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DELAMINATED THIN ELASTIC INCLUSIONS
INSIDE ELASTIC BODIES

ALEXANDER M. KHLUDNEV AND GÜNTER R. LEUGERING

We propose a model for a two-dimensional elastic body with a thin elastic inclu-
sion modeled by a beam equation. Moreover, we assume that a delamination of
the inclusion may take place resulting in a crack. Nonlinear boundary conditions
are imposed at the crack faces to prevent mutual penetration between the faces.
Both variational and differential problem formulations are considered, and exis-
tence of solutions is established. Furthermore, we study the dependence of the
solution on the rigidity of the embedded beam. It is proved that in the limit cases
corresponding to infinite and zero rigidity, we obtain a rigid beam inclusion and
cracks with nonpenetration conditions, respectively. Anisotropic behavior of the
beam is also analyzed.

1. Introduction

The enforcement of elastic bodies using thin inclusions is a field of broad interest
in solid and structural mechanics. The interplay between elastic fibers and matrix
materials in general is important also in biological and medical problems involving
tissues, muscles, tendon-couplings, etc. There are a number of different approaches
in modeling such composites. The most classical approach assumes inextensible
fibers; see, for example, [Saccomandi and Beatty 2002]. In this context, the mod-
eling is often based directly on a finite elements. Another approach is based on
a modeling of the matrix material as a supporting layer, like a Winkler support;
see, for example, [Nassar and Hassen 1987]. Here, the fiber is represented by an
Euler–Bernoulli beam. A very natural approach is based on asymptotic analysis
[Argatov and Nazarov 1999]. Here, the embedded beams are taken with a small
thickness parameter and the elastic layer is infinite. The limiting problem relates
to a Winkler or Pasternak-type model. Finally, there are attempts to model hybrid
partial differential equations coupling, say, the two-dimensional wave equation to
a one-dimensional wave equation, using proper transmission conditions; see [Koch
and Zuazua 2006].

MSC2010: 74-XX.
Keywords: thin inclusion, nonlinear boundary conditions, nonpenetration, crack, variational

inequality.
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2 ALEXANDER M. KHLUDNEV AND GÜNTER R. LEUGERING

In general, the terminology “thin inclusion” is used in cases where the dimension
of the inclusion is less than that of the body. Among thin inclusions we can distin-
guish between rigid and elastic ones. Moreover, thin inclusions have a tendency to
delaminate from the matrix material, thereby introducing cracks. A mathematical
theory should be capable of consistently handling these different aspects. There-
fore, in order to analyze composite materials one has to consider mathematical
models of deformable bodies with elastic and rigid inclusions and cracks. In such
a case, new types of boundary value problems and boundary conditions appear.
Cracks also can be viewed as thin inclusions of zero rigidity. There are different
approaches to modeling cracks in solids. The classical models are characterized by
linear boundary conditions at the crack faces [Kozlov and Maz’ya 1991; Grisvard
1992; Nazarov and Plamenevsky 1994]. These linear models allow the opposite
crack faces to penetrate each other which demonstrates a shortcoming of the model
from a mechanical standpoint. For a discussion of singularities at the crack tip
see, for example, [Kozlov and Maz’ya 1991; Nazarov and Plamenevsky 1994]. In
recent years, a crack theory with nonpenetration conditions at the crack faces has
been under active study. This theory is characterized by inequality-type boundary
conditions which leads to free boundary value problems. The book [Khludnev
and Kovtunenko 2000] contains results on crack models with the nonpenetration
conditions for a wide class of constitutive laws. Elastic behavior of bodies with
cracks and inequality-type boundary conditions is analyzed in [Khludnev 2010a].
In particular, the differentiability of energy functionals with respect to crack length
is investigated. Finding the derivatives of the energy functionals is important from
the standpoint of the Griffith rupture criterion; see [Kovtunenko 2003; Rudoy 2007;
Frémiot et al. 2009; Khludnev et al. 2010]. The asymptotic behavior of the solution
near crack tips was analyzed in [Khludnev and Kozlov 2008]. Existence theorems
and qualitative properties of solutions in equilibrium problems for elastic bodies
with thin and volume rigid inclusions can be found in [Khludnev et al. 2009; 2010b;
Neustroeva 2009; Khludnev and Leugering 2010; 2011; Rudoy 2011; Rotanova
2011]. For behavior near rigid inclusion tips, see [Itou et al. 2012].

We propose a new model of a thin elastic inclusion inside of an elastic body.
We consider a planar elastic body � with embedded elastic fibers γi , i = 1, . . . n,

*

:

J
i

as shown in the figure below. However, in this article we do not focus on the
distribution of such fibers in such a domain but rather on the

mathematical modeling and analysis of immersed fibers
to begin with. We, therefore, without loss of generality,

concentrate on a single fiber γ embedded into � with
boundary 0.

The mechanical behavior of the inclusion is modeled by the Kirchhoff–Love
equations. The inclusion may be delaminated, providing therefore the presence
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of a crack. To exclude a mutual penetration between the crack faces, nonlinear
boundary conditions of inequality type are considered along the cracks. Different
problem formulations are proposed which are shown to be equivalent to each other.
We prove the existence and uniqueness of solutions and analyze limit cases de-
scribing the passage to infinity and zero of the rigidity parameter of the inclusion.
In particular, the models of rigid beam inclusions, semirigid beam inclusions, and
crack models with the nonpenetration conditions are obtained in the limits.

The paper is organized as follows. In Section 2, we provide the problem for-
mulation and handle the case where no delamination takes place. In Section 3, we
derive the model for a one-sided delamination along the fiber. In Sections 4 and 5
we study the limiting model, as the rigidity of the fiber tends to infinity and zero,
respectively. Sections 6 and 7 are concerned with two-sided delamination along the
fiber and fibers that exhibit different stiffness properties with respect to longitudinal
and vertical displacements. Oblique and kinking fibers as well as branching fibers
can also be handled. Moreover, other beam models can be considered. However,
this is subject to a forthcoming publication.

2. Problem formulation: the case without delamination

Denote by �⊂ R2 a bounded domain with Lipschitz boundary 0 such that γ̄ ⊂�,
γ = (0, 1)× {0}. Denote by ν = (0, 1) a unit normal vector to γ, τ = (1, 0), and
set �γ =� \ γ̄ ; see figure.

:J

*

J

Q

x
2

1 x

1

In what follows, the domain �γ represents a region with an elastic material, and
γ is an elastic inclusion with specified properties. In particular, we consider γ as
a Kirchhoff–Love or Euler–Bernoulli beam incorporated in the elastic body. Let
A = {ai jkl}, i, j, k, l = 1, 2, be a given elasticity tensor with the usual properties
of symmetry and positive definiteness,

ai jkl = a j ikl = akli j , i, j, k, l = 1, 2, ai jkl ∈ L∞(�),

ai jklξi jξkl ≥ c0|ξ |
2, ∀ ξ j i = ξi j , c0 = const.> 0.

A summation convention over repeated indices is used: all functions with two
lower indices are assumed to be symmetric in those indices.
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An equilibrium problem for the body �γ and the elastic inclusion γ (see, for
example, [Bessoud et al. 2008]) is formulated as follows. For given external forces
f = ( f1, f2) ∈ L2(�)2 acting on the body, we want to find a displacement field
u = (u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2, and thin inclusion displacements
v,w, defined in �, �γ , and γ , respectively, such that

−div σ = f in �γ , (2-1)

σ − Aε(u)= 0 in �, (2-2)

E Ivxxxx = [σν] on γ, (2-3)

−E Swxx = [στ ] on γ, (2-4)

u = 0 on 0, (2-5)

E Ivxx = E Ivxxx = E Swx = 0 for x = 0, 1, (2-6)

v = uν, w = uτ on γ. (2-7)

Here [h] = h+− h− is a jump of a function h on γ , where h± are the traces of h
on the faces of the beam γ±. The signs ± correspond to the positive and negative
directions of ν; vx = dv/dx , x = x1, (x1, x2) ∈ �; ε(u) = {εi j (u)} is the strain
tensor, εi j (u)= 1

2 (ui, j + u j,i ), i, j = 1, 2; and σν = (σ1 jν j , σ2 jν j ), σν = σi jν jνi ,
στ = σν ·τ , uν = uν, uτ = uτ . By E , I , and S we denote the Young’s modulus, the
inertia of the cross section, and the area of cross section, respectively. Below, for
the sake of simplicity, we put E I = 1 and E S= 1. The essence of the mathematical
results obtained in this article does not change by this particular choice. When it
comes to the asymptotic analysis for the stiffness of the beam, the role of the
stiffness parameters will be taken into account. See Sections 4, 5, and 7.

Functions defined on γ we identify with functions of the variable x .
Relations (2-1), (2-3), and (2-4) are the equilibrium equations for the elastic

body and the inclusion, and (2-2) represents Hooke’s law. According to (2-7),
the vertical and tangential (along the axis x1) displacements of the elastic body
coincide with the inclusion displacements at γ .

Below we provide a variational formulation of the problem (2-1)–(2-7). To this
end, we introduce the Sobolev space

V = {(u, v, w) ∈ (H 1
0 (�))

2
× H 2(γ )× H 1(γ ) | v = uν, w = uτ on γ },

and the energy functional

5(u, v, w)= 1
2

∫
�

σ(u)ε(u)−
∫
�

f u+ 1
2

∫
γ

v2
xx +

1
2

∫
γ

w2
x .

Here σ(u)= σ is defined by (2-2), that is, σ(u)= Aε(u), and, for simplicity, we
write σ(u)ε(u)= σi j (u)εi j (u), f u = fi ui . We use standard notation for the spaces
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(H 1
0 (�))

2, H 2(γ ), H 1(γ ). The functions u, v, and w are independent, and the only
relations are provided by the definition of V . In particular, uν and uτ have more
regularity as compared to that resulting from the inclusion u ∈ (H 1

0 (�))
2. We also

use the notation H s(X)2 := (H s(X))2 for Sobolev spaces concerning functions in
the plane.

Consider the minimization problem

(P) Find (u, v, w) ∈ V such that 5(u, v, w)= infV 5.

Theorem 2.1. Problem (P) admits a unique solution (u, v, w) satisfying

(u, v, w) ∈ V, (2-8)∫
�

σ(u)ε(ū)−
∫
�

f ū+
∫
γ

vxx v̄xx +

∫
γ

wx w̄x = 0, ∀ (ū, v̄, w̄) ∈ V . (2-9)

Moreover, if the solution is smooth, then the strong representation, (2-1)–(2-7),
and the weak representation, (2-8) and (2-9), are equivalent.

Proof. In order to prove that the problem (2-8) and (2-9) admits a solution, it
suffices to establish the coercivity of the functional 5 on the space V , since its
weak lower semicontinuity is obvious. Due to Korn’s inequality, we have

5(u, v, w)≥ c0‖u‖21,�− c1‖u‖1,�+
1
2

∫
γ

(v2
xx +w

2
x)±β

∫
γ

(v2
+w2), (2-10)

with positive constants c0 and c1 and a parameter β > 0, where ‖ · ‖1,� is the norm
in H 1

0 (�)
2 and ‖ · ‖i,γ is the norm in H i (γ ), i = 1, 2. We have v = uν and w = uτ

at γ , hence, for small β, due to the trace inequality

c0

2
‖u‖21,�−β

∫
γ

(v2
+w2)≥ 0.

Thus, from (2-10) we obtain the desired limit:

5(u, v, w)≥
c0

2
‖u‖21,�− c1‖u‖1,�+

1
2

∫
γ

(v2
xx +w

2
x)+β

∫
γ

(v2
+w2)→+∞,

‖(u, v, w)‖V →∞,

We now show the equivalence of (2-1)–(2-7) and (2-8) and (2-9) for smooth
solutions. Let (2-1)–(2-7) be fulfilled. Take (ū, v̄, w̄) ∈ V and multiply (2-1), (2-3),
and (2-4) by ū, v̄, and w̄, respectively. Integrating over �γ and γ , respectively, we
get ∫

�γ

(−div σ − f )ū+
∫
γ

(vxxxx v̄−wxx w̄)−

∫
γ

([σν]v̄+ [στ ]w̄)= 0.

Hence, by the boundary conditions (2-5) and (2-6),
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�γ

(σ (u)ε(ū)− f ū)+
∫
γ

[σν]ū+
∫
γ

(vxx v̄xx +wx w̄x)−

∫
γ

([σν]v̄+ [στ ]w̄)

= 0. (2-11)

We have [σν]ū = [σν]ūν + [στ ]ūτ on γ . Taking into account that (ū, v̄, w̄) ∈ V ,
from (2-11) the identity (2-9) follows. In so doing, we change the integration
domain �γ by �, since [u] = [ū] = 0 on γ . Conversely, let (2-8) and (2-9) be
fulfilled. We take test functions of the form (ū, v̄, w̄) = (ϕ, 0, 0), ϕ ∈ C∞0 (�γ )

2.
This gives the equilibrium equation (2-1). Next, from (2-9) it follows that

−

∫
γ

([σν]ūν + [στ ]ūτ )+
∫
γ

(vxxxx v̄−wxx w̄)+wx w̄|
1
0+ vxx v̄x |

1
0− vxxx v̄|

1
0 = 0,

∀ (ū, v̄, w̄) ∈ V . (2-12)

Choosing here w̄ = 0 and v̄ = v̄x = 0 at x = 0, 1, the relation follows:

−

∫
γ

[σν]ūν −
∫
γ

[στ ]ūτ +
∫
γ

(vxxxx v̄−wxx w̄)= 0.

Consequently, by the equalities v̄ = ūν , and w̄ = ūτ on γ , we obtain (2-3) and
(2-4). In such a case, the identity (2-12) implies (2-6). Hence, the equivalence of
(2-1)–(2-7) and (2-8) and (2-9) is proved. �

3. Delaminated elastic inclusion

Assume that a delamination of the elastic inclusion takes place at γ+, thus we have
a crack. In our model, inequality-type boundary conditions will be considered to
prevent a mutual penetration between the crack faces. Displacements of the inclu-
sion should coincide with the displacements of the elastic body at γ−. The problem
formulation is as follows. We have to find a displacement field u= (u1, u2), a stress
tensor σ = {σi j }, i, j = 1, 2, and thin inclusion displacements v and w defined in
�γ , �γ , and γ , respectively, such that

−div σ = f in �γ , (3-1)

σ − Aε(u)= 0 in �γ , (3-2)

vxxxx = [σν] on γ, (3-3)

−wxx = [στ ] on γ, (3-4)

u = 0 on 0, (3-5)

vxx = vxxx = wx = 0 for x = 0, 1, (3-6)

[uν] ≥ 0, v = u−ν , w = u−τ , σ+ν [uν] = 0 on γ, (3-7)

σ+ν ≤ 0, σ+τ = 0 on γ. (3-8)
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The first inequality in (3-7) provides a mutual nonpenetration between the crack
faces. The second and the third relations of (3-7) show that the inclusion displace-
ments coincide with the vertical and tangential displacements of the elastic body
at γ−.

First, we provide a variational formulation of the problem (3-1)–(3-8). We in-
troduce the set of admissible displacements

K = {(u, v, w) ∈ H 1
0(�γ )

2
× H 2(γ )× H 1(γ ) | [uν] ≥ 0, v = u−ν , w = u−τ on γ }

and the energy functional

51(u, v, w)=
1
2

∫
�γ

σ(u)ε(u)−
∫
�γ

f u+ 1
2

∫
γ

v2
xx +

1
2

∫
γ

w2
x ,

where the Sobolev space H 1
0(�γ ) is defined as

H 1
0(�γ )= {v ∈ H 1(�γ ) | v = 0 on 0}.

Theorem 3.1. There exists a unique solution of the problem

Find (u, v, w) ∈ K such that 51(u, v, w)= infK 51. (3-9)

This solution satisfies the variational inequality

(u, v, w) ∈ K , (3-10)∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)+
∫
γ

vxx(v̄xx − vxx)+

∫
γ

wx(w̄x −wx)≥ 0,

∀ (ū, v̄, w̄) ∈ K . (3-11)

Moreover, (3-1)–(3-8) and (3-10) and (3-11) are equivalent for smooth solutions.

Proof. The coercivity of the functional 51 can be proved as that in Section 2;
hence, the problem (3-10) and (3-11) indeed has a solution. As for the equivalence
of the representations for smooth solutions, assume that (3-1)–(3-8) hold. Take
(ū, v̄, w̄) ∈ K and multiply (3-1), (3-3), and (3-4) by ū − u, v̄ − v, and w̄ −w,
respectively. Integrating over �γ and γ , we have∫
�γ

(−div σ− f )(ū−u)+
∫
γ

(vxxxx−[σν])(v̄−v)+

∫
γ

(−wxx−[στ ])(w̄−w)= 0,

and hence∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)+
∫
γ

[σν(ū− u)] +
∫
γ

vxx(v̄xx − vxx)

+

∫
γ

wx(w̄x −wx)−

∫
γ

[σν](v̄− v)−

∫
γ

[στ ](w̄−w)= 0. (3-12)
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To prove the variational inequality (3-11), it suffices to state in (3-12) that

B ≡
∫
γ

[σν(ū− u)] −
∫
γ

[σν](v̄− v)−

∫
γ

[στ ](w̄−w)≤ 0.

This can be verified by (3-7) and (3-8). Hence the variational inequality (3-11)
follows from (3-12), as required.

Conversely, let (3-10) and (3-11) be fulfilled. First, it is easy to derive the
equilibrium equation (3-1) from (3-10) and (3-11). We next substitute the test
functions (ū, v̄, w̄) = (u, v, w) ± (ϕ, ω,ψ) in (3-11), with [ϕν] = 0, ϕ−ν = ω,
ϕ−τ = ψ , on γ . This gives∫

�γ

σ(u)ε(ϕ)−
∫
�γ

f ϕ+
∫
γ

vxxωxx +

∫
γ

wxψx = 0.

