M2+ I22 M3)

)
N 2

0 + 2AI2l NS, (B.12)

N6 =
(
−3I2(l − 2lp)(I3 M2+ I2 M3)+ 2A(l − 3lp)(I23 M2+ I22 M3)

)
N 2

0 − 2AI2l NS, (B.13)

N7 =
(
3I 2

3 (l − 2lp)M2+ 3I2 I3(l − 2lp)M3− 2A(l − 3lp)(I33 M2+ I23 M3)
)
N 2

0 + 2AI3l NS. (B.14)

Here N0 and M0 are the fully plastic axial force and the fully plastic bending moment, respectively.
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Then write

KP =


11K 11

P
12K 11

P
11K 12

P
12K 12

P
22K 11

P
12K 12

P
22K 12

P

11K 22
P

12K 22
Psymm.

22K 22
P

 , (B.15)

with

11K 11
P =

E(l − 2lp)

l AD1



A2 El2N 2
1

(l−2lp)
6AEN2 N 2

0N1 6AEN3 N 2
0N1

36E(l−2lp)N 2
2 N 4

0
l2

36E(l−2lp)N2N3 N 4
0

l2

symm. 36E(l−2lp)N 2
3 N 4

0
l2

 , (B.16)

12K 11
P =

E(l − 2lp)

l AD1


A2 Irr l2 M1 N 2

0N1v

(l−2lp)

AElN1N4

(l−2lp)
−

l AEN1N5

(l−2lp)

6AIrr M1N2 N 4
0 v

6EN2 N 2
0N4

l
−

6EN2 N 2
0N5

l

6AI rr M1N3 N 4
0 v

6EN3 N 2
0N4

l
−

6EN3 N 2
0N5

l

 , (B.17)

22K 11
P =

E(l − 2lp)

l AD1



A2 I 2
rr l2 M2

1 N 4
0 v

2

(l−2lp)

E Al Irr M1 N 2
0N4v
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−
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EN 2
4
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−

EN5N4
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symm. EN 2
5
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, (B.18)

11K 12
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Al(EN1)
2
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−

6E2(l−2lp)N2 N 2
0N1

lD1
−
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2 N 4
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Al3D1

symm.
−
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2N 2

3 N 4
0

Al3D1


, (B.19)

12K 12
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−
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−

E2N1N6
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−
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−
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−
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−
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−
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0N7
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−
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, (B.20)
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22K 12
P =


−

AI 2
rr l M2

1 N 4
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D1
−

E Irr M1 N 2
0N7v
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−
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−
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−
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AlD1

 , (B.21)
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(EN7)
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Appendix C. Transformation matrices between coordinate systems

Referring to Figure 1, x̄i are the global coordinates and ēi are the corresponding orthonormal basis
vectors. Similarly, x̃i and ẽi are respectively the local coordinates and the corresponding basis vectors
of the undeformed state and xi and ei are those of the deformed state. Herein, transformation matrices
relating local coordinates corresponding to the deformed and undeformed states to the global coordinates
are discussed. If αXi denote the global coordinates of the α-th node of the element in the undeformed
state, then the local orthonormal basis vectors of the undeformed state can be described with respect to
those of the global coordinates as

ẽ1 = (1X̃1 ē1+1X̃2 ē2+1X̃3 ē3)/L̃, (C.1)

ẽ2 = (ē3× ẽ1)/|ē3× ẽ1|, (C.2)

ẽ3 = ẽ1× ẽ2, (C.3)

in which

1X̃ i =
2 X i −

1 X i i = 1, 2, 3, (C.4)

L̃ = {(1X̃1)
2
+ (1X̃2)

2
+ (1X̃3)

2
}

1/2. (C.5)
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Thus, ẽi and ēi (i = 1, 2, 3) are related via the following equation [Simo 1985]:

