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APPROXIMATE ANALYSIS OF SURFACE WAVE-STRUCTURE INTERACTION

NIHAL EGE, BARIŞ ERBAŞ, JULIUS KAPLUNOV AND PETER WOOTTON

Surface wave-structure interaction is studied starting from a specialised approximate formulation in-
volving a hyperbolic equation for the Rayleigh wave along with pseudostatic elliptic equations over the
interior of an elastic half-space. The validity of the proposed approach for modelling a point contact is
analysed. Explicit dispersion relations are derived for smooth contact stresses arising from averaging
the effect of a regular array of spring-mass oscillators and also of elastic rods attached to the surface.
Comparison with the exact solution of the associated plane time-harmonic problem in elasticity for the
array of rods demonstrates a high efficiency of the developed methodology.

1. Introduction

Dynamic soil-structure interaction was investigated in great detail in numerous publications (for exam-
ples, see the widely cited book [Wolf 1985] and general reference work [Luco 1982]) with the emphasis
usually placed on the effect of bulk waves, in particular in the insightful papers by Boutin and Roussillon
[2004; 2006]. Seemingly surface wave-structure interaction has not been studied until very recently when
it has been motivated by seismic metasurfaces design, see [Colombi et al. 2016; Colquitt et al. 2017],
in which an array of rods attached to the surface of an elastic half-space is analysed starting from full
dynamic equations in linear elasticity.

In this paper, a specialized surface wave model, e.g., see [Kaplunov and Prikazchikov 2013; 2017], is
adapted for a broad range of soil-structure interaction problems. The mathematical formulation consists
of an explicit wave equation on the surface along with pseudostatic elliptic equations governing the
decay over the interior. Although the model has been previously implemented to a variety of dynamic
scenarios, including 3D moving load problems [Kaplunov et al. 2013; Erbaş et al. 2017], its validity for
studying soil-structure interaction is not immediately obvious. The point is that the asymptotic theory
exposed in [Kaplunov and Prikazchikov 2013; 2017] is oriented to near-resonance excitation in the form
of a prescribed wave disturbance with the phase speed close to the Rayleigh wave one. Thus, for soil-
structure interaction problems involving unknown contact stresses, the assumption of near-resonance
behaviour always has to be verified a posteriori.

The paper is organized as follows: 3D equations governing transient surface wave-structure interaction
are presented in Section 2. For the sake of simplicity, structure dynamics is modelled by a scalar partial
differential equation in vertical displacement, which is specified in what follows. In Section 3, a plane
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point time-harmonic contact is considered. It is demonstrated that the approximate surface wave model
is not applicable due to presence of a spurious localized component. At the same time, the sought after
Rayleigh wave contribution predicted by this model is identical to that within the exact solution of the
plane time-harmonic problem given in the Appendix.

The effect of smooth contact surface stresses coming from homogenizing regular arrays of resonators
attached to the surface of a half-space is studied in Sections 4 and 5. The simplest spring-mass resonators
are considered in Section 4, while the next section deals with an array of elastic rods. Explicit dispersion
relations are readily derived in both cases. Comparison of the approximate solution in Section 5 with the
exact solution presented in [Colquitt et al. 2017] shows a remarkable similarity.

2. Statement of the problem

Let us study dynamic interaction of an elastic structure and a homogeneous isotropic half-space, see
Figure 1, starting from the earlier proposed asymptotic model for surface wave fields, e.g., see [Kaplunov
and Prikazchikov 2017]. According to this model, we have for the longitudinal wave potential ϕ the
hyperbolic equation

12ϕ−
1

c2
R
ϕt t =

(1+ k2
2)

2µB
P (2-1)

at the contact surface x3 = 0 along with the elliptic equation

∂2ϕ

∂x2
3
+ k2

112ϕ = 0 (2-2)

over the interior (−∞< x1, x2 <∞, 0< x3 <∞), where

k2
i = 1−

c2
R

c2
i
, i = 1, 2,

and

B =
k1

k2
(1− k2

2)+
k2

k1
(1− k2

1)− (1− k4
2).

