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WELL-POSEDNESS FOR DISLOCATION-BASED
GRADIENT VISCOPLASTICITY, II: GENERAL

NONASSOCIATIVE MONOTONE PLASTIC FLOWS

SERGIY NESENENKO AND PATRIZIO NEFF

In this work we extend the well-posedness for infinitesimal dislocation-based
gradient viscoplasticity with linear kinematic hardening from the subdifferential
case to general nonassociative monotone plastic flows. We assume an additive
split of the displacement gradient into nonsymmetric elastic distortion and non-
symmetric plastic distortion. The thermodynamic potential is augmented with a
term taking the dislocation density tensor Curl p into account. The constitutive
equations in the models we study are assumed to be only of monotone type.
Based on the generalized version of Korn’s inequality for incompatible tensor
fields (the nonsymmetric plastic distortion) due to Neff et al. the existence of
solutions of quasistatic initial-boundary value problems under consideration is
shown using a time-discretization technique and a monotone operator method.

1. Introduction

We study the existence of solutions of quasistatic initial-boundary value problems
arising in gradient viscoplasticity. The models we study use rate-dependent con-
stitutive equations with internal variables to describe the deformation behavior of
metals at infinitesimally small strain.

Our focus is on a phenomenological model on the macroscale not including
the case of single-crystal plasticity. From a mathematical point of view, the maze
of equations, slip systems, and physical mechanisms in single-crystal plasticity is
only obscuring the mathematical structure of the problem.

Our model has been first presented in [Neff et al. 2009a]. It is inspired by [2000].
Contrary to more classical strain gradient approaches, the model features a nonsym-
metric plastic distortion field p ∈M3 [Bardella 2010], a dislocation-based energy
storage based solely on |Curl p|, and second gradients of the plastic distortion in the
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form of Curl Curl p acting as dislocation-based kinematical backstresses. We only
consider energetic length-scale effects and not higher gradients in the dissipation.

The uniqueness of classical solutions in the subdifferential case (associated
plasticity) for rate-independent and rate-dependent formulations is shown in [Neff
2008b]. The existence question for the rate-independent model in terms of a weak
reformulation is addressed in [Neff et al. 2009a]. The rate-independent model with
isotropic hardening is treated in [Ebobisse and Neff 2010]. The first numerical
results for a simplified rate-independent irrotational formulation (no plastic spin,
symmetric plastic distortion p) are presented in [Neff et al. 2009b]. In [Giacomini
and Lussardi 2008; Reddy et al. 2008] well-posedness for a rate-independent model
of [Gurtin and Anand 2005] is shown under the decisive assumption that the plastic
distortion is symmetric (the irrotational case), in which case we may really speak
of a strain gradient plasticity model, since the gradient acts on the plastic strain.

In order to appreciate the simplicity and elegance of our model we sketch some
of its ingredients. First, as is usual in plasticity theory, we split the total displace-
ment gradient into nonsymmetric elastic and plastic distortions:

∇u = e+ p.

For invariance reasons, the elastic energy contribution may only depend on the
elastic strains sym e = sym(∇u− p). While p is nonsymmetric, a distinguishing
feature of our model is that, similarly to classical approaches, only the symmetric
part εp := sym p of the plastic distortion appears in the local Cauchy stress σ ,
while the higher-order stresses are nonsymmetric. The reason for this is that we
assume that p has to obey the same transformation behavior as ∇u does, and thus
the energy storage due to kinematical hardening should depend only on the plastic
strains sym p. For more on the basic invariance questions related to this issue
dictating this type of behavior, see [Neff 2008a; Svendsen et al. 2009]. We assume
as well plastic incompressibility: tr p = 0.

The thermodynamic potential of our model can therefore be written as∫
�

(
C[x](sym(∇u− p))(sym(∇u− p))︸ ︷︷ ︸

elastic energy

+
C1
2
|dev sym p|2︸ ︷︷ ︸

kinematical hardening

+
C2
2
|Curl p|2︸ ︷︷ ︸

dislocation storage

+ u · b︸︷︷︸
external volume forces

)
dx .

The positive definite elasticity tensor C is able to represent the elastic anisotropy
of the material. The evolution equations for the plastic distortion p are taken in
such a way that the stored energy is nonincreasing along trajectories of p at frozen
displacement u; see [Neff et al. 2009a]. This ensures the validity of the second law
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of thermodynamics in the form of the reduced dissipation inequality.
For the reduced dissipation inequality we consider u fixed in time and consider

the time derivative of the free energy (and taking into account that Curl is a self-
adjoint operator provided that the appropriate boundary conditions are specified),
we have

d
dt

∫
�

W (∇u(t0)− p(t), p(t),Curl p(t)) dx

=

∫
�

D1W · (−∂t p)+ D2W · ∂t p+ D3W ·Curl ∂t p dx

=−

∫
�

(D1W − D2W −Curl D3W ) · ∂t p dx .

Choosing ∂t p ∈ g(D1W − D2W − Curl D3W ) with a monotone function g we
obtain the reduced dissipation inequality

d
dt

∫
�

W (∇u(t0)− p(t), p(t),Curl p(t)) dx ≤ 0.

Adapted to our situation, the plastic flow has the form

∂t p ∈ g(σ −C1 dev sym p−C2 Curl Curl p), (1)

where σ =C[x] sym(∇u− p) is the elastic symmetric Cauchy stress of the material
and g is a multivalued monotone flow function which is not necessary the subd-
ifferential of a convex plastic potential (associative plasticity). In this generality,
our formulation comprises certain nonassociative plastic flows in which the yield
condition and the flow direction are independent and governed by distinct functions.
Moreover, the flow function g is supposed to induce a rate-dependent response as
all materials are rate dependent.

Clearly, in the absence of energetic length-scale effects (C2 = 0), the Curl Curl p
term is absent. In general we assume that g maps symmetric tensors to symmetric
tensors. Thus, for C2= 0 the plastic distortion remains symmetric and the model re-
duces to a classical plasticity model. Therefore, the energetic length scale is solely
responsible for the plastic spin in the model. The appearance of the Curl Curl p
term in the argument of g is clear: the argument of g consists of the Eshelby stress
tensor 6 driving the plastic evolution, see [Neff et al. 2009a].

Regarding the boundary conditions necessary for the formulation of the higher-
order theory we assume that the boundary is a perfect conductor, which means
that the tangential component of p vanishes on ∂�. In the context of disloca-
tion dynamics these conditions express the requirement that there is no flux of the
Burgers vector across a hard boundary. Gurtin and Needleman [2005] introduce
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the following different types of boundary conditions for the plastic distortion:1

∂t p× n
∣∣
0hard
= 0 “microhard” (perfect conductor),

∂t p
∣∣
0hard
= 0 “hard-slip”,

Curl p× n
∣∣
0hard
= 0 “microfree”.

(2)

We specify a sufficient condition for the microhard boundary condition, namely

p× n
∣∣
0hard
= 0,

and assume 0hard = ∂�. This is the correct boundary condition for tensor fields in
H(Curl) which admits tangential traces.

We combine this with a new inequality extending Korn’s inequality to incom-
patible tensor fields, namely, for all p ∈ H(Curl) such that p × n

∣∣
0hard
= 0, we

have
‖p‖L2(�)︸ ︷︷ ︸

plastic distortion

≤ C(�)
(
‖sym p‖L2(�)︸ ︷︷ ︸

plastic strain

+‖Curl p‖L2(�)︸ ︷︷ ︸
dislocation density

)
. (3)

Here, 0hard ⊂ ∂� with full two-dimensional surface measure and domain � needs
to be sliceable, that is, cuttable into finitely many simply connected subdomains
with Lipschitz boundaries. This inequality has been derived in [Neff et al. 2011;
2012a; 2012b] and is precisely motivated by the well-posedness question for our
model [Neff et al. 2009a]. Inequality (3) expresses the fact that controlling the
plastic strain sym p and the dislocation density Curl p in L2(�) gives a control of
the plastic distortion p in L2(�) provided the correct boundary conditions are spec-
ified: namely the microhard boundary condition. Since in the sequel we assume
that tr(p)= 0 (plastic incompressibility) the quadratic terms in the thermodynamic
potential provide a control of the right-hand side in (3).

