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CONTRACTION OF THE PROXIMAL MAP AND GENERALIZED
CONVEXITY OF THE MOREAU–YOSIDA REGULARIZATION IN THE

2-WASSERSTEIN METRIC

ERIC A. CARLEN AND KATY CRAIG

We investigate the Moreau–Yosida regularization and the associated proximal
map in the context of discrete gradient flow for the 2-Wasserstein metric. Our
main results are a stepwise contraction property for the proximal map and an
“above the tangent line” inequality for the regularization. Using the latter, we
prove a Talagrand inequality and an HWI inequality for the regularization, under
appropriate hypotheses. In the final section, the results are applied to study the
discrete gradient flow for Rényi entropies. As Otto showed, the gradient flow
for these entropies in the 2-Wasserstein metric is a porous medium flow or a fast
diffusion flow, depending on the exponent of the entropy. We show that a striking
number of the remarkable features of the porous medium and fast diffusion flows
are present in the discrete gradient flow and do not simply emerge in the limit as
the time-step goes to zero.

1. Introduction

Given a complete metric space (X, d), a functional E : X→ R∪ {∞}, and τ > 0,
the Moreau–Yosida regularization of E is

Eτ (y) := inf
x∈X

{
1

2τ
d(x, y)2+ E(x)

}
.

The corresponding proximal set Jτ : X→ 2X is

Jτ (y) := argmin
x∈X

{
1

2τ
d(x, y)2+ E(x)

}
.

If there is a unique element in Jτ (y), we denote it by yτ and call it the proximal
point. We call y 7→ yτ the proximal map.
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When X =H is a Hilbert space, a suitable context in which to develop the theory
of the Moreau–Yosida regularization is the class of functionals that are proper,
lower semicontinuous, and convex. For all such E and τ > 0, the Moreau–Yosida
regularization Eτ is convex and Fréchet differentiable [Moreau 1965]. Further-
more, its derivative is Lipschitz continuous, and, as τ → 0, Eτ ↗ E pointwise
[Brézis 1973]. The Moreau–Yosida regularization provides a way to regularize E
that preserves convexity.

The proximal map is similarly well-behaved for functionals that are proper,
lower semicontinuous, and convex. For each y ∈ H and τ > 0, there is a unique
proximal point yτ , so that the proximal map y 7→ yτ is well-defined on all of H.
As shown in [Moreau 1965], the proximal map is a contraction in the Hilbert space
norm:

‖xτ − yτ‖ ≤ ‖x − y‖ for all x, y ∈H.

One of the main reasons for interest in the Moreau–Yosida regularization and
proximal map is their relation to gradient flow. The gradient flow of a functional
E is the Cauchy problem

d
dt

y(t)=−∇E(y(t)), y(0) ∈ D(E)= {z ∈H : E(z) <∞}, (1-1)

which is well-defined as long as ∇E exists along the flow y(t).1 The Moreau–
Yosida regularization plays a key role in the proof of existence for solutions to the
gradient flow [Brézis 1971]. First, one uses the additional regularity of Eτ to find
solutions to the related gradient flow problem

d
dt

yτ (t)=−∇Eτ (yτ (t)), yτ (0) ∈ D(E).

Then, as τ → 0, the curves yτ (t) converge to a curve y(t) that solves (1-1) in an
appropriate sense.

The proximal map expresses the discrete dynamics of gradient flow. Specifically,
one may use the proximal map to define the discrete gradient flow sequence

yn = (yn−1)τ , y0 ∈ D(E),

as in [Martinet 1970; 1972]. Whenever the proximal map y 7→ yτ is well-defined,
we may identify the proximal set Jτ (y) with its unique element yτ and write J n

τ

to indicate n repeated applications of the proximal map. The exponential formula
quantifies the sense in which the discrete gradient flow is a discretized version of
gradient flow [Brézis 1973]. If y(t) is a gradient flow with initial conditions y(0),

1Alternatively, one may define the gradient flow in terms of the subdifferential [Brézis 1971].
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then
y(t)= lim

n→∞
(Jt/n)

n(y(0)). (1-2)

More recently, the Moreau–Yosida regularization and proximal map have been
applied outside of the Hilbert space context to gradient flow in the 2-Wasserstein
metric. Briefly, we recall some facts about this metric, mainly to establish our
notation; see [Ambrosio et al. 2008] and [Villani 2003] for more background. We
present these facts both in the most general setting, without restrictions on the
type of probability measures we consider, and in a simpler setting, focusing our
attention on probability measures with finite second moment that are absolutely
continuous with respect to Lebesgue measure. While our results hold in the most
general setting, many interesting applications concern only the simpler setting, in
which the exposition and notation is more straightforward.

Let P(Rd) denote the set of Borel probability measures on Rd . Given µ, ν ∈
P(Rd), a Borel map T :Rd

→Rd transports µ onto ν if ν(B)=µ(T−1(B)) for all
Borel sets B ⊆ Rd . We call ν the push-forward of µ under T and write ν = T #µ.

Now consider a measure µ ∈ P(Rd
× Rd). (We will distinguish probability

measures on Rd
×Rd , from probability measures on Rd by writing them in bold

font.) Let π1 be the projection onto the first component of Rd
×Rd , and let π2 be

the projection onto the second component. The first and second marginals of µ
are π1 #µ ∈ P(Rd) and π2 #µ ∈ P(Rd).

Given µ, ν ∈ P(Rd), the set of transport plans from µ to ν is

0(µ, ν) := {µ ∈ P(Rd
×Rd) : π1 #µ= µ, π2 #µ= ν}.

The 2-Wasserstein distance between µ and ν is

W2(µ, ν) :=

(
inf
{∫

Rd×Rd
|x − y|2dµ(x, y) : µ ∈ 0(µ, ν)

})1/2

. (1-3)

When W2(µ, ν) <∞, this infimum is attained, and we refer to the plans that attain
the infimum as optimal transport plans. We denote the set of optimal transport
plans by 00(µ, ν).

The 2-Wasserstein distance satisfies the triangle inequality and is non-negative,
non-degenerate, and symmetric. However, P(Rd) endowed with the 2-Wasserstein
distance is not a metric space, since there exist measures that are infinite distances
apart. Let Pµ0(R

d) be the subset of P(Rd) consisting of measures that are a finite
distance from some fixed Borel probability measure µ0, so that, by the triangle
inequality, (Pµ0(R

d),W2) is a metric space. As indicated by the notation, one may
take µ0 to be the initial conditions of a gradient flow. Note that when µ0 = δ0,
the Dirac mass at the origin, Pδ0(R

d) is the subset of P(Rd) with finite second
moment.
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We now define the 2-Wasserstein distance in a simpler setting. Let P2(R
d)

denote the set of probability measures with finite second moment and Pa
2(R

d)

denote the set of probability measures with finite second moment that are absolutely
continuous with respect to Lebesgue measure. If µ ∈ Pa

2(R
d) and ν ∈ P2(R

d), the
2-Wasserstein distance between µ and ν reduces to the form

W2(µ, ν) :=

(
inf
{∫
|x − T (x)|2dµ(x) : T #µ= ν

})1/2

. (1-4)

The Brenier–McCann theorem guarantees that the infimum in (1-4) is attained by
T = ∇ϕ, where ϕ : Rd

→ R is convex and ∇ϕ is unique µ-almost everywhere
[McCann 1995]. In particular,

W 2
2 (µ, ν)=

∫
|x −∇ϕ(x)|2dµ(x),

and we call ∇ϕ the optimal transport map from µ to ν. To emphasize its depen-
dence on µ and ν, we denote the optimal transport map from µ to ν by tνµ.

Given µ1, µ2 ∈ P(Rd) with W 2
2 (µ1, µ2) <∞ and µ ∈ 00(µ

1, µ2), a geodesic
connecting µ1 and µ2 ∈ P(Rd) is a curve of the form

µ1→2
α : [0, 1] → P(Rd), µ1→2

α = ((1−α)π1+απ2)#µ.

As shown in [Ambrosio et al. 2008, Theorem 7.2.2], this definition agrees with
the metric space definition of a geodesic, i.e., a curve µα : [0, 1] → P(Rd) with
W2(µ0, µ1) <∞ such that W2(µα, µβ) = |α − β|W2(µ0, µ1). If µ1 ∈ Pa

2(R
d),

µ2 ∈ P2(R
d), then the geodesic connecting µ1 and µ2 is unique and of the form

µ1→2
α : [0, 1] → P2(R

d), µ1→2
α =

(
(1−α)id+α tµ2

µ1

)
#µ1,

where id(x)= x is the identity transformation.
A functional E : Pµ0(R

d)→ R∪ {∞} is λ-convex in the 2-Wasserstein metric
if, for all µ1, µ2 ∈ Pµ0(R

d), there exists a geodesic connecting µ1 and µ2 along
which E is λ-convex:

E(µ1→2
α )≤ (1−α)E(µ1)+αE(µ2)−α(1−α)

λ

2
W 2

2 (µ1, µ2). (1-5)

If a functional is 0-convex, we simply call it convex.2 If a functional is 0-convex
and strict inequality holds in (1-5) for all α ∈ (0, 1), we call it strictly convex.

2It is also common to refer to convex functionals in the 2-Wasserstein metric as displacement
convex [McCann 1997].
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Given a functional E : Pµ0(R
d)→ R ∪ {∞} and τ > 0, its Moreau–Yosida

regularization is

Eτ (µ) := inf
ν∈Pµ0 (R

d )

{
1

2τ
W 2

2 (µ, ν)+ E(ν)
}

(1-6)

and the corresponding proximal set Jτ : Pµ0(R
d)→ 2Pµ0 (R

d ) is

Jτ (µ) := argmin
ν∈Pµ0 (R

d )

{
1

2τ
W 2

2 (µ, ν)+ E(ν)
}
. (1-7)

As before, if there is a unique element in Jτ (µ), we denote it by µτ and call it the
proximal point. Similarly, we call µ 7→ µτ the proximal map. The properties of
the Moreau–Yosida regularization and proximal map in the 2-Wasserstein metric
will be the main focus of this paper.