In the formulae above, t is time, c1, c2, and cR are the longitudinal, shear, and Rayleigh wave speeds,
respectively, µ is the Lamé constant, P = P(x1, x2, t) is the unknown normal contact stress, 12 =

∂2/∂x2
1 + ∂

2/∂x2
2 . The displacement vector is expressed through the longitudinal and shear potentials ϕ

0 x3
x1

x2

Figure 1. Elastic solid-structure interaction.
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P = e−iωt

Figure 2. Point time-harmonic force.

and ψ as

u = (u1, u2, u3)= gradϕ+ curlψ, (2-3)

where

ψ = (−ψ2, ψ1, 0),

with its components satisfying the equations

∂2ψi

∂x2
3
+ k2

212ψi = 0, i = 1, 2, (2-4)

over the surface x3 > 0 and the conditions

∂ψi

∂x3
=

1+ k2
2

2
∂ϕ

∂xi
(2-5)

at the interface x3 = 0.
For the sake of simplicity, we model the dynamic behaviour of an elastic structure, see Figure 1, by

the following scalar equation:

Lv = mvt t (2-6)

over the region −∞< x1, x2 <∞, −∞< x3 < 0, where v(xk, t), k = 1, 2, 3 is the vertical displacement,
m is the mass, and L is a symbolic notation for a differential operator in the variables xk . The contact
conditions at x3 = 0 are taken in the form

P = lv and v = u3, (2-7)

where l also denotes a differential operator in xk . The presented formulation is oriented to the scenario
with a dominant contribution of surface waves to the overall dynamic response. In this case, the effect
of bulk waves is neglected; see [Achenbach 1976; Ewing et al. 1957] for more detail. The ranges of
validity of such assumptions are evaluated in what follows.
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3. Point contact

Consider first a plane time-harmonic problem in cartesian coordinates (x1, x3). For a point contact, we
get from (2-1) at P =−P0δ(x1)e−iωt in its right-hand side

∂2ϕ

∂x2
1
−

1
c2

R

∂2ϕ

∂t2 =−
1+ k2

2

2µB
P0δ(x1)e−iωt , (3-1)

where ω is angular frequency, P0 is constant amplitude of normal stress, and δ(x1) denotes the Dirac-delta
function. The solution of this equation is

ϕ(x1, 0, t)= i
1+ k2

2

4µB
P0cR

ω
eiω(|x1|/cR−t), (3-2)

corresponding to propagating surface Rayleigh wave patterns.
Next, we apply a Fourier transform in x1 to the 2D counterpart of the elliptic equation (2-2) over the

interior, having
d2ϕF

dx2
3
− k2

1k2ϕF
= 0, (3-3)

where ϕF denotes the transformed potential and k is Fourier transform parameter. Its solution can be
written as

ϕF (k, x3, t)=
1+ k2

2

2µB
P0

k2−ω2/c2
R

e−k1|k|x3−iωt . (3-4)

As a result,

ϕ(x1, x3, t)=
(1+ k2

2)P0e−iωt

4πµB

∫
∞

−∞

e−k1|k|x3

k2−ω2/c2
R

e−ikx1 dk. (3-5)

Let us now split the integral in (3-5) into two parts as∫
∞

−∞

e−k1|k|x3

k2−ω2/c2
R

e−ikx1 dk = I1+ I2, (3-6)

where

I1 =
cR

2ω

∫
∞

−∞

(
e−k1ω x3/cR

k−ω/cR
−

e−k1ω x3/cR

k+ω/cR

)
e−ikx1 dk (3-7)

and

I2 =
cR

ω

∫
∞

0

(
e−k1kx3 − e−k1ω x3/cR

k−ω/cR
−

e−k1kx3 − e−k1ω x3/cR

k+ω/cR

)
cos(kx1) dk. (3-8)

The integral I2 has no poles and can be readily evaluated numerically. As for the integral I1, it accounts
for the contribution of the Rayleigh wave poles and takes the form

I1(x1, x3)=
iπcR

ω
e(i |x1|−k1x3)ω/cR . (3-9)

It is worth noting that the last formula, due to the presence of |x1|, demonstrates a discontinuity of
the derivative with respect to x1 at x1 = 0 not only at the surface x3 = 0 but also over the interior
x3 > 0. However, this is also a feature of the Rayleigh pole contribution to the exact solution of the
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J2

y1

J2

y1

Figure 3. Variation of the integral J2 along the horizontal and vertical axes for ν = 0.25
and cR = 0.914c2. Left: y3 = 1. Right: y1 = 0.

associated plane problem in elasticity presented in the Appendix. In fact, calculating the aforementioned
contribution ϕ1 to integral (A-5), we have

ϕ1(x1, x3, t)=
(1+ k2

2)P0

πµR′(cR/c2)

c2

cR
I1(x1, x3)e−iωt , (3-10)

where the Rayleigh denominator is defined by (A-10). It can easily be verified that

R′(cR/c2)= 4B c2/cR, (3-11)

with constant B from (2-1). Thus, the approximation of the surface wave field given by formulae (3-5)
with (3-9) and (3-10) coincide.