It is worth noting that with g only monotone and not necessarily a subdifferential
the powerful energetic solution concept [Giacomini and Lussardi 2008; Mainik and
Mielke 2009; Kratochvíl et al. 2010] cannot be applied. In this contribution we
face the combined challenge of a gradient plasticity model based on the dislocation
density tensor Curl p involving the plastic spin, a general nonassociative monotone
flow-rule, and a rate-dependent response.

Setting of the problem. Let � ⊂ R3 be an open bounded set, the set of material
points of the solid body, with a C1-boundary. By Te we denote a positive number
(time of existence), which can be chosen arbitrarily large, and for 0< t ≤ Te,

�t =�× (0, t).

1Here, v× n with v ∈M3 and where n ∈ R3 denotes a row by column operation.
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The sets M3 and S3 denote the sets of all 3× 3 matrices and all symmetric 3× 3
matrices, respectively. Let sl(3) be the set of all traceless 3× 3 matrices, that is,

sl(3)= {v ∈M3
| tr v = 0}.

Unknown in our small strain formulation are the displacement u(x, t) ∈ R3 of the
material point x at time t and the nonsymmetric infinitesimal plastic distortion
p(x, t) ∈ sl(3).

The model equations of the problem are

− divx σ(x, t)= b(x, t), (4)

σ(x, t)= C[x]
(
sym(∇x u(x, t)− p(x, t))

)
, (5)

∂t p(x, t) ∈ g(x, 6lin(x, t)), 6lin
=6lin

e +6
lin
sh +6

lin
curl, (6)

6lin
e = σ, 6lin

sh =−C1 dev sym p, 6lin
curl =−C2 Curl Curl p,

which must be satisfied in�×[0, Te). Here, C1,C2≥ 0 are given material constants
and 6lin is the infinitesimal Eshelby stress tensor driving the evolution of the plastic
distortion p. The initial condition and Dirichlet boundary condition are

p(x, 0)= p(0)(x), x ∈�, (7)

p(x, t)× n(x)= 0, (x, t) ∈ ∂�×[0, Te), (8)

u(x, t)= 0, (x, t) ∈ ∂�×[0, Te), (9)

where n is a normal vector on the boundary ∂�. For simplicity we consider only the
homogeneous boundary condition. The elasticity tensor C[x] : S3

→ S3 is a linear,
symmetric, uniformly positive definite mapping. The mapping x 7→C[x] :�→S3

is measurable. Classical linear kinematic hardening is included for C1 > 0. Here,
the nonlocal backstress contribution is given by the dislocation density motivated
term 6lin

curl =−C2 Curl Curl p together with the corresponding microhard boundary
conditions.

For the model we require that the nonlinear constitutive mapping (v 7→ g( ·, v)) :
M3
→ 2sl(3) is monotone2, that is, it satisfies

0≤ (v1− v2) · (v
∗

1 − v
∗

2), (10)

for all vi ∈M3, v∗i ∈ g(x, vi ), i = 1, 2, and for a.e. x ∈�. We also require that

0 ∈ g(x, 0), a.e. x ∈�. (11)

The mapping x 7→ g(x, · ) :�→ 2sl(3) is measurable (see Section 2 for the defini-
tion of the measurability of multivalued maps). Moreover, the function g has the

2Here 2sl(3) denotes the power set of sl(3).
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following property:

g(x, v) ∈ S3 for any v ∈ S3 and a.e. x ∈�.

Given are the volume force b(x, t) ∈ R3 and the initial datum p(0)(x) ∈ sl(3).

Remark 1.1. It is well known that classical viscoplasticity (without gradient ef-
fects) gives rise to a well-posed problem. We extend this result to our formulation
of rate-dependent gradient plasticity. The presence of the classical linear kinematic
hardening in our model is related to C1 > 0 whereas the presence of the nonlocal
gradient term is always related to C2 > 0.

In the recent work by the authors [Nesenenko and Neff 2012] the existence of
solutions for the initial boundary problem (4)–(9) is studied under the assumption
that the monotone function g is a subdifferential of a proper lower semicontinuous
convex function φ :M3

→R (R :=R∪{∞}), that is, g= ∂φ, and with the following
different boundary condition:

Curl p(x, t)× n(x)= 0, (x, t) ∈ ∂�×[0, Te), (12)

instead of (8). It is required there that the function φ satisfies the following two-
sided estimate:

a0|v|
q
− b0 ≤ φ(v)≤ a1|v|

q
+ b1, (13)

for positive a0 and a1, some b0 and b1, and any v ∈M3. Using methods of convex
analysis we obtained in [Nesenenko and Neff 2012] the existence of weak solutions
(see Definition 4.6) for the problem (4)–(7) + (12) + (9), with g = ∂φ, under
the restrictions on g given above. We note that the existence result derived in
that paper is also valid for the new problem (4)–(9), that is, with the boundary
condition (8) instead of (12), and of course the subdifferential structural assumption
on g. In this work, assuming � ⊂ R3 is a sliceable domain with a C1-boundary
and the homogeneous initial condition for p, that is, p(0)(x) = 0 for x ∈ �, we
show the existence of strong solutions (see Definition 4.5) for the problem (4)–(9)
with the monotone function g belonging to the class M(�,M3, q, α,m) defined
in Section 4. The derivation of this result is based on the inequality (3), which
is recently obtained in [Neff et al. 2011; 2012c] under the assumption that � is a
sliceable domain, and on the monotonicity assumption for the function g. We note
that in the case of the sliceable domain � the methods used in this work allow us
to show the existence of strong solutions for (4)–(9) with g = ∂φ, that is, the weak
solutions for (4)–(9) with g = ∂φ derived in [Nesenenko and Neff 2012] are the
strong solutions in the sense of Definition 4.5 in this case. However, we do not
know how to extend our results on the existence of strong solutions to domains �
which are not sliceable and to the nonhomogeneous initial condition. We note as
well that the existence of strong solutions for the initial boundary problem formed
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by (4)–(7), (9), and (12), with g ∈M(�,M3, q, α,m) or g = ∂φ with φ satisfying
(13) for any domain �, is an open problem too.

Notation. Throughout we choose the numbers q and q∗ satisfying the following
conditions:

1< q, q∗ <∞ and 1/q + 1/q∗ = 1,

where | · | denotes a norm in Rk , k ∈N. Moreover, the following notations are used
in this work. The space W m,q(�,Rk) with q ∈ [1,∞] consists of all functions in
Lq(�,Rk) with weak derivatives in Lq(�,Rk) up to order m. If m is not integer,
then W m,q(�,Rk) denotes the corresponding Sobolev–Slobodecki space. We set
H m(�,Rk) = W m,2(�,Rk). The norm in W m,q(�,Rk) is denoted by ‖ · ‖m,q,�
(‖ · ‖q := ‖ · ‖0,q,�). The operator 00 defined by

00 : v ∈W 1,q(�,Rk) 7→W 1−1/q,q(∂�,Rk)

denotes the usual trace operator. The space W m,q
0 (�,Rk) with q ∈ [1,∞] consists

of all functions v in W m,q(�,Rk) with 00v = 0. One can define the bilinear form
on the product space Lq(�,M3) × Lq∗(�,M3) by

(ξ, ζ )� =

∫
�

ξ(x) · ζ(x) dx .

The space

Lq
Curl(�,M3)= {v ∈ Lq(�,M3) | Curl v ∈ Lq(�,M3)}

is a Banach space with respect to the norm

‖v‖q,Curl = ‖v‖q +‖Curl v‖q .

