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MATHIAS LINKERHAND AND CLAUDIUS GROS

Polyhomeostatic adaption occurs when evolving systems try to achieve a target
distribution function for certain dynamical parameters, a generalization of the
notion of homeostasis. Here we consider a single rate-encoding leaky integrator
neuron model driven by white noise, adapting slowly its internal parameters,
threshold and gain, in order to achieve a given target distribution for its time-
averaged firing rate. For the case of sparse encoding, when the target firing-rate
distribution is bimodal, we observe the occurrence of spontaneous quasiperiodic
adaptive oscillations resulting from fast transition between two quasistationary
attractors. We interpret this behavior as self-organized stochastic tipping, with
noise driving the escape from the quasistationary attractors.

1. Introduction

Self-regulation plays an important role in biological and technical systems. Home-
ostatically regulated steady states are a precondition to life, examples being the con-
centration of blood glucose controlled by insulin [Plum et al. 2006] and glucagon,
the pH value of blood [Schaefer 1961; Tresguerres et al. 2010], and body tem-
perature [Charkoudian 2003], which are all autoregulated in order to maintain
stable conditions. Further examples are the concentration of ions, proteins, and
transmitters in the brain; their respective levels are all self regulated [Marder and
Goaillard 2006]. Furthermore, homeostasis is implemented and can be found in
technical systems, for example in microrobotic swarms [Kernbach and Kernbach
2011]. Adaption typically introduces a slow time scale into the dynamical system
[Gros 2010b], a process also called metalearning, a central notion in the context of
neuromodulation [Doya 2002] and emotional control [Gros 2010a]. The resulting
dynamical system then has both fast and slow variables and critical transitions in
the form of tipping processes may occur [Kuehn 2011].

Classical homeostasis involves the regulation of a scalar quantity such as body
temperature. More complex forms of homeostasis are also important in the realm
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of life. For example, an animal may want to achieve a certain time-averaged distri-
bution of behaviors, like foraging, resting, and engaging socially, over the course
of several days. This kind of adaptive behavior has been termed polyhomeostasis
[Marković and Gros 2010; 2012]. It occurs when a dynamical system tries to
achieve, via the continuous adaption of slow variables, a given target distribution
for the time-averaged activity of a subset of fast variables. Polyhomeostatically
adapting systems are typically slow-fast dynamical systems and their dynamical
behavior can tip spontaneously from one state into another. Polyhomeostasis may
therefore result in nontrivial dynamical phenomena. Tipping transitions from lami-
nar flow to intermittent chaotic bursts of activities have been observed for networks
of rate-encoding and polyhomeostatic adapting neurons [Marković and Gros 2010;
2012].

Tipping transitions can occur both in adaptive and in driven systems. Potential
tipping scenarios are currently discussed intensively in the context of climate re-
search [Lenton et al. 2008; Ashwin et al. 2012]. They may be related to a slow
driving of external parameters [Baer et al. 1989], to noisy input inducing a stochas-
tic escape from a local attractor [Gammaitoni et al. 1998; McDonnell and Abbott
2009], or through a dynamical effect when the rate of change of a control parameter
reaches a certain threshold [Ashwin et al. 2012].

Here we study the phenomenon of self-organized tipping for a polyhomeostatic
adapting system driven by a steady-state stochastic input. We examine a previously
proposed model [Stemmler and Koch 1999; Triesch 2005] for regulating the firing-
rate distribution of individual neurons based on information-theoretical principles.
This type of model has been studied previously for the case of discrete time systems
and unimodal target firing-rate distributions [Marković and Gros 2010; 2012]. Here
we examine the case of continuous time and bimodal target distribution functions,
corresponding to sparse coding. For bimodal firing-rate distributions the neural
activity tends to switch in between states close to minimal and maximal activity.
Similar bimodal activity states are also observed in many other systems, for exam-
ple, dynamical gene regulation networks [Davidson and Erwin 2006]. We find that
bimodal target distributions may lead to self-organized bistability within a certain
range of parameters.

We consider a single leaky integrator neuron with noisy input and a sigmoidal
transfer function having two degrees of freedom. To achieve a special behavior —
here the temporal output distribution of the firing rate — we use polyhomeostasis to
change the intrinsic parameters which are directly influencing the mapping of the
membrane potential to the firing rate in order to obtain a specific output distribution.
We derive these parameter-changing rules using stochastic adaption and show that
two degrees of freedom already result in a good behavior approximation, for most
of the parameters studied. For bimodal adaption target distributions we observe
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self-organized and quasiperiodic stochastic tipping in between two quasistationary
attractors resulting from competing adaption gradients.

