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DELAMINATED THIN ELASTIC INCLUSIONS
INSIDE ELASTIC BODIES

ALEXANDER M. KHLUDNEV AND GÜNTER R. LEUGERING

We propose a model for a two-dimensional elastic body with a thin elastic inclu-
sion modeled by a beam equation. Moreover, we assume that a delamination of
the inclusion may take place resulting in a crack. Nonlinear boundary conditions
are imposed at the crack faces to prevent mutual penetration between the faces.
Both variational and differential problem formulations are considered, and exis-
tence of solutions is established. Furthermore, we study the dependence of the
solution on the rigidity of the embedded beam. It is proved that in the limit cases
corresponding to infinite and zero rigidity, we obtain a rigid beam inclusion and
cracks with nonpenetration conditions, respectively. Anisotropic behavior of the
beam is also analyzed.

1. Introduction

The enforcement of elastic bodies using thin inclusions is a field of broad interest
in solid and structural mechanics. The interplay between elastic fibers and matrix
materials in general is important also in biological and medical problems involving
tissues, muscles, tendon-couplings, etc. There are a number of different approaches
in modeling such composites. The most classical approach assumes inextensible
fibers; see, for example, [Saccomandi and Beatty 2002]. In this context, the mod-
eling is often based directly on a finite elements. Another approach is based on
a modeling of the matrix material as a supporting layer, like a Winkler support;
see, for example, [Nassar and Hassen 1987]. Here, the fiber is represented by an
Euler–Bernoulli beam. A very natural approach is based on asymptotic analysis
[Argatov and Nazarov 1999]. Here, the embedded beams are taken with a small
thickness parameter and the elastic layer is infinite. The limiting problem relates
to a Winkler or Pasternak-type model. Finally, there are attempts to model hybrid
partial differential equations coupling, say, the two-dimensional wave equation to
a one-dimensional wave equation, using proper transmission conditions; see [Koch
and Zuazua 2006].
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In general, the terminology “thin inclusion” is used in cases where the dimension
of the inclusion is less than that of the body. Among thin inclusions we can distin-
guish between rigid and elastic ones. Moreover, thin inclusions have a tendency to
delaminate from the matrix material, thereby introducing cracks. A mathematical
theory should be capable of consistently handling these different aspects. There-
fore, in order to analyze composite materials one has to consider mathematical
models of deformable bodies with elastic and rigid inclusions and cracks. In such
a case, new types of boundary value problems and boundary conditions appear.
Cracks also can be viewed as thin inclusions of zero rigidity. There are different
approaches to modeling cracks in solids. The classical models are characterized by
linear boundary conditions at the crack faces [Kozlov and Maz’ya 1991; Grisvard
1992; Nazarov and Plamenevsky 1994]. These linear models allow the opposite
crack faces to penetrate each other which demonstrates a shortcoming of the model
from a mechanical standpoint. For a discussion of singularities at the crack tip
see, for example, [Kozlov and Maz’ya 1991; Nazarov and Plamenevsky 1994]. In
recent years, a crack theory with nonpenetration conditions at the crack faces has
been under active study. This theory is characterized by inequality-type boundary
conditions which leads to free boundary value problems. The book [Khludnev
and Kovtunenko 2000] contains results on crack models with the nonpenetration
conditions for a wide class of constitutive laws. Elastic behavior of bodies with
cracks and inequality-type boundary conditions is analyzed in [Khludnev 2010a].
In particular, the differentiability of energy functionals with respect to crack length
is investigated. Finding the derivatives of the energy functionals is important from
the standpoint of the Griffith rupture criterion; see [Kovtunenko 2003; Rudoy 2007;
Frémiot et al. 2009; Khludnev et al. 2010]. The asymptotic behavior of the solution
near crack tips was analyzed in [Khludnev and Kozlov 2008]. Existence theorems
and qualitative properties of solutions in equilibrium problems for elastic bodies
with thin and volume rigid inclusions can be found in [Khludnev et al. 2009; 2010b;
Neustroeva 2009; Khludnev and Leugering 2010; 2011; Rudoy 2011; Rotanova
2011]. For behavior near rigid inclusion tips, see [Itou et al. 2012].

We propose a new model of a thin elastic inclusion inside of an elastic body.
We consider a planar elastic body � with embedded elastic fibers γi , i = 1, . . . n,

*

:

J
i

as shown in the figure below. However, in this article we do not focus on the
distribution of such fibers in such a domain but rather on the

mathematical modeling and analysis of immersed fibers
to begin with. We, therefore, without loss of generality,

concentrate on a single fiber γ embedded into � with
boundary 0.

The mechanical behavior of the inclusion is modeled by the Kirchhoff–Love
equations. The inclusion may be delaminated, providing therefore the presence
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of a crack. To exclude a mutual penetration between the crack faces, nonlinear
boundary conditions of inequality type are considered along the cracks. Different
problem formulations are proposed which are shown to be equivalent to each other.
We prove the existence and uniqueness of solutions and analyze limit cases de-
scribing the passage to infinity and zero of the rigidity parameter of the inclusion.
In particular, the models of rigid beam inclusions, semirigid beam inclusions, and
crack models with the nonpenetration conditions are obtained in the limits.