Hence,

−

∫
γ

[σν ·ϕ] +

∫
γ

vxxxxω−

∫
γ

wxxψ − vxxxω|
1
0+ vxxωx |

1
0+wxψ |

1
0 = 0. (3-13)

Assuming ω = ωx = ψ = 0 as x = 0, 1, from (3-13) one gets

−

∫
γ

([σν]ϕν + [στϕτ ])+

∫
γ

(vxxxxω−wxxψ)= 0. (3-14)

Due to the arbitrariness of ϕ+τ , we obtain σ+τ = 0 on γ . Since ω = ϕν and ψ = ϕ−τ
on γ we obtain the equations (3-3) and (3-4). Now, taking into account (3-3) and
(3-4), it follows from (3-13) that boundary conditions (3-6) are fulfilled. Let us
prove the last relation of (3-7) and the inequality in (3-8). To this end, we take
in (3-11) test functions of the form (ū, v̄, w̄)= (u, v, w)+ (ϕ, 0, 0), with ϕ+ν ≥ 0
on γ , ϕ−ν = 0, and ϕ−τ = 0 on γ . This provides∫

�γ

σ(u)ε(ϕ)−
∫
�γ

f ϕ ≥ 0,

and thus

−

∫
γ

σ+ν ·ϕ+ ≥ 0.

This relation implies ∫
γ

σ+ν ϕ
+

ν ≤ 0.

Since ϕ+ν is an arbitrary nonnegative function, we conclude that σ+ν ≤ 0 on γ .
Next, assume that at any point y ∈ γ we have [uν(y)]> 0. It necessarily gives

σ+ν (y)= 0, since in such a case a function (ū, v̄, w̄)= (u, v, w)± (λϕ, 0, 0) can be
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substituted in (3-11) with a smooth function ϕ, suppϕ ⊂ D̄, λ a small parameter,
and D a small neighborhood:

*

y

x

D

2

:J

This provides the relation ∫
�γ

σ(u)ε(ϕ)−
∫
�γ

f ϕ = 0,

hence the statement follows. On the other hand, if σ+ν (y)< 0 we derive [uν(y)] = 0,
and, consequently, the last relation of (3-7) is proved. The proof of the equivalency
of (3-1)–(3-8) and (3-10) and (3-11) is complete. �

4. Convergence as the rigidity tends to infinity

In fact, a solution of the problem (3-1)–(3-8) should depend on the rigidity param-
eter of the thin inclusion. In the model (3-1)–(3-8), this parameter was taken to be
equal to 1. In this section we introduce the parameter into the model and analyze
its passage to infinity. To this end, we define the energy functional

5δ(u, v, w)=
1
2

∫
�γ

σ(u)ε(u)−
∫
�γ

f u+ δ
2

∫
γ

v2
xx +

δ

2

∫
γ

w2
x , δ > 0.

Theorem 4.1. There exists a unique solution to the problem

Find (uδ, vδ, wδ) ∈ K such that 5δ(uδ, vδ, wδ)= infK 5δ

that satisfies the variational inequality

(uδ, vδ, wδ) ∈ K , (4-1)∫
�γ

σ(uδ)ε(ū−uδ)−
∫
�γ

f (ū−uδ)+δ
∫
γ

vδxx(v̄xx−v
δ
xx)+δ

∫
γ

wδx(w̄x−w
δ
x)≥0,

∀ (ū, v̄, w̄) ∈ K . (4-2)

Proof. The proof is analogous to that of Theorem 2.1 and is omitted. �

Our aim in this section is to pass to the limit in (4-1) and (4-2) as δ→+∞. To
this end, we introduce the notation for vertical rigid displacements Rs(γ ) and for
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admissible displacements Kr :

Rs(γ ) :=
{

l(x) | l(x)= c0+ c1x, x ∈ γ ; c0, c1 ∈ R
}
,

Kr :=
{
u ∈ H 1

0(�γ )
2
| [uν] ≥ 0, u−ν |γ ∈ Rs(γ ), u−τ |γ ∈ R

}
.

Theorem 4.2. Let (uδ, vδ, wδ) ∈ K . Then we can pass to the limit as δ→+∞
and obtain a unique element (u, v, w) ∈ Kr such that (u, v, w) satisfies

uδ→ u weakly in H 1
0(�γ )

2, (4-3)

vδ→ v weakly in H 2(γ ), vxx= 0 on γ, (4-4)

wδ→ w weakly in H 1(γ ), wx = 0 on γ. (4-5)

In particular, v(x) = c0 + c1x , w(x) = q0, q0 = const., x ∈ (0, 1). Moreover,
(u, v, w) satisfies the limiting problem

u ∈ Kr , (4-6)∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)≥ 0, ∀ ū ∈ Kr . (4-7)

Proof. From (4-2) it follows that∫
�γ

σ(uδ)ε(uδ)−
∫
�γ

f uδ ±β
∫
γ

((wδ)2+ (vδ)2)+ δ

∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2

= 0. (4-8)

For small β > 0, due to vδ = uδ−ν and wδ = uδ−τ on γ , the following relation holds:

1
2

∫
�γ

σ(uδ)ε(uδ)−β
∫
γ

((wδ)2+ (vδ)2)≥ 0.

Consequently, from (4-8) one gets, as δ ≥ β,

c0‖uδ‖21,�γ +β‖v
δ
‖

2
2,γ +β‖w

δ
‖

2
1,γ ≤ c1‖uδ‖1,�γ , c0 > 0.

Hence, uniformly in δ ≥ δ0,

‖uδ‖21,�γ +‖v
δ
‖

2
2,γ +‖w

δ
‖

2
1,γ ≤ c. (4-9)

On the other hand, the relation (4-8) implies for δ ≥ δ0,

δ

∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2
≤ c. (4-10)

Thus, we can pass to the limit on a subsequence and obtain (4-3)–(4-5). Let us
choose (ū, l, q) ∈ K as a test function in (4-2), l ∈ Rs(γ ), q ∈ R. Notice that
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ū ∈ Kr . Then, from (4-2) it follows that∫
�γ

σ(uδ)ε(ū− uδ)−
∫
�γ

f (ū− uδ)≥ δ
∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2. (4-11)

Again, passing to the limit, as δ →∞, according to (4-3)–(4-5) we obtain the
variational inequality (4-6) and (4-7) just as in [Khludnev 2010a; 2010b; Khludnev
and Leugering 2010], with u|γ = ρ, where, for any x ∈ γ , we have

ρ(x)= b(x2,−x1)+ (a1, a2), with a1, a2, b ∈ R.

Hence u is an infinitesimal rigid displacement at γ . The convergence of the entire
sequence and the uniqueness follows as usual. �

Remark. The inclusion γ in the limit problem (4-6) and (4-7) can be interpreted
as a rigid beam inclusion. Solvability of this problem can be also proved indepen-
dently by minimizing the functional

π(v)=
1
2

∫
�γ

σ(v)ε(v)−

∫
�γ

f v

over the set Kr .

We are now going to establish two strong formulations of (4-6) and (4-7), which,
in turn, are equivalent to (4-6) and (4-7) if the solutions are smooth.

Theorem 4.3. We consider two problems:

(i) Find a displacement field u = (u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2,
and thin inclusion displacements l0 ∈ Rs(γ ), and q0 ∈ R defined in �γ , �γ ,
and γ , respectively, such that

−div σ = f in �γ , (4-12)

σ − Aε(u)= 0 in �γ , (4-13)

u = 0 on 0, (4-14)

[uν] ≥ 0, l0 = u−ν , q0 = u−τ on γ, (4-15)∫
γ
[σν · u] = 0, (4-16)

−
∫
γ
[σν · ū] ≥ 0, ∀ ū ∈ Kr . (4-17)

(ii) Find a displacement field u = (u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2,
and thin inclusion displacements l0 ∈ Rs(γ ) and q0 ∈ R defined in �γ , �γ ,
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and γ , respectively, such that

−div σ = f in �γ , (4-18)

σ − Aε(u)= 0 in �γ , (4-19)

u = 0 on 0, (4-20)

[uν] ≥ 0, l0 = u−ν , q0 = u−τ on γ, (4-21)

σ+τ = 0, σ+ν ≤ 0, σ+ν [uν] = 0 on γ, (4-22)∫
γ
σ−τ = 0,

∫
γ
[σν]l = 0, ∀ l ∈ Rs(γ ). (4-23)

(The conditions in (4-23) guarantee that the principal vector of forces and the
principal vector of moments acting at γ are equal to zero.)

Then, if the solution to problem (4-6) and (4-7) of Theorem 4.1 is smooth enough,
the two problems are equivalent.

Proof. We first prove that (4-6) and (4-7) and (4-12)–(4-17) are equivalent for
smooth solutions. Assume that (4-6) and (4-7) hold. We take test functions ū in
(4-7) such that ū = u±ϕ, ϕ ∈ C∞0 (�γ )

2. This provides the equilibrium equation
(4-12). From (4-7) it follows∫

�γ

σ(u)ε(u)−
∫
�γ

f u = 0. (4-24)

Integrating by parts in (4-24) we get (4-16). By (4-24), the variational inequality
(4-7) can be rewritten as∫

�γ

σ(u)ε(ū)−
∫
�γ

f ū ≥ 0, ∀ ū ∈ Kr ,

thus (4-17) follows. Conversely, let (4-12)–(4-17) be fulfilled. We take ū ∈ Kr and
multiply (4-12) by ū− u. Integrating over �γ we get∫

�γ

(−div σ − f )(ū− u)= 0.

Hence ∫
γ

[σν(ū− u)] +
∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)= 0.

In order to obtain the variational inequality (4-7), it suffices to prove

−

∫
γ

[σν(ū− u)] ≥ 0. (4-25)

But the inequality (4-25) follows from (4-16) and (4-17). Thus, the equivalence of
(4-6) and (4-7) and (4-12)–(4-17) is established.
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We now turn to the second problem and demonstrate that (4-6)–(4-7) is equiv-
alent to (4-18)–(4-23) for smooth solutions. Let (4-6) and (4-7) be fulfilled. As
before, we check that the equilibrium equation (4-18) follows from (4-7). Next, we
choose test functions ū=u±ũ, [ũν]=0, ũ−ν |γ ∈ Rs(γ ), ũ−τ |γ ∈R, and ũ ∈H 1

0(�γ )
2.

This gives ∫
�γ

σ(u)ε(ũ)−
∫
�γ

f ũ = 0,

and, hence,

−

∫
γ

[σν]ũν −
∫
γ

[στ ũτ ] = 0. (4-26)

Since ũ+τ is arbitrary on γ , we derive the first relation of (4-22). By ũ−τ ∈ R on
γ , from (4-26) we also obtain the first and the second relations of (4-23). Now
we choose test functions in (4-7) as ū = u + ũ, ũ ∈ H 1

0(�γ )
2, and ũ+ν ≥ 0 on γ ,

supp ũ ⊂ D̄; see figure on page 9. This gives∫
�γ

σ(u)ε(ũ)−
∫
�γ

f ũ ≥ 0.

Consequently, ∫
γ

(σ+ν ũ+ν + σ
+

τ ũ+τ )≤ 0. (4-27)

By the choice of ũ, from (4-27) the second relation of (4-22) follows.
In order to derive (4-18)–(4-23) from (4-6) and (4-7), it remains to check the

last condition of (4-22). To this end, assume that at a given point y ∈ γ we have
[uν(y)]> 0. Take test functions in (4-7) of the form ū= u±λϕ, suppϕ⊂ D̄, where
λ is a small parameter, D is a small neighborhood, and ϕ is a smooth function; see
again figure on page 9. We get∫

�γ

σ(u)ε(ϕ)−
∫
�γ

f ϕ = 0;

thus ∫
γ

σ+ν ϕ
+

ν = 0,

and σ+ν (y) = 0, that is, σ+ν (y)[uν(y)] = 0. On the other hand, assuming that
σ+ν (y) < 0, we easily derive [uν(y)] = 0, and the last relation of (4-22) follows.
Thus, from (4-6) and (4-7) we have derived all relations (4-18)–(4-23). To complete
the proof of equivalence of (4-6) and (4-7) and (4-18)–(4-23), assume the converse,
that is, let (4-18)–(4-23) be fulfilled. We take ū ∈ Kr and multiply (4-18) by ū− u.
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Integrating over �γ , one gets∫
�γ

(−div σ − f )(ū− u)= 0,

and, consequently,∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)=−
∫
γ

[σν(ū− u)]. (4-28)

To derive the variational inequality (4-7) from (4-28), it suffices to prove

−

∫
γ

[σν(ū− u)] ≥ 0. (4-29)

We have, by (4-22) and by ū ∈ Kr , that

−

∫
γ

σ+ν ([ūν] − [uν])≥ 0. (4-30)

In view of (4-23) and the first relation of (4-22), the inequality (4-30) can be rewrit-
ten as

−

∫
γ

[σν(ūν − uν)] −
∫
γ

[στ (ūτ − uτ )] ≥ 0. (4-31)

From (4-31), (4-29) follows. We already mentioned that from (4-28) and (4-29)
the variational inequality (4-7) follows. Thus, equivalence of (4-6) and (4-7) and
(4-18)–(4-23) is completely proved. �

5. Convergence as the rigidity tends to zero

In this section we analyze the case where the rigidity parameter δ for the inclusion
convergence to zero. Again, consider the problem (4-1) and (4-2). Our aim is to
pass to the limit in (4-1) and (4-2) as δ → 0. To this end, we define the set of
admissible displacements

K0 = {u ∈ H 1
0(�γ )

2
| [uν] ≥ 0 on γ }.

Theorem 5.1. Let (uδ, vδ, wδ)∈ K be the unique solution of (4-1) and (4-2). Then,
as δ→ 0, we find a unique element w ∈ K0 such that

uδ→ u weakly in H 1
0(�γ )

2, (5-1)
√
δvδ→ ṽ weakly in H 2(γ ), (5-2)
√
δwδ→ w̃ weakly in H 1(γ ). (5-3)
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Moreover, (u, v, w) satisfies the variational inequality

u ∈ K0, (5-4)∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)≥ 0, ∀ ū ∈ K0. (5-5)

Proof. First note that (4-2) implies∫
�γ

σ(uδ)ε(uδ)−
∫
�γ

f uδ + δ
∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2
= 0. (5-6)

Hence, we have a uniform-in-δ estimate

‖uδ‖21,�γ ≤ c. (5-7)

On the other hand, the relation (5-6) implies, for all δ,

δ

∫
γ

(vδxx)
2
+ δ

∫
γ

(wδx)
2
≤ c. (5-8)

By (5-7), ∫
γ

(vδ)2 =

∫
γ

(uδ−ν )
2
≤ c,

∫
γ

(wδ)2 =

∫
γ

(uδ−τ )
2
≤ c, (5-9)

hence, in view of (5-8),

δ‖vδ‖22,γ + δ‖w
δ
‖

2
1,γ ≤ c.

By (5-1)–(5-3), a passage to the limit in (4-1) and (4-2) is possible. We choose
ū ∈ K0 such that ūν and ūτ are smooth at γ−, and define the functions v̄ = ū−ν and
w̄ = ū−τ on γ . Then (ū, v̄, w̄) ∈ K , and a substitution of this test function in (4-2)
implies∫
�γ

σ(uδ)ε(ū)−
∫
�γ

f (ū− uδ)

≥

∫
�γ

σ(uδ)ε(uδ)+ δ
∫
γ

(vδxx)
2
− δ

∫
γ

vδxx v̄xx + δ

∫
γ

(wδx)
2
− δ

∫
γ

wδx w̄x .

Taking the lower limit as δ→ 0 in both parts of this inequality, we derive∫
�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)≥ 0. (5-10)

Inequality (5-10) holds for all functions ū ∈ K0 such that ūν and ūτ are quite smooth
at γ−. We state that it will be valid for all ū ∈ K0. Indeed, let ū ∈ K0 be any fixed
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function. We divide the domain �γ into two subdomains �1 and �2, as shown:

*

J

Q : �

: �

Consider the restriction ū|�2 ∈ H 1(�2)
2, and extend this function to � as a

function from H 1
0 (�)

2. Denote this extension by v. Then we put ũ = ū− v. It is
clear that [ũν] ≥ 0 on γ , and ũ = 0 in �2, thus ũν = 0 and ũτ = 0 at γ−. Next we
choose a sequence vn

∈ C∞0 (�)
2 such that

vn
→ v strongly in H 1

0 (�)
2.

In this case
ũ+ vn

→ ū strongly in H 1
0(�γ )

2.

On the other hand, ũ+ vn
∈ K0, and ũν + vn

ν and ũτ + vn
τ are smooth functions at

γ−. Hence, the limit function u from (5-1) satisfies the variational inequality (5-4),
as stated. �

Remark. We have proved that the limit problem for (4-1) and (4-2) as δ → 0
coincides with the well-known boundary value problem describing the equilibrium
of the elastic body with the crack γ . This model provides a mutual nonpenetration
between the crack faces, hence it is suitable from the mechanical standpoint. The
strong formulation of the problem (5-4) and (5-5) is as follows. We have to find
functions u = (u1, u2) and σ = {σi j }, i, j = 1, 2, defined in �γ , such that

−div σ = f in �γ , (5-11)

σ − Aε(u)= 0 in �γ , (5-12)

u = 0 on 0, (5-13)

[uν] ≥ 0, σ±ν ≤ 0, [σν] = 0, σ±τ = 0, σν[uν] = 0 on γ. (5-14)

Many results concerning this model can be found in [Khludnev and Kovtunenko
2000; Khludnev 2010a].

6. Two-sided delamination of the inclusion

In this section we analyze the case when a delamination takes place at both sides of
the elastic inclusion γ . First, we remark that a delamination of the elastic inclusion
can be considered at γ+0 , where γ0 is a part of γ . In particular, set γ0 =

(
0, 1

2

)
×{0}.
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Suppose that there is no delamination at γ \ γ0. In this case a differential formula-
tion of the equilibrium problem is as follows.

Theorem 6.1. We consider the following problem: Find a displacement field u =
(u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2, and thin inclusion displacements v
and w defined in �γ , �γ , and γ , respectively, such that

−div σ = f in �γ , (6-1)

σ − Aε(u)= 0 in �γ , (6-2)

vxxxx = [σν] on γ, (6-3)

−wxx = [στ ] on γ, (6-4)

u = 0 on 0, (6-5)

vxx = vxxx = 0, wx = 0 for x = 0, 1, (6-6)

v = uν, w = uτ on γ \ γ0, (6-7)

[uν] ≥ 0, v = u−ν , w = u−τ on γ0, (6-8)

σ+ν ≤ 0, σ+τ = 0, σ+ν [uν] = 0 on γ0. (6-9)

The problem (6-1)–(6-9) admits a variational formulation.