2. Model

Biological neurons integrate incoming signals and emit an axon potential, a spike,
whenever the membrane potential has reached a certain threshold. The mem-
brane potential then returns, after a short refractory period, rapidly to its resting
value. This behavior can be captured using spiking integrate-and-fire neural models
[Burkitt 2006]. In many circumstances the firing rate, the number of spikes per
unit time, is important and rate-encoding neural models can be used [Borst and
Theunissen 1999]. Here we consider a single rate-encoding leaky integrator driven
by white noise ξ(t),

ẋ(t)=−0x(t)+ ξ(t), 〈ξ(t)ξ(t ′)〉 = Qδ(t − t ′), (1)

where x > 0 is the membrane potential and 0 > 0 the relaxation rate. The firing
rate y(t) ∈ [0, 1] is a nonlinear function of the membrane potential x(t), which we
have selected as

y(t)= g(x(t)), g(x)=
1

1+ e−a(x−b) , (2)

where a > 0 is the gain and b is the threshold. The polynomial transfer function
(2) maps the membrane potential x ∈ [−∞,∞] to the normalized firing rate y ∈
[0, 1] which approaches zero and unity for small and large membrane potentials,
respectively, compare Figure 1. The slope of g(x) is a/4 at the threshold b.
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Figure 1. The transfer function g(x) of (2) for thresholds b = 2
(red lines) and b = 3 (green lines) and various gains a: 1 (dotted),
3 (dashed), and 9 (solid).
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Usually the intrinsic parameters of the transfer function (2), a and b, are taken
as given by some a priori considerations. Here we will consider them to be slow
variables, a = a(t) and b = b(t), adapting slowly such that a target dynamical be-
havior is approached on the average for the firing rate y(t). The stochastic driving
ξ(t)∈ [41, 42] in (1) is simulated through white noise plateaus: The values are gen-
erated according to a uniform probability distribution (white noise), but they remain
constant for short time intervals on the order of unity. The membrane potential av-
erages the input driving noise, due to the leak rate 0 in (1), its distribution function
ρ(x) having a mean µρ ≈ (41+42)/(20) and variance σ 2

ρ ≈ (42−41)/(20).

2.1. Polyhomeostatic adaption. The firing-rate statistic is given by

p(z)= 1
T

∫ t0+T

t0
δ(z− y(t))dt,

∫ 1

0
p(z)dz = 1, (3)

where the length T of the sliding observation window is substantially larger than
the relaxation rate 1/0. The firing-rate distribution p(z) is an important quan-
tity characterizing the information processing capability of biological and artificial
neurons. No information is encoded for a constant firing rate, the next value is
always exactly the same as before, so no new information is transferred. One
may assume that a certain distribution q(y) of firing rates may constitute an op-
timal working regime. Possible functional dependencies for q(y) can be derived
by information-theoretical considerations, for example, maximizing information
entropy, as discussed further below.

Considering a given target firing-rate distribution q(y), the closeness of the ac-
tual firing-rate distribution p(y) is measured by the Kullback–Leibler divergence
DKL, their relative entropy [Gros 2010b]:

DKL(p, q)=
∫

dy p(y) ln
p(y)
q(y)

, DKL(p, q)≥ 0. (4)

The Kullback–Leibler divergence is positive definite and vanishes only when the
two distributions coincide. The KL-divergence is generically not symmetric but
becomes symmetric in the limiting case of similar distributions p and q , becoming
equivalent in this limit to the χ2 test [Gros 2010b]. Our aim is now to rewrite (4)
as an integral over the membrane potential x , using

p(y)dy = ρ(x)dx, p(y)=
ρ(x)

dy/dx
, (5)

where ρ(x) is the membrane potential distribution. Using y = g(x) and (4) and
(5), we obtain

∂DKL

∂θ
=

∫
dx ρ(x)

[
−

1
g′
∂g′

∂θ
−

q ′

q
∂g
∂θ

]
≡

∫
dx ρ(x)∂d

∂θ
(6)
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for the derivative of the Kullback–Leibler divergence with respect to the intrinsic
parameters θ = a, b of the transfer function g(x); see (2).