The paper is organized as follows. In Section 2, we provide the problem for-
mulation and handle the case where no delamination takes place. In Section 3, we
derive the model for a one-sided delamination along the fiber. In Sections 4 and 5
we study the limiting model, as the rigidity of the fiber tends to infinity and zero,
respectively. Sections 6 and 7 are concerned with two-sided delamination along the
fiber and fibers that exhibit different stiffness properties with respect to longitudinal
and vertical displacements. Oblique and kinking fibers as well as branching fibers
can also be handled. Moreover, other beam models can be considered. However,
this is subject to a forthcoming publication.

2. Problem formulation: the case without delamination

Denote by �⊂ R2 a bounded domain with Lipschitz boundary 0 such that γ̄ ⊂�,
γ = (0, 1)× {0}. Denote by ν = (0, 1) a unit normal vector to γ, τ = (1, 0), and
set �γ =� \ γ̄ ; see figure.

:J

*
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x
2

1 x

1

In what follows, the domain �γ represents a region with an elastic material, and
γ is an elastic inclusion with specified properties. In particular, we consider γ as
a Kirchhoff–Love or Euler–Bernoulli beam incorporated in the elastic body. Let
A = {ai jkl}, i, j, k, l = 1, 2, be a given elasticity tensor with the usual properties
of symmetry and positive definiteness,

ai jkl = a j ikl = akli j , i, j, k, l = 1, 2, ai jkl ∈ L∞(�),

ai jklξi jξkl ≥ c0|ξ |
2, ∀ ξ j i = ξi j , c0 = const.> 0.

A summation convention over repeated indices is used: all functions with two
lower indices are assumed to be symmetric in those indices.
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An equilibrium problem for the body �γ and the elastic inclusion γ (see, for
example, [Bessoud et al. 2008]) is formulated as follows. For given external forces
f = ( f1, f2) ∈ L2(�)2 acting on the body, we want to find a displacement field
u = (u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2, and thin inclusion displacements
v,w, defined in �, �γ , and γ , respectively, such that

−div σ = f in �γ , (2-1)

σ − Aε(u)= 0 in �, (2-2)

E Ivxxxx = [σν] on γ, (2-3)

−E Swxx = [στ ] on γ, (2-4)

u = 0 on 0, (2-5)

E Ivxx = E Ivxxx = E Swx = 0 for x = 0, 1, (2-6)

v = uν, w = uτ on γ. (2-7)

Here [h] = h+− h− is a jump of a function h on γ , where h± are the traces of h
on the faces of the beam γ±. The signs ± correspond to the positive and negative
directions of ν; vx = dv/dx , x = x1, (x1, x2) ∈ �; ε(u) = {εi j (u)} is the strain
tensor, εi j (u)= 1

2 (ui, j + u j,i ), i, j = 1, 2; and σν = (σ1 jν j , σ2 jν j ), σν = σi jν jνi ,
στ = σν ·τ , uν = uν, uτ = uτ . By E , I , and S we denote the Young’s modulus, the
inertia of the cross section, and the area of cross section, respectively. Below, for
the sake of simplicity, we put E I = 1 and E S= 1. The essence of the mathematical
results obtained in this article does not change by this particular choice. When it
comes to the asymptotic analysis for the stiffness of the beam, the role of the
stiffness parameters will be taken into account. See Sections 4, 5, and 7.

Functions defined on γ we identify with functions of the variable x .
Relations (2-1), (2-3), and (2-4) are the equilibrium equations for the elastic

body and the inclusion, and (2-2) represents Hooke’s law. According to (2-7),
the vertical and tangential (along the axis x1) displacements of the elastic body
coincide with the inclusion displacements at γ .

Below we provide a variational formulation of the problem (2-1)–(2-7). To this
end, we introduce the Sobolev space

V = {(u, v, w) ∈ (H 1
0 (�))

2
× H 2(γ )× H 1(γ ) | v = uν, w = uτ on γ },

and the energy functional

5(u, v, w)= 1
2

∫
�

σ(u)ε(u)−
∫
�

f u+ 1
2

∫
γ

v2
xx +

1
2

∫
γ

w2
x .

Here σ(u)= σ is defined by (2-2), that is, σ(u)= Aε(u), and, for simplicity, we
write σ(u)ε(u)= σi j (u)εi j (u), f u = fi ui . We use standard notation for the spaces
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(H 1
0 (�))

2, H 2(γ ), H 1(γ ). The functions u, v, and w are independent, and the only
relations are provided by the definition of V . In particular, uν and uτ have more
regularity as compared to that resulting from the inclusion u ∈ (H 1

0 (�))
2. We also

use the notation H s(X)2 := (H s(X))2 for Sobolev spaces concerning functions in
the plane.

Consider the minimization problem

(P) Find (u, v, w) ∈ V such that 5(u, v, w)= infV 5.

Theorem 2.1. Problem (P) admits a unique solution (u, v, w) satisfying

(u, v, w) ∈ V, (2-8)∫
�

σ(u)ε(ū)−
∫
�

f ū+
∫
γ

vxx v̄xx +

∫
γ

wx w̄x = 0, ∀ (ū, v̄, w̄) ∈ V . (2-9)

Moreover, if the solution is smooth, then the strong representation, (2-1)–(2-7),
and the weak representation, (2-8) and (2-9), are equivalent.