Proof. The arguments are similar to those of the proofs above. The details are
omitted. �

Moreover, we can consider a different type of delamination along γ . Denote
γ1 =

(
0, 2

3

)
×{0} and γ2 =

( 1
3 , 1

)
×{0}, and assume that delamination takes place

at γ+1 and γ−2 . In this case the part
( 1

3 ,
2
3

)
×{0} of the inclusion is delaminated at

both sides. We introduce the energy functional

51(u, v, w)=
1
2

∫
�γ

σ(u)ε(u)−
∫
�γ

f u+ 1
2

∫
γ

v2
xx +

1
2

∫
γ

w2
x ,

and the set of admissible displacements

K1 =
{
(u, v, w) ∈ H 1

0(�γ )
2
× H 2(γ )× H 1(γ ) |

[uν] ≥ 0 on γ \ (γ1 ∩ γ2); v = u−ν , wu−τ on γ \ γ2;

v = u+ν , w = u+τ on γ \ γ1; u+ν − v ≥ 0, v− u−ν ≥ 0 on γ1 ∩ γ2
}
.

Theorem 6.2. There exists a unique solution to the problem:

Find (u, v, w) ∈ K1 such that 51(u, v, w)= infK1 51.

This solution satisfies the variational inequality

(u, v, w) ∈ K1, (6-10)
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�γ

σ(u)ε(ū− u)−
∫
�γ

f (ū− u)+
∫
γ

vxx(v̄xx − vxx)+

∫
γ

wx(w̄x −wx)≥ 0,

∀ (ū, v̄, w̄) ∈ K1. (6-11)

Moreover, if (u, v, w) ∈ K1 is a smooth solution of (6-10) and (6-11) then it solves
the following strong problem and vice versa:

Find a displacement field u = (u1, u2), a stress tensor σ = {σi j }, i, j = 1, 2, and
thin inclusion displacements v and w defined in �γ , �γ , and γ , respectively, such
that

−div σ = f in �γ , (6-12)

σ − Aε(u)= 0 in �γ , (6-13)

vxxxx = [σν] on γ, (6-14)

−wxx = [σν] on γ, (6-15)

u = 0 on 0, (6-16)

vxx = vxxx = 0, wx = 0 for x = 0, 1, (6-17)

v = u−ν , w = u−τ , σ+ν ≤ 0, σ+ν [uν] = 0 on γ \ γ2, (6-18)

[uν] ≥ 0, σ+τ = 0 on γ \ γ2, (6-19)

v = u+ν , w = u+τ , σ−ν ≤ 0, σ−ν [uν] = 0 on γ \ γ1, (6-20)

[uν] ≥ 0, σ−τ = 0 on γ \ γ1, (6-21)

u+ν − v ≥ 0, σ+τ = 0, σ+ν ≤ 0, σ+ν (u
+

ν − v)= 0 on γ1 ∩ γ2, (6-22)

v− u−ν ≥ 0, σ−τ = 0, σ−ν ≤ 0, σ−ν (v− u−ν )= 0 on γ1 ∩ γ2. (6-23)

Proof. We omit the proof, as it uses the same techniques as above. �

7. Anisotropic thin elastic inclusion

For the sake of completeness, we consider a case when the rigidity parameters of
the elastic inclusion are different in the x1 and x2 directions. In this section we
consider passages to limits for this situation. Assume that the rigidity parameter
along the axis x2 is fixed, and we change the rigidity parameter along the axis x1.
For a given parameter δ > 0, the problem formulation is as follows:

Find (uδ, vδ, wδ) such that
(uδ, vδ, wδ) ∈ K , (7-1)∫

�γ

σ(uδ)ε(ū− uδ)−
∫
�γ

f (ū− uδ)

+

∫
γ

vδxx(v̄xx − v
δ
xx)+ δ

∫
γ

wδx(w̄x −w
δ
x)≥ 0, ∀ (ū, v̄, w̄) ∈ K . (7-2)
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Our aim is to pass to the limit in (7-1) and (7-2) as δ→+∞ and δ→ 0. We
omit a justification of the limiting procedures, and just formulate the limit problems.
Observe that this justification recalls those of Sections 4 and 5.

7.1. Passage to the limit as δ → +∞. The formulation of the limiting problem
is as follows. We have to find a displacement field u = (u1, u2), a stress tensor
σ = {σi j }, i, j = 1, 2, and thin inclusion displacements q0 ∈R and v defined in �γ ,
�γ , and γ , respectively, such that

−div σ = f in �γ , (7-3)

σ − Aε(u)= 0 in �γ , (7-4)

vxxxx = [σν] on γ, (7-5)

u = 0 on 0, (7-6)

vxx = vxxx = 0 for x = 0, 1, (7-7)

[uν] ≥ 0, v = u−ν , q0 = v
−

τ on γ, (7-8)

σ+ν ≤ 0, σ+ν [uν] = 0, σ+τ = 0 on γ, (7-9)∫
γ
σ−τ = 0. (7-10)

We remark that the inclusion γ in the limit problem (7-3)–(7-10) can be inter-
preted as a semirigid beam inclusion. It is possible to give a variational formulation
of the problem (7-3)–(7-10).

7.2. Passage to the limit as δ → 0. In this case the formulation of the limiting
problem is the following. We have to find a displacement field u = (u1, u2), a
stress tensor σ = {σi j }, i, j = 1, 2, and a thin inclusion displacement v defined in
�γ , �γ , and γ , respectively, such that

−div σ = f in �γ , (7-11)

σ − Aε(u)= 0 in �γ , (7-12)

vxxxx = [σν] on γ, (7-13)

u = 0 on 0, (7-14)

vxx = vxxx = 0 for x = 0, 1, (7-15)

[uν] ≥ 0, v = u−ν on γ, (7-16)

σ+ν ≤ 0, σ±τ = 0, σ+ν [uν] = 0 on γ. (7-17)

Note that the thin inclusion γ in the limit problem (7-11)–(7-17) describes only
vertical displacements of the beam, and tangential displacements of the beam co-
incide with the tangential displacements of the elastic body at γ−. We omit a
variational formulation of the problem (7-11)–(7-17) since this model was analyzed
in [Khludnev and Negri 2012].
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and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J.
Mech. Phys. Solids 57:10 (2009), 1718–1732.

[Khludnev et al. 2010] A. M. Khludnev, J. Sokołowski, and K. Szulc, “Shape and topological sensi-
tivity analysis in domains with cracks”, Appl. Math. 55:6 (2010), 433–469.

[Koch and Zuazua 2006] H. Koch and E. Zuazua, “A hybrid system of PDE’s arising in multi-
structure interaction: coupling of wave equations in n and n − 1 space dimensions”, pp. 55–77
in Recent trends in partial differential equations (Santander, 2004), edited by J. L. Vázquez et al.,
Contemp. Math. 409, Amer. Math. Soc., Providence, RI, 2006.

http://dx.doi.org/10.1007/BF02468456
http://dx.doi.org/10.1007/BF02468456
http://dx.doi.org/10.1016/j.crma.2008.03.002
http://dx.doi.org/10.1016/j.crma.2008.03.002
http://dx.doi.org/10.4064/dm462-0-1
http://dx.doi.org/10.4064/dm462-0-1
http://dx.doi.org/10.1002/zamm.201100157
http://dx.doi.org/10.1002/zamm.201100157
http://elibrary.ru/item.asp?id=15189291
http://elibrary.ru/item.asp?id=15189291
http://dx.doi.org/10.3103/S0025654410050092
http://dx.doi.org/10.1007/s00033-007-6032-z
http://dx.doi.org/10.1007/s00033-007-6032-z
http://dx.doi.org/10.1002/mma.1308
http://dx.doi.org/10.1002/mma.1308
http://dx.doi.org/10.1002/zamm.201000058
http://dx.doi.org/10.1002/zamm.201000058
http://dx.doi.org/10.1002/zamm.201100137
http://dx.doi.org/10.1002/zamm.201100137
http://dx.doi.org/10.1016/j.jmps.2009.07.003
http://dx.doi.org/10.1016/j.jmps.2009.07.003
http://dx.doi.org/10.1007/s10492-010-0018-4
http://dx.doi.org/10.1007/s10492-010-0018-4
http://dx.doi.org/10.1090/conm/409/07706
http://dx.doi.org/10.1090/conm/409/07706


DELAMINATED THIN ELASTIC INCLUSIONS INSIDE ELASTIC BODIES 21

[Kovtunenko 2003] V. A. Kovtunenko, “Invariant energy integrals for a nonlinear crack problem
with possible contact of the crack faces”, Prikl. Mat. Mekh. 67:1 (2003), 109–123.

[Kozlov and Maz’ya 1991] V. A. Kozlov and V. G. Maz’ya, “On stress singularities near the bound-
ary of a polygonal crack”, Proc. Roy. Soc. Edinburgh Sect. A 117:1-2 (1991), 31–37.

[Nassar and Hassen 1987] M. Nassar and A. Hassen, “Embedded beam under equivalent load in-
duced from a surface moving load”, Acta Mech. 67 (1987), 237–247.

[Nazarov and Plamenevsky 1994] S. A. Nazarov and B. A. Plamenevsky, Elliptic problems in do-
mains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics 13, De Gruyter,
Berlin, 1994.

[Neustroeva 2009] N. V. Neustroeva, “Odnostoronniĭ kontakt uprugih plastin s �estkim
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INTERFACES ENDOWED WITH
NONCONSTANT SURFACE ENERGIES REVISITED
WITH THE D’ALEMBERT–LAGRANGE PRINCIPLE

HENRI GOUIN

The equation of motion and the conditions on surfaces and edges between fluids
and solids in the presence of nonconstant surface energies, as in the case of
surfactants attached to fluid particles at the interfaces, are revisited under the
principle of virtual work. We point out that adequate behaviors of surface con-
centrations may drastically modify the surface tension which naturally appears
in the Laplace and the Young–Dupré equations. Thus, the principle of virtual
work points out a strong difference between the two revisited concepts of surface
energy and surface tension.

1. Introduction

This paper develops the principle of virtual work due to d’Alembert–Lagrange
[Serrin 1959]1 when different phases of fluids are in contact through singular sur-
faces or interfaces. The study is first presented without a constitutive assumption
for the surface energies, but the displacement fields are considered for a simple
material corresponding to the first-gradient theory. The d’Alembert–Lagrange
principle allows us to obtain the equation of motion and boundary conditions of
mechanical nature and is able to be extended to more complex materials with mi-
crostructures [Daher and Maugin 1986] or to multigradient theories [Gouin 2007].
Here, we aim to emphasize the formulation of the principle of virtual work when
the interfaces are endowed with nonconstant surface energies: the surfaces have
their own material properties independent of the bulks and are embedded in the
physical space, which is a three-dimensional metric space. The surface energy
density is taken into account and naturally comes into the boundary conditions as
the Laplace and the Young–Dupré equations by using variations associated with
the virtual displacement fields. To do so, it is necessary to propose a constitutive
equation of the surface energy; defining this is a main purpose of the paper. Such a

PACS2010: 02.30.Xx, 45.20.dg, 68.03.Cd, 68.35.Gy.
Keywords: variational methods, capillarity, surface energy, surface tension.

1The principle of virtual work is also referred to in the literature as the principle of virtual power
while virtual displacements are called virtual velocities [Germain 1973a; 1973b].
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presentation is similar that of deformational and configurational mechanics [Stein-
mann 2008]; the method is analogous with the one employed in [Germain 1973a;
1973b; Daher and Maugin 1986] but with powerful differential geometry tools as
in [Fosdick and Tang 2009]. However, the mathematical tools are adapted to the
linear functional of virtual displacement fields and not to the integral balance laws
over nonmaterial interfaces separating fluid phases as in [Cermelli et al. 2005].

Consequently, the main result of this paper is to propose a general form of the
linear functional with interfaces in first-gradient theory which points out the sig-
nificance of constitutive behaviors for the surface energies and highlights the clear
difference between the notions of surface energy and surface tension. Fischer et al.
[2008] emphasized a thermodynamical definition of surface energy, surface tension,
and surface stress for which surface tension and surface stress are identical for flu-
ids. Our presentation is not the same: without any thermodynamical assumptions,
the difference between surface energy and surface tension is a natural consequence
of the virtual work functional and the d’Alembert–Lagrange principle. The surface
energy allows us to obtain the total energy of the interfaces and the surface tension
is directly generated from the boundary conditions of the continuous medium.

In the simplest cases the two notions of surface energy and surface tension are
mingled, but this is not generally the case when the surface energy is nonconstant
along the interfaces. To prove this property, we first focus on the simplest case of
Laplace’s capillarity and obtain the well-known equations on interfaces and contact
lines.

Surfaces endowed with surface matter, as in the case of surfactants, are a more
complex case. Recent decades have seen the extension of surfactant applications
in many fields including biology and medicine [Rosen 2004]; surfactants can also
be expected to play a major mechanical role in the fluid and solid domains. The
versatility of a surfactant mainly depends on its concentration at interfaces. It ex-
perimentally appears that a surfactant or surface-active agent is a substance present
in liquids at a very low concentration rate and, when surface mass concentration is
below the critical micelle concentration, it is mainly absorbed onto interfaces and
alters only the interfacial free energies [de Gennes et al. 2004]. The interfacial free
energy per unit area (generally called the surface energy) is the minimum amount
of work required to create an interface at a given temperature [Edwards et al. 1991;
Slattery et al. 2007]. The fact that surfactants can affect the mechanical behaviors
of interfaces must be modelized in order to predict and control the properties of
complete systems.

In fact, our aim is not to study the general case of surfactants proposed in the
literature but to focus on the virtual work method to prove that simple behaviors
of the surface energy depending on the mass concentration can drastically change
the capillary effects. So, the concept of surface tension naturally appears in the
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equations on surfaces and on lines. In this paper, we call a surfactant the matter
distributed only on the interfaces: we consider the special case when surfactant
molecules are insoluble in the liquid bulk (the surface mass concentration is below
the critical micelle concentration [Rosen 2004]) and are attached to fluid particles
along the interfaces (without surface diffusion as in [McBride et al. 2011]).

The manuscript is organized as follows: Section 2 briefly reminds us of some
results formally presenting the principle of virtual work in its more general form by
using the kinematics of a continuous medium and the notion of virtual displacement.
The simplest example of the Laplace model of capillarity concludes the section.

Section 3 deals with the case when the interfaces are endowed with nonconstant
surface energy, whereby we essentially focus on liquid in contact with solid and gas.
The special case of surfactants as interface matter attached to the fluid particles is
considered. The surface energy depends on the surface matter concentration. Such
a property drastically changes the boundary conditions on the interface by using
surface tension instead of surface energy.

Section 4 deals with an explicit comparison between surface energy and surface
tension only within deformational mechanics. And Section 5 is the conclusion in
which some general extension can be forecast.

The main mathematics tools are collected in the large Appendix so that the
presentation of the text is not cluttered with tedious calculations. The main math-
ematical tool is (15), which can be extended to more complex media.

2. Virtual work for a continuous medium

In continuum mechanics, motions can be equivalently studied with either the New-
tonian model of a system of forces or the Lagrangian model of the work of forces
[Germain 1973a; 1973b]. The Lagrangian model does not derive from a variational
approach but, at equilibrium, the minimization of the energy coincides with the zero
value of a linear functional. Generally, the linear functional expressing the work of
forces is related to the theory of distributions; a decomposition theorem associated
with displacements (as C∞-test functions whose supports are compact manifolds)
uniquely determines a canonical zero order form (a separated form) with respect
to both the test functions and the transverse derivatives of the contact test functions
[Schwartz 1966]. In the same way that the Newtonian principle is useless when
we do not have any constitutive equation for the system of forces, the d’Alembert–
Lagrange principle is useless when we do not have any constitutive assumption for
the virtual work functional.

The equation of motion and boundary conditions of a continuous medium derive
from the d’Alembert–Lagrange principle of virtual work, which is an extension of
the same principle in the mechanics of systems with a finite number of degrees of
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freedom: For any virtual displacement, the motion is such that the virtual work of
forces is equal to the virtual work of mass accelerations [Gouin 2007].

2.1. The background of the principle of virtual work. The motion of a continuous
medium is classically represented by a continuous transformation ϕ of a three-
dimensional space into the physical set. In order to describe the transformation
analytically, the variables X = (X1, X2, X3) which single out individual parti-
cles correspond to material or Lagrange variables; the variables x = (x1, x2, x3)

correspond to Euler variables. The transformation representing the motion of a
continuous medium is of the form

x = ϕ(X, t) or x i
= ϕi (X1, X2, X3, t), i ∈ {1, 2, 3}, (1)

where t denotes the time. At a fixed time the transformation possesses an inverse
and continuous derivatives up to the second order except on singular surfaces,
curves, or points. Then, the diffeomorphism ϕ from the set D0 of the particle
references into the physical set D is an element of a functional space ℘ of the posi-
tions of the continuous medium considered as a manifold with an infinite number
of dimensions.

To formulate the d’Alembert–Lagrange principle of virtual work in continuum
mechanics, we recall the notion of virtual displacements. This notion is obtained
by letting the displacements arise from variations in the paths of particles. Let
a one-parameter family of varied paths or virtual motions denoted by {ϕη}, and
possessing continuous partial derivatives up to the second order, be analytically
expressed by the transformation

x =8(X, t; η), (2)

with η ∈ O , where O is an open real set containing 0, and such that 8(X, t; 0)=
ϕ(X, t) (the real motion of the continuous medium is obtained when η = 0). The
derivative with respect to η at η= 0 is denoted by δ. In the literature, the derivative
δ is named the variation and the virtual displacement is the variation of the position
of the medium [Serrin 1959]. The virtual displacement is a tangent vector to ℘,
the functional space of positions, at ϕ (δϕ ∈ Tϕ(℘)). In the physical space, the
virtual displacement δϕ is determined by the variation of each particle: the virtual
displacement ζ of the particle x is such that ζ = δx when at η= 0, {δX = 0, δt = 0,
δη = 1}, and we associate the field of tangent vectors to D:

x ∈ D → ζ = ψ(x)≡ ∂8
∂η

∣∣∣
η=0
∈ Tx(D),

where Tx(D) is the tangent vector bundle to D at x.
The virtual work concept, the dual of Newton’s method, can be written in the

following form:
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Figure 1. The boundary S of D is represented by a thick curve
and its variation by a thin curve. The variation δϕ of the family
{ϕη} of varied paths belongs to Tϕ(℘), tangent space of ℘ at ϕ.