As in the Hilbertian case, one of the main reasons for interest in the Moreau–
Yosida regularization and the proximal map in the 2-Wasserstein metric is their
relation to gradient flow. When E and µ are sufficiently smooth, the 2-Wasserstein
gradient of E at µ ∈ D(E) is

∇W E(µ)=−∇ ·
(
µ∇

δE
δρ
(µ)

)
, (1-8)

where δE/δρ is the functional derivative of E [Otto 2001; Ambrosio et al. 2008,
Chapters 8 and 10].3 The gradient flow of E is the Cauchy problem

d
dt
µ(t)=−∇W E(µ(t)), µ(0) ∈ D(E)= {µ ∈ Pµ0(R

d) : E(µ) <∞},

which is well-defined as long as ∇W E(µ(t)) exists along the flow µ(t).4 We will
sometimes refer to this as the continuous gradient flow in order to distinguish it
from the discrete gradient flow we define below.

Otto [1996; 2001] observed that the right-hand side of (1-8) may be viewed
as the gradient vector field on the “Riemannian manifold of probability densities
on Rd” associated to the functional E , where the Riemannian metric is the infin-
itesimal form of the 2-Wasserstein metric. (It is one of his insights that the 2-
Wasserstein metric is induced by a Riemannian metric.) In this metric, the length

3Some authors, including Ambrosio et al., identify the tangent vector ∇W E(µ) with the gradient
vector field −∇ δE

δρ (µ) on Rd . One gets Otto’s representative from this by multiplying by µ and
taking the divergence. The choice of representatives is merely notational.

4Alternatively, one may define the gradient flow in terms of the subdifferential [Ambrosio et al.
2008, Definition 11.1.1].
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of the gradient of E at µ is given by

|∇W E(µ)| =
(∫ ∣∣∣∣∇ δE

δρ
(µ)

∣∣∣∣2 dµ
)1/2

. (1-9)

As in the Hilbertian case, the proximal map expresses the dynamics for discrete
gradient flow. When the proximal map µ 7→µτ is well-defined (which occurs under
much weaker assumptions on E and µ than are needed to define the gradient, as we
describe before (1-14) below) we may define the discrete gradient flow sequence

µn = (µn−1)τ , µ0 ∈ D(E). (1-10)

As before, we identify the proximal set Jτ (µ) with its unique element µτ and write
J n
τ to indicate n repeated applications of the proximal map.

One of the advantages of discrete gradient flow is that it is not necessary to make
precise the sense in which (1-8) defines a gradient vector field. This fact was em-
phasized by De Giorgi [1993] in his theory of the metric derivative and extensively
developed by Ambrosio, Gigli, and Savaré [Ambrosio et al. 2008, Chapter 8]. We
follow De Giorgi’s lead, and all of the estimates we use involve only the length
of the gradient |∇W E(µ)|. In the case that E and µ lack sufficient smoothness
for (1-9) to be well-defined, we will interpret the symbol |∇W E(µ)| as the metric
slope

lim sup
ν→µ

(E(µ)− E(ν))+

W2(µ, ν)
. (1-11)

We use the heuristic notation |∇W E(µ)| since, as demonstrated by Otto [1996;
2001], it is often enlightening to think of |∇W E(µ)| as coming from a Riemannian
metric on P(Rd).

The book [Ambrosio et al. 2008] contains a detailed study of gradient flow and
discrete gradient flow in the 2-Wasserstein metric for large classes of functionals,
developing the analogy with the Hilbert space theory. It would be too much to hope
for a perfect analogy. For example, in the Hilbert space context, if a functional E is
proper, lower semicontinuous, and convex, then its Moreau–Yosida regularization
Eτ is also convex. However, in the 2-Wasserstein metric, it is well-known that
even when E satisfies analogous assumptions, Eτ is not always convex.5 The key
technical difference between the two metrics is that while

x 7→ 1
2‖x − y‖2 (1-12)

is 1-convex along geodesics,

µ 7→ 1
2 W 2

2 (µ, ν) (1-13)

5For the reader’s convenience, we include an example in Section 3.
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is not λ-convex along geodesics, for any λ ∈ R, if the dimension of the underlying
space is greater than or equal to 2 [ibid., Example 9.1.5]. Since much of De Giorgi’s
“minimizing steps” approach to gradient flow relies on the 1-convexity of (1-12),
this lack of convexity in the 2-Wasserstein case complicates the implementation of
De Giorgi’s scheme.

Ambrosio et al. circumvent this difficulty with their observation that, though
µ 7→ 1

2 W 2
2 (µ, ν) is not 1-convex along all geodesics, it is 1-convex along a different

class of curves. They define the set of generalized geodesics to be the union of these
classes of curves over all ν ∈ P(Rd) (see Section 2A). By considering functionals
that are convex along generalized geodesics — a stronger condition than merely
being convex along geodesics (see Section 2B) — they deduce a priori estimates
that provide detailed control over the gradient flow and discrete gradient flow.

The key results that we will use concern functionals E : Pµ0(R
d)→ R∪ {∞}

that are proper, coercive, lower semicontinuous, and λ-convex along generalized
geodesics (see Section 2B).6 With these assumptions, Ambrosio, Gigli, and Savaré
show that if τ > 0 is small enough so that λτ > −1, then for all µ ∈ D(E) the
proximal map

µ 7→ µτ (1-14)

and the discrete gradient flow sequence

µn = (µn−1)τ , µ0 ∈ D(E),

are well-defined. They go on to prove the 2-Wasserstein analogue of the exponen-
tial formula (1-2) relating the discrete gradient flow to the continuous gradient flow
[Ambrosio et al. 2008, Theorem 4.0.4]. Specifically, they show that if µ(t) is the
solution to the continuous gradient flow of E with initial conditions µ(0) ∈ D(E),
then

µ(t)= lim
n→∞

(Jt/n)
n(µ(0)). (1-15)

Using the assumption of convexity along generalized geodesics, Ambrosio, et
al. comprehensively develop the theory of continuous gradient flow. While this
assumption is stronger than (standard) convexity along geodesics, it is not restric-
tive: all important examples of functionals that are convex along geodesics are also
convex along generalized geodesics [Ambrosio et al. 2008, Section 9.3].

In this paper, we take a closer look at the Moreau–Yosida regularization and
the proximal map in the 2-Wasserstein metric for functionals that are convex along
generalized geodesics. We show that, while the Moreau–Yosida regularization does
not preserve E’s convexity along all geodesics (as in the Hilbertian case), if E

6The results in [Ambrosio et al. 2008] are often stated in the context when µ0 = δ0, the Dirac
mass at the origin, so Pµ0(R

d ) = P2(R
d ). We quote these results in broader generality, since the

proofs are easily adapted to this case.
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attains its minimum at µ̄, the Moreau–Yosida regularization does satisfy an “above
the tangent line” inequality at µ̄. This type of inequality is a necessary condition
for convexity — in particular, a function from R to R is convex if and only if it lies
above its tangent line at every point.

Theorem 1.1 (generalized convexity of Eτ ). Given E :Pµ0(R
d)→R∪{∞} proper,

coercive, lower semicontinuous, and λ-convex along generalized geodesics with
λ≥ 0, assume that E attains its minimum at µ̄. For τ > 0, define

λτ :=
λ

1+ λτ
.

Then, for all µ ∈ D(E), there exists a geodesic µµ̄→µα from µ̄ to µ such that

Eτ (µµ̄→µα )≤ (1−α)Eτ (µ̄)+αEτ (µ)−α(1−α)
λτ

2
W 2

2 (µ̄, µ). (1-16)

In Section 4A, we show that (1-16) is sharp by presenting an example in which
E is λ-convex and Eτ is no more than λτ -convex

As a consequence of Theorem 1.1, we show Eτ satisfies a Talagrand inequality
and an HWI inequality.

Theorem 1.2 (Talagrand and HWI inequalities). Under the assumptions of the
Theorem 1.1, for all µ ∈ D(E), we have the Talagrand inequality

Eτ (µ)− Eτ (µ̄)≥
λτ

2
W 2

2 (µ, µ̄) (1-17)

and the HWI inequality

Eτ (µ)− Eτ (µ̄)≤ |∇W Eτ (µ)|W2(µ, µ̄)−
λτ

2
W 2

2 (µ, µ̄). (1-18)

These inequalities capture Eτ ’s behavior at µ̄ from both ends of the “above the
tangent line” inequality.

We also develop the analogy between Hilbertian metrics and the 2-Wasserstein
metric by proving a contraction inequality for the proximal map. In a Hilbert space,
if E is proper, lower semicontinuous, and convex, Moreau [1965] showed that the
proximal map satisfies

‖xτ − yτ‖ ≤ ‖x − y‖ for all x, y ∈H. (1-19)

This turns out to be a rather miraculous property of the Hilbertian norm that fails
even in simple Banach spaces. For example, consider the `∞ norm on R2. Fix two
points a = (0, 0) and b = (1, 1), and let K be the closed half-space lying beneath
the line 3x2 = x1− 4. Let E be the indicator function for K ,

E(x) :=
{

0 if x = (x1, x2) ∈ K ,
∞ otherwise.



CONVEXITY OF THE MOREAU–YOSIDA REGULARIZATION 41

Figure 1. In the Banach space R2, endowed with the `∞ norm,
the proximal map is not a contraction.

Then

Jτ (y) := argmin
x∈R2

{
1

2τ
‖x − y‖2

∞
+ E(x)

}
= argmin

x∈K

{
1

2τ
‖x − y‖2

∞

}
.