Proof. In order to prove that the problem (2-8) and (2-9) admits a solution, it
suffices to establish the coercivity of the functional 5 on the space V , since its
weak lower semicontinuity is obvious. Due to Korn’s inequality, we have

5(u, v, w)≥ c0‖u‖21,�− c1‖u‖1,�+
1
2

∫
γ

(v2
xx +w

2
x)±β

∫
γ

(v2
+w2), (2-10)

with positive constants c0 and c1 and a parameter β > 0, where ‖ · ‖1,� is the norm
in H 1

0 (�)
2 and ‖ · ‖i,γ is the norm in H i (γ ), i = 1, 2. We have v = uν and w = uτ

at γ , hence, for small β, due to the trace inequality

c0

2
‖u‖21,�−β

∫
γ

(v2
+w2)≥ 0.

Thus, from (2-10) we obtain the desired limit:

5(u, v, w)≥
c0

2
‖u‖21,�− c1‖u‖1,�+

1
2

∫
γ

(v2
xx +w

2
x)+β

∫
γ

(v2
+w2)→+∞,

‖(u, v, w)‖V →∞,

We now show the equivalence of (2-1)–(2-7) and (2-8) and (2-9) for smooth
solutions. Let (2-1)–(2-7) be fulfilled. Take (ū, v̄, w̄) ∈ V and multiply (2-1), (2-3),
and (2-4) by ū, v̄, and w̄, respectively. Integrating over �γ and γ , respectively, we
get ∫

�γ

(−div σ − f )ū+
∫
γ

(vxxxx v̄−wxx w̄)−

∫
γ

([σν]v̄+ [στ ]w̄)= 0.

Hence, by the boundary conditions (2-5) and (2-6),
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�γ

(σ (u)ε(ū)− f ū)+
∫
γ

[σν]ū+
∫
γ

(vxx v̄xx +wx w̄x)−

∫
γ

([σν]v̄+ [στ ]w̄)

= 0. (2-11)

We have [σν]ū = [σν]ūν + [στ ]ūτ on γ . Taking into account that (ū, v̄, w̄) ∈ V ,
from (2-11) the identity (2-9) follows. In so doing, we change the integration
domain �γ by �, since [u] = [ū] = 0 on γ . Conversely, let (2-8) and (2-9) be
fulfilled. We take test functions of the form (ū, v̄, w̄) = (ϕ, 0, 0), ϕ ∈ C∞0 (�γ )

2.
This gives the equilibrium equation (2-1). Next, from (2-9) it follows that

−

∫
γ

([σν]ūν + [στ ]ūτ )+
∫
γ

(vxxxx v̄−wxx w̄)+wx w̄|
1
0+ vxx v̄x |

1
0− vxxx v̄|

1
0 = 0,

∀ (ū, v̄, w̄) ∈ V . (2-12)

Choosing here w̄ = 0 and v̄ = v̄x = 0 at x = 0, 1, the relation follows:

−

∫
γ

[σν]ūν −
∫
γ

[στ ]ūτ +
∫
γ

(vxxxx v̄−wxx w̄)= 0.

Consequently, by the equalities v̄ = ūν , and w̄ = ūτ on γ , we obtain (2-3) and
(2-4). In such a case, the identity (2-12) implies (2-6). Hence, the equivalence of
(2-1)–(2-7) and (2-8) and (2-9) is proved. �

3. Delaminated elastic inclusion

Assume that a delamination of the elastic inclusion takes place at γ+, thus we have
a crack. In our model, inequality-type boundary conditions will be considered to
prevent a mutual penetration between the crack faces. Displacements of the inclu-
sion should coincide with the displacements of the elastic body at γ−. The problem
formulation is as follows. We have to find a displacement field u= (u1, u2), a stress
tensor σ = {σi j }, i, j = 1, 2, and thin inclusion displacements v and w defined in
�γ , �γ , and γ , respectively, such that

−div σ = f in �γ , (3-1)

σ − Aε(u)= 0 in �γ , (3-2)

vxxxx = [σν] on γ, (3-3)

−wxx = [στ ] on γ, (3-4)

u = 0 on 0, (3-5)

vxx = vxxx = wx = 0 for x = 0, 1, (3-6)

[uν] ≥ 0, v = u−ν , w = u−τ , σ+ν [uν] = 0 on γ, (3-7)

σ+ν ≤ 0, σ+τ = 0 on γ. (3-8)
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The first inequality in (3-7) provides a mutual nonpenetration between the crack
faces. The second and the third relations of (3-7) show that the inclusion displace-
ments coincide with the vertical and tangential displacements of the elastic body
at γ−.

First, we provide a variational formulation of the problem (3-1)–(3-8). We in-
troduce the set of admissible displacements

K = {(u, v, w) ∈ H 1
0(�γ )

2
× H 2(γ )× H 1(γ ) | [uν] ≥ 0, v = u−ν , w = u−τ on γ }

and the energy functional

51(u, v, w)=
1
2

∫
�γ

σ(u)ε(u)−
∫
�γ

f u+ 1
2

∫
γ

v2
xx +

1
2

∫
γ

w2
x ,

where the Sobolev space H 1
0(�γ ) is defined as

H 1
0(�γ )= {v ∈ H 1(�γ ) | v = 0 on 0}.

Theorem 3.1. There exists a unique solution of the problem

Find (u, v, w) ∈ K such that 51(u, v, w)= infK 51. (3-9)

This solution satisfies the variational inequality

(u, v, w) ∈ K , (3-10)∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)+
∫
γ

vxx(v̄xx − vxx)+

∫
γ

wx(w̄x −wx)≥ 0,

∀ (ū, v̄, w̄) ∈ K . (3-11)

Moreover, (3-1)–(3-8) and (3-10) and (3-11) are equivalent for smooth solutions.