By H(Curl) we denote the space of measurable functions in L2
Curl(�,M3), that is,

H(Curl)= L2
Curl(�,M3). The well-known result on the generalized trace operator

can be easily adapted to functions with values in M3 (see [Sohr 2001, §II.1.2]).
Then, according to this result, there is a bounded operator 0n on Lq

Curl(�,M3):

0n : v ∈ Lq
Curl(�,M3) 7→ (W 1−1/q∗,q∗(∂�,M3))∗

with
0nv = v× n

∣∣
∂�

if v ∈ C1(�,M3),

where X∗ denotes the dual of a Banach space X . Next,

Lq
Curl,0(�,M3)= {w ∈ Lq

Curl(�,M3) | 0n(w)= 0}.

We also define the space Zq
Curl(�,M3) by

Zq
Curl(�,M3)= {v ∈ Lq

Curl,0(�,M3) | Curl Curl v ∈ Lq(�,M3)},
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which is a Banach space with respect to the norm

‖v‖Zq
Curl
= ‖v‖q,Curl+‖Curl Curl v‖q .

For functions v defined on �×[0,∞) we denote by v(t) the mapping x 7→ v(x, t),
which is defined on �. The space Lq(0, Te; X) denotes the Banach space of all
Bochner-measurable functions u : [0, Te)→ X such that t 7→ ‖u(t)‖qX is integrable
on [0, Te). Finally, we frequently use the spaces W m,q(0, Te; X), which consist of
Bochner-measurable functions having q-integrable weak derivatives up to order m.

2. Maximal monotone operators

In this section we recall some basics about monotone and maximal monotone op-
erators. For more details see [Barbu 1976; Pascali and Sburlan 1978; Hu and
Papageorgiou 1997], for example.

Let V be a reflexive Banach space with the norm ‖ · ‖, and let V ∗ be its dual
space with the norm ‖ · ‖∗. The brackets 〈 · , · 〉 denote the dual pairing between V
and V ∗. Under V we shall always mean a reflexive Banach space throughout this
section. For a multivalued mapping A : V → 2V ∗ we define the effective domain
of A as

D(A)= {v ∈ V | Av 6=∅}

and the graph of A as

Gr A = {[v, v∗] ∈ V × V ∗ | v ∈ D(A), v∗ ∈ Av}.

Definition 2.1. A mapping A : V → 2V ∗ is called monotone if the inequality

〈v∗− u∗, v− u〉 ≥ 0

holds for all [v, v∗], [u, u∗] ∈ Gr A. A monotone mapping A : V → 2V ∗ is called
maximal monotone if the inequality

〈v∗− u∗, v− u〉 ≥ 0 for all [u, u∗] ∈ Gr A

implies [v, v∗] ∈ Gr A.
A mapping A : V → 2V ∗ is called generalized pseudomonotone if the set Av

is closed, convex, and bounded for all v ∈ D(A) and, for every pair of sequences
{vn} and {v∗n} such that v∗n ∈ Avn , vn ⇀v0, v∗n ⇀v∗0 ∈ V ∗ and

lim sup
n→∞

〈v∗n , vn − v0〉 ≤ 0,

we have [v0, v
∗

0 ] ∈ Gr A and 〈v∗n , vn〉 → 〈v
∗

0 , v0〉.
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A mapping A : V → 2V ∗ is called strongly coercive if either D(A) is bounded
or D(A) is unbounded and the condition

〈v∗, v−w〉

‖v‖
→+∞ as ‖v‖→∞, [v, v∗] ∈ Gr A,

is satisfied for each w ∈ D(A).

It is well known [Pascali and Sburlan 1978, p. 105] that if A is a maximal
monotone operator, then for any v ∈ D(A) the image Av is a closed convex subset
of V ∗ and the graph Gr A is demiclosed.3 A maximal monotone operator is also
generalized pseudomonotone; see [Barbu 1976; Pascali and Sburlan 1978; Hu and
Papageorgiou 1997].

Remark 2.2. We recall that the subdifferential of a lower semicontinuous and
convex function is maximal monotone; see, for example, [Phelps 1993, Theorem
2.25].

Definition 2.3. The duality mapping J : V → 2V ∗ is defined by

J (v)= {v∗ ∈ V ∗ | 〈v∗, v〉 = ‖v‖2 = ‖v∗‖2
∗
}

for all v ∈ V .

Without loss of generality (due to Asplund’s theorem) we can assume that both
V and V ∗ are strictly convex, that is, that the unit ball in the corresponding space
is strictly convex. By virtue of [Barbu 1976, Theorem II.1.2], the equation

J (vλ− v)+ λAvλ 3 0

has a solution vλ ∈ D(A) for every v ∈ V and λ > 0 if A is maximal monotone.
The solution is unique; see [Barbu 1976, p. 41].

Definition 2.4. Setting

vλ = j A
λ v and Aλv =−λ−1 J (vλ− v)

we define two single-valued operators: the Yosida approximation Aλ : V → V ∗ and
the resolvent j A

λ : V → D(A) with D(Aλ)= D( j A
λ )= V .

By this definition, one immediately sees that Aλv ∈ A( j A
λ v). For the main proper-

ties of the Yosida approximation we refer to [Barbu 1976; Pascali and Sburlan 1978;
Hu and Papageorgiou 1997] and mention only that both are continuous operators
and that Aλ is bounded and maximal monotone.

Next, the maximality of the sum of two maximal monotone operators is given
by the following result.

3A set A ∈ V × V ∗ is demiclosed if, whenever vn converges strongly to v0 in V and v∗n converges
weakly to v∗0 in V ∗ (or vn converges weakly to v0 in V and v∗n converges strongly to v∗0 in V ∗) and
[vn, v

∗
n ] ∈ Gr A, we have [v, v∗] ∈ Gr A.
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Theorem 2.5. Let V be a reflexive Banach space, and let A and B be maximal.
Suppose that the condition

D(A)∩ int D(B) 6=∅

is fulfilled. Then the sum A+ B is a maximal monotone operator.

Proof. See [Pascali and Sburlan 1978, Theorem III.3.6] or [Barbu 1976, Theo-
rem II.1.7]. �

For deeper results on the maximality of the sum of two maximal monotone
operators we refer the reader to the book [Simons 1998]. The next surjectivity
result plays an important role in the existence theory for monotone operators.

Theorem 2.6. If V is a (strictly convex) reflexive Banach space and A : V → 2V ∗

is maximal monotone and coercive, then A is surjective.

Proof. See [Pascali and Sburlan 1978, Theorem III.2.10]. �

Measurability of multivalued mappings. In this subsection we present briefly some
facts about measurable multivalued mappings. We assume that V , and hence V ∗,
is separable and denote the set of maximal monotone operators from V to V ∗ by
M(V × V ∗). Further, let (S, 6(S), µ) be a σ -finite µ-complete measurable space.

Definition 2.7. A function A : S→M(V × V ∗) is measurable if, for every open
set U ∈ V × V ∗, the set

{x ∈ S | A(x)∩U 6=∅}

is measurable in S. Here “open set” could be replaced by “closed set”, “Borel set”,
“open ball”, or “closed ball”, with an equivalent result.

The next result states that the notion of measurability for maximal monotone
mappings can be equivalently defined in terms of the measurability for appropriate
single-valued mappings.

Proposition 2.8. Let A : S→M(V × V ∗), let λ > 0 and let E be dense in V . The
following are equivalent:

(a) A is measurable,

(b) for every v ∈ E , x 7→ j A(x)
λ v is measurable, and

(c) v ∈ E , x 7→ Aλ(x)v is measurable.

Proof. See [Damlamian et al. 2007, Proposition 2.11]. �

For further reading on measurable multivalued mappings we refer the reader to
[Castaing and Valadier 1977; Hu and Papageorgiou 1997; Pankov 1997].
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Canonical extensions of maximal monotone operators. Given a mapping

A : S→M(V × V ∗),

one can define a monotone graph from Lq(S, V ) to Lq∗(S, V ∗), where 1/q +
1/q∗ = 1, as follows.

Definition 2.9. Let A : S → M(V × V ∗), the canonical extension of A from
Lq(S, V ) to Lq∗(S, V ∗), where 1/q + 1/q∗ = 1, is defined by:

Gr A= {[v, v∗] ∈ L p(S, V )× Lq(S, V ∗) | [v(x), v∗(x)] ∈Gr A(x) for a.e. x ∈ S}.