Therefore, Jτ (a) = (1,−1) and Jτ (b) = ( 5
2 ,−

1
2) for all τ > 0. This is not a

contraction since ‖a− b‖∞ = 1< 3
2 = ‖Jτ (a)− Jτ (b)‖∞ (see figure).

The situation for general metric spaces is even more involved than the situation
for metrics induced by norms, and one does not expect a contraction to hold. Nev-
ertheless, if E is appropriately convex, the continuous-time gradient flow defined
by (1-15) is contractive [Otto 2001; Ambrosio et al. 2008, Theorem 4.0.4]. This
gives hope that some contraction property of the proximal map is present at the
discrete level and does not merely emerge in the limit.

Our next result shows that this is the case. In particular, we achieve contraction
of the proximal map by making a small modification to the squared distance: given
τ > 0, we consider the functional 3τ : P(Rd)×P(Rd)→ R∪ {∞} defined by

3τ (µ, ν) :=W 2
2 (µ, ν)+

τ 2

2
|∇W E(µ)|2+

τ 2

2
|∇W E(ν)|2. (1-20)

As before, we interpret |∇W E(µ)| as the metric slope (1-11) when E and µ lack
sufficient smoothness for the norm of the 2-Wasserstein gradient (1-9) to be well-
defined.

Though we state the following theorem in the context of the 2-Wasserstein
metric, it continues to hold in a more abstract setting: given a functional E on
a complete metric space (X, d), if E is proper, coercive, lower semicontinuous,



42 ERIC A. CARLEN AND KATY CRAIG

and satisfies [Ambrosio et al. 2008, Assumption 4.0.1] for some λ ∈ R, then the
result remains true by replacing W2 with d .

Theorem 1.3 (contraction of proximal map). Given E : Pµ0(R
d) → R ∪ {∞}

proper, coercive, lower semicontinuous, and λ-convex along generalized geodesics,
fix τ > 0 small enough so that λτ > −1. Consider µ, ν ∈ D(E) and let 3τ :
P(Rd)×P(Rd)→ R∪ {∞} be given by (1-20). Then, if λ≥ 0, the proximal map
is contracting in 3τ ,

3τ (µτ , ντ )≤3τ (µ, ν). (1-21)

More generally, for λ ∈ R,

3τ (µτ , ντ )−3τ (µ, ν)

≤−
1
2(τ |∇W E(ν)| −W2(ν, ντ ))

2
−

1
2(τ |∇W E(µ)| −W2(µ,µτ ))

2

−
1
2λτ

[
2W 2

2 (µτ , ντ )+W 2
2 (µ, ντ )+W 2

2 (ν, µτ )+W 2
2 (ν, ντ )+W 2

2 (µ,µτ )
]
. (1-22)

In Section 4A, we show that the inequality (1-22) is sharp. Then, in Section 4B,
we apply (1-21) together with scaling properties of the W2 metric to derive sharp
polynomial rates of convergence to Barenblatt profiles for certain fast diffusion and
porous medium equations. Otto originally deduced these results in [Otto 2001] by
considering a modified gradient flow problem for λ-convex functionals with λ > 0.
The contraction inequality (1-21) provides a simple route to such results. The
fast diffusion and porous media equations also provide examples of strictly convex
functionals for which the proximal map is strictly contracting in 3τ but not in W2.

Remark 1.4. While [Ambrosio et al. 2008] does not explicitly consider monotonic-
ity results for modifications of the squared distance along the discrete gradient flow,
such a result (for a different modification) can be found by reading between the
lines in Lemma 4.2.4 of that reference. Consider the alternative modification to
the squared distance function defined by

3̃τ (µ, ν) :=W 2
2 (µ, ν)+ τ E(µ)+ τ E(ν). (1-23)

If one takes the final inequality on page 92 of [Ambrosio et al. 2008] for λ = 0
and n = 1, rearranges terms, and symmetrizes in µ and ν, one obtains (1-21) with
3̃τ in place of 3τ . A key difference between 3̃τ and our functional 3τ is that, for
measures µ and ν with |∇W E(µ)| and |∇W E(µ)|<∞, 3τ involves only an O(τ 2)

correction to W 2
2 (µ, ν), while 3̃τ involves an O(τ ) correction to W 2

2 (µ, ν).

Remark 1.5. While one might first suppose that 3τ could only be used to study
discrete gradient flows with initial data µ, ν satisfying |∇W E(µ)|, |∇W E(µ)|<∞,
when E is strictly convex, the discrete gradient flow produces this regularity in one
step (see Lemma 2.2). We shall see an example of this in Section 4B when we apply
Theorem 1.3 to the discrete gradient flow for the Rényi entropies.
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For λ > 0, one can extract from (1-22) a useful inequality that implies, among
other things, an optimal exponential rate of decrease of 3τ (µ, µ̄) when E has a
minimizer µ̄ (necessarily unique due to the strict convexity).

Corollary 1.6 (the case λ > 0). Consider λ > 0 and τ > 0 sufficiently small so that
τλ≤ 1. Then for all E satisfying the hypotheses of Theorem 1.3 and µ, ν ∈ D(E),

(1+ τλ)3τ (µτ , ντ )

≤ (1− τλ)3τ (µ, ν)+ 3λτ31/2
τ (µ, ν)[W2(µ,µτ )+W2(ν, ντ )]. (1-24)

We give the proof of this corollary in Section 3. However, to explain its con-
sequences, we state and prove a simple discrete Gronwall-type inequality. It is a
discrete version of the continuous-time inequality [Ambrosio et al. 2008, Lemma
4.1.8]. (See [Baiocchi 1989; Emmrich 1999] for related discrete Gronwall inequal-
ities.)

Lemma 1.7 (a discrete Gronwall-type inequality). Let λ, τ > 0, and let {an} and
{bn} be two sequences of non-negative numbers such that for all n ≥ 0,

(1+ τλ)an ≤ (1− τλ)an−1+ τa1/2
n−1bn. (1-25)

Then,

a1/2
n ≤ (1+ λτ)

−na1/2
0 +

√
τ

2λ
(1+ λτ)

( n∑
k=1

b2
k

)1/2

.

Consider the discrete gradient flow of E starting from µ ∈ D(E) with τ > 0 and
τλ ≤ 1. Let µ0 := µ and inductively define {µn} by repeated application of the
proximal map. Define {νn} in the same way, starting from ν ∈ D(E). Now, apply
Lemma 1.7 and Corollary 1.6 to these discrete gradient flows of E , taking

an :=3τ (µn, νn) and bn := 3λ
√

2W 2
2 (µn−1, µn)+ 2W 2

2 (νn−1, νn) .

Since
W 2

2 (µ,µτ )≤ 2τ [E(µ)− E(µτ )], (1-26)∑n
k=1 b2

k is bounded by a telescoping sum:

n∑
k=1

b2
k ≤ τ36λ2

[(E(µ)− E(µn))+ (E(ν)− E(νn))].

In case E is bounded below, we may assume without loss of generality that E is
non-negative. Then,

31/2
τ (µn, νn)≤ (1+ λτ)−n31/2

τ (µ, ν)+ λτ
6(1+ λτ)
√

2λ

√
E(µ)+ E(ν). (1-27)
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Thus, for positive λ and sufficiently small τ , 31/2
τ (µn, νn) decays “exponentially

fast” at rate λ up to the time that this quantity becomes O(τ ).7

The proof of Lemma 1.7 is elementary, so we provide it here, closing this sec-
tion.

Proof of Lemma 1.7. Multiply both sides of (1-25) by (1+ τλ)2n−1 to obtain

(1+τλ)2nan≤ (1−(τλ)2)(1−τλ)2n−2an−1+τ
(
(1+ τλ)2n−2an−1

)1/2
(1+τλ)nbn.

Defining
ãn := (1+ τλ)2nan and b̃n := τ(1+ τλ)nbn,

we have ãn ≤ ãn−1+ ã1/2
n−1b̃n , and therefore ãn ≤ a0+

n∑
k=1

ã1/2
k−1b̃k . Defining

cn :=max{ãk : 0≤ k ≤ n},

we have cn ≤ a0 + c1/2
n
∑n

k=1 b̃k . This quadratic inequality implies that c1/2
n ≤

a1/2
0 +

∑n
k=1 b̃k . By the Cauchy–Schwarz inequality and the fact that

n∑
k=1

αk
≤

α

α− 1
αn for α := (1+ λτ)2 ≥ 1,

we have
n∑

k=1

b̃k ≤

√
τ(1+ λτ)n+1
√

2λ

( n∑
k=1

b2
k

)1/2

. �

2. Generalized convexity and the proximal map

2A. Generalized geodesics. In a Hilbert space, x 7→ 1
2‖x − y‖2 is 1-convex along

geodesics. However, the same is not true for the squared 2-Wasserstein distance
when the dimension of the underlying space exceeds 1, as pointed out by Ambrosio
et al. [2008, Example 9.1.5]. Instead, these authors observe that µ 7→ 1

2 W 2
2 (µ, ν)

is convex along a different set of curves, which we now describe.
Fixµ1,µ2,µ3∈Pµ0(R

d)with optimal plansµ1,2∈00(µ1,µ2),µ1,3∈00(µ1,µ3).
For 1≤ i < j ≤ 3, let πi, j be the projection onto the i-th and j-th components of
Rd
×Rd
×Rd . Fix µ ∈P(Rd

×Rd
×Rd) so that π1,2#µ=µ1,2 and π1,3#µ=µ1,3

[ibid., Lemma 5.3.2]. (We use bold font to distinguish probability measures on
Rd
×Rd
×Rd or Rd

×Rd from probability measures on Rd .) As in [ibid., Definition
9.2.2], a generalized geodesic joining µ2 to µ3 with base µ1 is a curve of the form

µ2→3
α : [0, 1] → P(Rd), µ2→3

α := ((1−α)π2+απ3)#µ.