Proof. The coercivity of the functional 51 can be proved as that in Section 2;
hence, the problem (3-10) and (3-11) indeed has a solution. As for the equivalence
of the representations for smooth solutions, assume that (3-1)–(3-8) hold. Take
(ū, v̄, w̄) ∈ K and multiply (3-1), (3-3), and (3-4) by ū − u, v̄ − v, and w̄ −w,
respectively. Integrating over �γ and γ , we have∫
�γ

(−div σ− f )(ū−u)+
∫
γ

(vxxxx−[σν])(v̄−v)+

∫
γ

(−wxx−[στ ])(w̄−w)= 0,

and hence∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)+
∫
γ

[σν(ū− u)] +
∫
γ

vxx(v̄xx − vxx)

+

∫
γ

wx(w̄x −wx)−

∫
γ

[σν](v̄− v)−

∫
γ

[στ ](w̄−w)= 0. (3-12)
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To prove the variational inequality (3-11), it suffices to state in (3-12) that

B ≡
∫
γ

[σν(ū− u)] −
∫
γ

[σν](v̄− v)−

∫
γ

[στ ](w̄−w)≤ 0.

This can be verified by (3-7) and (3-8). Hence the variational inequality (3-11)
follows from (3-12), as required.

Conversely, let (3-10) and (3-11) be fulfilled. First, it is easy to derive the
equilibrium equation (3-1) from (3-10) and (3-11). We next substitute the test
functions (ū, v̄, w̄) = (u, v, w) ± (ϕ, ω,ψ) in (3-11), with [ϕν] = 0, ϕ−ν = ω,
ϕ−τ = ψ , on γ . This gives∫

�γ

σ(u)ε(ϕ)−
∫
�γ

f ϕ+
∫
γ

vxxωxx +

∫
γ

wxψx = 0.

Hence,

−

∫
γ

[σν ·ϕ] +

∫
γ

vxxxxω−

∫
γ

wxxψ − vxxxω|
1
0+ vxxωx |

1
0+wxψ |

1
0 = 0. (3-13)

Assuming ω = ωx = ψ = 0 as x = 0, 1, from (3-13) one gets

−

∫
γ

([σν]ϕν + [στϕτ ])+

∫
γ

(vxxxxω−wxxψ)= 0. (3-14)

Due to the arbitrariness of ϕ+τ , we obtain σ+τ = 0 on γ . Since ω = ϕν and ψ = ϕ−τ
on γ we obtain the equations (3-3) and (3-4). Now, taking into account (3-3) and
(3-4), it follows from (3-13) that boundary conditions (3-6) are fulfilled. Let us
prove the last relation of (3-7) and the inequality in (3-8). To this end, we take
in (3-11) test functions of the form (ū, v̄, w̄)= (u, v, w)+ (ϕ, 0, 0), with ϕ+ν ≥ 0
on γ , ϕ−ν = 0, and ϕ−τ = 0 on γ . This provides∫

�γ

σ(u)ε(ϕ)−
∫
�γ

f ϕ ≥ 0,

and thus

−

∫
γ

σ+ν ·ϕ+ ≥ 0.

This relation implies ∫
γ

σ+ν ϕ
+

ν ≤ 0.

Since ϕ+ν is an arbitrary nonnegative function, we conclude that σ+ν ≤ 0 on γ .
Next, assume that at any point y ∈ γ we have [uν(y)]> 0. It necessarily gives

σ+ν (y)= 0, since in such a case a function (ū, v̄, w̄)= (u, v, w)± (λϕ, 0, 0) can be
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substituted in (3-11) with a smooth function ϕ, suppϕ ⊂ D̄, λ a small parameter,
and D a small neighborhood:

*

y

x

D

2

:J

This provides the relation ∫
�γ

σ(u)ε(ϕ)−
∫
�γ

f ϕ = 0,

hence the statement follows. On the other hand, if σ+ν (y)< 0 we derive [uν(y)] = 0,
and, consequently, the last relation of (3-7) is proved. The proof of the equivalency
of (3-1)–(3-8) and (3-10) and (3-11) is complete. �

4. Convergence as the rigidity tends to infinity

In fact, a solution of the problem (3-1)–(3-8) should depend on the rigidity param-
eter of the thin inclusion. In the model (3-1)–(3-8), this parameter was taken to be
equal to 1. In this section we introduce the parameter into the model and analyze
its passage to infinity. To this end, we define the energy functional

5δ(u, v, w)=
1
2

∫
�γ

σ(u)ε(u)−
∫
�γ

f u+ δ
2

∫
γ

v2
xx +

δ

2

∫
γ

w2
x , δ > 0.

Theorem 4.1. There exists a unique solution to the problem

Find (uδ, vδ, wδ) ∈ K such that 5δ(uδ, vδ, wδ)= infK 5δ

that satisfies the variational inequality

(uδ, vδ, wδ) ∈ K , (4-1)∫
�γ

σ(uδ)ε(ū−uδ)−
∫
�γ

f (ū−uδ)+δ
∫
γ

vδxx(v̄xx−v
δ
xx)+δ

∫
γ

wδx(w̄x−w
δ
x)≥0,

∀ (ū, v̄, w̄) ∈ K . (4-2)

Proof. The proof is analogous to that of Theorem 2.1 and is omitted. �

Our aim in this section is to pass to the limit in (4-1) and (4-2) as δ→+∞. To
this end, we introduce the notation for vertical rigid displacements Rs(γ ) and for
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admissible displacements Kr :

Rs(γ ) :=
{

l(x) | l(x)= c0+ c1x, x ∈ γ ; c0, c1 ∈ R
}
,

Kr :=
{
u ∈ H 1

0(�γ )
2
| [uν] ≥ 0, u−ν |γ ∈ Rs(γ ), u−τ |γ ∈ R

}
.