We consider now the case in which the system does not dispose of prior infor-
mation about the distribution of input stimuli and the thereby resulting distribution
of membrane potential ρ(x). The best strategy to minimize the Kullback–Leibler
divergence is then to minimize the individual terms of the integral (6) through the
stochastic adaption rules [Triesch 2005; Marković and Gros 2010]

dθ
dt
=−εθ

∂d
∂θ
, θ = a, b, (7)

for the intrinsic parameters of the transfer function g(x), where the εθ are appro-
priate small adaption rates.

2.2. Target firing-rate distribution. In order to evaluate (7), respectively (6), we
need to specify the target firing-rate distribution q(y). For this purpose we use
information-theoretical considerations.

Given a continuous probability distribution function q its Shannon entropy H(q)
can be defined as

H(q)=−
∫

dy q(y) ln q(y). (8)

Among all the real-valued distributions with specified mean µ and standard devia-
tion σ the Gaussian distribution [Gros 2010b]

q(y)∝ exp
(
−
(y−µ)2

2σ 2

)
∝ exp(λ1 y+ λ2 y2) (9)

has maximal information entropy, with µ=−λ1/(2λ2) and 2σ 2
=−1/λ2, which

is easily obtained using variational calculus:

0= δ
[

H(q)+ λ1

∫
dy yq(y)+ λ2

∫
dy y2q(y)

]
,

where −λ1 and −λ2 are the respective Lagrange parameters. In Figure 2 examples
for q(y) are illustrated for several values of λ1 and λ2. The support of the target
firing rates is compact, y ∈ [0, 1], and both negative and positive λ1 and λ2 can
be considered. The normalization factor

∫ 1
0 dy q(y) cancels out in (6), since only

ratios are involved.
For positive λ2 > 0 and λ1 ≈−λ2 one obtains bimodal target distributions. This

is an interesting case, since sparse coding, which is realized when only a minority
of neurons in a given network is active, and a majority is inactive [Olshausen and
Field 2004], is characterized by a skewed bimodal distribution.
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Figure 2. Target distribution q(y), see (9), with some selected pa-
rameters λ1 and λ2. The target firing-rate distributions are bimodal
for λ2 > 0.

2.3. Stochastic adaption rules. From (9) and (2) we find the relations

q ′(y)
q(y)

= λ1+ 2λ2 y, ∂g
∂x
= ag(1− g),

and
∂g
∂a
= (x − b)g(1− g), ∂g

∂b
=−ag(1− g),

which we can use to evaluate the stochastic adaption rules (7) as

da
dt
= εa

[1
a
+ (x − b)[1− 2y+ (λ1+ 2λ2 y)(1− y)y]

]
(10)

and
db
dt
= εb

[
−a
(
1− 2y+ (λ1+ 2λ2 y)(1− y)y

)]
. (11)

These two adaption rules will lead to an adaption of the time-averaged firing-rate
distribution p(y) towards the target distribution q(x) whenever the adaption time-
scales 1/εθ are substantially larger than the time constants of the neural dynamics,
which in turn are determined by the time scale of the incoming stimuli and by the
leak-rate 0 in (1).

The transfer function g(x) contains only two free parameters, the gain a and
the threshold b. Perfect adaption p(y) ≡ q(y), for all y ∈ [0, 1], can hence not
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be expected. The system tries to minimize the Kullback–Leibler divergence by
adapting the available degrees of freedom, which are just two in our case.

2.4. Numerical method. Equations (1), (10), and (11) form a set of first-order
differential equations with respect to time. We solve them numerically using the
Euler method with one evaluation per time step. We confirmed that this method
is sufficiently accurate using the fourth-order Runge–Kutta method [Press et al.
2007]. The random white noise ξ(t) is generated through a pseudorandom number
generator with a uniform distribution. The values for the leak 0, the time step 1t ,
and the learning rates εa and εb are shown in the corresponding figures.

3. Results

We performed a series of simulations with the aim of studying two issues. Poly-
homeostatic adaption has been studied previously for the case of discrete time
systems [Triesch 2005; Marković and Gros 2010]; here we examine the case of
continuous time. The case of a bimodal target distribution is, in addition, highly
interesting, as it confronts the system with a dilemma. The transfer function g(x),
compare Figure 1, is strictly monotonic. The distribution of the membrane potential
ρ(x) is hence unimodal. There is no easy way for the adapting neuron to achieve,
as a steady-state time-average, a bimodal output firing-rate distribution p(y). The
question then is whether the system will find a way out of this dilemma through
spontaneous behavioral changes.