7At this point, we may use the bound E(µn)≤ (1+λτ)−2n E(µ) [Ambrosio et al. 2008, Theorem
3.1.6] and apply (1-27) iteratively.
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In the case µ1 ∈ Pa
2(R

d) and µ2, µ3 ∈ P2(R
d), this reduces to

µ2→3
α : [0, 1] → P(Rd), µ2→3

α =
(
(1−α)tµ2

µ1
+α tµ3

µ1

)
#µ1.

Ambrosio, Gigli, and Savaré demonstrate that µ 7→ 1
2 W 2

2 (µ,µ1) is 1-convex along
any generalized geodesic µ2→3

α with base µ1, for all µ2, µ3
∈ Pµ0(R

d) [ibid.,
Lemma 9.2.1]. Note that if the base µ1 equals either µ2 or µ3, µ2→3

α is a (standard)
geodesic joining µ2 and µ3. Thus, while µ→ 1

2 W 2
2 (µ,µ1) is not convex along

geodesics (in the sense that it is not convex along all geodesics), it is convex along
some geodesics.

2B. The functionals E : Pµ0(R
d)→ R ∪ {∞}. Fix a Borel probability measure

µ0. We consider functionals E : Pµ0(R
d)→ R∪ {∞} that satisfy the following

conditions:

• proper: D(E) := {µ ∈ Pµ0(R
d) : E(µ) <∞} 6=∅.

• coercive:8 There exists τ ∗ > 0 such that for all 0< τ < τ ∗, µ ∈ Pµ0(R
d),

Eτ (µ)= inf
ν∈Pµ0 (R

d )

{
1

2τ
W 2

2 (µ, ν)+ E(ν)
}
>−∞.

As noted in [Ambrosio et al. 2008, Lemma 2.2.1], by a triangle inequality
argument, it is enough to check that there exists τ0 > 0 such that

Eτ0(µ0)= inf
ν∈Pµ0 (R

d )

{
1

2τ0
W 2

2 (µ0, ν)+ E(ν)
}
>−∞. (2-1)

• lower semicontinuous: For all µn, µ ∈ Pµ0(R
d) such that µn→ µ in W2,

lim inf
n→∞

E(µn)≥ E(µ).

• λ-convex along generalized geodesics: For any µ1, µ2, µ3 ∈ Pµ0(R
d), there

exists a generalized geodesic µ2→3
α from µ2 to µ3 with base µ1 such that, for

all α ∈ [0, 1],

E(µ2→3
α )≤ (1−α)E(µ2)+αE(µ3)−α(1−α)

λ

2

∫
|x2− x3|

2dµ(x). (2-2)

Note that, for λ > 0, this condition is stronger than requiring that E(µ2→3
α ),

considered as a real-valued function of α ∈ [0, 1], be λW 2
2 (µ2, µ3) convex,

8In the case µ0 = δ0, the Dirac mass at the origin, this is equivalent to the definition of coercivity
in [Ambrosio et al. 2008], which requires that there exist some τ∗ > 0 and µ∗ ∈ P2(R

d ) such that

inf
ν∈P2(Rd )

{
1

2τ∗
W 2

2 (µ∗, ν)+ E(ν)
}
>−∞.
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since ∫
|x2− x3|

2dµ≥W 2
2 (µ2, µ3).

If E is λ-convex along generalized geodesics, then in particular it is λ-convex:
for any µ1, µ2 ∈ Pµ0(R

d), there exists a geodesic µ1→2
α from µ1 to µ2 such that

for all α ∈ [0, 1],

E(µ1→2
α )≤ (1−α)E(µ1)+αE(µ2)−α(1−α)

λ

2
W 2

2 (µ1, µ2).

This is equivalent to E(µ1→2
α ), considered as a real-valued function of α ∈ [0, 1],

being λW 2
2 (µ1, µ2) convex [Ambrosio et al. 2008, Remark 9.1.2].

The requirement that a functional E :Pµ0→R∪{∞} be proper, coercive, lower
semicontinuous, and convex along generalized geodesics is the natural analogue
of the Hilbertian requirement that a functional E :H→ R∪ {∞} be proper, lower
semicontinuous, and convex. The two differences are the addition of the coercivity
assumption and the strengthening of the convexity assumption. In a Hilbert space
H, all functionals that are proper, lower semicontinuous, and convex are also coer-
cive (in this sense), so the addition of the coercivity assumption is a natural way to
ensure that the 2-Wasserstein Moreau–Yosida regularization is not identically −∞.
The convexity assumption is strengthened because convexity along generalized
geodesics is the useful 2-Wasserstein analogue of Hilbertian convexity. While in
a Hilbert space, x 7→ 1

2‖x − y‖2 is 1-convex along all geodesics, the same does
not hold for the 2-Wasserstein metric. Requiring convexity of the functional on a
larger class of curves compensates for the weaker convexity W 2

2 .

2C. Further results about the proximal map. The following theorem collects
some key results regarding the proximal map.

Theorem 2.1 [Ambrosio et al. 2008, Theorem 4.1.2 and Corollary 4.1.3]. Given
E : Pµ0(R

d)→ R ∪ {∞} proper, coercive, lower semicontinuous, and λ-convex
along generalized geodesics, fix τ > 0 small enough so that τλ > −1. Then, for
µ ∈ D(E), the proximal map

µ 7→ µτ

is well-defined. Furthermore, the following variational inequality holds:

1
2τ

(
W 2

2 (µτ , ν)−W 2
2 (µ, ν)

)
+
λ

2
W 2

2 (µτ , ν)

≤ E(ν)− E(µτ )−
1

2τ
W 2

2 (µ,µτ ) for all ν ∈ D(E). (2-3)

When the proximal map is well-defined, it satisfies an Euler–Lagrange equa-
tion — a fact originally observed by Otto [1996; 2001]. We state this result in the
framework of [Ambrosio et al. 2008, Lemma 10.1.2].
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Lemma 2.2. Given E : Pµ0(R
d)→ R∪ {∞} proper, coercive, lower semicontin-

uous, and λ-convex along generalized geodesics, fix τ > 0 small enough so that
τλ >−1. Assume that µ ∈ D(E) so µ 7→ µτ is well-defined by Theorem 2.1. Then

τ |∇W E(µτ )| ≤W2(µ,µτ ). (2-4)

We may interpret |∇W E(µτ )| as the metric slope (1-11) when E and µ lack suf-
ficient smoothness for the norm of the 2-Wasserstein gradient (1-9) to be well-
defined.

On the other hand, if µ ∈Pa
2(R

d) and both E and µτ are smooth enough so that
the 2-Wasserstein gradient ∇W E(µτ ) is well-defined by (1-8), then

tµµτ = id+ τ∇
δE
δρ
(µτ ) (2-5)

µτ -almost everywhere and

τ |∇W E(µτ )| =W2(µ,µτ ). (2-6)

Proof. (2-4) follows from [Ambrosio et al. 2008, Theorem 3.1.6].
(2-5) follows from [ibid., Lemma 10.1.2] and the fact that, when E is differen-

tiable, ∇ δE
δρ
(µτ ) is the unique element of its subdifferential at µτ .

(2-6) follows from (2-5) by considering the L2(µτ ) norm of tµµτ−id=τ∇ δE
δρ
(µτ ).

�

3. Proofs of Theorems 1.1, 1.2, and 1.3 and Corollary 1.6

We now prove the theorems and corollaries announced in the introduction, turning
first to the generalized convexity of Eτ . In a Hilbert space, if E is proper, lower
semicontinuous, and convex, then its Moreau–Yosida regularization Eτ is also con-
vex. It is well known that the exact analogue in the 2-Wasserstein metric is false.
For lack of a reference, we provide the following example.

Fix µ0 ∈ P2(R
d) and define E : P2(R

d)→ R∪ {∞} by

E(µ) :=
{

0 if µ= µ0,
∞ otherwise.

(3-1)

E is proper, coercive, lower semicontinuous, and convex along all curves in P2(R
d).

In particular, E is convex along generalized geodesics. By definition,

Eτ (µ)= inf
ν∈P2(Rd )

{
1

2τ
W 2

2 (µ, ν)+ E(ν)
}
=

1
2τ

W 2
2 (µ,µ0).

By [Ambrosio et al. 2008, Example 9.1.5], when the dimension of the underlying
space satisfies d ≥ 2, Eτ is not λ-convex along geodesics for any λ ∈ R.
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As demonstrated by the previous example, the convexity of Eτ is related to the
convexity of the squared 2-Wasserstein distance. This also holds in the Hilbertian
case, where the convexity of Eτ is a consequence of the 1-convexity of the map
x 7→ 1

2‖x − y‖2 [Moreau 1967]. Therefore, it is natural that our proof of the
convexity inequality for Eτ requires the following convexity inequality for W 2

2 .

Lemma 3.1 (convexity inequality for W 2
2 ). Fix three measures µ1, µ2, µ3 ∈P(Rd)

that are a finite 2-Wasserstein distance apart. Let µ1→3
α be a generalized geodesic

from µ1 to µ3 with base point µ2,

µ1→3
α := ((1−α)π1+απ3)#µ,

where µ ∈ P(Rd
×Rd

×Rd) satisfies µ1,2 := π1,2 #µ ∈ 00(µ1, µ2) and µ2,3 :=

π2,3 #µ ∈ 00(µ2, µ3). Let µ1→2
α be the geodesic from µ1 to µ2 defined by

µ1→2
α := ((1−α)π1+απ2)#µ1,2.

Then,

W 2
2 (µ

1→2
α , µ1→3

α )

≤ (1−α)W 2
2 (µ1, µ1)+αW 2

2 (µ2, µ3)−α(1−α)W 2
2 (µ2, µ3). (3-2)

Proof. Note that

µ1→2
α = ((1−α)π1+απ2)#µ1,2 = ((1−α)π1+απ2)#µ.