ẽ1

ẽ2

ẽ3

=
 1X̃1/L̃ 1X̃2/L̃ 1X̃3/L̃

−1X̃2/S̃ 1X̃1/S̃ 0

−1X̃11X̃3/(L̃ S̃) −1X̃21X̃3/(L̃ S̃) S̃/L̃


ē1

ē2

ē3

 , (C.6)

where

S̃ = {(1X̃1)
2
+ (1X̃2)

2
}

1/2. (C.7)

Therefore, the matrix transforming global coordinates to the local coordinates of the undeformed state is
obtained as

T̃ =

 1X̃1/L̃ 1X̃2/L̃ 1X̃3/L̃

−1X̃2/S̃ 1X̃1/S̃ 0

−1X̃11X̃3/(L̃ S̃) −1X̃21X̃3/(L̃ S̃) S̃/L̃

 . (C.8)

Note that, for the case when the element is parallel to the x̄3-axis, the local coordinates for the undeformed
state are determined by

ẽ1 = ē3, ẽ2 = ē2, ẽ3 =−ē1. (C.9)

Similarly, the transformation matrix relating local coordinates of the deformed state to the global coordi-
nates can be obtained. For this case, αX ′i is introduced to describe the global coordinates of the α-th node
of the element in the deformed state. Therefore, orthonormal basis vectors in the corotational reference
coordinate system ei can be chosen as

e1 = (1X1 ē1+1X2 ē2+1X3 ē3)/L , (C.10)

e2 = (ẽ3× e1)/|ẽ3× e1|, (C.11)

e3 = e1× e2, (C.12)

where 1X i =
2 X ′i −

1 X ′i and L = {(1X1)
2
+ (1X2)

2
+ (1X3)

2
}

1/2.
By replacing ẽ3 from (C.6) into (C.11), we obtain

e1

e2

e3

=


1X1/L 1X2/L 1X3/L

−
1X̃21X̃31X3

L̃ S̃LL
−

1X2 S̃
L L̃L

1X̃11X̃31X3

L̃ S̃LL
−

1X1 S̃
L L̃L

−
1X̃11X̃31X2

L̃ S̃LL
+

1X11X̃21X̃3

L L̃ S̃L

A31 A32 A33


ē1

ē2

ē3

 (C.13)

where

A31 =
1X̃11X̃31X11X3

L̃ S̃L2L
+
1X2

1 S̃

L2 L̃L
+
1X̃21X̃31X21X3

L̃ S̃L2L
+
1X2

2 S̃

L2 L̃L
,
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A32 =
1X̃11X̃31X11X2

L̃ S̃L2L
−
1X2

11X̃21X̃3

L2 L̃ S̃L
−
1X̃21X̃31X2

3

L̃ S̃L2L
−
1X21X3 S̃

L2 L̃L
,

A33 =
1X̃11X̃31X11X3

L̃ S̃L2L
+
1X2

1 S̃

L2 L̃L
+
1X̃21X̃31X21X3

L̃ S̃L2L
+
1X2

2 S̃

L2 L̃L
,

L=
{(
−
1X̃21X̃31X3

L̃ S̃L
−
1X2 S̃

L L̃

)2

+

(
1X̃11X̃31X3

L̃ S̃L
+
1X1 S̃

L L̃

)2

+

(
−
1X̃11X̃31X2

L̃ S̃L
+
1X11X̃21X̃3

L L̃ S̃

)2}1/2

. (C.14)