Monotonicity of A as defined in Definition 2.9 is obvious, while its maximality
follows from the next proposition.

Proposition 2.10. Let A : S→M(V × V ∗) be measurable. If Gr A 6=∅, then A

is maximal monotone.

Proof. See [Damlamian et al. 2007, Proposition 2.13]. �

We have to point out here that the maximality of A(x) for almost every x ∈ S
does not imply the maximality of A as the latter can be empty [Damlamian et al.
2007]: S = (0, 1) and Gr A(x)= {[v, v∗] ∈ Rm

×Rm
| v∗ = x−1/q

}.

3. Some properties of the Curl Curl operator

In this section we present some results concerning the Curl Curl operator, which
are relevant to further investigations. For the Curl Curl operator with a slightly
different domain of definition similar results are obtained in [Nesenenko and Neff
2012, §4]. Here we adopt the results of that papers to our purposes.

Lemma 3.1 (self-adjointness of Curl Curl). Let � ⊂ R3 be an open bounded set
with a Lipschitz boundary and A : L2(�,M3)→ L2(�,M3) be the linear operator
defined by

Av = Curl Curl v

with dom(A)= Z2
Curl(�,M3). The operator A is self-adjoint and nonnegative.

Proof. Consider the closed linear operator S : L2(�,M3)→ L2(�,M3) defined by

Sv = Curl v, v ∈ dom(S)= L2
Curl,0(�,M3).

It is easily seen that its adjoint is given by

S∗v = Curl v, v ∈ dom(S∗)= L2
Curl(�,M3).

Then, by [Kato 1966, Theorem V.3.24], the operator S∗S with

dom(S∗S)= {v ∈ dom(S) | Sv ∈ dom(S∗)},
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which is exactly the operator A, is self-adjoint in L2(�,M3). The nonnegativity
of A follows from its representation by the operator S, that is, A = S∗S, and the
identity

(Av, u)� = (S∗Sv, u)� = (Sv, Su)�,

which holds for all v ∈ dom(A) and u ∈ dom(S). �

Corollary 3.2. The operator A : L2(�,M3)→ L2(�,M3) defined in Lemma 3.1
is maximal monotone.

Proof. According to [Brézis 1970, Theorem 1], a linear monotone operator A is
maximal monotone if it is a densely defined closed operator whose adjoint A∗ is
monotone. The statement of the corollary follows then directly from Lemma 3.1
and the mentioned result of Brézis. �

Boundary value problems. Let �⊂ R3 be an open bounded set with a Lipschitz
boundary. For every v ∈ L2(�,M3) we define a functional 9 on L2(�,M3) by

9(v)=


1
2

∫
�

|Curl v(x)|2 dx, v ∈ L2
Curl,0(�,M3),

+∞, otherwise.

It is easy to check that 9 is proper, convex, and lower semicontinuous. The next
lemma gives a precise description of the subdifferential ∂9.

Lemma 3.3. We have that ∂9 = Curl Curl with

dom(∂9)= Z2
Curl(�,M3).

Proof. Let A : L2(�,M3)→ L2(�,M3) be the linear operator defined by

Av = Curl Curl v

and dom(A)= Z2
Curl(�,M3). Due to Lemma 3.1, the identity∫

�

Curl Curl v(x) ·w(x) dx =
∫
�

Curl v(x) ·Curlw(x) dx (14)

holds for any v,w ∈ Z2
Curl(�,M3). Therefore, using (14) we obtain∫

�

Curl Curl v · (w− v) dx =
∫
�

Curl v · (Curlw−Curl v) dx ≤9(w)−9(v)

for every v,w ∈ dom(A). This shows that A ⊂ ∂9. Since A is maximal monotone
(see Corollary 3.2) we conclude that A = ∂9. �
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4. Existence of strong solutions

In this section we prove the main existence result for (4)–(9). To show the existence
of weak solutions a time-discretization method is used in this work. In the first step,
we prove the existence of the solutions of the time-discretized problem in appro-
priate Hilbert spaces based on the Helmholtz projection in L2(�,S3) (Appendix
A) and monotone operator methods (Section 2). In order to be able to apply the
monotone operator method to the time-discretized problem we regularize it by a
linear positive definite term. In the second step, we derive the uniform a priori
estimates for the solutions of the time-discretized problem using the polynomial
growth of the function g (see Definition 4.1) and then we pass to the weak limit
in the equivalent formulation of the time-discretized problem employing the weak
lower semicontinuity of lower semicontinuous convex functions and the maximal
monotonicity of g.

Main result. First, we define the class of maximal monotone functions we deal
with in this work.

Definition 4.1. For m ∈ L1(�,R), α ∈ R+, and q > 1, M(�,Rk, q, α,m) is the
set of multivalued functions h :�×Rk

→ 2Rk
with the following properties:

• v 7→ h(x, v) is maximal monotone for almost all x ∈�,

• the mapping x 7→ jλ(x, v) :�→Rk is measurable for all λ> 0, where jλ(x, v)
is the inverse of v 7→ v+ λh(x, v),

• for a.e. x ∈� and every v∗ ∈ h(x, v)

α

(
|v|q

q
+
|v∗|q

∗

q∗

)
≤ (v, v∗)+m(x), (15)

where 1/q + 1/q∗ = 1.

Remark 4.2. The condition (15) is equivalent to the following two inequalities:

|v∗|q
∗

≤ m1(x)+α1|v|
q , (v, v∗)≥ m2(x)+α2|v|

q , (16)

for a.e. x ∈� and every v∗ ∈ h(x, v) and with suitable functions m1,m2 ∈ L1(�,R)

and numbers α1, α2 ∈ R+.

Remark 4.3. Viscoplasticity is typically included in the former conditions by choos-
ing the function g to be in Norton–Hoff form, that is,

g(6)= [|6| − σy]
r
+

6

|6|
, 6 ∈M3, (17)

where σy is the flow stress and r is some parameter together with [x]+ :=max(x, 0).
If g :M3

7→ S3 then the flow is called irrotational (no plastic spin).
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In case of a nonassociative flow rule, g is not a subdifferential but may, for
example, be written as

g(6)= F1(6)∂F2(6),

where F1 describes the yield function and F2 the flow direction.

The main properties of the class M(�,Rk, q, α,m) are collected in the follow-
ing proposition.

Proposition 4.4. Let H be a canonical extension of a function h :Rk
→ 2Rk

, which
belongs to M(�,Rk, q, α,m). Then H is maximal monotone and surjective, and
D(H)= L p(�,Rk).

Proof. See [Damlamian et al. 2007, Corollary 2.15]. �

Next, we define two notions of solution for the initial boundary value problem
(4)–(9). Both notions are introduced without assuming the homogeneity of the
initial condition (7).

Definition 4.5 (strong solution). A function (u, σ, p) such that

(u, σ ) ∈ H 1(0, Te; H 1
0 (�,R3)× L2(�,S3)), 6lin

∈ Lq(�Te ,M3),

p ∈ H 1(0, Te; L2
Curl(�,M3))∩ L2(0, Te; Z2

Curl(�,M3)),

is called a strong solution of the initial boundary value problem (4)–(9) if, for every
t ∈ [0, Te], the function (u(t), σ (t)) is a weak solution of the boundary value prob-
lem (73) with ε̂p = sym p(t), and the condition b̂ = b(t), the evolution inclusion
(6) and the initial condition (7) are satisfied pointwise.

For the reader’s convenience we give here also the definition of a weak solution
for the problem (4)–(9) in the case when the monotone function g is a subdifferen-
tial of a proper lower semicontinuous convex function φ, that is, g = ∂φ.