At the same time, the integral I2 is a spurious product of the utilized model for the surface Rayleigh
wave, which does not appear in the exact solution of the problem. It corresponds to a pattern localized near
a point contact and arises in the model due to neglecting the integrals over the branch cuts characteristic
of the exact formulation, e.g., see [Achenbach 1976; Ewing et al. 1957]. This integral may be rewritten
in the form

I2 =
ω

cR
J2 (3-12)

with

J2 =

∫
∞

0

(
e−k1ζ y3 − e−k1c2/cR y3

ζ − c2/cR
−

e−k1ζ y3 − e−k1c2/cR y3

ζ + c2/cR

)
cos(ζ y1) dζ, (3-13)

where yi = ω/c2 xi , i = 1, 3. It is plotted in Figure 3 for the Poisson ratio ν = 0.25 and consequently
with the Rayleigh wave speed cR = 0.914c2 for y1 = 0 (Figure 3, left) and y3 = 1 (Figure 3, right).

The spurious component of the solution related to the integral J2 makes more problematic the appli-
cability of the promoted surface wave model for tackling a point contact. Moreover, the latter cannot
also be treated in the general framework of linear elasticity. In the latter case, the vertical displacement
u3 does not take a finite value at the origin x1 = x3 = 0 because of the divergence of a Fourier integral
following from (A-5), (A-6), and (2-5); see [Ewing et al. 1957] for more detail. In literature, the problem
is usually overcome by distributing a point contact, e.g., see [Satto and Wada 1977].
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4. Array of mass-spring oscillators

Consider now a plane strain problem for a regular array of mass-spring oscillators attached to the surface
of the half-space x3 = 0; see Figure 4. Let m represent mass, χ the spring stiffness, and a the distance
between the oscillators. Then, we have from the general equation (2-1),

∂2ϕ

∂x2
1
−

1
c2

R

∂2ϕ

∂t2 =−
1+ k2

2

2µB

∞∑
n=−∞

p(x1, t)δ(x1+ na), (4-1)

where p is a contact force. In this case, the original 3D elliptic equations for the interior in Section 2
become

∂2ϕ

∂x2
3
+ k2

1
∂2ϕ

∂x2
1
= 0, (4-2)

∂2ψ

∂x2
3
+ k2

2
∂2ψ

∂x2
1
= 0, (4-3)

where ϕ = ϕ(x1, x3, t) and ψ = ψ(x1, x3, t) with ψi = ψ , i = 1, 2. The relation between the potentials
now takes the form

∂ψ

∂x3
=

1+ k2
2

2
∂ϕ

∂x1
. (4-4)

We also need the formula for the vertical displacement:

u3 =
∂ϕ

∂x3
+
∂ψ

∂x1
. (4-5)

Let the vibration of each of the oscillators be governed by

mvt t +χv = p. (4-6)

In addition, we impose the continuity of vertical displacements; see (2-7)2.
First, we distribute the contact stress in the right-hand side of (4-1), setting

∞∑
n=−∞

p(x1, t)δ(x1+ na)≈ 1
a

p(x1, t). (4-7)

a

χ

m

Figure 4. Array of mass-spring oscillators.
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Thus, a typical wavelength is assumed to be much greater than the distance between the oscillators. A
more sophisticated homogenization technique for a regular array of oscillators is reported in [Boutin and
Roussillon 2006].

For a time-harmonic wave in the form p = p0 exp i(kx1−ωt), where p0 is a constant, k is the
wavenumber, and ω is the frequency, we readily obtain from equations (4-2)–(4-5)

ϕ =−
A

kk1
ei(kx1−ωt)−kk1x3 (4-8)

and

ψ =
2i A

k(1+ k2
2)

ei(kx1−ωt)−kk2x3, (4-9)

where A is an unknown amplitude. As a result, (4-6) yields

v =
p0

m(ω2
0−ω

2)
ei(kx1−ωt) (4-10)

with
ω0 =

√
χ/m. (4-11)

We also have from (4-5)

u3 = A
(

e−kk1x3 −
2e−kk2x3

1+ k2
2

)
ei(kx1−ωt). (4-12)

On substituting formulae (4-8), (4-10), and (4-12) into the wave equation (4-1) and the continuity condi-
tion (2-7)2, we arrive at linear algebraic equations with unknowns A and p0. They are

(k2
−ω2/c2

R)A =
(1+ k2

2)kk1

2µaB
p0, (4-13)

1− k2
2

1+ k2
2

A =
1

m(ω2−ω2
0)

p0. (4-14)

The associated dispersion relation can be presented as

K 2
−�2

= r(s2�2
− 1)K , (4-15)

where the dimensionless wave number and frequency are given by

K = ka, �=
ωa
cR

(4-16)

and

s =
cR

ω0a
, r =

(1− k2
2)k1χ

2µB
. (4-17)