3.1. Target distribution approximation. For most simulations we used, if not stated
otherwise, 0 = 1 for the leak rate and 1t = 10−1 for the integration time step. A
typical time series is given in Figure 3. Note that the adaption of the intrinsic
parameters a and b takes place on a slower time scale than that of the primary
dynamic variables, x and y, as typical for a slow-fast dynamical system.

Applying moderate to small learning rates εa = εb . 0.01 the neuron’s firing
rate y approximates various types of target distributions q quite well. In Figure 4
the achieved and the respective target firing-rate distributions are compared. The
respective relative entropies are well minimized and presented in Table 1. Strictly
speaking the stochastic adaption rules (10) and (11) are equivalent to approximating
the firing-rate statistic (3), which is a time-averaged quantity, towards the target
distribution function q(y) only in the limit of very small adaption rates, εa and εb.
Small but finite values for the adaption rates, as used in our simulations, correspond
to a trailing averaging procedure over a limited time interval, and the value of
Kullback–Leibler divergence achieved hence depends weakly on the actual values
used for the learning rates.

For very high learning rates, εb � 0.1, the threshold b follows the membrane
potential x nearly instantaneously, and both variables become highly correlated.
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Figure 3. Typical time series for a unimodal target distribution
q(y) with λ1 = −10, λ2 = 0, compare Figure 2. Plotted are the
membrane potential x (solid blue line, upper panel), the thresh-
old b (dashed red line, upper panel), the gain a (solid green line,
middle panel) and the firing rate y (solid black line, lower panel).
1t = 10−1, εa = εb = 10−2, and 0 = 1.

Therefore the firing-rate distribution p cannot approximate the target distribution
q anymore. In fact, the resulting Kullback–Leibler divergence is then very high.
The tipping in dynamic behavior as a function of adaption rate amplitude is typical
for a rate-induced tipping transition [Ashwin et al. 2012].

3.2. Gain-threshold phase diagram. Due to the sigmoidal shape of the transfer
function, several target distributions lead to specific fingerprints in the gain-threshold
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Figure 4. Target distribution q (bars) versus achieved distribution
p (points) for different distributions. In each diagram λ1 and λ2

are given, while 1t = 10−1, tmax = 108, εa = εb = 10−2, 0 = 1,
and 4= [0, 10].

phase diagram which we present in Figure 5. The threshold, for example, for a left
(right)-dominant target distribution is high (low) and is therefore sensitive to the
mean µ=−λ1/(2λ2) of q(y). Small gains a result in quite flat transfer functions
g(x), compare Figure 1, mapping the membrane potentials to similar firing rates
y. High gains in a discriminate, relative to the threshold b, on the other side
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λ1 λ2 Shape DK L

0 0 Uniform 0.043
−10 0 Left-dominant 0.034
+10 0 Right-dominant 0.028
−10 +10 Left/right-dominant 0.018

+20 −20 Hill 0.076
−20 +20 Left/right, symmetric 0.175
−20 +19 Left/right, left-skewed 0.244
−20 +18.5 Left/right, left-skewed 0.283

Table 1. The relative entropies DK L (4) of various target distri-
butions (see Figure 2) compared to the corresponding achieved
distribution, compare Figure 4.

between high and low membrane potentials. The gain is therefore smaller for hill-
shaped and flat target distributions, as compared to the left and right-dominant
target distributions (for example, λ1 = −20, λ2 = +20) for which intermediate
values are suppressed.

Left (right)-dominant target distributions (compare Table 1) correspond directly
to high (low) transfer function thresholds. Uniform, hill, and other not unilateral
dominant target distributions lead to intermediate transfer function thresholds with
a wide variety of the transfer function gains. For symmetrical target distributions
from hill-shaped to diametrical-shaped there is a transition from low to high gains.

3.3. Self-organized stochastic escape. While the left- and right-dominant unimodal
target distributions are easily approximated due to the sigmoidal shape of the trans-
fer function, the bimodal left and right-dominant target distributions put the system
in a dilemma: Since intermediate values are to be suppressed the transfer function
gain a cannot be too small. Because of this there exist at least two quasistationary
fixed points, one for the left part and one for the right part of the distribution.

For zero or small learning rates εa = εb ≈ 0 the system is trapped in a single local
fixed point. Only the left or right part of the target distribution is then approximated,
and the Kullback–Leibler divergence is not well minimized.