Definition 4.6 (weak solution). A function (u, σ, p) such that

(u, σ ) ∈W 1,q∗(0, Te;W
1,q∗
0 (�,R3)× Lq∗(�,S3)), 6lin

∈ Lq(�Te ,M3),

p ∈W 1,q∗(0, Te; Lq∗(�,M3))∩ Lq∗(0, Te; Zq∗

Curl(�,M3)),

with

(σ, dev sym p,Curl p) ∈ L∞(0, Te; L2(�,S3
×M3

×M3)),

is called a weak solution of the initial boundary value problem (4)–(9) if for every
t ∈ [0, Te] the function (u(t), σ (t)) is a weak solution of the boundary value prob-
lem (73) with ε̂p = sym p(t) and b̂ = b(t), the initial condition (7) is satisfied, and
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the inequality4

1
2

∫
�

C−1
[x]σ(x, t) · σ(x, t) dx +C1‖dev sym p(t)‖22+C2‖Curl p(t)‖22

+

∫ t

0

∫
�

(
φ∗(x, ∂s p(x, s))+φ(x, 6lin(x, s))

)
dxds ≤

∫ t

0
(b(s), ∂su(s))� ds

+
1
2

∫
�

C−1
[x]σ (0)(x) · σ (0)(x) dx +C1‖dev sym p(0)‖22+C2‖Curl p(0)‖22

holds for all t ∈ (0,Te), with the function σ (0)∈ L2(�,S3) determined by (73) for
ε̂p = sym p(0) and b̂ = b(0).

In our previous paper [Nesenenko and Neff 2012] it is shown that under some
additional regularity the weak solutions of the problem (4)–(9) with g= ∂φ become
strong solutions of (4)–(9) in the sense of Definition 4.5.

Next, we state the main result of this work.

Theorem 4.7. Suppose that 1 < q∗ ≤ 2 ≤ q < ∞. Assume that � ⊂ R3 is a
sliceable domain with a C1-boundary and C ∈ L∞(�,S3). Let the functions b ∈
W 1,q(0, Te; Lq(�,R3)) be given. Assume that g ∈M(�,M3, q, α,m) and that for
a.e. x ∈� the relations

p(0)(x)= 0 and 0 ∈ g(x, σ (0)(x)) (18)

hold, where the function σ (0) ∈ L2(�,S3) is determined by (73) for ε̂p = 0 and
b̂ = b(0).

Then there exists a solution (u, σ, p) of the initial boundary value problem
(4)–(9).

In order to deal with the measurable elasticity tensor C, we reformulate the
problem (4)–(9) as follows: Let the function (v̂, σ̂ ) ∈W 1,q(0, Te,W 1,q

0 (�,R3)×

Lq(�,S3)) be a solution of the linear elasticity problem formed by

− divx σ̂ (x, t)= b(x, t), x ∈�, (19)

σ̂ (x, t)= Ĉ(sym(∇x v̂(x, t)), x ∈�, (20)

v̂(x, t)= 0, x ∈ ∂�, (21)

where Ĉ : S3
→ S3 is any positive definite linear mapping independent of (x, t).

Such a function (v̂, σ̂ ) exists (see Appendix A). Then the solution (u, σ, p) of the
initial boundary value problem (4)–(9) has the form

(u, σ, p)= (ṽ+ v̂, σ̃ + σ̂ , p),

where the function (ṽ, σ̃ , p) solves the problem

4Here φ∗ is the Legendre–Fenchel conjugate of φ.
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−divx σ̃ (x, t)= 0, (22)

σ̃ (x, t)= C[x]
(
sym(∇x ṽ(x, t)− p(x, t))

)
+ (C[x] − Ĉ)

(
sym(∇x v̂(x, t))

)
, (23)

∂t p(x, t) ∈ g
(
x, 6lin(x, t)

)
, 6lin

=6lin
e +6

lin
sh +6

lin
curl (24)(

6lin
e = σ̃ + σ̂ , 6lin

sh =−C1 dev sym p, 6lin
curl =−C2 Curl Curl p

)
,

p(x, 0)= 0, x ∈�, (25)

p(x, t)× n(x)= 0, (x, t) ∈ ∂�×[0, Te), (26)

ṽ(x, t)= 0, (x, t) ∈ ∂�×[0, Te). (27)

Here, the function (v̂, σ̂ ) given as the solution of (19) is considered as known. Next,
we show that the problem (22)–(27) has a solution. This will prove the existence
of solutions for (4)–(9).

Proof. We will show the existence of solutions using Rothe’s method (a time-
discretization method, see [Roubíček 2005] for details). In order to introduce a
time-discretized problem, let us fix any m ∈ N and set

h :=
Te

2m , p0
m := 0, σ̂ n

m :=
1
h

∫ nh

(n−1)h
σ̂ (s) ds ∈ Lq(�,R3), n = 1, . . . , 2m .

Then we are looking for functions un
m ∈ H 1(�,R3), σ n

m ∈ L2(�,S3), and pn
m ∈

Z2
Curl(�,M3) with pn

m(x) ∈ sl(3) for a.e. x ∈� and

6lin
n,m := σ

n
m + σ̂

n
m −C1 dev sym pn

m −
1
m

pn
m −C2 Curl Curl pn

m ∈ Lq(�,M3)

solving the problem given by

− divx σ
n
m(x)= 0, (28)

σ n
m(x)= C[x]

(
sym(∇x un

m(x)− pn
m(x))

)
+ (C[x] − Ĉ)(Ĉ)−1σ̂ n

m(x), (29)

pn
m(x)− pn−1

m (x)
h

∈ g(6lin
n,m(x)), (30)

together with the boundary conditions

pn
m(x)× n(x)= 0, x ∈ ∂�, (31)

un
m(x)= 0, x ∈ ∂�. (32)

Next, we adopt the reduction technique proposed in [Alber and Chełmiński 2004]
to the equations above. Let (un

m, σ
n
m, pn

m) be a solution of the boundary value
problem (28)–(32). Equations (28), (29), and (32) form a boundary value problem
for the solution (un

m, σ
n
m) of the problem of linear elasticity. Due to the linearity of
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this problem we can write these components of the solution in the form

(un
m, σ

n
m)= (U

n
m, 6

n
m)+ (w

n
m, τ

n
m),

with the solution (wn
m, τ

n
m) of the Dirichlet boundary value problem (73) for the

data b̂ = 0, ε̂p = (C− Ĉ)(Ĉ)−1σ̂ n
m , and with the solution (U n

m, 6
n
m) of the problem

(73) for the data b̂ = 0, ε̂p = sym(pn
m). We thus obtain

sym(∇x un
m)− sym(pn

m)= (P2− I )sym(pn
m)+ sym(∇xw

n
m),

where the operator P2 is defined in Definition A.8. We insert this equation into
(29) and get that (30) can be rewritten in the form

pn
m − pn−1

m

h
∈ G(−Mm pn

m −C2 Curl Curl pn
m + (σ̂

n
m + τ

n
m)), (33)

pn
m(x)× n(x)= 0, x ∈ ∂�, (34)

where

Mm := (CQ2+ L) sym+ 1
m

I : L2(�,M3)→ L2(�,M3),

with the Helmholtz projection Q2 and the operator L defined by (76). Here G

denotes the canonical extension of g. Next, the problem (33) reads

9(pn
m) 3 σ̂

n
m + τ

n
m, (35)

where

9(v)= G−1
(
v− pn−1

m

h

)
+Mm(v)+ ∂8(v).

Here, the functional 8 : L2(�,M3)→ R is given by

8(v) :=


1
2

∫
�

|Curl v(x)|2 dx, v ∈ L2
Curl,0(�,M3),

+∞, otherwise.

That 8 is a proper convex lower semicontinuous functional and Curl Curl= ∂8 is
proved in Section 3. Since Mm is bounded, self-adjoint, and positive definite (see
Corollary A.10 and the definition of Mm), it is maximal monotone by [Barbu 1976,
Theorem II.1.3]. The last thing which we have to verify is whether the operator

9 = G−1
+Mm + ∂8

is maximal monotone. Since g ∈ M(�,M3, q, α,m), using the boundedness of
Mm we conclude that the domains of G−1 and Mm are equal to the whole space
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L2(�,M3). Therefore, Theorem 2.5 guarantees that the sum G−1
+Mm + ∂8 is

maximal monotone with

dom(9)= dom(∂8) := Z2
Curl(�,M3).