Theorem 4.2. Let (uδ, vδ, wδ) ∈ K . Then we can pass to the limit as δ→+∞
and obtain a unique element (u, v, w) ∈ Kr such that (u, v, w) satisfies

uδ→ u weakly in H 1
0(�γ )

2, (4-3)

vδ→ v weakly in H 2(γ ), vxx= 0 on γ, (4-4)

wδ→ w weakly in H 1(γ ), wx = 0 on γ. (4-5)

In particular, v(x) = c0 + c1x , w(x) = q0, q0 = const., x ∈ (0, 1). Moreover,
(u, v, w) satisfies the limiting problem

u ∈ Kr , (4-6)∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)≥ 0, ∀ ū ∈ Kr . (4-7)

Proof. From (4-2) it follows that∫
�γ

σ(uδ)ε(uδ)−
∫
�γ

f uδ ±β
∫
γ

((wδ)2+ (vδ)2)+ δ

∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2

= 0. (4-8)

For small β > 0, due to vδ = uδ−ν and wδ = uδ−τ on γ , the following relation holds:

1
2

∫
�γ

σ(uδ)ε(uδ)−β
∫
γ

((wδ)2+ (vδ)2)≥ 0.

Consequently, from (4-8) one gets, as δ ≥ β,

c0‖uδ‖21,�γ +β‖v
δ
‖

2
2,γ +β‖w

δ
‖

2
1,γ ≤ c1‖uδ‖1,�γ , c0 > 0.

Hence, uniformly in δ ≥ δ0,

‖uδ‖21,�γ +‖v
δ
‖

2
2,γ +‖w

δ
‖

2
1,γ ≤ c. (4-9)

On the other hand, the relation (4-8) implies for δ ≥ δ0,

δ

∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2
≤ c. (4-10)

Thus, we can pass to the limit on a subsequence and obtain (4-3)–(4-5). Let us
choose (ū, l, q) ∈ K as a test function in (4-2), l ∈ Rs(γ ), q ∈ R. Notice that
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ū ∈ Kr . Then, from (4-2) it follows that∫
�γ

σ(uδ)ε(ū− uδ)−
∫
�γ

f (ū− uδ)≥ δ
∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2. (4-11)

Again, passing to the limit, as δ →∞, according to (4-3)–(4-5) we obtain the
variational inequality (4-6) and (4-7) just as in [Khludnev 2010a; 2010b; Khludnev
and Leugering 2010], with u|γ = ρ, where, for any x ∈ γ , we have

ρ(x)= b(x2,−x1)+ (a1, a2), with a1, a2, b ∈ R.

Hence u is an infinitesimal rigid displacement at γ . The convergence of the entire
sequence and the uniqueness follows as usual. �

Remark. The inclusion γ in the limit problem (4-6) and (4-7) can be interpreted
as a rigid beam inclusion. Solvability of this problem can be also proved indepen-
dently by minimizing the functional

π(v)=
1
2

∫
�γ

σ(v)ε(v)−

∫
�γ

f v

over the set Kr .

We are now going to establish two strong formulations of (4-6) and (4-7), which,
in turn, are equivalent to (4-6) and (4-7) if the solutions are smooth.

Theorem 4.3. We consider two problems:

(i) Find a displacement field u = (u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2,
and thin inclusion displacements l0 ∈ Rs(γ ), and q0 ∈ R defined in �γ , �γ ,
and γ , respectively, such that

−div σ = f in �γ , (4-12)

σ − Aε(u)= 0 in �γ , (4-13)

u = 0 on 0, (4-14)

[uν] ≥ 0, l0 = u−ν , q0 = u−τ on γ, (4-15)∫
γ
[σν · u] = 0, (4-16)

−
∫
γ
[σν · ū] ≥ 0, ∀ ū ∈ Kr . (4-17)

(ii) Find a displacement field u = (u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2,
and thin inclusion displacements l0 ∈ Rs(γ ) and q0 ∈ R defined in �γ , �γ ,
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and γ , respectively, such that

−div σ = f in �γ , (4-18)

σ − Aε(u)= 0 in �γ , (4-19)

u = 0 on 0, (4-20)

[uν] ≥ 0, l0 = u−ν , q0 = u−τ on γ, (4-21)

σ+τ = 0, σ+ν ≤ 0, σ+ν [uν] = 0 on γ, (4-22)∫
γ
σ−τ = 0,

∫
γ
[σν]l = 0, ∀ l ∈ Rs(γ ). (4-23)

(The conditions in (4-23) guarantee that the principal vector of forces and the
principal vector of moments acting at γ are equal to zero.)

Then, if the solution to problem (4-6) and (4-7) of Theorem 4.1 is smooth enough,
the two problems are equivalent.