Then by [Ambrosio et al. 2008, Equation 7.1.6],

W 2
2 (µ

1→2
α , µ1→3

α )≤

∫
Rd×Rd×Rd

|[(1−α)π1+απ3]− [(1−α)π1+απ2]|2 dµ

= α2
∫

Rd×Rd×Rd
|π2−π3|

2 dµ= α2
∫

Rd×Rd
|π2−π3|

2 dµ2,3

= α2W 2
2 (µ2, µ3)

= (1−α)W 2
2 (µ1, µ1)+αW 2

2 (µ2, µ3)−α(1−α)W 2
2 (µ2, µ3).

�

We now use this convexity inequality for W 2
2 to prove Theorem 1.1.

Proof of Theorem 1.1. Since E is proper, coercive, lower semicontinuous, and λ-
convex along generalized geodesics for λ≥ 0, by Theorem 2.1, the proximal map
µ 7→ µτ is well-defined for µ ∈ D(E) and τ > 0. Let µµ̄→µτα be the generalized
geodesic from µ̄ to µτ with base point µ on which E satisfies Equation (2-2).
Defining µ1 := µ̄, µ2 := µ, and µ3 := µτ , let µµ̄→µα be the geodesic from µ̄ to µ
described in Lemma 3.1. By Lemma 3.1,

W 2
2 (µ

µ̄→µ
α , µµ̄→µτα )≤ (1−α)W 2

2 (µ̄, µ̄)+αW 2
2 (µ,µτ )−α(1−α)W

2
2 (µ,µτ ).
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This allows us to bound Eτ (µ
µ̄→µ
α ) from above:

Eτ (µµ̄→µα )= inf
ν∈Pµ0 (R

d )

{
1

2τ
W 2

2 (µ
µ̄→µ
α , ν)+E(ν)

}
≤

1
2τ

W 2
2 (µ

µ̄→µ
α , µµ̄→µτα )+E(µµ̄→µτα )

≤
1

2τ

(
(1−α)W 2

2 (µ̄, µ̄)+αW 2
2 (µ,µτ )−α(1−α)W

2
2 (µ,µτ )

)
+(1−α)E(µ̄)+αE(µτ )−α(1−α)

λ

2
W 2

2 (µ̄, µτ )

≤ (1−α)Eτ (µ̄)+αEτ (µ)−α(1−α)
(

1
2τ

W 2
2 (µ,µτ )+

λ

2
W 2

2 (µ̄, µτ )

)
.

In the last step, we used that (µ̄)τ = µ̄, since E attains its minimum at µ̄. Now,
we apply

αa2
+βb2

≥
αβ

α+β
(a+b)2 for α > 0, β ≥ 0

with α = 1/τ and β = λ:

Eτ (µµ̄→µα )≤ (1−α)Eτ (µ̄)+αEτ (µ)−α(1−α)
λτ

2
(W2(µ,µτ )+W2(µ̄, µτ ))

2

≤ (1−α)Eτ (µ̄)+αEτ (µ)−α(1−α)
λτ

2
W 2

2 (µ, µ̄). �

We now use this convexity inequality to prove Theorem 1.2.

Proof of Theorem 1.2. We first prove the Talagrand inequality. Since E attains its
minimum at µ̄, so does Eτ . Therefore, (1-16) implies that, for all µ ∈ D(E),

Eτ (µ̄)≤ Eτ (µµ̄→µα )≤ (1−α)Eτ (µ̄)+αEτ (µ)−α(1−α)
λτ

2
W 2

2 (µ̄, µ).

Rearranging gives α(1−α)λτ
2

W 2
2 (µ̄, µ)≤ α (Eτ (µ)− Eτ (µ̄)) . Thus, for all α ∈

(0, 1),

(1−α)
λτ

2
W 2

2 (µ̄, µ)≤ Eτ (µ)− Eτ (µ̄).

Sending α→ 0 gives the Talagrand inequality (1-17).
We now prove the HWI inequality. Again by (1-16), for all µ ∈ D(E),

Eτ (µµ̄→µα )≤ (1−α)Eτ (µ̄)+αEτ (µ)−α(1−α)
λτ

2
W 2

2 (µ, µ̄).

Rearranging and using µ
µ̄→µ
α = µ

µ→µ̄

1−α and (1− α)W2(µ, µ̄) = W2(µ,µ
µ→µ̄

1−α )
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gives, for α ∈ (0, 1),

(1−α)Eτ (µ)−(1−α)Eτ (µ̄)≤ Eτ (µ)−Eτ (µ
µ→µ̄

1−α )−α(1−α)
λτ

2
W 2

2 (µ, µ̄)

Eτ (µ)−Eτ (µ̄)≤
Eτ (µ)−Eτ (µ

µ→µ̄

1−α )

1−α
−α

λτ

2
W 2

2 (µ, µ̄)

Eτ (µ)−Eτ (µ̄)≤
Eτ (µ)−Eτ (µ

µ→µ̄

1−α )

W2(µ,µ
µ→µ̄

1−α )
W2(µ, µ̄)−α

λτ

2
W 2

2 (µ, µ̄).

Sending α→ 1 gives the HWI Inequality (1-18). �

Proof of Theorem 1.3. By Theorem 2.1, replacing ν with ντ ,

1
2τ

(
W 2

2 (µτ , ντ )−W 2
2 (µ, ντ )

)
+
λ

2
W 2

2 (µτ , ντ )≤ E(ντ )−E(µτ )−
1

2τ
W 2

2 (µ,µτ ).

Similarly,

1
2τ

(
W 2

2 (ντ , µ)−W 2
2 (ν, µ)

)
+
λ

2
W 2

2 (ντ , µ)≤ E(µ)− E(ντ )−
1

2τ
W 2

2 (ν, ντ ).

Adding these and multiplying by 2τ gives

W 2
2 (µτ , ντ )−W 2

2 (ν, µ)+ λτ
[
W 2

2 (µτ , ντ )+W 2
2 (µ, ντ )

]
≤ 2τ [E(µ)− E(µτ )]−W 2

2 (µ,µτ )−W 2
2 (ν, ντ ).

Symmetrically, we also have

W 2
2 (µτ , ντ )−W 2

2 (ν, µ)+ λτ
[
W 2

2 (µτ , ντ )+W 2
2 (ν, µτ )

]
≤ 2τ [E(ν)− E(ντ )]−W 2

2 (µ,µτ )−W 2
2 (ν, ντ ).

Averaging gives

W 2
2 (µτ , ντ )−W 2

2 (ν, µ)+
λτ

2

[
2W 2

2 (µτ , ντ )+W 2
2 (µ, ντ )+W 2

2 (ν, µτ )
]

≤ τ [E(ν)− E(ντ )+ E(µ)− E(µτ )]−W 2
2 (µ,µτ )−W 2

2 (ν, ντ ).

This allows us to bound the change in 3τ (µ, ν) from above:

3τ (µτ , ντ )−3τ (µ, ν)=W 2
2 (µτ , ντ )+

τ 2

2
|∇W E(µτ )|2+

τ 2

2
|∇W E(ντ )|2

−W 2
2 (µ, ν)−

τ 2

2
|∇W E(µ)|2− τ

2

2
|∇W E(ν)|2
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≤ τ [E(ν)− E(ντ )+ E(µ)− E(µτ )]−W 2
2 (µ,µτ )−W 2

2 (ν, ντ )

+
τ 2

2
|∇W E(µτ )|2+

τ 2

2
|∇W E(ντ )|2−

τ 2

2
|∇W E(µ)|2− τ

2

2
|∇W E(ν)|2

−
λτ

2
[
2W 2

2 (µτ , ντ )+W 2
2 (µ, ντ )+W 2

2 (ν, µτ )
]
.

By [Ambrosio et al. 2008, Equation 10.1.7, Lemma 10.1.5] and Hölder’s inequality,
the λ-convexity of E implies

E(ν)− E(ντ )≤ |∇W E(ν)|W2(ν, ντ )−
λ

2
W 2

2 (ν, ντ ). (3-3)

Combining this with the Euler–Lagrange equation (2-4),

3τ (µτ , ντ )−3τ (µ, ν)

≤ τ |∇W E(ν)|W2(ν, ντ )+τ |∇W E(µ)|W2(µ,µτ )−W 2
2 (µ,µτ )−W 2

2 (ν, ντ )

+
1
2

W 2
2 (µ,µτ )+

1
2

W 2
2 (ν, ντ )−

τ 2

2
|∇W E(µ)|2− τ

2

2
|∇W E(ν)|2

−
λτ

2
[
2W 2

2 (µτ , ντ )+W 2
2 (µ, ντ )+W 2

2 (ν, µτ )
]
−
λτ

2
[
W 2

2 (ν, ντ )+W 2
2 (µ,µτ )

]
.