Increasing the learning rates εa = εb allows the system to escape stochastically
from the respective local fixed points: the transfer function threshold b conquers
the local gradient and moves to the other fixed point and back (compare Figure 6).
In the long-term observation the system therefore approximates both the left and
the right part of the target distribution and hence minimizes the relative entropy,
compare Table 2. These tipping transitions between the two quasistationary fixed
points are illustrated in Figure 7, which shows a typical time series for a skewed
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Figure 5. Phase diagram: Plotted are the gain a(t) and the thresh-
old b(t) of the transfer function for various target distributions (λ1

and λ2 given in the legend). The respective target and achieved
firing-rate distributions are given in Figure 4.

target distribution. Note that there are two fixed points for the gain and threshold
and a direct correspondence to the periods of high and low firing rates y(t).

Very low learning rates εa and εb lead to deep and large basins of attraction for
the respective fixed points, while on the other hand high learning rates result in the
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Figure 6. Stochastic escape: Phase diagram of the transfer func-
tion gain versus transfer function threshold for a convex left-
skewed target distribution with various learning rates (εa = εb

given in the legend), with 1t = 10−1, 0 = 1, λ1 = −20, and
λ2 = 18.5.

close following of the threshold to the membrane potential which prohibits reaching
the target distribution. This mechanism is reminiscent of the case of Langevin
dynamics in a double-well potential [Hanggi 1986], where a stochastically driven
particle may switch forth and back between two local minima [Gros 2010b]. The
switching time is controlled for the double-well problem by the Kramers escape
rate, which depends exponentially on the potential barrier height. It is difficult to
formulate a quantitative mapping to the double-well problem. The local attractors
visible in Figures 6 and 7, and the effective barriers in between them, are self-
organized structures. Note that the strength Q of the noise term (1) is constant
and influences the transition rate only weakly, due to the continuous adaption of
the transfer function, via (10) and (11), to the average strength of the stochastic
driving.

εa = εb 10−5 10−4 10−3 5 · 10−3 10−2 5 · 10−2 10−1

DK L 0.306 0.295 0.293 0.289 0.283 0.154 0.109

Table 2. Relative entropies DK L (4) for the left-skewed target dis-
tribution (λ1=−20, λ2= 18.5) relative to the achieved distribution
for various learning rates εa and εb, compare Figure 6.
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Figure 7. Time series of the membrane potential x (top, blue line),
threshold b (top, red line), gain a (middle, green line), and firing
rate y (bottom, black line), with1t = 10−1, εa = εb= 10−1, 0= 1,
λ1 =−20, and λ2 = 18.5.

4. Discussion

We showed that polyhomeostatic adaption of a continuous-time leaky integrator
leads to the desired firing-rate distributions. We also run further simulations using
white noise and Gaussian noise input and replace the transfer function by other
qualitatively different (but still sigmoidal) functions, see the Appendix. It turns out
that the polyhomeostatic adaption as well as the self-organized stochastic escape
are quite robust principles. However, the quality of the approximation (as seen by
visual overlapping) and the value of the Kullback–Leibler divergence depend on
the learning rates, and also on the input distribution and the input’s strength.
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The stochastic tipping as a function of adaption rates has a close relation to
the phenomenon of stochastic escape. The strength of the driving input noise is
constant, but its influence is averaged out for very low adaption rates. Stochastic
escape from one local attractor to another is not possible. The stochasticity of
the input becomes relevant for intermediate values of adaption rates and stochastic
transitions between the two quasistationary attractors are most frequent. Finally,
for very large adaption rates, the system tips into another dynamical state, tracking
the stochastic input signal nearly instantaneously. This sequence of behaviors is
self organized and can be reached from any initial state.

Appendix: Polynomial transfer function

The polyhomeostatic adaption of the system does not change qualitatively by re-
placing the transfer function g. Instead it turns out that the system is robust against
changing the transfer function as long as it remains sigmoidal. We also applied a
transfer function

g(x)=
(x/b)ab

(x/b)ab+ 1
, (A.1)

with a polynomial decay to g(0)= 0, which limits the membrane potential x ≥ 0
to be nonnegative. It turns out that the shape of the target distribution q is also
well approximated using this transfer function. Stochastic escape from one fixed
point to another and back can be observed in addition, since two fixed points are
necessary for some target distributions.