Proof. We first prove that (4-6) and (4-7) and (4-12)–(4-17) are equivalent for
smooth solutions. Assume that (4-6) and (4-7) hold. We take test functions ū in
(4-7) such that ū = u±ϕ, ϕ ∈ C∞0 (�γ )

2. This provides the equilibrium equation
(4-12). From (4-7) it follows∫

�γ

σ(u)ε(u)−
∫
�γ

f u = 0. (4-24)

Integrating by parts in (4-24) we get (4-16). By (4-24), the variational inequality
(4-7) can be rewritten as∫

�γ

σ(u)ε(ū)−
∫
�γ

f ū ≥ 0, ∀ ū ∈ Kr ,

thus (4-17) follows. Conversely, let (4-12)–(4-17) be fulfilled. We take ū ∈ Kr and
multiply (4-12) by ū− u. Integrating over �γ we get∫

�γ

(−div σ − f )(ū− u)= 0.

Hence ∫
γ

[σν(ū− u)] +
∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)= 0.

In order to obtain the variational inequality (4-7), it suffices to prove

−

∫
γ

[σν(ū− u)] ≥ 0. (4-25)

But the inequality (4-25) follows from (4-16) and (4-17). Thus, the equivalence of
(4-6) and (4-7) and (4-12)–(4-17) is established.
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We now turn to the second problem and demonstrate that (4-6)–(4-7) is equiv-
alent to (4-18)–(4-23) for smooth solutions. Let (4-6) and (4-7) be fulfilled. As
before, we check that the equilibrium equation (4-18) follows from (4-7). Next, we
choose test functions ū=u±ũ, [ũν]=0, ũ−ν |γ ∈ Rs(γ ), ũ−τ |γ ∈R, and ũ ∈H 1

0(�γ )
2.

This gives ∫
�γ

σ(u)ε(ũ)−
∫
�γ

f ũ = 0,

and, hence,

−

∫
γ

[σν]ũν −
∫
γ

[στ ũτ ] = 0. (4-26)

Since ũ+τ is arbitrary on γ , we derive the first relation of (4-22). By ũ−τ ∈ R on
γ , from (4-26) we also obtain the first and the second relations of (4-23). Now
we choose test functions in (4-7) as ū = u + ũ, ũ ∈ H 1

0(�γ )
2, and ũ+ν ≥ 0 on γ ,

supp ũ ⊂ D̄; see figure on page 9. This gives∫
�γ

σ(u)ε(ũ)−
∫
�γ

f ũ ≥ 0.

Consequently, ∫
γ

(σ+ν ũ+ν + σ
+

τ ũ+τ )≤ 0. (4-27)

By the choice of ũ, from (4-27) the second relation of (4-22) follows.
In order to derive (4-18)–(4-23) from (4-6) and (4-7), it remains to check the

last condition of (4-22). To this end, assume that at a given point y ∈ γ we have
[uν(y)]> 0. Take test functions in (4-7) of the form ū= u±λϕ, suppϕ⊂ D̄, where
λ is a small parameter, D is a small neighborhood, and ϕ is a smooth function; see
again figure on page 9. We get∫

�γ

σ(u)ε(ϕ)−
∫
�γ

f ϕ = 0;

thus ∫
γ

σ+ν ϕ
+

ν = 0,

and σ+ν (y) = 0, that is, σ+ν (y)[uν(y)] = 0. On the other hand, assuming that
σ+ν (y) < 0, we easily derive [uν(y)] = 0, and the last relation of (4-22) follows.
Thus, from (4-6) and (4-7) we have derived all relations (4-18)–(4-23). To complete
the proof of equivalence of (4-6) and (4-7) and (4-18)–(4-23), assume the converse,
that is, let (4-18)–(4-23) be fulfilled. We take ū ∈ Kr and multiply (4-18) by ū− u.
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Integrating over �γ , one gets∫
�γ

(−div σ − f )(ū− u)= 0,

and, consequently,∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)=−
∫
γ

[σν(ū− u)]. (4-28)

To derive the variational inequality (4-7) from (4-28), it suffices to prove

−

∫
γ

[σν(ū− u)] ≥ 0. (4-29)

We have, by (4-22) and by ū ∈ Kr , that

−

∫
γ

σ+ν ([ūν] − [uν])≥ 0. (4-30)

In view of (4-23) and the first relation of (4-22), the inequality (4-30) can be rewrit-
ten as

−

∫
γ

[σν(ūν − uν)] −
∫
γ

[στ (ūτ − uτ )] ≥ 0. (4-31)

From (4-31), (4-29) follows. We already mentioned that from (4-28) and (4-29)
the variational inequality (4-7) follows. Thus, equivalence of (4-6) and (4-7) and
(4-18)–(4-23) is completely proved. �

5. Convergence as the rigidity tends to zero

In this section we analyze the case where the rigidity parameter δ for the inclusion
convergence to zero. Again, consider the problem (4-1) and (4-2). Our aim is to
pass to the limit in (4-1) and (4-2) as δ → 0. To this end, we define the set of
admissible displacements

K0 = {u ∈ H 1
0(�γ )

2
| [uν] ≥ 0 on γ }.