The virtual work δτ is a linear functional value of the virtual displacement,

δτ = 〈=, δϕ〉, (3)

where 〈 · , · 〉 denotes the inner product of = and δϕ, with = belonging to the cotan-
gent space T ∗ϕ (℘) of ℘ at ϕ.

In (3), the medium in position ϕ is submitted to covector = denoting all the
“stresses” in mechanics. In the case of motion, we must add the inertial forces,
corresponding to the accelerations of masses, to the volume forces.

The d’Alembert–Lagrange principle of virtual work is expressed as follows:

For all virtual displacements, the virtual work is null.

This principle leads to the analytic representation

∀ δϕ ∈ Tϕ(℘), δτ = 0.

Theorem. If (3) is a distribution expressed in separated form (see [Schwartz 1966]),
the d’Alembert–Lagrange principle yields the equation of motion and boundary
conditions in the form = = 0.

The virtual displacement is submitted to constraints coming from the consti-
tutive equations and geometrical assumptions such as mass conservation. Conse-
quently, the constraints are not expressed by Lagrange multipliers but are directly
taken into account by the variations of the constitutive equations. The equation of
motion and boundary conditions result from the explicit expression of δτ associated
with the considered physical problem. As a first example, the simplest case of the
theory of capillarity at equilibrium is considered.
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2.2. The classical Laplace theory of capillarity. Liquid-vapor and two-phase in-
terfaces are represented by material surfaces endowed with an energy related to
the Laplace free energy of capillarity. When working far from critical conditions,
the capillary layer has a thickness equivalent to a few molecular beams [Ono and
Kondo 1960; Domb 1996] and the interface appears as a geometrical surface sep-
arating the two media, with its own characteristic behavior and energy properties
[Levitch 1962]. The domain D of a compressible fluid (liquid) is immersed in a
three Euclidean space. The boundary of the domain D is a surface S shared in N
parts Sp of class C2, p = 1, . . . , N (Figure 2). We denote by (Rm)

−1 the mean
curvature of S; the union of the limit edges 0pq between surfaces Sp and Sq is
assumed to be of class C2 and tp is the tangent vector to 0p =

⋃
0pq , q = 1, . . . , N

with q 6= p, oriented by the unit external vector to D denoted np; n′p = tp× np is
the unit external normal vector to 0p in the tangent plane to Sp; the edge 0 of S is
the union of the edges 0p of Sp.

To first verify the well-foundedness of the model, we consider the explicit ex-
pression of the functional δτ for compressible fluids with capillarity in the nondis-
sipative case. The variation of the total energy E of such a fluid results from the
variation of the sum of the local density of energy integrated on the domain D and
the variation of the local density of surface energy integrated on its boundary S; to
these variations, we must add the work of volume force ρ f in D, surface force T
on S, and line force L on 0. Such an amount represents, for the domain D, the
virtual work of forces of the compressible fluid with capillarity.

The Laplace theory of capillarity introduces the notion of surface energy (or
superficial energy) on surfaces such that, for a compressible liquid with capillary
effects on the wall boundaries, the total energy of the fluid writes in the form

E =
∫∫∫

D
ρα(ρ) dv+

∫∫
S
σ ds, with

∫∫
S
σ ds ≡

N∑
p=1

∫∫
Sp

σp ds,

S

D

p pq

SpSq

Am

np

np

tp

Г

pqГ

Figure 2. The set D has a surface boundary S divided into several
parts. The edge of S is denoted by 0 which is also divided into
several parts with endpoints Am .
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where ρ is the matter density, α(ρ) is the fluid-specific energy (ρα(ρ) is the volume
energy), and the coefficients σp are the surface energy densities on each surface
Sp represented — for the sake of simplicity — by σ on S.2 Surface integrations
are associated with the metric space. As proved in the Appendix, the variation of
the deformation gradient tensor F = ∂x/∂X (with components {∂xi/∂X j }) of the
mapping ϕ combined with the mass conservation and the variation of σ allow us
to obtain the variation −δE (see (A.3)); then the independent variables come from
the position x of the continuous medium.

The virtual work of the volume forces defined on D is generally in the form∫∫∫
D
ρ f T ζ dv, with f =− grad U,

where U (x) is a potential per unit mass and superscript T denotes transposition.
The virtual work of surface and line forces defined on S and 0 are, respectively,∫∫

S
T T ζ ds and

∫
0

LT ζ dl.

Consequently, the total virtual work of forces δτ is

δτ =−δE +
∫∫∫

D
ρ f T ζ dv+

∫∫
S

T T ζ ds+
∫
0

LT ζ dl.

From (A.3) and (A.6), we obtain

δτ ≡

∫∫∫
D
(− gradT p+ ρ f T )ζ dv+

∫
0

(LT
− σn′T )ζ dl

+

∫∫
S

[
−δσ +

{(
p+ 2σ

Rm

)
nT
+ gradT σ(1− nnT )+ T T

}
ζ
]

ds, (4)

where p ≡ ρ2α′(ρ) is the pressure of the liquid [Rocard 1952], δσ denotes the
variation of the surface energy σ , and 1 denotes the identity tensor. When σ is
constant we get δσ = 0; then,

δτ ≡

∫∫∫
D
(− gradT p+ ρ f T )ζ dv

+

∫∫
S

{(
p+ 2σ

Rm

)
nT
+ T T

}
ζ ds+

∫
0

(LT
− σn′T )ζ dl,

and the d’Alembert–Lagrange principle yields the equation of equilibrium on D,

−p,i + ρ fi = 0 or − grad p+ ρ f = 0. (5)

2Our aim is not to consider the thermodynamics of interfaces. Consequently, α and σ are not
considered as functions of thermodynamical variables such as temperature or entropy.
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The condition on boundary surface S is(
p+ 2σ

Rm

)
ni + Ti = 0 or

(
p+ 2σ

Rm

)
n+ T = 0, (6)

where, for an external fluid bordering D, T = −Pn, with P the value of the
pressure in the external fluid. On the lines, it is necessary to consider the partition
of S such that the edge 0pq is common to Sp and Sq ,

σpn′pi + σqn′qi − L i = 0 or σpn′p + σq n′q − L = 0. (7)

Surface condition (6) is the Laplace equation and line condition (7) is the Young–
Dupré equation with a line tension L.

It is interesting to note that Steigmann and Li [1995] used the principle of virtual
work by utilizing a system of line coordinates on boundary surfaces and lines. By
introducing the free energy per unit area of interfaces and the free energy per unit of
contact curve, they obtained Laplace’s equation and a generalization of the Young–
Dupré equation of equilibrium; moreover, by employing the necessary conditions
for energy-minimizing states of fluid systems they got a demonstration that the line
tension associated with a three-phase contact curve must be nonnegative.

When σ is not constant but δσ = 0, we obtain the same equations for (5) and
(7) but (6) on S is replaced by(

p+ 2σ
Rm

)
n+ (1− nnT ) grad σ + T = 0.

The additive term (1− nnT ) grad σ = gradtg σ is the tangential part of grad σ to
the surface S. This term corresponds to a shear stress necessarily balanced by the
tangential component of T . Such is the case when σ is defined on the S0 image
of S in the reference space D0 (then, σ = σ0(X)). We understand the importance
of the surface energy constitutive behavior; this questioning is emphasized in the
following section.

3. Capillarity of liquid in contact with solid and gas
in the presence of nonconstant surface energy

We have seen in the previous section that the problem associated with the behavior
of the surface energy is the key point to obtaining the boundary conditions on
interfaces and contact lines bordering the fluid bulk. In this section we consider
a very special case of surfactant: the interfaces are endowed with a concentration
of matter which affects the surface energy. The surface matter is attached to the
particles of the fluid such that they obey together to the same equations of motion
(1) and of virtual motion (2). We consider a more general case than in Section 2.2:
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S1

S2

S1

Г

2n

1n

1n
t

2n

Figure 3. A liquid in drop form lies on a solid surface. The liquid
is bordered by a gas and a solid; S1 is the boundary between liquid
and solid; S′1 is the boundary between gas and solid; S2 is the
interface between liquid and gas; n1 and n2 are the unit normal
vectors to S1 and S2, external to the domain of the liquid; the edge
0 (or contact line) is common to S1 and S2 and t is the unit tangent
vector to 0 relative to n1; n′1 = n1× t and n′2 = n2× (−t) are the
binormals to 0 relative to S1 and S2, respectively.

we study the motion of the continuous medium with viscous forces. This viscosity
affects not only the equation of motion but also the boundary conditions.

3.1. Geometrical description of the continuous medium. A drop of liquid fills the
set D and lies on the surface of a solid. The liquid drop is also bordered by a gas.
All the interfaces between liquid, solid and gas are assumed to be regular surfaces.
We call σS1

and σS2
the values of the surface energies of S1 and S2, respectively

(see Figure 3). These energies may depend on each point of the boundary of D.
Afterwards, on the domain S′1, the surface energy between gas and solid is neglected
[Adamson 1967]. The liquid drop is submitted to a volume force ρ f . The external
surface force on D is modelized with two constraint vector fields, T1 on the solid
surface, S1, and T2 on the free surface, S2. The line tension L is assumed to be
null.

By using the principle of virtual work, we aim to write the equation of motion
of the liquid drop and the conditions on the surfaces and line bordering the liquid
drop.

3.2. Surfactant attached to interfacial fluid particles. To express the behavior of
the surface energy, we need to represent first the equation of the surface matter
density.

Under the mapping ϕ, the set D0 with boundary S0 has image D with boundary S.
We assume there exists an insoluble surfactant with a surface mass concentration
c0 defined on D0 of image c in D [Levitch 1962; Adamson 1967; Defay 1971].
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Let us consider the case when the surfactant is attached to the fluid particles on
the surface S, that is,

c0 = c0(X), (8)

where X ∈ S0.
The mass conservation of the surfactant on the surface S requires that for any

subset S∗0 of S0, of image S∗ subset of S,∫∫
S∗

c ds =
∫∫

S∗0

c0 ds0. (9)

Relation (9) implies

c det F nT
0 F−1n= c0 with nT

0 =
nT F√

(nT F FT n)
, (10)

where n0 denotes the unit normal vector to S0. The proof of (10) is given in the
Appendix.

From (10), we obtain the following: Firstly, the conservation of the surface
concentration of the surfactant,

dc
dt
+ c(div u− nT Dn)= 0, (11)

where u is the fluid velocity vector and

D = 1
2 (∂u/∂x+ (∂u/∂x)T )

denotes the rate of the deformation tensor of the fluid. The term div u− nT Dn
expresses the tangential divergence relative to the surface S.

Secondly, the variation of the mass concentration of the surfactant,

δc+ c
[
div ζ − nT ∂ζ

∂x n
]
= 0. (12)

The proofs of (11) and (12) are also given in the Appendix. In the case when the
surface energy σ is a function of the surfactant concentration,

σ = σ(c),

we deduce δσ = σ ′(c) δc. If we denote

γ = σ − cσ ′(c), (13)

which is the Legendre transformation of σ with respect to c, then by taking (A.3)
into account we obtain, in the Appendix,

δE =−
∫∫

S

[ 2γ
Rm

nT
+ gradT γ (1− nnT )

]
ζ ds+

∫
0

γ n′T ζ dl. (14)
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As we shall see in Section 4, γ is the surface tension of the interface S. The
variation δc of the concentration has an important consequence on the surfactant
behavior and the surfactant behavior is essential to determining the virtual work of
the liquid drop.

Relation (13) can easily be extended to several surfactants: if

σ = σ(c1, . . . , cn),

where the ci , for i ∈ {1, . . . , n}, are the concentrations of the n surfactants, then

γ = σ −

n∑
i=1

ci
∂σ

∂ci
,

corresponding to the Legendre transformation of σ with respect to ci , i ∈ {1, . . . , n}
and (14) is always valid.

3.3. Governing equation of motion and boundary conditions. As previously in-
dicated, we do not consider the thermodynamical problem of interfaces, but, for
example, when the medium is isothermal, α can be considered as the specific free
energy of the bulk and σ the free surface energy of the interface.

The use of virtual displacements yields a linear functional of virtual works, the
sum of several partial works. To enumerate the works of forces, we have to consider
how they are obtained in the literature [Germain 1973a; 1973b; Gouin 2007]. The
virtual work expressions of volume force ρ f , surface force T , and liquid pressure
p are the same as in Section 2.2.

(a) For fluid motion, the virtual work of mass impulsions is

−

∫∫∫
D
ρaT ζ dv,

where a is the acceleration vector.

(b) For dissipative motion, we must add the virtual work of viscous stresses

−

∫∫∫
D

tr
(
τv
∂ζ

∂x

)
dv,

where τv denotes the viscous stress tensor usually written in Navier–Stokes form
[Adamson 1967]. Taking account of the relation

tr
(
τv
∂ζ

∂x

)
= div(τvζ )− (div τv)ζ ,

an integration by parts using Stokes’ formula in (14) for the virtual work of inter-
facial forces, together with the relations n′1 = n1× t and n′2 =−n2× t , allows us
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to obtain the virtual work of forces applied to the domain D:

δτ =

∫∫∫
D
(− gradT p+ div τv + ρ f T

− ρaT )ζ dv

+

∫∫
S1

[
gradT γ1(1− n1nT

1 )+

(
p+

2γ1

Rm1

)
nT

1 − nT
1 τv + T T

1

]
ζ ds

+

∫∫
S2

[
gradT γ2(1− n2nT

2 )+

(
p+

2γ2

Rm2

)
nT

2 − nT
2 τv + T T

2

]
ζ ds

+

∫
0

(γ1n′T1 − γ2n′T2 )ζ dl,

(15)

where Rmi denotes the mean radius of curvature of Si , γi denotes the surface tension
of Si , and Ti the surface force on Si , i ∈ {1, 2}; T2=−Pn2, where P is the pressure
in the external gas to the domain D.

The field of virtual displacement x ∈ D −→ ζ (x) ∈ Tx(D) must be tangent to
the solid (rigid) surface S1. The fundamental lemma of variational calculus yields
the equation of motion associated with domain D, the conditions on surfaces S1

and S2, and the condition on contact line 0.
Due to the fact that (15) is expressed in separate form in the sense of distributions

[Schwartz 1966], the d’Alembert–Lagrange principle implies that ∀ ζ (x) ∈ Tx(D)
tangent to S1, each of the four integrals of (15) is null. Then, we obtain equations
on D, S1, S2, and 0, respectively.

• We get the equation of motion in D:

ρa+ grad p = (div τv)T + ρ f . (16)

Equation (16) is the Navier–Stokes equation for compressible fluids when τv is
written in the classical linear form by using the rate of the fluid deformation tensor,
τv = λ(tr D)1+ 2µD. We may add a classical condition for the velocity on the
boundary as the adherence condition.

• We get the condition on surface S1. The virtual displacement is tangent to S1; the
constraint nT

1 ζ = 0 implies there exists a scalar Lagrange multiplier x ∈ S1 −→

χ(x) ∈ <, such that(
p+

2γ1

Rm1

)
n1− τ vn1+ (1− n1nT

1 ) grad γ1+ T1 = χn1, (17)

The normal and tangential components of (17) relative to S1 are deduced from (17):

p+
2γ1

Rm1

− nT
1 τ vn1+ nT

1 T1 = χ, (18)

(1− n1nT
1 )(−τvn1+ grad γ1+ T1)= 0. (19)
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Following (18), we obtain the value of χ along the surface S1. The scalar field
χ corresponds to the unknown value of the normal stress vector on the surface
S1; it corresponds to the difference between the mechanical and viscous normal
stresses and a stress due to the curvature of S1 taking into account the surface
tension. Equation (19) represents the balance between the tangential components
of the mechanical and viscous stresses and the tangential component of the surface
tension gradient.

• We get the condition on surface S2:(
p+

2γ2

Rm2

)
n2− τ vn2+ (1− n2nT

2 ) grad γ2− Pn2 = 0. (20)

The normal and tangential components of (20) relative to S2 are deduced:

2γ2

Rm2

− nT
2 τ vn2+ p = P, (21)

(1− n2nT
2 )(−τvn2+ grad γ2)= 0. (22)

Equation (21) corresponds to the expression of the Laplace equation in the case
of viscous motion; the normal component of viscous stresses is taken into account.
Equation (22) is similar to (19) for the surface S2 but without the component of
the stress vector.

• We get the condition on line 0. To get the line condition we must consider a
virtual displacement tangent to S1 and consequently in the form

ζ = α t +β t × n1,

where α and β are two scalar fields defined on 0. From the last integral of (15),
we get the following immediately: For any scalar field x ∈ 0 −→ β(x) ∈ <,∫

0

βγ1n′T1 (t × n1) dl −
∫
0

βγ2n′T2 (t × n1) dl = 0,

with n′1 =−t × n1 and n′2 = t × n2, and consequently,

−γ1− γ2nT
2 n1 = 0.

Denoting by θ the angle 〈n1, n2〉, we obtain the well-known relation of Young–
Dupré but adapted to γ1 and γ2 in place of σ1 and σ2:

γ1+ γ2 cos θ = 0. (23)

3.4. Remarks. For a motionless fluid, τv = 0 and consequently, (19) yields

gradtg γ1 =−T1tg,
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where gradtg γ1 and T1tg denote the tangential parts of grad γ1 and T1, respectively.
The tangential part of the vector stress is opposite to the surface tension gradient.
Therefore, at a given value of T1n = nT

1 T1, (18) yields the value χ corresponding
to the normal stress vector to the surface S1, (21) yields P = p+ 2γ2/Rm2 corre-
sponding to the classical equation of Badshforth and Adams [Adamson 1967] but
with the surface tension γ2 instead of σ2, and (22) implies (1− n2nT

2 ) grad γ2 = 0.
At equilibrium, along S2, the surface tension γ2 must be uniform.

In the case of motion, (22) represents the Marangoni effect as proposed in [Gibbs
1928; Defay 1971] but with the surface tension γ2 instead of σ2.