The transfer function has an inflection point for exponents ab > 0; it is absent
for ab < 1, compare Figure 8. The transfer function g behaves as

g(x)≈


(x/b)ab, x � b,
1
2 +

1
4 a(x − b), x ≈ b,

1− (b/x)ab, x � b.

(A.2)

The slope is a/4 which approaches zero and unity for small and large membrane
potentials respectively.

From (A.1) we find the relations

∂g
∂x
= (1− g)g ab

x
, (A.3)

∂g
∂a
= (1− g)gb ln

( x
b

)
,

∂g
∂b
= (1− g)ga

[
ln
( x

b

)
− 1

]
, (A.4)

which we can use to evaluate the stochastic adaption rules (7) as

da
dt
= εa

[1
a
− b ln(x/b)[1− 2y+ (λ1+ 2λ2 y)(1− y)y]

]
(A.5)
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Figure 8. The transfer function g(x), see (A.1), for thresholds
b = 2 (red lines) and b = 3 (green lines) and various gains a: 1/3
(dotted), 3 (dashed), and 9 (solid). No inflection point is present
for exponents ab < 1.

and

db
dt
= εb

[1
b
− a[ln(x/b)− 1][1− 2y+ (λ1+ 2λ2 y)(1− y)y]

]
. (A.6)

Applying this transfer function g it turns out that the target distribution is well
approximated also in this case, even though the membrane potential is restricted
to nonnegative numbers. Table 3 lists the well-minimized Kullback–Leibler diver-
gences for several target distributions.

λ1 λ2 Shape DK L

0 0 Uniform 0.060131
−10 0 Left-dominant 0.069351
+10 0 Right-dominant 0.114578
−10 +10 Left/right-dominant 0.051811

+20 −20 Hill 0.148098
−20 +20 Left/right, symmetric 0.189217
−20 +19 Left/right, left-skewed 0.063934
−20 +18.5 Left/right, left-skewed 0.261215

Table 3. Relative entropies of various target distributions com-
pared to the corresponding achieved distribution (εa = εb = 10−2,
bins= 100).
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We conclude that the stochastic adaption rules are therefore generic and quali-
tatively independent on the concrete realization of the transfer function. However,
quantitatively the resulting relative entropies depend on the choice of the transfer
function which also influences the optimal adaption rates εa and εb.

A.1 Self-organized stochastic escape. For the nonsymmetric convex target distri-
bution (λ1 =−20, λ2 = 19) there are two fixed points. Since the target distribution
cannot be well approximated by only one fixed point the system escapes stochasti-
cally from one to the other and back within a certain period, compare with Figures 9
and 10. For small learning rates εa = εb / 0.01 the system is trapped in only one
fixed point. The relative entropy therefore is not well minimized.

For intermediate learning rates 0.01 / εa = εb / 0.04 the perturbation is high
enough to stochastically escape from that fixed point and approach another one.
Figures 9 and 10 show a typical time series for this tipping. This has also an effect
on the relative entropy which is therefore even smaller than without stochastic
escape (see Table 4).

For high learning rates εa = εb ' 0.05 the system’s behavior changes: the
transfer function is close to a Heaviside step function and the threshold follows
the membrane potential quickly. In that state the achieved distribution is not close

1 2 3 4
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gain a

th
re
s
h
o
ld

b

0 .03

0.02

0.01

0.001

0.0001

Figure 9. Stochastic escape: Phase diagram of the transfer func-
tion gain versus transfer function threshold for a convex left-
skewed target distribution with various learning rates (εa and εb

given in the legend), with 1t = 10−2, 0 = 0.1, λ1 = −20, and
λ2 = 19.
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Figure 10. Time series: membrane potential x , transfer function
threshold b (dashed), transfer function gain a, and firing rate y,
with 1t = 10−1, εa = εb = 10−2, 0 = 0.1, λ1 =−20, and λ2 = 19.

to the target distribution, therefore the relative entropy is not minimized anymore
(see Table 4).

εa = εb 10−4 10−3 0.01 0.03 0.04 0.05 0.06

DK L 0.376 0.368 0.064 0.043 0.017 1.892 1.591

Table 4. Relative entropies of the left-skewed target distribution
(λ1 = −20, λ2 = 19) compared to the achieved distribution for
various learning rates εa and εb. Note that the Kullback–Leibler
divergence is not minimized for εb ' 0.05 due to the fast correla-
tion of the membrane potential and the transfer function threshold.
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