The zero of the left-hand side in (4-15), K =�, corresponds to the Rayleigh surface wave, whereas
its right-hand side zero, �0 = s−1, coincides with the eigenfrequency of the considered oscillator. The
exploited surface wave model is formally valid near the left-hand side zero, e.g., see [Kaplunov and
Prikazchikov 2017], and it becomes exact at K0 = s−1.
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�

K

Figure 5. Dispersion curve for an array of mass-spring oscillators. The dispersion equa-
tion (4-18) is plotted by a black line, the shear wave (K =�) is plotted by the red dotted
line, and the Rayleigh wave (K = c2/cR �) is plotted by the blue dotted line.

Numerical results are presented in Figure 5, where the dispersion curve calculated by the formula

K =
r(s2�2

− 1)+
√

r2(s2�2− 1)2+ 4�2

2
(4-18)

is plotted by solid line. In this figure, m = 1000 kg/m, a = 2 m, µ= 325 MPa, χ = 4µ, c1 = 232.379 m/s,
c2 = 158.114 m/s, and cR = 140.109 m/s. The Rayleigh wave K = c2/cR � (blue dotted line) and
shear wave K =� (red dotted line) are also shown along with the eigenfrequency �0 (horizontal line).
The figure demonstrates that the validity range of the model is located near the point with coordinates
(K0, �0).

5. Array of elastic rods

In this section, we study a more elaborate plane time-harmonic problem for an array of elastic rods of
height H and width h; see Figure 6. We start from the relations in the previous sections using, instead
of (4-6), the boundary value problem for longitudinal vibration of a rod over the interval −H ≤ x3 ≤ 0.
This is given by the equation

E
∂2v

∂x2
3
−m

∂2v

∂t2 = 0, (5-1)

subject to the boundary conditions

∂v

∂x3
=

p
Eh
, x3 = 0, (5-2)

∂v

∂x3
= 0, x3 =−H, (5-3)

where m and E are the mass density and Young’s modulus, respectively.
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H

h a

Figure 6. Array of elastic rods.

The solution of the problem (5-1)–(5-3) is

v =−
c0 p
Ehω

cos(ω(x3+ H)/c0)

sin(ωH/c0)
, (5-4)

with
c0 =

√
E/m. (5-5)

The continuity of the displacements at x3 = 0, see (2-7), taking into account (4-12), results in

c0

ω
cot

ωH
c0

p0 =
1− k2

2

1+ k2
2

A. (5-6)

The compatibility of the linear homogeneous equations (5-6) and (4-13) leads to the dispersion relation

K 2
−�2

= qθh K� tan(θH�), (5-7)

where K and � are given by (4-16) as above and

θh =
cRh
c0a

, θH =
cR H
c0a

, q =
Ek1(1− k2

2)

2µB
. (5-8)

The zeros of the right-hand side in (5-7),

�m =
πm
θH

, m = 1, 2, 3, . . . , (5-9)

correspond to the eigenfrequencies of a rod with free ends, for which p = 0 in (5-2). At the same time,
its poles,

�m =
π

2θH
(2m− 1), m = 1, 2, 3, . . . , (5-10)

are related to a rod with a clamped end at x3 = 0. In this case we have to impose the boundary condition
v = 0 instead of (5-2).

The exact solution of the studied problem in [Colquitt et al. 2017] rewritten in the notation of the
present paper becomes

R
(

cR

c2

�

K

)
=−

2Bqθh

k1

(
�

K

)3
√

1−
c2

R

c2
1

�2

K 2 tan(θH�), (5-11)
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�

K

Figure 7. Dispersion curves for the array of rods. Black solid lines correspond to the
approximate dispersion equation (5-14) with eigenfrequencies (5-9) and (5-10) indicated
by the horizontal dashed and solid lines respectively.

where the Rayleigh denominator R is defined in the Appendix; see (A-10). Its one-term Taylor expansion
around �= K is given by

R
(

cR

c2

�

K

)
≈

cR

c2

R′(cR/c2)

2K 2 (�2
− K 2). (5-12)

Then, on substituting the latter into the exact dispersion relation (5-11) and taking into consideration
identity (3-11), we arrive at

K 2
−�2

=
qθh �

3

k1K

√
1−

c2
R

c2
1

�2

K 2 tan(θH�). (5-13)

As might be expected, the right-hand sides of dispersion relations (5-7) and (5-13) are identical at �= K ,
i.e., for the Rayleigh wave.