Theorem 5.1. Let (uδ, vδ, wδ)∈ K be the unique solution of (4-1) and (4-2). Then,
as δ→ 0, we find a unique element w ∈ K0 such that

uδ→ u weakly in H 1
0(�γ )

2, (5-1)
√
δvδ→ ṽ weakly in H 2(γ ), (5-2)
√
δwδ→ w̃ weakly in H 1(γ ). (5-3)
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Moreover, (u, v, w) satisfies the variational inequality

u ∈ K0, (5-4)∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)≥ 0, ∀ ū ∈ K0. (5-5)

Proof. First note that (4-2) implies∫
�γ

σ(uδ)ε(uδ)−
∫
�γ

f uδ + δ
∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2
= 0. (5-6)

Hence, we have a uniform-in-δ estimate

‖uδ‖21,�γ ≤ c. (5-7)

On the other hand, the relation (5-6) implies, for all δ,

δ

∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2
≤ c. (5-8)

By (5-7), ∫
γ

(vδ)2 =

∫
γ

(uδ−ν )
2
≤ c,

∫
γ

(wδ)2 =

∫
γ

(uδ−τ )
2
≤ c, (5-9)

hence, in view of (5-8),

δ‖vδ‖22,γ + δ‖w
δ
‖

2
1,γ ≤ c.

By (5-1)–(5-3), a passage to the limit in (4-1) and (4-2) is possible. We choose
ū ∈ K0 such that ūν and ūτ are smooth at γ−, and define the functions v̄ = ū−ν and
w̄ = ū−τ on γ . Then (ū, v̄, w̄) ∈ K , and a substitution of this test function in (4-2)
implies∫
�γ

σ(uδ)ε(ū)−
∫
�γ

f (ū− uδ)

≥

∫
�γ

σ(uδ)ε(uδ)+ δ
∫
γ

(vδxx)
2
− δ

∫
γ

vδxx v̄xx + δ

∫
γ

(wδx)
2
− δ

∫
γ

wδx w̄x .

Taking the lower limit as δ→ 0 in both parts of this inequality, we derive∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)≥ 0. (5-10)

Inequality (5-10) holds for all functions ū ∈ K0 such that ūν and ūτ are quite smooth
at γ−. We state that it will be valid for all ū ∈ K0. Indeed, let ū ∈ K0 be any fixed
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function. We divide the domain �γ into two subdomains �1 and �2, as shown:

*

J

Q : �

: �

Consider the restriction ū|�2 ∈ H 1(�2)
2, and extend this function to � as a

function from H 1
0 (�)

2. Denote this extension by v. Then we put ũ = ū− v. It is
clear that [ũν] ≥ 0 on γ , and ũ = 0 in �2, thus ũν = 0 and ũτ = 0 at γ−. Next we
choose a sequence vn

∈ C∞0 (�)
2 such that

vn
→ v strongly in H 1

0 (�)
2.

In this case
ũ+ vn

→ ū strongly in H 1
0(�γ )

2.

On the other hand, ũ+ vn
∈ K0, and ũν + vn

ν and ũτ + vn
τ are smooth functions at

γ−. Hence, the limit function u from (5-1) satisfies the variational inequality (5-4),
as stated. �

Remark. We have proved that the limit problem for (4-1) and (4-2) as δ → 0
coincides with the well-known boundary value problem describing the equilibrium
of the elastic body with the crack γ . This model provides a mutual nonpenetration
between the crack faces, hence it is suitable from the mechanical standpoint. The
strong formulation of the problem (5-4) and (5-5) is as follows. We have to find
functions u = (u1, u2) and σ = {σi j }, i, j = 1, 2, defined in �γ , such that

−div σ = f in �γ , (5-11)

σ − Aε(u)= 0 in �γ , (5-12)

u = 0 on 0, (5-13)

[uν] ≥ 0, σ±ν ≤ 0, [σν] = 0, σ±τ = 0, σν[uν] = 0 on γ. (5-14)

Many results concerning this model can be found in [Khludnev and Kovtunenko
2000; Khludnev 2010a].

6. Two-sided delamination of the inclusion

In this section we analyze the case when a delamination takes place at both sides of
the elastic inclusion γ . First, we remark that a delamination of the elastic inclusion
can be considered at γ+0 , where γ0 is a part of γ . In particular, set γ0 =

(
0, 1

2

)
×{0}.
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Suppose that there is no delamination at γ \ γ0. In this case a differential formula-
tion of the equilibrium problem is as follows.

Theorem 6.1. We consider the following problem: Find a displacement field u =
(u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2, and thin inclusion displacements v
and w defined in �γ , �γ , and γ , respectively, such that

−div σ = f in �γ , (6-1)

σ − Aε(u)= 0 in �γ , (6-2)

vxxxx = [σν] on γ, (6-3)

−wxx = [στ ] on γ, (6-4)

u = 0 on 0, (6-5)

vxx = vxxx = 0, wx = 0 for x = 0, 1, (6-6)

v = uν, w = uτ on γ \ γ0, (6-7)

[uν] ≥ 0, v = u−ν , w = u−τ on γ0, (6-8)

σ+ν ≤ 0, σ+τ = 0, σ+ν [uν] = 0 on γ0. (6-9)

The problem (6-1)–(6-9) admits a variational formulation.

Proof. The arguments are similar to those of the proofs above. The details are
omitted. �

Moreover, we can consider a different type of delamination along γ . Denote
γ1 =

(
0, 2

3

)
×{0} and γ2 =

( 1
3 , 1

)
×{0}, and assume that delamination takes place

at γ+1 and γ−2 . In this case the part
( 1

3 ,
2
3

)
×{0} of the inclusion is delaminated at

both sides. We introduce the energy functional

51(u, v, w)=
1
2

∫
�γ

σ(u)ε(u)−
∫
�γ

f u+ 1
2

∫
γ

v2
xx +

1
2

∫
γ

w2
x ,

and the set of admissible displacements

K1 =
{
(u, v, w) ∈ H 1

0(�γ )
2
× H 2(γ )× H 1(γ ) |

[uν] ≥ 0 on γ \ (γ1 ∩ γ2); v = u−ν , wu−τ on γ \ γ2;

v = u+ν , w = u+τ on γ \ γ1; u+ν − v ≥ 0, v− u−ν ≥ 0 on γ1 ∩ γ2
}
.