4. Surface energy and surface tension

A surface tension must appear on the boundary conditions as a force per unit of
line. The Legendre transformation γ of σ with respect to c exactly corresponds
to this property on the contact line 0; then, surface tension γ differs from the
surface energy; this important property was pointed out by Gibbs [1928] and Defay
[1971] by means of thermodynamical considerations. The fundamental difference
between surface tension and surface energy, in the presence of attached surfactants,
is illustrated in the following cases corresponding to formal behaviors.

- If σ is independent of c, then γ = σ : the surface tension is equal to the surface
energy. This is the classical case of capillarity for fluids considered in Section 2.2
and (23) is the classical Young–Dupré condition on the contact lines.

- In fact, σ is a decreasing function of c [Adamson 1967]; when c is small enough
we consider the behavior

σ = σ0− σ1c, where σ0 > 0 and σ1 > 0;

then, (13) implies γ = σ0 and surface tension and surface energy are different.

- Now, we consider a formal case when the surface energy density model is written
in the form

σ = σ0− σ1c− σ2c sin
(1

c

)
,

where σ0 > 0, σ1 > 0, and σ2 > 0. Then, (13) implies

γ = σ0− σ2 cos
(1

c

)
. (24)

This case does not correspond to σ as a monotonic decreasing function of c. Nev-
ertheless, when c→ 0, γ does not have any limit and we get

γ ∈ [σ0− σ2, σ0+ σ2].

The surface tension may have a large scale of values. When the concentration
c is low, a variation of the concentration c may generate strong fluctuations of
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the surface tension without significant change of the surface energy. Alternatively,
the concentration behavior strongly affects the surface tension but not the surface
energy. Relation (24) fits with the well-known physical case of hysteresis behavior
for a drop lying on a horizontal plane (see, for example, [Gouin 2003] and the
literature therein). So, the surface roughness is not the only reason of the hysteresis
of the contact angle even if the surface energy is nearly constant.

5. Conclusion

The principle of virtual work allows us to deduce the equation of motion and the
conditions on the surfaces and lines by means of a variational analysis. When
capillary forces operate and surfactant molecules are attached to the fluid molecules
at the interfaces, the conditions on the surfaces and lines point out a fundamental
difference between the concepts of surface energy and surface tension. This fact
was thermodynamically predicted in [Gibbs 1928; Defay 1971]. The hysteresis
phenomenon may appear even if surface energy is almost constant on a planar
substrate when the surface tension strongly varies.

In (23), γ1 and γ2 are not assumed to be constant, but are defined at each point of
0. This expression of the Young–Dupré boundary condition on the contact line 0 is
not true in more complex cases. For example, in the case when the surface tension
is a nonlocal functional of surfactant concentration, the surface tension is no longer
the classical Legendre transformation of the surface energy relative to surfactant
concentration and more complex behaviors can be foreseen. These behaviors can
change the variation of the integral of the free energy as in the case of shells or
in second-gradient models for which boundary conditions become more complex
[Cosserat and Cosserat 1909; Toupin 1962; Germain 1973b; Noll and Virga 1990;
Dell’Isola and Seppecher 1997]. In a further article [Gouin ≥ 2014], we will see
this is also the case when the surface energy depends on the surface curvature as
in membranes and vesicles [Helfrich 1973; Seifert 1997; Agrawal and Steigmann
2011].

Appendix: Geometrical preliminaries
[Kobayashi and Nomizu 1963; Aris 1989; Gouin and Kosiński 1998]

A.1 Expression of the virtual work of forces in capillarity. The hypotheses and
notations are presented in Section 2.2.

Lemma 1. We have the following relations:

δ det F = det F div ζ , (A.1)

δ(F−1n)=−F−1 ∂ζ

∂x n+ F−1δn. (A.2)
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The proof of (A.1) comes from the so-called Jacobi identity,

δ(det F)= det F tr(F−1δF),

and from

δF = δ
(
∂x
∂X

)
=
∂ζ

∂X
.

Then,

tr(F−1δF)= tr
(
∂X
∂x

∂ζ

∂X

)
= tr

(
∂ζ

∂X
∂X
∂x

)
= tr

(
∂ζ

∂x

)
= div ζ .

The proof of (A.2) comes as follows:

δ(F−1n)= δ(F−1)n+ F−1δn.

But F−1 F = 1 implies
δ(F−1)F + F−1 δF = 0,

and so also

δ(F−1)=−F−1 ∂ζ

∂X
F−1
=−F−1 ∂ζ

∂x
,

which yields (A.2).

Lemma 2. Let us consider the surface integral

E =
∫∫

S
σ ds.

Then the variation of E is,

δE =
∫∫

S

[
δσ −

( 2σ
Rm

nT
+ gradT σ(1− nnT )

)
ζ
]

ds+
∫
0

σn′T ζ dl. (A.3)

Relation (A.3) points out the extreme importance of knowing the variation of
δσ . The variation δE of E drastically changes following the different possible
behaviors of the surface energy.

The proof can be found as follows. The external normal n(x) to S is locally
extended in the vicinity of S by the relation n(x) = grad d(x), where d is the
distance of point x to S; for any vector field w, we obtain [Kobayashi and Nomizu
1963; Aris 1989]

rot(n×w)= n divw−w div n+ ∂n
∂xw−

∂w

∂x n.

From nT ∂n
∂x = 0 and div n=− 2

Rm
, we deduce on S,

nT rot(n×w)= divw+ 2
Rm

nTw− nT ∂w

∂x n. (A.4)
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Due to

E =
∫∫

S
σ det(n, d1x, d2x),

where d1x and d2x are differential vectors associated with two coordinate lines of
S, we get

E =
∫∫

S0

σ det F det(F−1n, d1 X, d2 X),

where d1x = F d1 X and d2x = F d2 X . Then,

δE=
∫∫

S0

δσ det F det(F−1n, d1 X, d2 X)+
∫∫

S0

σ δ(det F det(F−1n, d1 X, d2 X)).

Due to Lemma 1 and the fact that nTn= 1 implies nT δn= 0,∫∫
S0

σ δ(det F det(F−1n, d1 X, d2 X))

=

∫∫
S

[
σ div ζ det(n, d1x, d2x)+σ det(δn, d1x, d2x)−σ det

(
∂ζ

∂x
n, d1x, d2x

)]
=

∫∫
S

(
div(σζ )− (gradT σ)ζ − σnT ∂ζ

∂x
n
)

ds.

Relation (A.4) yields

div(σζ )+ 2σ
Rm

nT ζ − nT ∂σζ

∂x
n= nT rot(σn× ζ ).

Then,∫∫
S0

σ δ(det F det(F−1n, d1 X, d2 X))

=

∫∫
S

(
−

2σ
Rm

nT
+ gradT σ(nnT

− 1)
)
ζ ds+

∫∫
S

nT rot(σn× ζ ) ds,

where gradT σ(nnT
− 1) belongs to the cotangent plane to S and we obtain (A.3).

A.1.1 Variation of the internal energy. Let us note that

δ

∫∫∫
D
ρα dv =

∫∫∫
D
ρ δα dv, where δα = ∂α

∂ρ
δρ.

Due to the mass conservation,

ρ det F = ρ0(X), (A.5)

where ρ0 is defined on D0, the differentiation of (A.5) yields

δρ det F + ρ δ(det F)= 0,
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and from Lemma 1 we get
δρ =−ρ div ζ .

Consequently, from p = ρ2 ∂α

∂ρ
and div(pζ )= p div ζ + (grad p)T ζ , we get

δ

∫∫∫
D
ρα dv =

∫∫∫
D
ρ
∂α

∂ρ
δρ dv =

∫∫∫
D
−p div ζ dv

=

∫∫∫
D
(grad p)T ζ dv−

∫∫
S

pnT ζ ds.
(A.6)

By taking into account (A.3), we immediately get (4).

A.2 Study of a surfactant attached to fluid particles.

A.2.1 Proof of (10). Under the hypotheses and notations of Section 3.2,∫∫
S∗

c ds =
∫∫

S∗
det(nc, d1x, d2x)=

∫∫
S∗0

det(F F−1nc, Fd1 X, Fd2 X)

=

∫∫
S∗0

c(det F) det(F−1n, d1 X, d2 X)=
∫∫

S∗0

c(det F)nT
0 F−1n ds0,

where nT
0 n0 = 1. Moreover, nT dx = 0⇒ nT Fd X = 0, then n′T0 = nT F is normal

to S∗0 , and consequently,

nT
0 =

nT F√
(nT F FT n)

, nT
=

nT
0 F−1√

(nT
0 F−1(F−1)T n0)

,

and from (9),

c det F
√

nT
0 F−1(F−1)T n0 = c0. (A.7)

A.2.2 Proof of (11) and (12). With the notations of Section 3.2, (A.7) yields

dc
dt
=−

c0
d(det F)

dt

(det F)2
√
(nT

0 F−1(F−1)T n0)

−

c0
d
dt
(nT

0 F−1(F−1)T n0)

2 det F(nT
0 F−1(F−1)T n0)3/2

.

But,
d(det F)

dt
= (det F) div u and d

dt
(F−1(F−1)T )=−2F−1 D(F−1)T . Then,

dc
dt
+ c(div u− nT Dn)= 0.

The same calculation with δ in place of d
dt

yields immediately

δc+ c
[

div ζ − nT ∂ζ

∂x
n
]
= 0.



INTERFACES ENDOWED WITH NONCONSTANT ENERGIES 41

A.2.3 Proof of (14). From (12) and σ = σ(c) we get

δσ = κ

[
div ζ − nT ∂ζ

∂x
n
]
, with κ(c)=−cσ ′(c).

Consequently,∫∫
S
δσ =

∫∫
S

(
div(κζ )− gradT κ ζ − κnT ∂ζ

∂x
n
)

ds.

But (A.4) implies

nT rot(κn× ζ )= div(κζ )+ 2κ
Rm

nT ζ − nT ∂(κζ )

∂x
n,

and

nT ∂(κζ )

∂x
n= (nT ζ ).(gradT κ n)+ κnT ∂ζ

∂x
n= gradT κ nnT ζ + κnT ∂ζ

∂x
n.

Then,

div(κζ )−gradT κ ζ−κnT ∂ζ

∂x
n=− 2κ

Rm
nT ζ−gradT κ (1−nnT )ζ+nT rot(κn×ζ ).

Due to ∫∫
S

nT rot(κn× ζ ) ds =
∫
0

κn′T ζ dl,

we get∫∫
S
−δσ ds =

∫∫
S

[ 2κ
Rm

nT
+ gradT κ (1− nnT )

]
ζ ds−

∫
0

κn′T ζ dl,

and (A.3) yields

δE =−
∫∫

S

[ 2γ
Rm

nT
+ gradT γ (1− nnT )

]
ζ ds+

∫
0

γ n′T ζ dl.
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PARTICLES FOR FLUIDS:
SPH VERSUS VORTEX METHODS

ANDREA COLAGROSSI, GIORGIO GRAZIANI AND MARIO PULVIRENTI

We review the basic ideas underlying two popular particle methods for fluids:
smoothed-particle hydrodynamics and the vortex method. We discuss conver-
gence problems, numerical schemes, and examples of practical simulations.

1. Introduction

The Lagrangian form of the Navier–Stokes equations can be approximated with
particle methods by replacing derivative operators through integral operators which
are discretized on the particle locations. These particles carry the physical proper-
ties of a fluid dynamic system. Their trajectories, as well as the evolution of the
transported quantities, are evaluated through the solution of ordinary differential
equations. Particle methods such as vortex methods (VMs) and smoothed-particle
hydrodynamics (SPH) present interesting features which allow the simulation of
engineering problems involving complex interface dynamics such as vortex sheets
and free-surface deformations (for a more general discussion of particle methods
see, for example, [Koumoutsakos 2005]). SPH is a particle method introduced by
Lucy [1977] and further developed by Monaghan (see, for example, [Monaghan
1992]) to study self-gravitating fluids. The basic idea of the method is to consider
the fluid as an ensemble of (smooth) particles whose evolution simulates that of
the fluid under consideration. Each particle has a form factor (a symmetric, regular,
nonnegative function centered on the particle position) which simulates the mass
distribution around the center of each particle. Moreover the particles move in the
force field generated by the whole particle system.

For many years SPH was used for astronomical problems; later, it was applied
to several physics and engineering problems, ranging from solid mechanics to mul-
tiphase flows. Monaghan [1994] first applied it for simulating free-surface inviscid
flows. Compared to the Eulerian finite difference method, SPH can handle breaking
and fragmentation phenomena in a more natural way, due to its Lagrangian nature.
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Thanks to this valuable feature, interest in SPH has grown quickly in the last decade
and several researchers have devoted their efforts to improving this method.

Clearly the basic requirement for this particle method is its convergence to the
right solution of the fluid dynamic equations when the number of particles diverges.
In this paper we want to discuss this issue in connection with Vlasov dynamics,
which is strictly related to problem at hand.

Another well-known method discussed in the present paper is the vortex method
(VM), which works for two-dimensional incompressible flows. This is also a par-
ticle approximation of the incompressible Euler and Navier–Stokes equations in
the vorticity formalism. It is conceptually related to the SPH method because both
approximate the fluid equations in a suitable mean-field limit. Here we want to
discuss these methods exploiting this aspect.

As we shall discuss in some detail in the sequel, SPH and the VM seem to
be effective in approaching practical problems. In this work numerical solutions
of viscous flows obtained with both methods are discussed showing the benefits
and drawbacks of the two solvers. In particular, using the same spatial resolution,
the VM provides numerical solutions with higher accuracy and lower CPU costs
than does SPH. However, it is important to underline that the latter method can be
applied much more easily on a wider range of engineering problems (free-surface,
multiphase, interfaces, compressible flows, etc.), while for the VM even extension
from two to three-dimensional framework is not straightforward. Therefore, the
choice between the two particle methods is still strongly problem dependent. An-
other important point regards the parallelization of the different algorithms. Since
the SPH model is based on short-range interactions, it is quite easy to parallelize in
a very efficient way (see, for example, [Marrone et al. 2012]). This is not the case
for the VM, where the evaluation of velocity fields requires more effort to paral-
lelize (see, for example, [Barnes and Hut 1986; Antonuccio-Delogu et al. 1996]).

The plan of the paper is as follows. In Section 2 we introduce SPH and the VM
as regards their general structure and the convergence problems. In Section 3 we
discuss some numerical schemes suited for practical implementations of the two
methods. Finally, Section 4 is devoted to examples of practical simulations.

2. Convergence of particle methods

2.1. Euler equation. In the present subsection we introduce the basic equations
we want to investigate. Let us start with the isentropic Euler equation for a pressure
law p = (1/(α+ 2))ρα+2, where p is the pressure and ρ is the density:

∂ρ

∂t
+∇ · (ρu)= 0, ∂u

∂t
+ (u · ∇u)+ ρα∇ρ = 0,

ρ(x, 0)= ρ0(x), u(x, 0)= u0(x).
(2-1)
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Here u = u(x, t) denotes the velocity field, x ∈ Rd , d = 2, 3, the dimension of the
physical space, and t ∈ R the time.

The incompressible Euler equation reads

∂u
∂t
+ (u · ∇u)+ ρ−1

0 ∇ p = 0, ∇ · u = 0, u(x, 0)= u0(x). (2-2)

Here we are considering the fluid invading the whole space. However most of the
applications we are interested in the fluids are confined in domains with boundaries,
in which also viscous effects are not negligible. We discuss these important aspects
later on.

2.2. The Vlasov equation. When dealing with large weakly interacting particle
systems in stellar dynamics or in the physics of plasmas, we often use the following
evolution equation for f (x, v, t), the fraction of particles in the cell of the phase
space around (x, v) of size dxdv (or the probability density of finding a given
particle in (x, v)):

(∂t + v · ∇x + F · ∇v) f (x, v, t)= 0. (2-3)

Here x ∈ Rd denotes the position and v ∈ Rd the velocity of a test particle, while
t ∈ R denotes the time, with d = 2, 3 the dimension of the physical space.

Note that (2-3) is the usual Liouville equation for a single particle in a force
field F = F(x, t), so that (2-3) is solved by the formula

f (x, v, t)= f0(9
−t(x, v)), (2-4)

or, equivalently,∫
dx dv f (x, v, t)g(x, v)=

∫
dx dv f0(x, v)g(9 t(x, v)), (2-5)

where f0 is the initial datum for (2-3), 9 t(x, v)= (x(t), v(t)) is the flow solution
to the ordinary differential system

ẋ(t)= v(t), v̇(t)= F(x(t), t), (2-6)

with initial datum 90(x, v)= (x, v), and g is any bounded continuous function.
Equation (2-3) differs from the Liouville equation because F is not known a

priori, but depends on the solution itself, via the self-consistent formula

F(x, t)=
∫

dx K (x − y)ρ(y, t) dy, (2-7)

where
ρ(x, t)=

∫
dv f (x, v, t)

is the spatial density and K : Rd
→ Rd is a given kernel. In other words (2-3) is a
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nonlinear equation because the vector field F depends on the solution f .
Clearly the interesting case is when the force kernel K arises from a potential,

namely
K (x)=−∇ϕ(x). (2-8)

If ϕ is assumed to be smooth, it is possible to show that there exists a unique
solution to the initial value problem associated with (2-3).

Following [Dobrušin 1979] (see also [Braun and Hepp 1977; Neunzert 1984]),
we can establish the following result:

Theorem 1. Consider the N-particle evolution
ẋi (t)= vi (t),

v̇i (t)=−
1
N

∑
1≤ j≤N

j 6=i
∇ϕ(xi (t)− x j (t)),

xi (0)= xi , vi (0)= vi ,

(2-9)

where i = 1, . . . , N. Introduce an empirical measure defined on the one-particle
phase space by

µN (dx, dv; t)= 1
N

N∑
i=1

δ(x − xi (t))δ(v− vi (t)) dx dv. (2-10)

Then if

lim
N→∞

∫
dµN (x, v; 0)g(x, v)=

∫
f0(x, v)g(x, v) dx dv, (2-11)

for all functions g continuous and bounded, then, for all t > 0,

lim
N→∞

∫
dµN (x, v; t)g(x, v)=

∫
f (x, v, t)g(x, v) dx dv, (2-12)

where f (t) solves (2-3) with initial datum f0.