Completing the square gives the result:

3τ (µτ , ντ )−3τ (µ, ν)

≤−
1
2
(τ |∇W E(ν)|−W2(ν, ντ ))

2
−

1
2
(τ |∇W E(µ)|−W2(µ,µτ ))

2

−
λτ

2
[
2W 2

2 (µτ , ντ )+W 2
2 (µ, ντ )+W 2

2 (ν, µτ )+W 2
2 (ν, ντ )+W 2

2 (µ,µτ )
]
. �

Proof of Corollary 1.6. First, we use λ > 0 and the Euler–Lagrange equation (2-4)
to rewrite (1-22):

3τ (µτ ,ντ )−3τ (µ,ν)

≤−
1
2
(τ |∇W E(ν)|−W2(ν,ντ ))

2
−

1
2
(τ |∇W E(µ)|−W2(µ,µτ ))

2

−
λτ

2
[
2W 2

2 (µτ ,ντ )+W 2
2 (µ,ντ )+W 2

2 (ν,µτ )+τ
2
|∇W E(ντ )|2+τ 2

|∇W E(µτ )|2
]

=−
1
2
(τ |∇W E(ν)|−W2(ν,ντ ))

2
−

1
2
(τ |∇W E(µ)|−W2(µ,µτ ))

2

−
λτ

2
[
23τ (µτ ,ντ )+W 2

2 (µ,ντ )+W 2
2 (ν,µτ )

]
.
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Rearranging terms, we have

(1+λτ)3τ (µτ ,ντ )

≤3τ (µ,ν)−
1
2
(τ |∇W E(ν)|−W2(ν,ντ ))

2
−

1
2
(τ |∇W E(µ)|−W2(µ,µτ ))

2

−
λτ

2
[
W 2

2 (µ,ντ )+W 2
2 (ν,µτ )

]
. (3-4)

By the triangle inequality,

W 2
2 (µ, ντ )≥W 2

2 (µ, ν)+W 2
2 (ν, ντ )− 2W2(µ, ν)W2(ν, ντ )

≥W 2
2 (µ, ν)− 2W2(µ, ν)W2(ν, ντ )

≥W 2
2 (µ, ν)− 231/2

τ (µ, ν)W2(ν, ντ ),

and we have a similar bound for W 2
2 (µτ , ν).

Finally, for λτ ≤ 1,

1
2
(τ |∇W E(µ)|−W2(µ,µτ ))

2
≥ λτ

(
τ 2

2
|∇W E(µ)|2−τ |∇W E(µ)|W2(µτ , µ)

)
≥ λτ

(
τ 2

2
|∇W E(µ)|2−

√
231/2(µ, ν)W2(µτ , µ)

)
,

and again we have the same inequality with µ in place of ν. Using these inequalities
in (3-4) we obtain the desired bound. �

4. Examples and applications

4A. Inequalities (1-16) and (1-22) are sharp. Our first example shows that the
inequality (1-16) from Theorem 1.1 and the inequality (1-22) from Theorem 1.3
are both sharp. For λ ∈ R, consider the functional E : Pa

2(R
d)→ R defined by

E(µ)=
∫
λx2

2
dµ. (4-1)

As shown in [Ambrosio et al. 2008, Example 9.3.1], E is proper, coercive, lower
semicontinuous, and λ-convex along generalized geodesics.

Proposition 4.1. For E given by (4-1), λ≥ 0, and τ > 0, define λτ :=
λ

1+λτ
. Then

Eτ is λτ -convex, and no more.

Proposition 4.2. For E given by (4-1), µ, ν ∈ D(E), and τ > 0 small enough so
that λτ >−1, there is equality in (1-22).

We first prove the following lemma. For E given by (4-1), it is well-known that
the proximal map is simply a scale transformation:
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Lemma 4.3. For E given by (4-1), µ ∈ D(E), and τ > 0 small enough so that
λτ >−1, the proximal map associated to E is the scale transformation

µ 7→ (1+ λτ)−1id#µ (4-2)

where id(x)= x is the identity transformation. Moreover, for any µ, ν ∈ D(E),

W 2
2 (µτ , ντ )=

1
(1+ λτ)2

W 2
2 (µ, ν) (4-3)

and

W 2
2 (µ, ντ )=

1
1+ λτ

[
W 2

2 (µ, ν)+ 2τ
(

E(µ)−
1

1+ λτ
E(ν)

)]
. (4-4)

Proof. At any µ ∈ D(E),

∇
δE
δρ
(µ)=∇

λx2

2
= λx . (4-5)

For τ > 0 small enough so that λτ > −1, the Euler–Lagrange equation (2-5) be-
comes

tµµτ (x)= x + λτ x = (1+ λτ)x,

µτ -almost everywhere. This shows (4-2):

(1+ λτ)−1id#µ= µτ .

Next, fix ϕ : Rd
→ R convex and define ν := ∇ϕ #µ. By uniqueness in the

Brenier–McCann theorem, ∇ϕ is the optimal transport map from µ to ν. If ψ is
defined by

ψ(x)= (1+ λτ)−2ϕ((1+ λτ)x),

ψ is convex and ∇ψ #µτ = ντ . Again, by uniqueness in the Brenier–McCann
Theorem, ∇ψ is the optimal transport map between µτ and ντ . Consequently,

W 2
2 (µτ , ντ )=

∫
Rd
|∇ψ(x)− x |2dµτ

= (1+ λτ)−2
∫

Rd
|∇ϕ((1+ λτ)x)− (1+ λτ)x |2dµτ

= (1+ λτ)−2
∫

Rd
|∇ϕ(x)− x |2dµ

= (1+ λτ)−2W 2
2 (µ, ν).

This proves (4-3).
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Finally, note that if ϕ is convex and ∇ϕ#µ= ν, by the definition of W 2
2 (µ, ν)

and of E ,

2
∫

Rd
x · ∇ϕ(x)dµ=

2
λ
(E(µ)+ E(ν))−W 2

2 (µ, ν). (4-6)

Using that
(1+ λτ)−1

∇ϕ#µ= ντ ,

we may argue as above to show

W 2
2 (µ, ντ )=

∫
Rd
|(1+ λτ)−1

∇ϕ(x)− x |2dµ

=
2
λ
(1+ λτ)−2 E(ν)+

2
λ

E(µ)− 2(1+ λτ)−1
∫

Rd
x · ∇ϕ(x)dµ.

Combining this with (4-6) proves (4-4). �

Proof of Proposition 4.1. We first explicitly compute the Moreau–Yosida regular-
ization of E . It follows from (4-2) and the definition of E that for all µ ∈ D(E)
and 0< τ <∞,

W 2
2 (µ,µτ )= 2λτ 2 E(µτ ). (4-7)

Again by (4-2),
E(µτ )= (1+ λτ)−2 E(µ). (4-8)

Hence,

Eτ (µ)=
1

2τ
W 2

2 (µ,µτ )+ E(µτ )= (1+ λτ)E(µτ )=
1

1+ λτ
E(µ).

Thus, the Moreau–Yosida regularization of E in this (already very regular) case
simply multiplies E by a constant.

It is a standard result (see [Ambrosio et al. 2008], for example) that E is λ-
convex, and no more. (Its Hessian with respect to the W2 Riemannian metric is λ
times the identity.) It then follows immediately from Eτ (µ) =

1
1+λτ

E(µ) that
Eτ is no more than λτ -convex. �

Proof of Proposition 4.2. We proceed by using Lemma 4.3 to express quantities
appearing on either side of (1-22) in terms of W 2

2 (µ, ν), E(µ) and E(ν). By the
symmetry of µ and ν, equations (4-3) and (4-4) allow us to express W 2

2 (µτ , ντ ),
W 2

2 (µ, ντ ) and W 2
2 (ν, µτ ) in these terms. By (2-6), (4-5), (4-7), and (4-8), we have

τ 2
|∇W E(µ)|2 = τ 2

∫
(λx)2dµ= 2λτ 2 E(µ),

τ 2
|∇W E(µτ )|2 =W 2

2 (µ,µτ )= 2λτ 2 E(µ)/(1+ λτ)2.

Symmetric identities hold with ν in place of µ.
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Finally, direct calculation shows that both sides of (1-22) are equal to

−
2λτ + λ2τ 2

(1+ λτ)2
[
W 2

2 (µ, ν)+ λτ
2(E(µ)+ E(ν))

]
. �

As we see from (4-3), the proximal map for E is always contracting in the W2

metric for λ > 0. Thus, in this example, the additional terms in 3τ are not required
to produce contraction. The point of this example is rather to show that (1-16) and
(1-22) are sharp.

4B. The discrete gradient flow for the entropy and Rényi entropies. In our sec-
ond example, we consider functionals E p corresponding to the entropy and Rényi
entropies. We apply Theorem 1.3 to obtain a sharp bound, uniformly in the steps of
the discrete gradient flow sequence, on the rate at which rescaled solutions of the
discrete gradient flow converge to certain limiting densities, known as Barenblatt
densities. This result mirrors a well-known result obtained by Otto for the corre-
sponding continuous gradient flow. In carrying out this analysis, we learn that the
discrete gradient flow is surprisingly well-behaved, not only on average, but also
uniformly in the steps. We also show that Otto’s beautiful sharp results for the
continuous gradient flow can be obtained very efficiently from the analysis of the
discrete flow.

First, we define the functionals to be considered. For p > 1− 1/d,9 define
Up : R+→ R by

Up(s) :=


s p
−s

p−1
if p 6= 1,

s log s if p = 1.

Let Pa
2(R

d) be the set of probability measures with finite second moment that are
absolutely continuous with respect to the Lebesgue measure. Define the functional
E p : P(R

d)→ R∪ {∞} by

E p(µ) :=

{∫
Rd Up( f (x))dx if µ ∈ Pa

2(R
d), dµ(x)= f (x)dx,

∞ otherwise.

For p = 1, E p is minus the entropy. For p 6= 1, E p is minus the Rényi entropy.
As shown in [Ambrosio et al. 2008, Example 9.3.6], E p is proper, lower semicon-
tinuous, and convex along generalized geodesics. As for coercivity, for p > 1, E p

is bounded below by −1/(p− 1), hence coercive. For 1− 1
d < p < 1, E p is not

bounded below, since
∫

Rd f p(x)dx can be arbitrarily large. E1 is neither bounded
above nor below. Nevertheless, E p is coercive for 1> p > 1− 1

d when d ≥ 2, and

9The borderline case p = 1− 1/d is more involved, and, for the sake of simplicity, we do not
consider it in this paper. It may be possible to extend our approach to this case using the regularization
techniques developed in [Blanchet et al. 2012].
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for 1> p > 1
3 when d = 1. Later, we shall need some of the estimates that imply

this, so we now explain this case. The case p = 1 can be found in [Jordan et al.
1998].