Theorem 6.2. There exists a unique solution to the problem:

Find (u, v, w) ∈ K1 such that 51(u, v, w)= infK1 51.

This solution satisfies the variational inequality

(u, v, w) ∈ K1, (6-10)
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�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)+
∫
γ

vxx(v̄xx − vxx)+

∫
γ

wx(w̄x −wx)≥ 0,

∀ (ū, v̄, w̄) ∈ K1. (6-11)

Moreover, if (u, v, w) ∈ K1 is a smooth solution of (6-10) and (6-11) then it solves
the following strong problem and vice versa:

Find a displacement field u = (u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2, and
thin inclusion displacements v and w defined in �γ , �γ , and γ , respectively, such
that

−div σ = f in �γ , (6-12)

σ − Aε(u)= 0 in �γ , (6-13)

vxxxx = [σν] on γ, (6-14)

−wxx = [σν] on γ, (6-15)

u = 0 on 0, (6-16)

vxx = vxxx = 0, wx = 0 for x = 0, 1, (6-17)

v = u−ν , w = u−τ , σ+ν ≤ 0, σ+ν [uν] = 0 on γ \ γ2, (6-18)

[uν] ≥ 0, σ+τ = 0 on γ \ γ2, (6-19)

v = u+ν , w = u+τ , σ−ν ≤ 0, σ−ν [uν] = 0 on γ \ γ1, (6-20)

[uν] ≥ 0, σ−τ = 0 on γ \ γ1, (6-21)

u+ν − v ≥ 0, σ+τ = 0, σ+ν ≤ 0, σ+ν (u
+

ν − v)= 0 on γ1 ∩ γ2, (6-22)

v− u−ν ≥ 0, σ−τ = 0, σ−ν ≤ 0, σ−ν (v− u−ν )= 0 on γ1 ∩ γ2. (6-23)

Proof. We omit the proof, as it uses the same techniques as above. �

7. Anisotropic thin elastic inclusion

For the sake of completeness, we consider a case when the rigidity parameters of
the elastic inclusion are different in the x1 and x2 directions. In this section we
consider passages to limits for this situation. Assume that the rigidity parameter
along the axis x2 is fixed, and we change the rigidity parameter along the axis x1.
For a given parameter δ > 0, the problem formulation is as follows:

Find (uδ, vδ, wδ) such that
(uδ, vδ, wδ) ∈ K , (7-1)∫

�γ

σ(uδ)ε(ū− uδ)−
∫
�γ

f (ū− uδ)

+

∫
γ

vδxx(v̄xx − v
δ
xx)+ δ

∫
γ

wδx(w̄x −w
δ
x)≥ 0, ∀ (ū, v̄, w̄) ∈ K . (7-2)
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Our aim is to pass to the limit in (7-1) and (7-2) as δ→+∞ and δ→ 0. We
omit a justification of the limiting procedures, and just formulate the limit problems.
Observe that this justification recalls those of Sections 4 and 5.

7.1. Passage to the limit as δ → +∞. The formulation of the limiting problem
is as follows. We have to find a displacement field u = (u1, u2), a stress tensor
σ = {σi j }, i, j = 1, 2, and thin inclusion displacements q0 ∈R and v defined in �γ ,
�γ , and γ , respectively, such that

−div σ = f in �γ , (7-3)

σ − Aε(u)= 0 in �γ , (7-4)

vxxxx = [σν] on γ, (7-5)

u = 0 on 0, (7-6)

vxx = vxxx = 0 for x = 0, 1, (7-7)

[uν] ≥ 0, v = u−ν , q0 = v
−

τ on γ, (7-8)

σ+ν ≤ 0, σ+ν [uν] = 0, σ+τ = 0 on γ, (7-9)∫
γ
σ−τ = 0. (7-10)

We remark that the inclusion γ in the limit problem (7-3)–(7-10) can be inter-
preted as a semirigid beam inclusion. It is possible to give a variational formulation
of the problem (7-3)–(7-10).

7.2. Passage to the limit as δ → 0. In this case the formulation of the limiting
problem is the following. We have to find a displacement field u = (u1, u2), a
stress tensor σ = {σi j }, i, j = 1, 2, and a thin inclusion displacement v defined in
�γ , �γ , and γ , respectively, such that

−div σ = f in �γ , (7-11)

σ − Aε(u)= 0 in �γ , (7-12)

vxxxx = [σν] on γ, (7-13)

u = 0 on 0, (7-14)

vxx = vxxx = 0 for x = 0, 1, (7-15)

[uν] ≥ 0, v = u−ν on γ, (7-16)

σ+ν ≤ 0, σ±τ = 0, σ+ν [uν] = 0 on γ. (7-17)

Note that the thin inclusion γ in the limit problem (7-11)–(7-17) describes only
vertical displacements of the beam, and tangential displacements of the beam co-
incide with the tangential displacements of the elastic body at γ−. We omit a
variational formulation of the problem (7-11)–(7-17) since this model was analyzed
in [Khludnev and Negri 2012].
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