Since Mm is coercive in L2(�,M3), which obviously yields the coercivity of 9,
the operator 9 is surjective by Theorem 2.6. Thus, we conclude that (35), as well
as the problem (33), has the solutions with the required regularity, that is,

pn
m ∈ Z2

Curl(�,M3).

By the constructions this implies that the boundary value problem (28)–(32) is
solvable as well (for more details we refer the reader to [Alber and Chełmiński
2004]). Moreover, pn

m(x) ∈ sl(3) for a.e. x ∈�.

Rothe approximation functions. For any family {ξ n
m}n=0,...,2m of functions in a re-

flexive Banach space X , we define the piecewise affine interpolant ξm ∈C([0, Te], X)
by

ξm(t) :=
( t

h
− (n− 1)

)
ξ n

m +

(
n− t

h

)
ξ n−1

m for (n− 1)h ≤ t ≤ nh, (36)

and the piecewise constant interpolant ξ̄m ∈ L∞(0, Te; X) by

ξ̄m(t) := ξ n
m for (n− 1)h < t ≤ nh, n = 1, . . . , 2m, and ξ̄m(0) := ξ 0

m . (37)

For further analysis we recall the following property of ξ̄m and ξm :

‖ξm‖Lq (0,Te;X) ≤ ‖ξ̄m‖Lq (−h,Te;X) ≤
(
h‖ξ 0

m‖
q
X +‖ξ̄m‖

q
Lq (0,Te;X)

)1/q
, (38)

where ξ̄m is formally extended to t ≤ 0 by ξ 0
m and 1≤ q ≤∞; see [Roubíček 2005].

A priori estimates. Multiplying (28) by un
m−un−1

m
h

and integrating over � we get(
σ n

m, sym(∇x(un
m − un−1

m )/h)
)
�
= 0.

Equations (29) and (30) imply that for a.e. x ∈�

σ n
m ·
(
sym(∇x(un

m − un−1
m )/h)−C−1

[x](σ n
m − σ

n−1
m )/h

)
+ σ n

m ·
(
C−1
[x](C[x] − Ĉ)(Ĉ)−1(σ̂ n

m − σ̂
n−1
m )/h

)
−

pn
m − pn−1

m

h
·

(
C1 dev sym pn

m +
1
m

pn
m +C2 Curl Curl pn

m

)
+

pn
m − pn−1

m

h
· σ̂ n

m

= g−1
(

pn
m − pn−1

m

h

)
·

(
pn

m − pn−1
m

h

)
.

After integrating the last identity over �, the above computations imply
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1
h
(C−1σ n

m, σ
n
m − σ

n−1
m )�+C1

1
h
(dev sym(pn

m − pn−1
m ), dev sym pn

m)�

+
1
m

1
h
(pn

m − pn−1
m , pn

m)�+C2
1
h
(Curl(pn

m − pn−1
m ),Curl pn

m)�

+
α

q
‖6lin

n,m‖
q
q +

α

q∗

∥∥∥∥ pn
m − pn−1

m

h

∥∥∥∥q∗

q∗

≤

∫
�

m(x) dx + 1
h
(σ n

m,C(σ̂ n
m − σ̂

n−1
m ))�+

1
h
(σ̂ n

m, pn
m − pn−1

m )�,

where C :=C−1(C−Ĉ)(Ĉ)−1. Multiplying by h and summing the obtained relation
for n = 1, . . . , l for any fixed l ∈ [1, 2m

] we derive the following inequality (here
B := C−1):

1
2

(
‖B1/2σ l

m‖
2
2+C1‖dev sym pl

m‖
2
2+

1
m
‖pl

m‖
2
2+C2‖Curl pl

m‖
2
2

)
+

hα
q

l∑
n=1

‖6lin
n,m‖

q
q +

hα
q∗

l∑
n=1

∥∥∥∥ pn
m − pn−1

m

h

∥∥∥∥q∗

q∗
≤ C (0)

+

∫
�

m(x) dx

+ h
l∑

n=1

(
σ n

m,C
σ̂ n

m − σ̂
n−1
m

h

)
�

+ h
l∑

n=1

(
σ̂ n

m,
pn

m − pn−1
m

h

)
�

, (39)

where5

2C (0)
:= ‖B1/2σ (0)‖22.

Since σ̂ n
m ∈ Lq(�,S3), using Young’s inequality with ε > 0 we get that(

σ̂ n
m,

pn
m − pn−1

m

h

)
�

≤ ‖σ̂ n
m‖q

∥∥∥∥ pn
m − pn−1

m

h

∥∥∥∥
q∗
≤ Cε‖σ̂ n

m‖
q
q + ε

∥∥∥∥ pn
m − pn−1

m

h

∥∥∥∥q∗

q∗
, (40)

where Cε is a positive constant appearing in the Young inequality. Analogically,
we obtain (

σ n
m,C

σ̂ n
m − σ̂

n−1
m

h

)
�

≤ ε‖σ n
m‖

2
2+Cε

∥∥∥∥ σ̂ n
m − σ̂

n−1
m

h

∥∥∥∥2

2
, (41)

5Here we use the inequality

l∑
n=1

(φn
m−φ

n−1
m , φn

m)� =
1
2

l∑
n=1

(‖φn
m‖

2
2−‖φ

n−1
m ‖

2
2)+

1
2

l∑
n=1
‖φn

m−φ
n−1
m ‖

2
2 ≥

1
2‖φ

l
m‖

2
2−

1
2‖φ

0
m‖

2
2,

valid for any family of functions φ0
m , φ

1
m , . . . , φ

m
m .
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with some other constant Cε . Combining inequalities (39), (40), and (41), and
choosing an appropriate value for ε > 0, we obtain the estimate

1
2

(
‖B1/2σ l

m‖
2
2+C1‖dev sym pl

m‖
2
2+

1
m
‖pl

m‖
2
2+C2‖Curl pl

m‖
2
2

)
+ hĈε

l∑
n=1

(
‖6lin

n,m‖
q
q +

∥∥∥∥ pn
m − pn−1

m

h

∥∥∥∥q∗

q∗

)

≤ C (0)
+

∫
�

m(x) dx + hε
l∑

n=1

‖σ n
m‖

2
2+ hC̃ε

l∑
n=1

(
‖σ̂ n

m‖
q
q +

∥∥∥∥ σ̂ n
m−σ̂

n−1
m

h

∥∥∥∥2

2

)
, (42)

where C̃, C̃ε , and Ĉε are some positive constants. Now, taking [Roubíček 2005,
Remark 8.15] and the definition of Rothe’s approximation functions into account
we rewrite (42) as follows:

‖B1/2σ̄m(t)‖22+C1‖dev sym p̄m(t)‖22+
1
m
‖ p̄m(t)‖22+C2‖Curl p̄m(t)‖22

+ 2Ĉε

∫ Te

0

∫
�

(|∂t pm(x, t)|q
∗

+ |6lin
m (x, t)|q) dx dt

≤ 2C (0)
+‖m‖1,�+ ε‖σm‖

2
2,�×(0,Te)

+ 2C̃ε‖σ̂‖
q
W 1,q (0,Te;Lq (�,S3))

. (43)

From (43) we get immediately that

Cε‖σm‖
2
2,�×(0,t)+C1‖dev sym p̄m(t)‖22+

1
m
‖ p̄m(t)‖22+C2‖Curl p̄m(t)‖22

+ 2Ĉε(‖∂t pm‖
q∗

q∗,�×(0,Te)
+‖6lin

m ‖
q
q,�×(0,Te)

)

≤ 2C (0)
+‖m‖1,�+ 2C̃ε‖σ̂‖

q
W 1,q (0,Te;Lq (�,S3))

, (44)

where Cε is some other constant depending on ε. Altogether, from estimate (44)
we get that

{pm}m is uniformly bounded in W 1,q∗(0, Te; Lq∗(�,M3)), (45)

{dev sym p̄m}m is uniformly bounded in L∞(0, Te; L2(�,M3)), (46)