By Hölder’s inequality, with exponents 1/p and 1/(1− p), for all ν ∈ Pa
2(R

d)

with dν = f (x)dx ,∫
Rd

f p(x)dx =
∫

Rd
f p(x)(1+ |x |2)p(1+ |x |2)−pdx

≤

(∫
Rd

f (x)(1+ |x |2)dx
)p (∫

Rd
(1+ |x |2)−p/(1−p)dx

)1−p

.

Furthermore,
∫

Rd f (x)|x |2dx =
∫

Rd |x |2dν = W 2
2 (ν, δ0), where δ0 is the Dirac

mass at the origin. By the triangle inequality, for any µ ∈ Pa
2(R

d),

W2(ν, δ0)≤W2(µ, ν)+W2(µ, δ0),

so that∫
Rd

f p(x)dx ≤
(∫

Rd
(1+ |x |2)−p/(1−p)dx

)1−p

(1+ (W2(µ, ν)+W2(µ, δ0))
2)p.

Finally, defining

C p :=
1

1− p

(∫
Rd
(1+ |x |2)−p/(1−p)dx

)1−p

,

we have for all µ, ν ∈ Pa
2(R

d),

E p(ν)≥−C p

(
1+ 2

∫
Rd
|x |2dµ+ 2W 2

2 (µ, ν)

)p

. (4-9)

Thus, for all µ, ν ∈ Pa
2(R

d),

1
2τ

W 2
2 (µ, ν)+ E p(ν)

≥
1

2τ
W 2

2 (µ, ν)−C p

(
1+ 2

∫
Rd
|x |2dµ+ 2W 2

2 (µ, ν)

)p

. (4-10)

For fixed µ, the right-hand side is bounded below for all τ > 0 and ν ∈ Pa
2(R

d);
hence E p is coercive.

Note that the condition p> 1− 1
d when d ≥ 2, and p> 1

3 when d = 1, is exactly
the condition to ensure C p is finite, and it is easy to see that coercivity fails when
this is not the case. For a more general result, see [Ambrosio et al. 2008, Remark
9.3.7].

From this analysis, we may also extract an upper bound on W 2
2 (µ,µτ ) which

will be useful later.
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Lemma 4.4 (distance bound for the proximal map). If d ≥ 2, fix p > 1− 1/d , and
if d = 1, fix p > 1

3 . Let µ ∈ D(E p) and

M(µ) := 1+ 2
∫

Rd
|x |2dµ.

Then for all τ small enough that 4pC pτ < 1,

W 2
2 (µ,µτ )≤ 2τ

E p(µ)+C p M(µ)
1− 4pC pτ

.

A similar, but more complicated, bound in terms of the same quantities holds for
all τ > 0.

Proof. By the definition of the proximal map, taking ν = µ in the variational
problem (1-7), we obtain

E p(µ)≥
1

2τ
W 2

2 (µ,µτ )+ E p(µτ ).

Then, by (4-10) with ν = µτ and Bernoulli’s inequality, (1+ u)p
≤ 1+ pu,

E p(µ) ≥
1

2τ
W 2

2 (µ,µτ )−C p
(
M(µ)+ 2W 2

2 (µ,µτ )
)p

=
1

2τ
W 2

2 (µ,µτ )−C p M p(µ)

(
1+

2W 2
2 (µ,µτ )

M(µ)

)p

≥
1

2τ
W 2

2 (µ,µτ )−C p M p(µ)

(
1+ p

2W 2
2 (µ,µτ )

M(µ)

)
.

≥

[
1

2τ
− 2pC p

]
W 2

2 (µ,µτ )−C p M(µ).

In the last line, we used that M(µ)≥ 1.
The bound is simple due to the use of Bernoulli’s inequality (1+ u)p

≤ 1+ pu.
Avoiding this, one obtains a bound without restriction on τ . Since we are mostly
concerned with small τ , we leave the details to the reader. �

If d ≥ 2, fix p > 1− 1/d, and if d = 1, fix p > 1
3 . Then, E p is proper, coer-

cive, lower semicontinuous, and convex along generalized geodesics. Therefore,
Theorem 2.1 guarantees that the proximal map and discrete gradient flow (1-10)
are well-defined for 0 < τ <∞, µ0 ∈ D(E p). Before turning to the long-time
asymptotics of the discrete gradient flow for E p, we first investigate the contraction
properties of 3τ (µ, ν) under the proximal map.

Unlike the functional considered in Section 4A, E p is translation invariant. Specif-
ically, for fixed x0 ∈ Rd , if Tx0 is the translation given by

Tx0µ := (id− x0)#µ,
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then E p(Tx0µ)= E p(µ). The 2-Wasserstein distance is also translation invariant:
for any µ, ν ∈ Pa

2(R
d)

W 2
2 (µ, ν)=W 2

2 (Tx0µ, Tx0ν).

Consequently, the proximal map associated to E p commutes with translations:

(Tx0µ)τ = Tx0(µτ ).

On one hand, this implies that the proximal map does not contract strictly in
W 2

2 : for any ν ∈ Pa
2(R

d), W 2
2 (ν, Tx0ν)= x2

0 , so

W 2
2 (µτ , (Tx0µ)τ )=W 2

2 (µ, Tx0µ).

On the other hand, because the functional E p is strictly convex [Ambrosio et al.
2008; Otto 2001], strict inequality holds in (3-3) and hence in (1-21) of Theorem 1.3:

3τ (µτ , ντ ) < 3τ (µ, ν).

Therefore, 3τ (µ, ν) is strictly decreasing under the proximal map, even though
W 2

2 (µ, ν) is not.
We now turn to the long-time asymptotics of the discrete gradient flow for E p.

As shown in [Otto 2001], the τ → 0 limit of the discrete gradient flow tends to
the continuous gradient flow on Pa

2(R
d), which corresponds to the porous medium

equation or the fast diffusion equation:

∂

∂t
ρ(t, x)=1ρ(t, x)p. (4-11)

(For p < 1 this is the fast diffusion equation. For p > 1, it is the porous medium
equation.) We show that for each τ > 0, the discrete flow is a strikingly close
analogue of the continuous flow.

A key feature of (4-11) is that it has self-similar scaling solutions known as
Barenblatt solutions,

σp(t, x) := t−dβh p

( x
tβ

)
, (4-12)

where

β :=
1

2+ d(p− 1)
, (4-13)

and

h p(x) :=



(
λ+

1− p
p

β

2
|x |2

)1/(p−1)
if 1− 1

d
< p < 1,

λ e−β|x |
2/2 if p = 1,(

λ+
1− p

p
β

2
|x |2

)1/(p−1)

+

if p > 1,

(4-14)
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with normalizing constants λ= λ(d, p) so that
∫ d

R
dσp(x)=

∫ d
R

h p(x)dx = 1.

Definition 4.5 (Barenblatt density). If µ is a probability measure of the form dµ=
σp(t, x)dx , we call µ a Barenblatt density. Going forward, we will simply write
µ= σp(t, x)dx .

We now show that the Barenblatt densities are preserved under the discrete gra-
dient flow. Before stating the next proposition, let us observe that 0< β < 1 for all
values of p > 1− 1/d. Thus, the function s 7→ sβ − τβsβ−1 is strictly monotone
increasing for s ≥ 0 and yields the value 0 for s = τβ. Consequently, for any r > 0,
there is a unique s > τβ such that

rβ = sβ − τβsβ−1. (4-15)

Definition 4.6 (proximal time-shift function). Define the proximal time-shift func-
tion θτ : R+→ R+ so that, for any r > 0, θτ (r) is the unique value of s that solves
(4-15).

We have already observed that θτ (r) > τβ for all r > 0. Since rβ−τβrβ−1 < rβ

for all r > 0, θτ (r) > r . The following lemma generalizes a result in [Carlen and
Gangbo 2003] for the case p = 1, showing that the proximal map for the functional
E p takes σp(r, x)dx to σp(θτ (r), x)dx . Thus the proximal map takes a Barenblatt
density to a Barenblatt density with a larger “time parameter”. Given that the class
of Barenblatt densities is preserved at the discrete level, we would of course expect
the time parameter to increase.

Proposition 4.7. If d ≥ 2, fix p > 1− 1/d, and if d = 1, fix p > 1
3 . Let µ be a

Barenblatt density, i.e. µ= σp(r, x)dx for some r > 0. Then, for τ > 0, the image
of µ under the proximal map for E p is of the form

µτ = σp(θτ (r), x)dx . (4-16)

Proof. Given a Barenblatt density µ = σp(r, x)dx for some r > 0, let s := θτ (r)
and ν := σp(s, x)dx . We compute

∇
δE p

δρ
(ν)=U ′′p(σp(s, x))∇σp(s, x)= pσp(s, x)p−2

∇σp(s, x)(x)=−
βx
s

ν-almost everywhere, (4-17)

Next, note that since s = θτ (r) > τβ,

∇ϕ(x) := x + τ∇
δE p

δρ
(ν)=

(
1−

τβ

s

)
x

is the gradient of a convex function. Consequently, if we define

ρ := ∇ϕ#ν,
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uniqueness in the Brenier–McCann theorem guarantees that ∇ϕ is the optimal
transport map between ν and ρ. Since

∇ϕ = tρν = id+ τ∇
δE p

δρ
(ν)

is the Euler–Lagrange equation (2-5), ν = ρτ , the image of ρ under the proximal
map. With the explicit form of ∇ϕ and σp(s, x), we compute

ρ =

(
1−

τβ

s

)−d

σp

(
s,
(

1−
τβ

s

)−1

x
)

dx = σp

((
1−

τβ

s

)1/β

s, x
)

dx .