We do not present the proof of this theorem, but some comments are in order.
Let M be the space of the Borel probability measure on Rd . We first observe
that there exists a unique measure-valued solution t → ν(t) ∈ M to (2-3), in the
following weak form (which does not require any smoothness of ν), for any smooth
test function g:

d
dt
〈ν, g〉 = 〈ν, v · ∇x g〉+ 〈ν, F · ∇vg〉, (2-13)

where

〈ν, g〉 =
∫

dx
∫

dv g(x, v) ν(dx, dv),

and F = K ∗ ν is the self-consistent force.
Using integration by parts, it is easy to show that (2-13) holds whenever f (t) is

a classical solution to (2-3) and ν(dx, dv, t)= f (t) dx dv.
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Moreover a trivial computation also shows that µN is a weak solution to (2-13).
Therefore Theorem 1 says precisely that the solution to the Vlasov equation at any
fixed time t > 0, is continuous with respect to the initial data, for the topology
induced by the weak convergence of the measures, expressed by condition (2-11).

There is a fruitful connection between Vlasov dynamics and the solutions of the
problems given by (2-1) and (2-2), which we shall discuss in the next sections.

2.3. The SPH model. Let us start to consider the Euler problem (2-1) for the par-
ticular case α = 0: 

ρt +∇ · (ρu)= 0,
ut + (u · ∇u)+∇ρ = 0,
ρ(x, 0)= ρ0(x), u(x, 0)= u0(x).

(2-14)

In Lagrangian form it reads
8̈t(x)=−∇ρ(8t(x), t),∫
ρ(x, t)g(x)=

∫
ρ0(x)g(8t(x)),

80(x)= x, 8̇0(x)= u0(x),

(2-15)

where g is a bounded continuous function and 8t : R
d
×R+→ Rd is the solution

flow.
The Eulerian velocity is recovered via the formula

u(8t(x), t)= 8̇t(x).

Recall that a solution to the Lagrangian problem (2-15) (also in Eulerian form,
(2-14)) exists only locally in time; see, for example, [Majda 1984].

Next we regularize the problem by setting
8̈t(x)=−∇(δε ∗ ρ)(8t(x), t),∫
ρ(x, t)g(x)=

∫
ρ0(x)g(8t(x)),

80(x)= x, 8̇0(x)= u0(x),

(2-16)

where the form factor δε is a positive, smooth approximation of the δ function.
Here ε is a small positive parameter such that

δε→ δ

in the sense of the weak convergence of the measures (2-11), as ε→ 0.
We note that, as we shall see in a moment, problem (2-16) has a global solution

(even for initial densities ρ0 which are measures).
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The connection with the Vlasov equation discussed in the last section is clear.
Indeed consider the solution flow (2-6) to the Vlasov equation with

F = K ∗ ρ, K =−∇δε,

and with initial datum

f0(x, v) dx dv = ρ0(x)δ(v− u0(x)) dx dv. (2-17)

Then, setting
(8t(x), 8̇t(x))=9 t(x, u0(x)),

the time evolved measure f (x, v, t) dx dv satisfies∫
f (x, v, t)g(x, v) dx dv =

∫
f0(x, v)g(9 t(x, v)) dx dv (2-18)

=

∫
dx dv ρ0(x)δ(v− u(x))g(9 t(x, v)) (2-19)

=

∫
dx dv ρ0(x)g(8t(x), 8̇t(x)), (2-20)

which implies (2-16). In fact, if g depends only on x , we get the second formula of
(2-16), while the first one follows by the obvious remark that 9̈t(x, u(x))= 8̈t(x).
In other words, the solution to the problem (2-16) is a particular solution to the
Vlasov equation for the special initial datum (2-17). Note that although such a
solution, due to the smoothness of δε, does exist for any arbitrary time t , it not
necessarily take the form

f (x, v) dx dv = ρ(x, t)δ(v− u(x, t)), (2-21)

where the velocity and the density fields u(x, t) and ρ(x, t) satisfies the equivalent
of (2-14) with the corresponding regularized pressure field. Actually, by using
the well-known equivalence between the Lagrangian and the (regularized) Euler-
ian pictures, this is guaranteed only locally in time, namely in the existence time
interval of a smooth solution to the regularized Euler equations.

The SPH model in the present context is the N-particle system satisfying
ẋi (t)= vi (t),

v̇i (t)=−
1
N

∑
1≤ j≤N

j 6=i
∇δε(xi (t)−x j (t)),

xi (0)= xi , vi (0)= u0(xi ),

(2-22)

for i = 1, . . . , N , and

µN (dx, t)=
N∑

i=1

δ(x − xi (t)) dx . (2-23)
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By Theorem 1, we have

µN (dx, t)→ ρ(x, t)

weakly, as N →∞ for a fixed ε, where ρ solves (2-16).
We now analyze the general case including α 6= 0. The Lagrangian form is

8̈t(x)=−ρα∇ρ(8t(x), t),∫
ρ(x, t)g(x)=

∫
ρ0(x)g(8t(x)),

80(x)= x, 8̇0(x)= u0(x),

(2-24)

while its regularized version is
8̈t(x)=−(δε ∗ ρ)α∇(δε ∗ ρ)(8t(x), t),∫
ρ(x, t)g(x)=

∫
ρ0(x)g(8t(x)),

80(x)= x, 8̇0(x)= u0(x).

(2-25)

The SPH method can be suitably modified to give

ẋi (t)= vi (t),

v̇i (t)=−
1
N

∑
1≤ j≤N

j 6=i

(
1
N

∑
1≤k≤N

k 6=i

δε(xi (t)− xk(t))
)α
∇δε(xi (t)− x j (t)),

xi (0)= xi , vi (0)= u0(xi ),

(2-26)

where i = 1, . . . , N .
It is possible to adapt the techniques we have discussed so far for the case α =

0 to the present case. All the convergence results we have discussed so far are
described in detail in [Mas-Gallic and Raviart 1987; Oelschläger 1991; Di Lisio
1995; Di Lisio et al. 1997; 1998; Ben Moussa and Vila 2000; Ben Moussa 2006].

Actually the SPH models we have introduced approximate problem (2-25) which,
in Eulerian form, reads

∂ρ/∂t +∇ · (ρu)= 0,
∂u/∂t + (u · ∇u)+ (ρ ∗ δε)α∇(ρ ∗ δε)= 0,
ρ(x, 0)= ρ0(x), u(x, 0)= u0(x).

(2-27)

The last step is to show that the solution of (2-27) converges to that of (2-1)
when the parameter ε vanishes. This is It is rather technical, but it can be done;
see [Di Lisio et al. 1997] for details.

2.4. The vortex model. Let us consider the Euler equation (2-2) in the plane. De-
fine the vorticity ω = ω(x, t) = ∂x1u2 − ∂x2u2 (which is a scalar quantity in the
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present context). Then we obtain

(∂t + u · ∇)ω(x, t)= 0. (2-28)

Here x = (x1, x2) ∈ R2, t ∈ R+, and u = u(x, t) ∈ R2 is the velocity field. Due to
the incompressibility condition ∇ · u = 0, we can reconstruct the velocity field u
from the vorticity profile ω. The result is

u =∇⊥ψ, ψ =−1−1ω.

Explicitly:

u = K ∗ω, K (x)=∇⊥g(x)=− 1
2π

x⊥

|x |2
, (2-29)

where
g(x)=− 1

2π
log|x | (2-30)

is the fundamental solution for the Poisson equation in the plane.
There is an evident similarity between (2-28) and the Vlasov equation (2-3)

which suggests the following particle model:

ẋi (t)=
1
N

∑
1≤ j≤N

j 6=i

K (xi (t)− x j (t)), xi (0)= xi , i = 1, . . . , N . (2-31)

A preliminary difficulty in dealing with (2-31) is the singularity of K (x) for x
close to 0. Regularizing the divergence at the origin via a smooth kernel Kε, we
substitute (2-31) by

ẋi (t)=
1
N

∑
1≤ j≤N

j 6=i

Kε(xi (t)− x j (t)), xi (0)= xi , i = 1, . . . , N . (2-32)

Theorem 1 allows us to show that the empirical measure

µN (dx; t)=
N∑

i=1

δ(x − xi (t)) dx (2-33)

is close to ωε which solves

(∂t + uε · ∇)ωε(x, t)= 0, (2-34)

where
uε = Kε ∗ωε.

As before the last step is to show that ωε→ ω where ω solves (2-28).
In the present context we are considering ω as a probability measure, however

the generalization to arbitrary signed measure is straightforward.
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All these steps can be performed, as discussed in [Marchioro and Pulvirenti
1982; 1984; 1994].

The literature on the vortex model is huge and it would be hopeless to cover it
exhaustively. We mention only that the vortex system has been largely investigated
from the point of view of the general theory of the Hamiltonian dynamical system,
see, for instance, [Newton 2001].

When the fluid is confined in domain with a boundary, say �, the VM can be
easily extended to describe this situation. It is enough to replace K with K�, where

K�(x)=∇⊥g�(x), (2-35)

with g� being the fundamental solution of the Poisson equation in the domain �,
with the boundary conditions constantly zero.

Note that the usual impermeability condition for the incompressible Euler flow,
namely

u(x, t) · n = 0 on ∂�,

where n is the normal to the surface ∂�, is automatically satisfied (see, for example,
[Marchioro and Pulvirenti 1994]).

Moreover, when the viscous effects are not negligible, we have to consider the
Navier–Stokes equation, which, in terms of vorticity, reads

(∂t + u · ∇)ω(x, t)= ν∇2ω for all x ∈�. (2-36)

Here ν > 0 denotes the kinematic viscosity coefficient.
When �= R2 the viscosity effect can be included in the VMs just by adding N

independent Brownian motions to (2-31). This idea goes back to Chorin [1973]. A
mathematical analysis of this approach can be found in [Marchioro and Pulvirenti
1982; 1984].

However the vorticity formalism for the Navier–Stokes equation, while conve-
nient as regards the possibility of a particle approximation in terms of stochastic
particle systems or in terms of other methods (see the numerical scheme imple-
mented later on), exhibits subtle difficulties in describing the boundary conditions.
Indeed the no-slip condition u = 0 on the boundary is not easily read as a simple
condition on the behavior of the vorticity field ω on the boundary. As we said we
have automatically u(x, t) · n = 0, but we have also to ensure that the tangential
component of the velocity must vanish.

Again going back to Chorin [1973], this problem can be overcome by assuming
the Neumann boundary condition for the Laplace operator appearing on the right-
hand side of (2-36). This preserves the total amount of vorticity. Next we can
restore the correct boundary conditions by putting a (singular) source of vorticity
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on the boundary, computed in such a way that the tangential component of the
velocity on the boundary vanishes.

A rigorous mathematical analysis of this procedure can be found in [Benfatto
and Pulvirenti 1984; Boldrighini and Buttà 2011].

From a practical view point a numerical scheme can be implemented by the use
of the so-called Chorin–Marsden product formula, which consists in the following
procedure. First we evolve the flow by the Euler equation, for a very small time h.
Then we restore the correct boundary conditions by adding a vortex sheet to com-
pensate for the tangential part of the velocity produced by the first step. Finally
we evolve the system by the heat flow with Neumann boundary conditions for a
small time h. The convergence of this method has been proved in [Benfatto and
Pulvirenti 1986] in the case of the half-plane.

This class of ideas has been used for the numerical simulations presented in the
sequel.

3. Description of numerical schemes
for SPH and VMs

In the present section the numerical schemes for SPH and the VM are described.
Different formulations are available in the literature; here two are briefly recalled in
the context of a viscous Newtonian fluid. Further details can be found in [Graziani
et al. 1995; Federico et al. 2012].

3.1. Smoothed-particle hydrodynamics formulation. In this section a SPH scheme
is briefly described. The fluid is assumed to be barotropic and weakly compressible
and the reference equations are the Navier–Stokes equations. The flow domain �
is bounded by the surface ∂�b of the solid body and by the lateral walls, where a
simple free-slip condition is enforced. The lateral walls are far enough from the
body to avoid significant effects on it. No-slip boundary conditions are enforced
on the body surface.

As discussed in [Molteni et al. 2007; Antuono et al. 2010] different state equa-
tions, p = f (ρ), can be used in the SPH scheme to model weakly compressible
fluids. However, as shown below, only with the choice α = 0 it is possible to link
(2-22) with the equation used in the classical SPH models. Indeed, (2-26) does
not preserve the momentum conservation of the particle system, leading to a less
robust and less stable numerical scheme. Therefore, here, a simple quadratic state
equation (that is, α = 0 according to Section 2.1) is used to match the pressure and
density field:

p = Aρ2
+ B =

c2
0

2ρ0
(ρ2
− ρ2

0)+ p0. (3-1)

Here, c0, ρ0, and p0 are the speed of sound, the density, and the pressure with
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the fluid at rest, respectively. It is important to underline that the constant B =
(p0 − c2

0ρ0/2) is used for the purpose of numerical stability to avoid the region
where the so-called tensile instability can develop [Swegle et al. 1995]. The speed
of sound, c0, is set in order to guarantee density variation smaller than 0.01ρ0, or,
in other words, the Mach number, Ma, of the simulation is less than 0.1. Indeed,
as shown in [Majda 1984], in the limit for Ma going to zero the solution of the
isentropic Euler equation (2-1) converges to the incompressible one (2-2).

Given a set of particles each characterized by its own mass mi , the particle
densities can be expressed through the distribution (2-23). In contrast with the
method as presented in Section 2, we find it convenient to choose different masses
mi in place of identical mi = 1/N ; therefore (2-23) becomes

ρi =
∑

j

δε(xi − x j )mj , (3-2)

where δε = δε(x j − xi ) is the kernel function. In this work a renormalized Gaussian
kernel (see, for example, [Molteni and Colagrossi 2009]) has been used. δε has a
compact support of radius 3ε, where ε is the smoothing length.

Deriving in time (3-2) we get the continuity equation in the SPH formalism:

ρ̇i =
∑

j

(ui − uj ) · ∇iδε(xi − x j )mj . (3-3)

The symbol ∇i indicates differentiation with respect to the position of the i-th
particle; for the sake of simplicity in what follows ∇iδε(xi − x j ) will be indicated
just with ∇iδε . From the numerical point of view, the evaluation of the density
through time integration of (3-3) is preferable with respect to the direct use of
(3-2) and becomes crucial when dealing with free-surface flows (see, for example,
[Colagrossi et al. 2009]).

In this section we make use of useful new relations, consequences of the energy
conservation. Indeed, for an isentropic fluid the sum of the kinetic energy Ek and
the internal energy Ei of the particles system is conserved:

Ėk + Ėi =
∑

i

mi ui u̇i +
∑

i

mi
pi

ρ2
i
ρ̇i = 0. (3-4)

By substituting (3-3) in (3-4) and using the kernel property

∇iδε =−∇jδε

the acceleration of the i-th particle is given by

u̇i =−
∑

j

(
pi

ρ2
i
+

pj

ρ2
j

)
∇iδεmj . (3-5)
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When we use this equation for ρ̇i and u̇i , the SPH scheme reads
ρ̇i (t)=−

∑
j

(uj − ui ) · ∇iδεmj ,

u̇i (t)=−
∑

j

(
pi

ρ2
i
+

pj

ρ2
j

)
∇iδεmj +

ν

ρ0

∑
j

πi j∇iδεmj ,

ẋi (t)= ui (t),

(3-6)

where ρi , pi , ui , and mi are, respectively, the density, pressure, velocity, and mass
of the i-th particle, while ν denotes the fluid kinematic viscosity.

Thanks to the use of (3-4) the exact momentum conservation in (3-6) is guaran-
teed regardless of the state equation adopted. Furthermore, setting ν = 0, mj = 1/N ,
and p = ρ2/2 in (3-6), then (2-22), discussed in Section 2.3, is recovered.

The viscous forces are modeled through the viscous formula of [Monaghan and
Gingold 1983], which preserves both linear and angular momenta:

πi j = 2(n+ 2)
(uj − ui ) · (x j − xi )

‖x j − xi‖
2 ,

where n is the spatial dimension of the problem at hand. For ε→ 0 the system
(3-6) converges to the Navier–Stokes equations (see, for example, [Colagrossi et al.
2011]).

The fluid particles are initially positioned using the algorithm described in [Cola-
grossi et al. 2012]. Thanks to this procedure, at the initial instant all particles have
approximately the same volume, namely V0, which is equal to the fluid domain
volume divided by the number of fluid particles. Consistently, the particle mean
spacing is denoted by 1x = V 1/n

0 . The average number of particles in the kernel
support is set by choosing the ratio ε/1x . In the present work ε/1x is set equal
to 1.33, which in two dimensions corresponds to about 50 interacting particles.

Along with the volume distribution, the initial pressure and the velocity fields
are prescribed as well. The initial density distribution ρi (t0) is evaluated by means
of the state equation and the particle masses are computed through the equation
mi = V0ρi (t0). The mass of the i-th particle remains constant during the time
evolution ensuring the total mass conservation of the particle system.

3.1.1. Enforcement of the solid-boundary condition through a ghost-fluid method.
In the present work the ghost-fluid technique is used to enforce proper boundary
conditions on the body surface. Specifically, the solid domain is modeled through
a set of “imaginary particles” (hereinafter denoted as ghost particles and labeled
with the subscript s) and all the fluid fields (that is, velocity and pressure) are
extended on these fictitious particles through proper mirroring techniques. Dif-
ferent mirroring techniques are adopted to enforce different boundary conditions
(for example, Dirichlet or Neumann conditions). To this end, the solid surface is
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discretized in equispaced body nodes and a layer of ghost particles is disposed
in the solid region. The ghost particle positions have been obtained by using the
technique described in [Marrone et al. 2011]. The pressure and velocity energy
assigned to the fixed ghost particles, namely (us, ps), are computed by using the
values obtained at specific interpolation nodes internal to the fluid and uniquely
associated with the fixed ghost particles. Hereinafter, the interpolated values are
indicated through (u∗, p∗).