{σm}m, is uniformly bounded in L2(0, Te; L2(�,S3)), (47)

{Curl p̄m}m is uniformly bounded in L∞(0, Te; L2(�,M3)), (48)

{6lin
m }m is uniformly bounded in Lq(0, Te; Lq(�,M3)), (49){

1
√

m
p̄m

}
m

is uniformly bounded in L∞(0, Te; L2(�,M3)). (50)

In particular, the uniform boundedness of the sequences in (45)–(50) yields
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{um}m is uniformly bounded in W 1,q∗(0, Te;W
1,q∗
0 (�,R3)), (51)

{Curl Curl p̄m}m is uniformly bounded in L2(0, Te; L2(�,M3)). (52)

In view of (38), the estimates (45)–(52) further imply that the sequences {σm}m ,
{dev sym pm}m , {Curl pm}m , {pm/

√
m }m , {6lin

m }m , and {Curl Curl pm}m are also
uniformly bounded in the corresponding spaces. As a result, we have

{pm}m is uniformly bounded in Lq∗(0, Te; Zq∗

Curl(�,M3)). (53)

Furthermore, due to (3), (46), (48), and (52) we obtain that

{ p̄m}m and {pm}m are uniformly bounded in L2(0, Te; Z2
Curl(�,M3)). (54)

Moreover, (36) and (37) yield {pm(x, t), p̄m(x, t)}m ∈ sl(3) for a.e. (x, t) ∈�Te .

Additional regularity of discrete solutions. In order to get the additional a priori
estimates, we extend the function b to t < 0 by setting b(t)= b(0). The extended
function b is in the space W 1,p(−2h, Te;W−1,p(�,R3)). Then, we set b0

m=b−1
m :=

b(0). Let us further set
p−1

m := p0
m − hG(6lin

0,m).

The assumption (18) implies that p−1
m = 0. Next, we define functions (u−1

m , σ−1
m )

and (u0
m, σ

0
m) as solutions of the linear elasticity problem (73) to the data b̂ = b−1

m ,
γ̂ = 0, and ε̂p = 0 and b̂ = b0

m , γ̂ = 0, and ε̂p = 0, respectively. Obviously, the
following estimate holds:{∥∥∥∥u0

m − u−1
m

h

∥∥∥∥
2
,

∥∥∥∥σ 0
m − σ

−1
m

h

∥∥∥∥
2

}
≤ C, (55)

where C is some positive constant independent of m. Taking now the incremental
ratio of (30) for n = 1, . . . , 2m , we obtain6

rt pn
m − rt pn−1

m = G(6lin
n,m)−G

(
6lin
(n−1),m

)
.

Let us now multiply the last identity by −
(
6lin

n,m −6
lin
(n−1),m

)
/h. Then, using the

monotonicity of G we obtain

1
m
(rt pn

m − rt pn−1
m , rt pn

m)�

+
(

rt pn
m − rt pn−1

m , dev sym(rt pn
m)
)
�
+
(

rt pn
m − rt pn−1

m ,Curl Curl(rt pn
m)
)
�

≤ (rt pn
m − rt pn−1

m , rt σ n
m)�+ (rt pn

m − rt pn−1
m , rt σ̂ n

m)�.

6For simplicity we use the notation rtφn
m := (φ

n
m − φ

n−1
m )/h, where φ0

m , φ
1
m , . . . , φ

m
m is any

family of functions.
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With (28) and (29) the previous inequality can be rewritten as follows:

1
m
(rt pn

m − rt pn−1
m , rt pn

m)�+
(

rt pn
m − rt pn−1

m , dev sym(rt pn
m)
)
�

+
(

rt pn
m − rt pn−1

m ,Curl Curl(rt pn
m)
)
�
+ (rt σ n

m − rt σ n−1
m ,C−1 rt σ n

m)�

≤ (rt σ̂ n
m − rt σ̂ n−1

m ,C rt σ n
m)�+ (rt pn

m − rt pn−1
m , rt σ̂ n

m)�.

As in the proof of (39), multiplying the last inequality by h and summing with
respect to n from 1 to l for any fixed l ∈ [1, 2m

] we get the estimate

h
m
‖rt pl

m‖
2
2+ h‖dev sym rt pl

m‖
2
2+ h‖B1/2 rt σ l

m‖
2
2+ h‖Curl rt pl

m‖
2
2

≤2hC (0)
+2h

l∑
n=1

(rt σ̂ n
m, rt pn

m−rt pn−1
m )�+2h

l∑
n=1

(rt σ̂ n
m−rt σ̂ n−1

m ,C rt σ n
m)�, (56)

where now C (0) is defined by

2C (0)
:= ‖B1/2 rt σ 0

m‖
2
2.

We note that (55) yields the uniform boundness of C (0) with respect to m. Summing
now (56) for l = 1, . . . , 2m we derive the inequality

1
m
‖∂t pm‖

2
2,�Te
+‖dev sym(∂t pm)‖

2
2,�Te
+‖Curl(∂t pm)‖

2
2,�Te

+C‖∂tσm‖
2
2,�Te
≤ C‖∂t σ̂m‖2,�Te

(‖∂tσm‖2,�Te
+‖∂t pm‖2,�Te

). (57)

Using now inequality (3), the condition ∂t pm(x, t) ∈ sl(3) for a.e. (x, t) ∈�Te , and
Young’s inequality with ε > 0 in (57), we obtain that

1
m
‖∂t pm‖

2
2,�Te
+Cε‖∂t pm‖

2
2,�Te
+Cε‖∂tσm‖

2
2,�Te
≤ C‖∂t σ̂m‖

2
2,�Te

. (58)

Since σ̂m is uniformly bounded in W 1,q(�Te ,S3), estimates (57) and (58) imply

{dev sym ∂t pm}m is uniformly bounded in L2(0, Te; L2(�,M3)), (59)

{∂tσm}m is uniformly bounded in L2(0, Te; L2(�,M3)), (60)

{Curl ∂t pm}m is uniformly bounded in L2(0, Te; L2(�,M3)), (61){
1
√

m
∂t pm

}
m

is uniformly bounded in L2(0, Te; L2(�,M3)), (62)

{pm}m is uniformly bounded in H 1(0, Te; L2
Curl(�,M3)). (63)

Existence of solutions. By estimates (45)–(54) and (59)–(63) and at the expense
of extracting a subsequence, we have that the sequences in (45)–(54) and (59)–(63)
converge with respect to weak and weak-star topologies in corresponding spaces,
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respectively. Next, we claim that weak limits of { p̄m}m and {pm}m coincide. Indeed,
using (45) this can be shown as follows:

‖pm − p̄m‖
2
�Te
=

m∑
n=1

∫ nh

(n−1)h

∥∥∥(pn
m − pn−1

m )
t−nh

h

∥∥∥2

2
dt

=
h2+1

2+ 1

m∑
n=1

∥∥∥∥ pn
m − pn−1

m

h

∥∥∥∥2

2
=

h2

2+ 1

∥∥∥∥dpm

dt

∥∥∥∥2

2,�Te

,

which implies that p̄m − pm converges strongly to 0 in L2(�Te ,M3). The proof
of the fact that the difference σ̄m − σm converges weakly to 0 in L2(�Te ,S3) can
be performed as on p. 210 of [Roubíček 2005]. For the reader’s convenience we
reproduce the reasoning used there. Let us choose some appropriate number d ∈
N and then fix any integer n0 ∈ [1, 2d

]. Let h0 = Te/2n0 . Consider functions
I[h0(n0−1),h0n0]v with v ∈ L2(�,S3), where IK denotes the indicator function of
a set K . We note that, according to Proposition 1.36 of the same reference, the
linear combinations of all such functions are dense in L2(�Te ,S3). Then for any
h ≤ h0

7we have

(σm − σ̄m, I[h0(n0−1),h0n0]v)�Te

=

∫ h0n0

h0(n0−1)
(σm(t)−σ̄m(t), v)� dt =

h0n0/h∑
n= h0

h (n0−1)+1

∫ nh

(n−1)h

(
(σ n

m−σ
n−1
m )

t−nh
h

,v
)
�

dt

=−
h
2
(σ h0n0/h

m − σ h0(n0−1)/h
m , v)� =−

h
2
(σ̄m(h0n0)− σ̄m(h0(n0− 1)), v)�.