By the definition of s = θτ (r),

r =
(

1−
τβ

s

)1/β

s. (4-18)

Therefore, ρ= σp(r, x)dx =µ, so µτ = ρτ = ν= σp(s, x)dx = σp(θτ (r), x)dx . �

Note that when τ is very small compared to t > 0, and hence also compared to
s := θτ (t),

t =
(

1−
τβ

s

)1/β

s ≈ s−
τβ

β
= s− τ,

so θτ (t) ≈ t + τ . Thus, in this approximation, the proximal map shifts the time
forward by τ , independent of t . To the extent this is accurate, it makes it very easy
to understand the discrete gradient flow for E p starting from a Barenblatt density:
at the n-th step of size τ , one gets a Barenblatt density whose time parameter has
been increased by approximately nτ . The following lemma allows us to control
this approximation in precise terms.

Lemma 4.8. Fix r > 0. Then, for all t ≥ r ,(
r

r + τ

)
τ ≤ θτ (t)− t ≤ τ. (4-19)

Proof. Let s := θτ (t) for any t ≥ r . We recall that 0< β < 1 for all p > 1− 1/d.
By the definition of θτ , we have

tβ = sβ − τβsβ−1.

Assume s > t + τ . Then, by Bernoulli’s inequality (1+ u)1−β ≤ (1+ (1− β)u)
with u := τ/t ,

tβ = sβ − τβsβ−1 > (t + τ)β − τβ(t + τ)β−1

= (t + τ)β−1(t + (1−β)τ)= tβ(1+ u)β−1(1+ (1−β)u)≥ tβ .
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This is a contradiction. Therefore, θτ (t)= s ≤ t+ τ , which proves the upper bound
in (4-19).

To obtain the lower bound, we use the upper bound on s and (4-18) to obtain

s ≥ t
(

1−
τβ

t + τ

)−1/β

.

Then since (1+ u)−1/β
≥ 1− u/β and t ≥ r , we obtain

s ≥ t
(

1+
1
β

τβ

t + τ

)
≥ t + τ

(
r

r + τ

)
. �

We may now use Theorem 1.3 to control the rate at which rescaled solutions
to the discrete gradient flow converge to a Barenblatt density. First, we define the
rescaled discrete gradient flow. For any positive integer n, let θn

τ be the n-fold
power of θτ . For t > 0, let St denote the scaling transformation given by

Stν =
id
tβ

#ν.

Since t−βx is the gradient of a convex function, uniqueness in the Brenier–McCann
theorem implies that it is the optimal transport map from ν to Stν.

Let µ be a Barenblatt density, i.e., µ= σp(r, x)dx for some r > 0. Then Srµ=

h p(x)dx . Let {µn} be the discrete gradient flow with initial data µ for fixed τ > 0.
By Proposition 4.7,

J n
τ µ= µn = σp(θ

n
τ (r), x)dx,

and by definition of the scaling transformation,

Sθn
τ (r) J

n
τ µ= Sθn

τ (r)µn = h p(x)dx for all n ∈ N. (4-20)

Thus, each step of the discrete gradient flow sequence is also a rescaling of h p(x)dx .
In fact, something almost as good holds even when the initial data of the discrete

gradient flow is not a Barenblatt density. We apply Theorem 1.3 to prove that if
{νn} is a discrete gradient flow with initial data ν ∈ D(E p) for fixed τ > 0, then

lim
n→∞

Sθn
τ (r) J

n
τ ν = lim

n→∞
Sθn

τ (r)νn = h p(x)dx .

That is, if you wait a while and scale the solution to view it in a fixed length scale,
what you see is (essentially) a Barenblatt density, no matter what the initial data
ν ∈ D(E p) looked like. Moreover, we show that W2(Sθn

τ (r)νn, h p(x)dx) essentially
contracts at a precise polynomial rate.

Theorem 4.9 (discrete fast diffusion and porous medium flow). If d ≥ 2, fix p >
1− 1/d, and if d = 1, fix p > 1

3 . Let ν ∈ D(E p) and let µ = σp(r, x)dx for some
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r > 0. Given 0< τ ≤ 1, let {νn} and {µn} be the discrete gradient flows (1-10) with
initial conditions ν and µ. Define the rescaled discrete gradient flow sequence

ν̃n := Sθn
τ (r)νn.

Then, there is an explicitly computable constant K depending only on d, p, r ,
E p(ν), and

M(ν) := 1+ 2
∫

Rd
|x |2dν,

such that

W 2
2 (̃νn, h p(x)dx)≤ (θn

τ (r))
−2β
[W2(ν, µ)[W2(ν, µ)+ τ

1/2K ] + τK ]. (4-21)

From this, we readily recover Otto’s contraction result for a continuous gradient
flow as follows. For any t > 0, let int(t/τ) denote the integer part of t/τ . By
Lemma 4.8, θτ (t) = t + τ , up to an error that vanishes uniformly in t as τ → 0.
Thus, a simple iteration yields

lim
τ↓0

θ int(t/τ)
τ (r)= r + t. (4-22)

Interpolating and taking the limit τ→ 0 as in [Jordan et al. 1998], one obtains from
{νn} a solution ρ(t, x) to (∂/∂t)ρ(t, x)=1ρ(t, x)p with ρ(0, x)dx = ν0. Define
the rescaled solution

ρ̃(t, x) := (r + t)dβρ(t, (r + t)βx).

We then conclude that, for all t > 0,

W 2
2
(
ρ̃(t, x)dx, h p(x)dx

)
≤ (r + t)−2βW 2

2
(
ρ(0, x)dx, σp(r, x)dx

)
.

One may choose r to minimize W 2
2 (ρ(0, x)dx, σp(r, x)dx). Otto has shown this

contraction result is sharp. Hence the “near contraction” result we obtain in the
discrete setting cannot be improved in any manner that is uniform in τ .

Other aspects of Otto’s analysis that leverage this contraction into a bound on
L1 convergence may be applied at the discrete level without difficulty, and we do
not go into the details here. On the other hand, while Otto proves a continuous
gradient flow analogue of Theorem 1.3, his proof does not extend to the discrete
case. Theorem 1.3 provides the means to carry out the discrete analysis and to
show that the discrete gradient flow analogue of (4-11) is surprisingly complete.

Proof of Theorem 4.9. By Theorem 1.3, applied iteratively, we have

3τ (νn, µn)≤3τ (ν1, µ1)=3τ (ντ , µτ ). (4-23)

We make the comparison with 3τ (ντ , µτ ), not 3τ (ν, µ), since |∇W E p(ν)|
2 (and

hence 3τ (µ, ν)) may be infinite, but by [Ambrosio et al. 2008, Theorem 3.1.6],
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the strict convexity of E implies

|∇W E(ντ )|2 < |∇W E(ν)|2 (4-24)

so 3τ (ντ , µτ ) <∞. We shall show that 3τ (ντ , µτ ) is very close to W 2
2 (ν, µ),

differing by a term that is O(τ 1/2). Specifically, there exists a constant K depending
only d , p, r , E p(ν), and M(ν), such that

3τ (ντ , µτ )≤W2(ν, µ)[W2(ν, µ)+ τ
1/2K ] + τK . (4-25)

Using this in (4-23), we obtain

W 2
2 (νn, µn)≤3τ (νn, µn)≤W2(ν, µ)[W2(ν, µ)+ τ

1/2K ] + τK . (4-26)

Next, by the scaling properties of the 2-Wasserstein metric and (4-20), for all n ≥ 1,

(θn
τ (r))

−2βW 2
2 (νn, µn)=W 2

2 (Sθn
τ (r)νn, Sθn

τ (r)µn)=W 2
2 (̃νn, h p(x)dx).

Therefore,

W 2
2 (̃νn, h p(x)dx)≤ (θn

τ (r))
−2β
[W2(ν, µ)[W2(ν, µ)+ τ

1/2K ] + τK ],

which is (4-21).
It remains to prove (4-25). First, note that since µ= σp(r, x)dx , (4-17) implies

∇
δE p

δρ
(µ)=−

βx
r
.

Thus, by Lemma 2.2 and the definition of the length of the gradient (1-9),

τ 2β
2

r2

∫
Rd
|x |2σp(r, x)dx = τ 2

|∇W E p(µτ )|
2
=W 2

2 (µ,µτ ) . (4-27)

We will consider the cases p< 1, p= 1, and p> 1 separately. For 1− 1
d < p< 1,

when d ≥ 2, and 1
3 < p < 1, when d = 1, we may use the bound on W2(ν, ντ )

provided by Lemma 4.4 to show

τ 2
|∇W E p(ντ )|

2
≤W 2

2 (ν, ντ )≤ 2τ
E p(ν)+C p M(ν)

1− 4pC pτ
. (4-28)

(This particular bound requires 4pC pτ < 1, but one may prove a similar bound with
a more complicated constant that holds for all τ > 0.) By the triangle inequality,

W 2
2 (µτ , ντ )≤ (W2(µ, ν)+W2(µ,µτ )+W2(ν, ντ ))

2

≤W 2
2 (µ, ν)+ 2W2(µ, ν)[W2(µ,µτ )+W2(ν, ντ )]

+ 2W 2
2 (µ,µτ )+ 2W 2

2 (ν, ντ ).
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Combining this with (4-28) and (4-27) gives

3τ (µτ ,ντ )≤W 2
2 (µ,ν)

+ 2W2(µ,ν)

[(
2τ

E p(ν)+C p M(ν)
1− 4τpC p

)1/2

+ τ
β

r

(∫
Rd
|x |2σp(r,x)dx

)1/2
]

+ 5τ
E p(ν)+C p M(ν)

1− 4τpC p
+

5
2
τ 2β

2

r2

∫
Rd
|x |2σp(r,x)dx .

This leads directly to (4-25) with an explicit constant.
For p > 1, by Lemma 2.2 and the definition of the proximal map,

τ 2
|∇W E p(ντ )|

2
≤W 2

2 (ν, ντ )≤ 2τ [E p(ν)− E p(ντ )].

Since E p is bounded below, an analogous argument leads to (4-25).
The case p= 1 is similar to the case p< 1; we leave the details to the reader. �
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