The pressure field ps is mirrored on the fixed ghost particles to enforce the
Neumann condition

∂p
∂n
= ρ ( f · n− u̇b · n), (3-7)

where f is a generic body force and ub is the velocity of the solid boundary (for
details see [Marrone et al. 2011]). This leads to

ps = p∗+
∂p
∂n
· (x∗− xs). (3-8)

The velocity field is the object of a specific treatment. The ghost velocity us de-
pends on both u∗ and ub, the latter being the velocity of the nearest body node.
De Leffe et al. [2011] found that different mirroring techniques have to be used to
evaluate 〈∇ · u〉 and 〈∇2u〉 and to avoid inconsistencies and loss of accuracy. The
specific mirroring techniques treat differently the components of u∗ in the normal
and tangential directions to the solid surface. The velocity-divergence operator is
convergent and consistent if the normal component of u∗ is mirrored in the frame
of reference of the solid profile (see [Colagrossi and Landrini 2003]), leaving the
tangential component unaltered. Conversely, to evaluate 〈∇2u〉, the velocity field
has to be mirrored to approximate no-slip conditions along the solid bodies. A com-
mon way is to reverse the tangential component with a linear extrapolation, leaving
the normal one unaltered. The consistency of this second mirroring procedure has
been discussed in [Macià et al. 2011].

Using the momentum exchange between fluid and ghost particles it is possible
to evaluate the global loads acting on the solid bodies:

Ffluid-solid =
∑

i∈fluid

∑
j∈solid

(
−mi

(
pj

ρ2
j
+

pi

ρ2
i

)
+ ν

mi

ρ0
πi j

)
∇iδεmj , (3-9)

in which the first term on the right-hand side represents the pressure component
and the second acts as the viscous component of the stress tensor.

3.2. Viscous VM with operator splitting technique. In order to analyze the vortex
shedding from the body, the mathematical model can be equivalently recast in
terms of the vorticity transport equation. This approach allows for removing the
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pressure from the unknown variables and for the implicit enforcement of the far-
field boundary conditions.

In the case of a two-dimensional flow, the governing equation is written as

Dω
Dt
= (∂t + u · ∇)ω(x, t)= ν∇2ω for all x ∈�, (3-10)

where D/Dt denotes the material derivative.
Let us now briefly describe some detail of the numerical procedure for the so-

lution of the governing equations. The governing equation for the vorticity field
(3-10) accounts for the simultaneous advection and diffusion of this quantity. Ac-
cording to the well-known operator splitting approach [Chorin 1973], these two
steps are separately accounted for in the computational procedure. The approxi-
mate solution of the governing equation is obtained by the sequential solution of
the diffusive “Stokes” step followed by an inviscid “Euler” step for the vorticity
advection. The Stokes step represents the pure diffusion of the vorticity:

∂ω

∂t
= ν∇2ω, (3-11)

in the absence of motion combined with a vorticity generation on the solid boundary
to restore the no-slip boundary condition. Indeed, the presence of a body within
the flow field, requires to model the vorticity generation process on the solid walls
which allows for the vortex shedding effects. Therefore, vorticity is generated on
the body boundary to enforce the no-slip condition.

In the Euler step an inviscid fluid is considered where the vorticity of each
particle is conserved along its Lagrangian motion:

Dω
Dt
= 0. (3-12)

After the splitting of the governing equation, it is clear that an appropriate pro-
cedure both for the diffusion and for the advection of the vorticity must be devised.
The natural choice for the numerical solution scheme appears now as a viscous
VM which is based on the original papers [Chorin 1973; 1978] together with a
deterministic diffusion algorithm [Benson et al. 1989] (see [Graziani et al. 1995]
for more details about the adopted computational procedure).

3.2.1. Particle discretization of the vorticity field. The VM discretizes the vortic-
ity field ω(x, t) and replaces it with a set of Nvor point vortices with circulation
0(x j , t) (which we write as 0j (t) below):

ω(x, t)=
Nvor∑
j=1

0j (t)δε(x − x j ), (3-13)
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where the spatial distribution has been regularized as already mentioned in the
second section. The evolution of the vorticity field is now computed through the
advection and the diffusion of the point vortices. The adoption of the vorticity as
the dependent variable avoids the discretization of the irrotational regions while
allowing for reserving the computational resources to the vortical zones. This is
a major difference with respect to other commonly used computational schemes
which require the discretization of the whole solution domain (as for the SPH
method described above). At the same time, the adoption of an integral represen-
tation for the velocity field yields the exact enforcement of the far-field boundary
conditions.

One of the drawbacks of the purely Lagrangian VMs stems from the exces-
sive clustering or rarefaction of the vortex particles which requires a, somewhat
nonphysical, redistribution procedure. In our case the adopted diffusion scheme
avoids this possibility because a computational grid is used, only for this step, and
each particle gives its diffusive contribution to the circulation of the new particles
located on regular mesh nodes. At the end of the Stokes step the former set of
vortex particles is replaced by that defined in the nodes of the computational mesh.

Therefore, the present hybrid Eulerian–Lagrangian computational scheme al-
lows for the convenient evaluation of the particles’ advection as well as for the
efficient redistribution of the vorticity during diffusion.

We briefly recall the essential details of the four involved substeps: integral
representation of the velocity field, vorticity generation, diffusion, and advection.

(1) Integral representation of the velocity field. By starting from the Helmholtz
decomposition of the velocity field and considering the incompressibility constraint
and the impermeability condition on ∂�, the velocity field can be expressed by

u(x?)= u∞+
∫
∂�

uτ (x)K (x, x?) dl +
∫
�

ω(x)K (x, x?) d S, (3-14)

where the operator K has been defined in Section 2. Equation (3-14) is a way to
represent the domain-dependent Green’s function.

The unknown tangential velocity component uτ appearing in (3-14) must be
evaluated by solving an integral equation obtained by locating x? on the body
surface and discretizing it on ∂�:

uiτ

2
= u∞τ +

∑
k

ukτ

∫
∂�k

∂G
∂n
(xk, xi ) dlk + τi ·

∑
j

0j K (x j , xi ) d S j

for all xi ∈ ∂�. (3-15)

The last term in (3-15) is the tangential velocity on the body surface induced by
the vortices. In order to evaluate it, the multipole expansion for the kernel K is
adopted with reduced computational cost (see [Van Dommelen and Rundensteiner
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1989]). The numerical solution of (3-15) requires a specific algorithm; details can
be found in, for example, [Graziani and Landrini 1999].

At this point the enforcement of the no-slip boundary condition can be taken
into account through the next step.

(2) Vorticity generation on the solid body profile. In order to satisfy the no-slip
boundary condition, the adopted operator splitting approach must be complemented,
in the presence of a solid body, with the vorticity generation step. In fact, the flow
adherence condition is violated by the velocity field evaluated in the previous step;
therefore a vortex sheet is required on the body contour whose circulation density,
γ , produces the required velocity jump in the tangential velocity:

γ (x?)= ubτ (x
?)− (uτ (x?)+ u∞τ ), x? ∈ ∂�, (3-16)

where uτ is perturbation tangent velocity to the body wall evaluated through the
integral equation in the first step and ubτ is the tangential component of the body
velocity. Here, x? represents a generic point on ∂�. This source of vorticity will
be diffused within the flow field during the following step.

(3) Vorticity diffusion. The viscous effects are accounted for in the Stokes step,
where the fluid velocity is neglected and the diffusion of the field vortices as well
as of the wall vorticity is evaluated by solving (3-11).

The point vortex approximation can be conveniently inserted into the integral
representation for the vorticity field deriving from (3-11). This equation is formally
identical to the heat transfer equation and the same fundamental solution can be
assumed.

The point vortex approximation (3-13) allows for a very simple and efficient
evaluation of the diffusion after one time step 1td = t − t0:

ω(x?, t)=
Nvor∑
j=1

0j (t0)
4πν1td

exp
(
−
|x j − x?|2

4ν1td

)
, x? ∈ regular meshes. (3-17)

Each vortex particle, which is freely moving during the advection step and occu-
pies the position x j , gives its diffusive contribution to the nodes x? of the properly
defined grid according to the exact Lamb–Oseen solution. Therefore, after the
diffusion step has been completed, the new set of particles located in the nodal
positions replaces the former and an automatic and physical redistribution of the
vortices occurs (the artificial viscosity due to other interpolation schemes is here
absent). A piecewise constant distribution is assumed to translate vorticity into
circulation in order to obtain the new vortex particles.

A few words can be spent on the diffusion of the vortex sheet on the body contour.
In particular, according to the Chorin–Marsden decomposition [Chorin 1978], the
vorticity derivative normal to the wall is assumed to vanish in order to satisfy the
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no-slip condition after the diffusion. Hence the vorticity of the particles close to
the body is reflected back into the field in order to satisfy the Neumann condition.
The application of the reflection procedure, which is an expression of the image
method, is exact only for flat boundaries and gives acceptably approximated results
when small curvature values are involved (otherwise the complete expression of
the integral representation for the solution must be considered and solved). The
vorticity reflection must be enforced only for the particles which are closest to the
wall, because beyond a given distance the effect of the body is not felt, and each
vortex behaves as in free space. For this reason a boundary fitted grid is assumed
around the body in order to evaluate the diffusion of the closest particles while a
Cartesian grid is chosen for the diffusion of the remaining ones.

(4) Advection step. The inviscid evolution of the vortical particles is described
by the Euler equation (3-12) which states the material behavior of the transported
quantity. Therefore, each vortex carries around its circulation without diffusion. In
order to evaluate the advection step, the velocity field must be computed to obtain
the new position of the vortical particles. The velocity field evaluation turns out
to be the most expensive part of the whole numerical solution. In order to satisfy
(3-12), each vortex is displaced by the fluid velocity according to

ẋ j (t)= uj (t), j = 1, . . . , Nvor, (3-18)

where x j (t) and uj (t) are the unknown position and velocity of each particle at time
t , respectively. The no-flow boundary condition on the solid walls is associated
with (3-18).

The velocity field uj (t) of the new set of vortices obtained by the diffusion step
is evaluated using (3-14). In the framework of the adopted VM, the latter can be
evaluated as

ui = u∞+
∑

1≤ j≤Nvor
j 6=i

0j Kε(xi , x j ), xi ∈�∪ ∂�, (3-19)

where the Kε is a regularized version of the kernel K (see, for example, [Graziani
et al. 1995]). We underline that in (3-19) the summation includes also the vortices
on boundary ∂� needed to enforce the boundary conditions (u− ub) · n = 0 and
(u−ub) · τ = 0. The sum of the incoming flow u∞ and of the perturbation velocity
yields the total velocity which allows for the vortex displacement to be evaluated.
The operation count for the computation of the velocity of each particle is evidently
given by N 2

vor if (3-19) is directly used. In order to achieve a faster solution, the
flow domain is recursively subdivided and a multipole expansion for the kernel K
is adopted with a computational cost of order Nvor log(Nvor), which is compara-
ble with the performance of other efficient numerical techniques (for details see
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[Van Dommelen and Rundensteiner 1989]). This step is the most expensive part
of the numerical procedure. The same approach has been used for the solution of
free surface flows in [Graziani and Landrini 1999].

The numerical integration of (3-18) is performed by means of a fourth-order
Runge–Kutta algorithm.

The adopted computational scheme has been shown to converge to the solution
of the Navier–Stokes equations with a splitting error proportional to the time step
1t , which is therefore the relevant quantity for the overall accuracy. The numerical
solution is then organized as a repeated sequence of advection, generation, and
diffusion steps, each one of which can be solved in the most appropriate way. To
be more specific, due to the possibly different advection and diffusion time scales,
a suitable value of the time increment could be chosen for each step in order to
obtain the required accuracy (for example, the time step for the diffusion could be
an integral multiple of that for the advection).

3.2.2. Evaluation of the hydrodynamic loads. In order to analyze the interaction
between the flow field and the body motion, the hydrodynamic force must be eval-
uated. A possible approach is based on the integration of the wall stress vector
which can be written for a two-dimensional incompressible flow as

F =
∫
∂�

(−pn+µωτ) dl, (3-20)

where n is the outer normal to the body and τ is the anticlockwise tangent.
The pressure field, which is now required in order to evaluate the hydrodynamic

force, must be computed as it is described below. By writing the Navier–Stokes
equations on the body boundary and by taking the tangential projection, the deriv-
ative of the pressure can be expressed as

1
ρ

∂p
∂s
=−τ · u̇+ ν ∂ω

∂n
. (3-21)

Due to the no-slip condition the fluid acceleration u̇ on the wall must coincide
with that of the body. The pressure on the body is then obtained by integrating
(3-21) and the arbitrary integration constant does not affect the force. On occur-
rence, the hydrostatic contribution could be added either to the pressure or directly
to the resultant force.

Alternatively the hydrodynamic load can be evaluated through the vorticity mo-
ments as described in [Graziani and Bassanini 2002].

As it is usual with VMs (see, for example, [Kinney and Cielak 1977]), the last
term in (3-21), that is, that related to the vorticity flux from the body, is expressed
in terms of the circulation density γ generated on the wall during the actual step
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according to

ν
∂ω

∂n
(s)=−

γ (s)
1t

. (3-22)

To resume, the pressure on the wall is obtained by integrating (3-21), then the force
is yielded by an integration according to (3-20).

4. Numerical results:
flow past a fixed circular cylinder

The classical evolution of the flow past a circular cylinder is here considered. Two
Reynolds numbers Re= 140 and Re= 1000 are simulated both with SPH as well
as with the VM described in the previous sections.

Conversely to the VM, for the SPH model the definition of a proper algorithm
for the inflow and outflow particles is required (see, for example, [Federico et al.
2012]). Using such algorithm the new inflow particles which enter in the fluid
domain are added at the end of the particles’ array.

For the VM, since the fluid is treated as incompressible, the flow can be started
impulsively without any numerical problems. This is not possible with SPH due
to the weakly compressible model adopted. In this case the cylinder is smoothly
accelerated with a prescribed time law. The problem is further complicated for SPH
by the treatment of the acoustic shock waves, generated during the acceleration
stage. The pressure fields at the inflow/outflow boundaries are corrected so as to let
the acoustic wave cross them as described in [Lastiwka et al. 2009]. At Re= 140 it
is well known that the wake is not symmetric and alternate sign vorticity is released,
producing the characteristic Kármán vortex sheet. The top portion of Figure 1
shows the streakline obtained experimentally using an electrolytic precipitation of
a colloidal smoke [van Dyke 1982]. Thanks to the pure Lagrangian nature of SPH
it is very easy to extract the streakline from the wake. Indeed it is sufficient to
plot only the upper part of the particles’ array which represents the particles that
remain for a longer time in the fluid domain before leaving it through the outflow
boundary (see the bottom portion of Figure 1).

The SPH simulation has been performed with a spatial resolution of D/1x =
140, with D being the cylinder diameter and 1x the particles’ size. The total num-
ber of particles required is 4.4 million. In Figure 1 only the first 700,000 particles
stored in the array have been plotted with black dots. This kind of visualization
is not trivial to obtain with the VM described in the previous section since the
diffusion process on the regular mesh destroys the Lagrangian particle path. On
the other hand, we show later that the VM allows a prediction of the vorticity field
with a larger accuracy with respect to the SPH method. It is important to underline
that a small perturbation on the vertical motion of the cylinder has been forced in
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Figure 1. Streakline at Re= 140. Top: experimental photograph
by Sadatoshi Taneda [van Dyke 1982]. Bottom: SPH simulation.

the vortex model to break the symmetry of the numerical solution and to yield the
vortex shedding. This operation is not necessary with the SPH solver for which the
symmetric solution is automatically lost after a time which depends on the spatial
resolution adopted. The more particles are used, the more time is needed to start
the vortex shedding.

Figure 2 shows a comparison between SPH and VM on the drag and lift coef-
ficients. The two different solvers are in fairly good agreement. For the VM the
cylinder surface is discretized with 300 panels, therefore the spatial resolution is
similar to the SPH one. At the end of the simulation 180,000 vortices are present in
the fluid domain. The VM simulation takes one hour on an eight-core CPU (Xeon
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Figure 2. Comparison of the drag and lift forces as predicted by
SPH (solid line) and VM (dashed line) for a circular cylinder at
Re= 140.

E5410 2.33GHz), compared with the four days required for SPH. For this kind of
flow SPH has very high CPU costs. However, it must be underlined that the SPH
model can easily simulate complex two and three-dimensional violent free-surface
flows (see, for example, [Marrone et al. 2011]), which is not the case for the VM.

Finally the case of Re = 1000 is considered. Incidentally, we note that two-
dimensional simulations at this Re value represent a mere numerical test since
in reality the flow is fully three-dimensional. Figure 3 shows the vorticity field
evaluated by SPH and VM. The SPH vorticity field is quite noisy; besides this the
vorticity field of the two solvers are very similar in terms of intensity and shape of
the vortical structures.

To solve the flow at this Reynolds number, the spatial resolution has been in-
creased to D/1x = 200 for SPH and similarly in the VM the cylinder surface has
been discretized with 600 panels. The total number of particles adopted for SPH
is five million and the simulation takes 26 hours solving a wake 12 diameters long.
For the VM the number of vortices at the end of the simulation is 3.3 million, and
the simulation takes five days solving a wake 52 diameters long, much longer than
the SPH one. The whole wake calculated by the VM is reported in Figure 4 for
two different time instants.
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Figure 3. Vorticity field at Re= 1000 (two-dimensional simula-
tion) as predicted by SPH (top) and VM (bottom).

Figure 4. Wake field at Re= 1000 (two-dimensional simulation)
evaluated by the VM at times tU/D = 51.1 and tU/D = 92.3.
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Figure 5. Comparison of the drag and lift forces as predicted by
SPH (solid line) and VM (dashed line) for a circular cylinder at
Re= 1000 (two-dimensional simulation).

The use of different fluid domain lengths adopted for the two solvers reflects on
the global loads acting on the cylinder depicted in Figure 5. However, the compar-
ison on the loads remains quite fair when the periodic regime has been reached.

5. Conclusions

In this work the use of particle methods for solving fluid dynamic problems is
discussed. Models are analyzed theoretically in the context of weakly compressible
and incompressible inviscid fluid dynamics. The convergence of the regularized
solutions is discussed by using Vlasov dynamics. Numerical formulations for both
smoothed-particle hydrodynamics and the vortex model are described for solving
viscous weakly compressible and incompressible flows. Application to the flow
around a circular cylinder is discussed for both methods considering Reynolds
numbers 140 and 1000. The numerical results obtained with the two solvers are
compared and the benefits and drawbacks of the different formulations are high-
lighted.
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NONCLASSICAL CONTINUA, PSEUDOBALANCE,
AND THE LAW OF ACTION AND REACTION

GIANPIETRO DEL PIERO

Dedicated to the memory of Luiz-Carlos Martins.