Employing (47) we get that σ̄m−σm converges weakly to 0 in L2(�Te ,S3). Next, by
(50) the sequence {pm/m}m converges strongly to 0 in L2(�Te ,M3). Summarizing
all observations made above we may conclude that the limit functions denoted by
ṽ, σ̃ , p, and 6lin have the following properties:

(ṽ, σ̃ ) ∈ H 1(0, Te; H 1
0 (�,R3)× L2(�,S3)), 6lin

∈ Lq(�Te ,M3),

p ∈ H 1(0, Te; L2
Curl(�,M3))∩ L2(0, Te; Z2

Curl(�,M3)).

Moreover, p(x, t) ∈ sl(3) holds for a.e. (x, t) ∈ �Te . Before passing to the weak
limit, we note that the Rothe approximation functions satisfy the equations

− divx σ̄m(x, t)= b̄m(x, t), (64)

σm(x, t)= C
(
sym(∇x um(x, t)−pm(x, t))

)
+(C[x]−Ĉ)(Ĉ)−1σ̂m(x), (65)

∂t pm(x, t) ∈ g(6lin
m (x, t)), (66)

7We recall that h is chosen to be equal to Te/2m for some m ∈ N.
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together with the initial and boundary conditions

pm(x, 0)= 0, x ∈�, (67)

pm(x, t)× n(x)= 0, x ∈ ∂�, (68)

um(x, t)= 0, x ∈ ∂�. (69)

Passing to the weak limit in (64), (65), and (69) we obtain that the limit functions
ṽ, σ̃ , p, and 6lin satisfy (22) and (27). To show that the limit functions satisfy also
(24) we proceed as follows: As above, the system (64)–(69) can be rewritten as∫ Te

0

∫
�

(
g−1(∂t pm(x, t)) · ∂t pm(x, t)

)
dx dt

=−

(
dσm

dt
,C−1σ̄m

)
�Te

−C1

(
dpm

dt
, dev sym p̄m

)
�Te

−
1
m

(
dpm

dt
, p̄m

)
�Te

−C2

(
dpm

dt
,Curl Curl p̄m

)
�Te

+ (σ̂m, ∂t pm)�Te
+ (Cσ̄m, ∂t σ̂m)�Te

. (70)

Due to (59)–(63) and Lemma B.11 we can pass to the weak limit inferior in (70)
to get the following inequality:

lim sup
m→∞

∫ Te

0

∫
�

(
g−1(∂t pm(x, t)) · ∂t pm(x, t)

)
dx dt

≤ (∂t p, σ̃ + σ̂ − dev sym p−Curl Curl p)�Te
. (71)

Let G denote the canonical extension of g. Then (71) reads as follows:

lim sup
m→∞

(G−1(∂t pm), ∂t pm)�Te
≤ (∂t p, σ̃ + σ̂ −dev sym p−Curl Curl p)�Te

. (72)

Since G−1 is pseudomonotone, inequality (72) yields that, for a.e. (x, t) ∈�Te ,

∂t p(x, s) ∈ g(σ̃ (x, t)+ σ̂ (x, t)− dev sym p(x, t)−Curl Curl p(x, t)).

Therefore, we conclude that the limit functions ṽ, σ̃ , p, and 6lin satisfy (22)–(27)
and the existence of strong solutions is herewith established.

This completes the proof of Theorem 4.7. �

Appendix A: Helmholtz’s projection

In this section we present some results concerning projection operators to spaces
of tensor fields, which are symmetric gradients, and to spaces of tensor fields with
vanishing divergence. For details the reader is referred to [Alber and Chełmiński
2007].
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In linear elasticity theory it is well known (see [Giusti 2003, Theorem 10.15])
that a Dirichlet boundary value problem formed by the equations

− divx σ(x)= b̂(x), x ∈�, (73)

σ(x)= C[x](sym (∇x u(x))− ε̂p(x)), x ∈�, (74)

u(x)= 0, x ∈ ∂�, (75)

for given b̂ ∈ W−1,q(�,R3) and ε̂p ∈ Lq(�,S3) has a unique weak solution
(u, σ ) ∈ W 1,q

0 (�,R3)× Lq(�,S3) provided the open set � has a C1-boundary
and C ∈ C(�,S3). Here the number q satisfies 1< q <∞. For b̂ = 0 the solution
of (73) satisfies the inequality

‖sym(∇x u)‖q ≤ C‖ε̂p‖q

with some positive constant C .

Definition A.8. For every ε̂p∈ Lq(�,S3)we define a linear operator Pq : Lq(�,S3)

→ Lq(�,S3) by
Pq ε̂p := sym(∇x u),

where u ∈W 1,q
0 (�,R3) is the unique weak solution of (73) to the given function

ε̂p and b̂ = 0.

Next, a subset Gq of Lq(�,S3) is defined by

Gq
= {sym(∇x u) | u ∈W 1,q

0 (�,R3)}.

The main properties of Pq are stated in the following lemma.

Lemma A.9. For every 1< q <∞ the operator Pp is a bounded projector onto the
subset Gq of Lq(�,S3). The projector (Pq)

∗ adjoint with respect to the bilinear
form [ξ, ζ ]� := (ξ, ζ )� on Lq(�,S3)× Lq∗(�,S3) satisfies

(Pq)
∗
= Pq∗, where 1

q∗
+

1
q
= 1.

Due to Lemma A.9 the projection operator

Qq = (I − Pq) : Lq(�,S3)→ Lq(�,S3)

is well defined and generalizes the classical Helmholtz projection.
Let L : S3

→ S3 be the linear, positive semidefinite mapping given by

Lv = C1 dev v. (76)

The next result is needed for the subsequent analysis.



174 SERGIY NESENENKO AND PATRIZIO NEFF

Corollary A.10. Let
(CPq + L)∗

be the operator adjoint to CPq + L : Lq(�,S3) → Lq(�,S3) with respect to
the bilinear form (ξ, ζ )� on the product space Lq(�,S3) × Lq∗(�,S3). Then
(CPq + L)∗ = CPq∗ + L. Moreover, the operator CQ2 + L is nonnegative and
self-adjoint.

For the proof of this result the reader is referred to [Alber and Chełmiński 2004].

Appendix B

In this appendix we prove the following lemma (see [Roubíček 2005]).

Lemma B.11. Let X be a reflexive Banach space embedded continuously and
densely into a Hilbert space H , let the functions φm and φ̄m be defined by (36)
and (37) for any family of functions φ0

m, φ
1
m, . . . , φ

m
m , respectively, and let φ be a

weak limit of φm . Then the following inequality:

lim sup
m→∞

〈
dφm

dt
, φ̄m

〉
Lq (X∗),L p(X)

≥

〈dφ
dt
, φ
〉

Lq (X∗),L p(X)

holds, where 〈 · , · 〉Lq (X∗),L p(X) denotes the dual pairing between L p(X) and Lq(X∗).

Proof. The last inequality results from the next line by taking lim sup from both
sides and using the lower semicontinuity of the norm〈

dφm

dt
,φ̄m

〉
Lq (X∗),L p(X)

=

m∑
n=1

∫ hn

h(n−1)

〈
φn

m −φ
n−1
m

h
, φn

m

〉
X∗,X

dt =
m∑

n=1

〈φn
m −φ

n−1
m , φn

m〉X∗,X

=

m∑
n=1

1
2
‖φn

m‖
2
H −

1
2
‖φn−1

m ‖
2
H +

1
2
‖φn

m −φ
n−1
m ‖

2
H ≥

1
2
‖φm

m‖
2
H −

1
2
‖φ0

m‖
2
H .

The proof is completed by generalized integration by parts. �

References

[Alber and Chełmiński 2004] H.-D. Alber and K. Chełmiński, “Quasistatic problems in viscoplas-
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