Thus, the transformation matrix is obtained as

T =


1X1/L 1X2/L 1X3/L

−
1X̃21X̃31X3

L̃ S̃LL
−

1X2 S̃
L L̃L

1X̃11X̃31X3

L̃ S̃LL
+

1X1 S̃
L L̃L

−
1X̃11X̃31X2

L̃ S̃LL
+

1X11X̃21X̃3

L L̃ S̃L

B31 B32 B33

 , (C.15)

where

B31 =
1X̃11X̃31X11X3

L̃ S̃L2L
+
1X2

1 S̃

L2 L̃L
+
1X̃21X̃31X21X3

L̃ S̃L2L
+
1X2

2 S̃

L2 L̃L
,

B32 =
1X̃11X̃31X11X2

L̃ S̃L2L
−
1X2

11X̃21X̃3

L2 L̃ S̃L
−
1X̃21X̃31X2

3

L̃ S̃L2L
−
1X21X3 S̃

L2 L̃L
,

B33 =
1X̃11X̃31X11X3

L̃ S̃L2L
+
1X2

1 S̃

L2 L̃L
+
1X̃21X̃31X21X3

L̃ S̃L2L
+
1X2

2 S̃

L2 L̃L
.

Finally, the transformation matrix for changing the generalized element coordinates consisting of
12 components in the global reference frame to the corresponding coordinates in the corotational refer-
ence frame is given by

Q=


T 0

T
T

0 T

 . (C.16)

Then, components of the second-order tensors, such as the tangent stiffness matrix, as well as first-order
tensors, like the generalized nodal displacements and the generalized nodal forces, are transformed to
the global coordinates system based on quotient rule using the presented transformation matrices.

Appendix D.

Two of the extensively used vector homotopy functions are the fixed-point homotopy function and the
Newton homotopy function, defined respectively as

HF (X, t)= t F(X)+ (1− t)(X − X0)= 0, 0≤ t ≤ 1, (D.1)
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HN (X, t)= t F(X)+ (1− t)(F(X)− F(X0))= 0, 0≤ t ≤ 1. (D.2)

Here, X0 represents the initial guess of the solution. Using the vector homotopy method, the solution of
F(X)= 0 can be obtained by numerically integrating the following relation:

Ẋ =−
(
∂H
∂X

)−1 ∂H
∂t
, 0≤ t ≤ 1, (D.3)

which requires the inversion of the matrix ∂H/∂X at each iteration.
A series of iterative Newton homotopy methods has also been developed, where Q(t) does not need to

be determined [Dai et al. 2014]. Considering Ẋ = λu, the general form of the scalar Newton homotopy
function becomes

Ẋ =−
Q̇(t)

2Q(t)
‖F(X)‖2

FT Bu
u. (D.4)

Using the forward Euler method, (D.4) is discretized and the general form of the iterative Newton homo-
topy method is obtained as

X (t +1t)= X (t)− (1− γ )
FT Bu
‖Bu‖2

u, (D.5)

where −1< γ < 1.
The reason homotopy methods converge with the required accuracy in the case of complex problems

(in the presence of the plasticity and buckling in a large number of members of the microlattice) is
thanks to raising the position of the driving vector u in Ẋ = λu to introduce the best descent direction
in searching the solution vector X . In the so-called continuous Newton method we have u = B−1 F,
resulting in loss of accuracy from inverting the Jacobian matrix when it is singular or severely ill-
conditioned, leading to oscillatory, nonconvergent behavior. Whereas in (76), we have u = BT F with
λ = − 1

2 Q̇‖F‖2/(Q‖BT F‖2), and it can also be expressed by two vectors such as F and BT F. The
hypersurface formulated in (75) defines a future cone in the Minkowski space Mn+1 in terms of the
residual vector F and a positive and monotonically increasing function Q(t) as

X T gX = 0, (D.6)

where

X =
[

F(X)/‖F(X0)‖

1/
√

Q(t)

]
, (D.7)

g =
[

In 0n×1

01×n −1

]
, (D.8)

and In is the n× n identity matrix. Then the solution vector X is searched along the path kept on the
manifold defined by the following equation:

‖F(X)‖2 = ‖F(X0)‖
2

Q(t)
. (D.9)

Therefore, an absolutely convergent property is achieved by guaranteeing Q(t) as a monotonically in-
creasing function of t . In fact, (D.9) enforces the residual error ‖F(X)‖ to vanish when t is large.
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