Numerical data are given in Figures 7 and 8 for the parameters of rods E = 1.7 GPa, m = 450 kg ·m−3,
H = 14 m, and h = 0.3 m with the same distance between the oscillators and the same parameters of the
half-space as in the previous section. For the surface wave model, the dispersion curves are calculated
starting from the explicit formula

K =
qθh� tan(θH�)+

√
q2θ2

h�
2 tan2(θH�)+ 4�2

2
, (5-14)

while the curves originating from the exact solution are plotted from the transcendental equation (5-11).
Since the curves corresponding to (5-11) and (5-14) are virtually identical, in Figure 7, only the approxi-
mate dispersion equation is plotted by solid black lines. Eigenfrequency (5-9) and (5-10) are shown in this
figure by dashed and solid horizontal lines, respectively. As before, the Rayleigh and shear waves are also
displayed. In Figure 8, the curves by (5-11) and (5-14) are depicted by blue and black lines, respectively.
It is worth noting that the adapted approximate model also demonstrates a reasonable accuracy near the
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�

K

�

K

Figure 8. Comparison of the formula (5-14) and the dispersion relation (5-11), corre-
sponding to black and blue solid lines respectively, near the first (left) and second (right)
band-gaps.

band-gaps centred around frequencies (5-10) related to a clamped surface of the half-space, which does
not support Rayleigh wave propagation.

6. Concluding remarks

An approximate scheme starting from the explicit model for the Rayleigh wave, e.g., see [Kaplunov and
Prikazchikov 2017], has been developed for surface wave-structure interaction problems. This scheme
is proven not valid for analysing a point harmonic contact. As a result, its various extensions aimed at
taking into consideration contact stresses distributed over small surface regions, for example using the
methodology in [Muravskii 2008], seem to be of obvious interest.

Comparison with the exact solution of the plane time-harmonic problem for an array of elastic rods
attached to the surface demonstrates an acceptable accuracy of the scheme, see Figures 7 and 8, which
gives a notable prediction even near band-gaps. In this case, there is also a potential for applying ad-
vanced homogenization techniques, as has been done in [Boutin and Roussillon 2006]. Overall, a very
promising outcome of the presented comparison indicates clear prospects for implementing the scheme
in more elaborated problems of surface wave-structure interaction inspired by the modelling of seismic
metasurfaces [Colombi et al. 2016; Colquitt et al. 2017] and also calculating the seismic response of
wind turbines and farms, e.g., see [Saccorotti et al. 2011; Westwood et al. 2015].

Appendix

A.1. Plane problem in elasticity for a half-space. Consider the plane time-harmonic problem in elas-
ticity for a half-space −∞< x1, x2 <∞, 0< x3 <∞ subject to the following boundary conditions at
x3 = 0:

σ13 = µ

(
2
∂2ϕ

∂x1∂x3
+
∂2ψ1

∂x2
1
−
∂2ψ2

∂x2
3

)
= 0, (A-1)
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σ33 = λ

(
∂2ϕ

∂x2
1
+
∂2ϕ

∂x2
3

)
+ 2µ

(
∂2ϕ

∂x2
3
+
∂2ψ

∂x1x3

)
=−P0δ(x1)e−iωt , (A-2)

where λ and µ are Lamé parameters, and the wave potentials ϕ and ψ satisfy the equations

∂2ϕ

∂x2
1
+
∂2ϕ

∂x2
3
−

1
c2

1

∂2ϕ

∂t2 = 0, (A-3)

∂2ψ

∂x2
1
+
∂2ψ

∂x2
3
−

1
c2

2

∂2ψ

∂t2 = 0. (A-4)

The solution of the formulated problem expressed through Fourier integrals takes the form, e.g., see
[Achenbach 1976],

ϕ(x1, x3, t)=−
P0e−iωt

2πµ

∫
∞

−∞

2k2
−ω2/c2

2

F
e−ikx1−α1x3 dk, (A-5)

and

ψ(x1, x3, t)=−
P0 e−iωt

2πµ

∫
∞

−∞

2ikα1

F
e−ikx1−α2x3 dk, (A-6)

where
F = (2k2

−ω2/c2
2)

2
− 4k2α1α2 (A-7)

and
αi =

√
k2−ω2/c2

i , i = 1, 2. (A-8)
The function F can be written as

F(k, ω)= k4 R(c), (A-9)

where R is the well-known Rayleigh denominator given by

R(c)= (2− c2)2− 4
√

1− c2
√

1− γ 2c2, (A-10)

where c = ω/(kc2) and

γ =

√
c2

c1
=

√
1− 2ν
2− 2ν

, (A-11)

with ν denoting the Poisson’s ratio.
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