The procedure followed in constructing models for generalized continua is re-
visited. It is shown that the microforce balance equations required for the de-
scription of generalized continua are not in fact expressions of the balance of
physical quantities, but consequences of the regularity assumed for the systems
of contact actions. In the proposed approach the law of action and reaction,
which in classical continuum mechanics is a consequence of Euler’s balance
laws, recovers the status of a basic principle as held in Newtonian mechanics.
Some examples of generalized continua taken from the literature are discussed.

1. Introduction

In a recent revisitation of the method of virtual power [Del Piero 2009], one of
the conclusions was that the two terms — external power and internal power —
that form the equation of virtual power should not be the object of independent
assumptions. Once an expression of the external power is assumed, the internal
power can be deduced, using some regularity properties of the system of contact
actions plus the indifference of the external power.

In the present paper, the roles of regularity and indifference have been sepa-
rated. Body forces and surface tractions are supposed to be measures, that is,
vector-valued set functions additive on disjoint subsets, which we call µ and Q,
respectively. The surface tractions form a system of contact actions on the inte-
rior surfaces of the body, called a Cauchy flux [Gurtin and Martins 1976]. The
regularity assumptions are made on this system, while the indifference of power
provides relations between Q and µ. This is the motivation for separating the roles
of regularity and indifference.

I thank the anonymous reviewers, whose accurate and keen remarks contributed to improving the
overall quality of the paper.
MSC2010: 74-XX.
Keywords: foundations of continuum mechanics, virtual power, generalized continua,
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An appropriate set of regularity assumptions on Q, which defines what we call
a bounded Cauchy flux, provides the general structure required for a self-consistent
formulation of continuum mechanics. The first assumption is that the restriction
of Q to the collection of the subsurfaces of the boundary of each fixed subbody be
an absolutely continuous measure with respect to the area measure. The second
is that the restriction of Q to the collection of the boundaries of all subbodies be
a measure F absolutely continuous with respect to the volume measure. That is,
Q has a surface density s, and F has a volume density f . Our third, and last,
assumption is that Q is skew-symmetric. Thus, Q is defined on oriented surfaces
S, and the sign of Q(S) changes with the orientation of S. In mechanical terms,
this corresponds to Newton’s law of action and reaction.

The existence of a volume density f for F determines an integral relation be-
tween the densities f and s, which we call a pseudobalance equation. This equa-
tion allows us to prove the dependence of s on the normal to the surface element
and the linearity of this dependence. This can be done using two basic tools of
continuum mechanics: Noll’s theorem on the dependence of s on the normal and
Cauchy’s tetrahedron theorem. We emphasize that the existence of the Cauchy
stress is not deduced, as usual, from the balance law of linear momentum, but
from regularity assumptions on the system of contact actions.1

It is only at this point that indifference comes into play. It is known that the
balance laws of linear and angular momentum can be deduced from the indifference
of the external power [Noll 1963]. The first balance law has the same form as the
pseudobalance equation, but is of a different nature: as a consequence of indif-
ference, it is a relation between Q and the body force measure µ, and not between
surface and volume densities of the same Cauchy flux Q. A comparison of the two
equations leads to the identification of the volume density f of F with the volume
density b of the body force. In this way the equation of virtual power is obtained,
and from it a weak formulation of the equilibrium problem can be deduced.

It may look awkward to invent a complicated procedure to end up with no new
conclusions. In fact, the advantages of the new procedure become evident when it
is extended to more general classes of continua. Essentially, there are two ways to
generalize the classical definition of a continuum:

- Relax the regularity assumed for Q and µ, by admitting the presence of singular
measures.

- Consider additional external actions, represented by additional measures Qα, µα .

Here we consider generalizations of the second type, which are a standard way to
define continua with microstructure. Our basic assumption is that not only Q, but

1This is indeed the main idea in [Gurtin and Martins 1976].
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also all Qα are bounded Cauchy fluxes. As a consequence, with each Qα is associ-
ated a pseudobalance equation relating the surface density σ α to a volume density
φα . But, while Q is related to the body force measure µ by the balance law of linear
momentum, no such relation is assumed to hold between the measures Qα and µα .

In the literature, the role of the pseudobalance equations is played by micro-
force balance equations, which are either postulated or deduced from an assumed
expression of the internal power.2 In both cases it is not clear whether or not these
equations are considered as fundamental laws of mechanics, like the balance of
linear momentum. If this were the case, a proliferation of postulates would take
place, depending on the number and nature of the additional variables. Moreover,
in most cases the new postulates would not be based on sound physical motivations.

This is the point where the pseudobalance equations play a basic role. They
provide a proof of the existence of counterparts of the stress tensor for the Cauchy
fluxes Qα, without introducing extra balance laws. This makes possible the trans-
formation of the external power into a volume integral, the internal power. The
equality between external and internal power is the equation of virtual power. Note
that this equation is not a relation between independent powers, as it is classically
considered, but only an identity between equivalent representations of the same
power. It turns out that this identity is all that is needed for the formulation of the
equilibrium problem.

This paper can be divided into three parts. In the first part, Sections 2–4, some
basic concepts of measure theory and geometric measure theory are recalled. The
reader not interested in technical details may skip this part.3 Continuous bodies are
identified with normalized sets of finite perimeter [Šilhavý 1991], and the external
actions are limited to the pair (Q, µ). A proof of Noll’s theorem appropriate to
this context is given in Appendix A. From it, the pseudobalance equation (4-17) is
deduced.

In the second part, Sections 5 and 6, the traditional formulation of continuum
mechanics and some alternative approaches are analyzed and compared with the
approach based on bounded Cauchy fluxes. The final part, Sections 7 to 11, deals
with continua with microstructure. For such continua, general forms of the pseu-
dobalance equations and of the equation of virtual power are given in Section 7.
The particular forms taken for specific continua depend on the order parameters
which define the microstructure, and on the restrictions due to the indifference of

2For the first option see the book [Capriz 1989], in which a law of balance of micromomentum
is systematically used. On the second option is based the method of virtual power developed in
[Germain 1973b].

3For the reader who is interested in such details, a more general introduction can be found in
[Vol’pert and Hudjaev 1985]. Basic reference books are [Evans and Gariepy 1992; Ambrosio et al.
2000] for measure theory, and [Federer 1969; Ziemer 1989] for geometric measure theory.
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power, which also vary according to the nature of the continuum. We say that
the order parameters define the structural properties of a continuum, not to be
confused with the constitutive properties, which characterize specific classes of
materials, and which are not considered in this paper.

The structural properties and the indifference requirements determine a subdi-
vision into classes of continua, some of which are discussed in the final sections.
Continua in which all measures Qα and µα are indifferent to changes of observer
are considered in Section 8, and micropolar continua and Cosserat continua are
considered in Section 9. Section 10 deals with second-gradient continua. It in-
cludes some comments on the edge forces which show up when the contact forces
are decomposed into a normal and a tangential part, as required for a correct for-
mulation of the boundary conditions. Finally, Section 11 deals with continua with
latent microstructure, characterized by the presence of internal constraints relating
the order parameters to the macroscopic deformation.

2. Basic concepts and definitions

Let � be a bounded set in the N-dimensional Euclidean point space EN , and let
℘(�) be a collection of subsets of �, including � and the empty set ∅. We say
that two elements 51 and 52 of ℘(�) are disjoint if

5 ∈ ℘(�), 5⊂51, 5⊂52 ⇒ 5=∅.

Assume that ℘(�) is equipped with a binary operation ∨, which with every pair
(51,52) of elements of ℘(�) associates a set (51 ∨52) ∈ ℘(�), called the join
of 51 and 52, such that

51 ⊂51 ∨52, 52 ⊂51 ∨52,

51 ⊂5 and 52 ⊂5 ⇒ 51 ∨52 ⊂5.
(2-1)

Assume, further, that with each 5 ∈ ℘(�) is associated a set 5c
∈ ℘(�), called

the complement of 5 in �, such that

5 and 5c are disjoint, 5∨5c
=�. (2-2)

The join and the complement are unique.4 They define a second binary operation

51 ∧52 = (5
c
1 ∨5

c
2)

c, (2-3)

called the meet of 51 and 52. Two sets in ℘(�) are disjoint if and only if their
meet is the empty set.5

4A proof of this statement and of other statements made in this section can be found in [Del Piero
2003, §5].

5The join and the meet are also called, respectively, the least envelope and the greatest common
part of 51 and 52; see [Noll 1973, §8] and [Truesdell 1991, §1.2].
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The existence of the join and of the complement provides ℘(�) with the struc-
ture of an algebra of sets. This structure includes the following properties:

Associative: 5∨ (51 ∨52)= (5∨51)∨52,

Distributive: 5∨ (51 ∧52)= (5∨51)∧ (5∨52),

plus the properties obtained by interchanging ∨ and ∧ in the above relations. The
set ℘(�) of all countable joins and complements of elements of ℘(�) is the
σ -algebra generated by ℘(�).

Let Y be a finite-dimensional inner-product space.6 A Y-valued measure on
℘(�) is a map µ : ℘(�)→ Y , additive on disjoint sets:

51,52 ∈ ℘(�), 51 ∧52 =∅ ⇒ µ(51 ∨52)= µ(51)+µ(52).

Examples of real-valued measures are the N-dimensional Lebesgue measure LN

and the (N − 1)-dimensional Hausdorff measure HN−1. For the former, ℘(�)
consists of all Lebesgue-measurable subsets of EN ; for the latter, it consists of all
subsets of EN . For both, Y is the real line, the join and the meet are the union and
the intersection of sets, and the complement of 5 is the complementary set � \5.
For N = 3, the two measures are called the volume measure and the area measure,
respectively. For convenience we keep these names, and use the notations V and
A in place of LN and HN−1, for every N .

A measure µ : ℘(�)→ Y is absolutely continuous with respect to the volume
measure (to the area measure) if µ(5)= 0 for all 5 ∈ ℘(�) for which V (5)= 0
(for which A(5)= 0). A measure µ is said to be singular with respect to the same
measures if there is a 51 ∈ ℘(�) with V (51) = 0 (with A(51) = 0) such that
µ(52)= 0 for all 52 ∈ ℘(�) disjoint from 51. By the Lebesgue decomposition
theorem, every measure µ admits a unique decomposition

µ= µa
+µs,

with µa absolutely continuous and µs singular with respect to the volume measure
(to the area measure).

Let 5 be a subset of EN , and let Br (x) be the N-dimensional ball with radius r
centered at x ∈ EN . The limit

ρ(5, x)= lim
r→0

V (Br (x)∧5)
V (Br (x))

, (2-4)

if it exists, is a real number between 0 and 1. Then x is said to be a point of
density for 5 if ρ(5, x) = 1, a point of rarefaction if ρ(5, x) = 0, and a point
of the essential boundary otherwise. The set of all density points, the set of all

6For example, the real line R, the set RN of all vectors of dimension N , or the set RN×N of all
linear transformations on RN (N × N matrices, or second-order tensors).
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rarefaction points, and the essential boundary are also called the measure-theoretic
interior, exterior, and boundary of 5. They will be denoted by 5∗, ext∗5, and
∂∗5, respectively. For the topological interior, exterior, and boundary of 5, the
inclusions

int5⊂5∗, ext5⊂ ext∗5, ∂5⊃ ∂∗5, (2-5)

hold. It is also of interest that

5∗ = (5∗)∗, ext∗5= ext∗(5∗), ∂∗5= ∂∗(5∗). (2-6)

Let H(x, n) be the half-space through x with exterior unit normal n. Set:

ρ(5, x, n)= lim
r→0

V (Br (x)∧5∧ H(x, n))
V (Br (x))

.

We say that a unit vector n is the measure-theoretic exterior normal, in short, the
exterior normal, to 5 at x if

ρ(5, x, n)= 1
2 , ρ(5, x,−n)= 0.

The exterior normal, if it exists, is unique. At all points x at which the exterior
normal exists, one has

ρ(5, x)= ρ(5, x, n)+ ρ(5, x,−n)= 1
2 .

Therefore, all such points belong to the essential boundary of 5.
The perimeter of a set is the area of the essential boundary. For all sets of finite

perimeter, the following properties hold:

(i) The finite unions and intersections and the complementary sets of sets of finite
perimeter are sets of finite perimeter,

(ii) On the essential boundary of a set of finite perimeter the exterior normal exists
A-almost everywhere,7

(iii) For a set 5 of finite perimeter, 5 and 5∗ differ by a set of zero volume.

(iv) For a set 5 of finite perimeter, the divergence theorem∫
∂∗5

ϕ(x) · n(x) d A =
∫
5

divϕ(x) dV (2-7)

holds for all Lipschitz continuous functions ϕ : RN
→ RN [De Giorgi 1954;

Federer 1958; Evans and Gariepy 1992].8

7That is, except at most at a set of null area. See [Vol’pert and Hudjaev 1985, §4.5.3]. In general,
the topological boundary and measure-theoretic boundary are not area-equivalent, see [Noll and
Virga 1988] and [Del Piero 2003, §3].

8The regularity assumption on ϕ has been progressively relaxed, see footnote 12 below.
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Note that, for
ϕ(x)= T T(x)v(x),

with T and v sufficiently regular tensor and vector fields, respectively, (2-7) pro-
vides the Gauss–Green formula∫

∂∗5

T (x)n(x) · v(x) d A =
∫
5

(T (x) · ∇v(x)+ div T (x) · v(x)) dV . (2-8)

A set 5 is normalized if 5 =5∗. For normalized sets, it can be proved that the
rules (2-1), (2-2), and (2-3) are satisfied if and only if

51 ∨52 = (51 ∪52)
∗, 5c

= (� \5)∗, 51 ∧52 =51 ∩52. (2-9)

That is, the join is the normalized union, the complement is the normalized com-
plementary set, and the meet is the normalized intersection, which coincides with
the intersection. Moreover, for normalized sets,

5c
= ext∗5, ext∗(5c)=5, ∂∗(5c)= ∂∗5. (2-10)

Let � be a normalized set of finite perimeter, and let ℘(�) be the set of all
normalized subsets of � of finite perimeter. Because the join, the meet, and the
complement of normalized sets are normalized sets, and the join, the meet, and
the complement of sets of finite perimeter are sets of finite perimeter, ℘(�) is an
algebra of sets. Its elements will be called the subbodies of �. Then, ℘(�) is the
σ -algebra generated by the subbodies of �.

3. Surfaces, oriented surfaces, surface measures

The surface of a subbody 5 is the essential boundary ∂∗5. The subsurfaces of
∂∗5 are the intersections of a surface with other subbodies

S1 = ∂
∗5∩51, 51 ∈ ℘(�).

The relations

∂∗51 ∩52 = ∂
∗(51 ∩52)∩52 = ∂

∗(51 ∨5
c
2)∩52 (3-1)

hold for every pair of subbodies, and the relation

∂∗51 ∩ (51 ∨52)= ∂
∗52 ∩ (51 ∨52) (3-2)

holds for every pair of disjoint subbodies. The proofs are left to the reader. The
subsurface (3-2) is the separating surface of 51 and 52.

Let S be a subsurface of ∂∗5. At a point x of S, consider the limit

ρ(S, x)= lim
r→0

A(S ∩ Br (x))
Ar

,



78 GIANPIETRO DEL PIERO

H

Π1

Π Π Π Π

✚✙
✛✘✚✙
✛✘

H

Π1

Π2

H

Π1

Π2

��

��
❅❅

❅❅

❅❅

❅❅
��

�� H

Π1

(a) (b) (c) (d)

Figure 1. Two-dimensional examples. In (a), ∂∗5∩51 is a non-
normalized subsurface. In (b) and (c), ∂∗5∩51 and ∂∗5∩52

are two normalized subsurfaces, for which ∂∗5 ∩ (51 ∨52) is
normalized in (b), but not in (c). In (d), ∂∗5∩51 is a normalized
subsurface for which ∂∗5∩5c

1 is a nonnormalized surface.

where Ar is the area of the largest circle in Br (x). For S = ∂∗5, this limit is equal
to one for A-almost every x ∈ ∂∗5 [Ziemer 1983, §2]. Then for S ⊂ ∂∗5 the same
limit is a number between zero and one. We say that x is a density point for S if
ρ(S, x)= 1. The set of all density points of S will be denoted by S?.

A subsurface S is normalized if S = S?. The surfaces S and S? differ at most by
a set of area zero. If 5 and 51 are normalized sets, the subsurface S1 = ∂

∗5∩51

need not be normalized. An example is given in Figure 1a, where the point H does
not belong to 51 and, therefore, to S1, but belongs to S?1 .

In a natural way, the subsurfaces of ∂∗5 inherit the algebraic structure of ℘(�).
For the normalized subsurfaces

S1 = (∂
∗5∩51)

?, S2 = (∂
∗5∩52)

?, (3-3)

the join, complement, and meet are defined by

S1g S2 = (∂
∗5∩ (51 ∨52))

?, S51 = (∂
∗5∩5c

1)
?,

S1f S2 = (∂
∗5∩51 ∩52)

?,
(3-4)

respectively. We say that S1 and S2 are disjoint if S1f S2 =∅.
If 5, 51, and 52 are normalized, the surfaces (∂∗5∩ (51∨52)), (∂∗5∩5c

1),
and (∂∗5∩51 ∩52) need not be normalized. For example, in both Figures 1b
and 1c the point H is a density point for (∂∗5∩ (51∨52)). But in the first case it
belongs to 51∨52 and in the second it does not. In Figure 1d, H is a density point
for (∂∗5∩5c

1) but does not belong to 5c
1. Finally, for 5 and 51 as in Figure 1a

and 52 = �, (∂∗5∩51 ∩52) reduces to ∂∗5∩51, which is not a normalized
subsurface. This proves that the meet of subsurfaces does not coincide with the
intersection.
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Of fundamental importance are the following properties of the partition of a
subbody 5 into disjoint subbodies 51 and 52, by means of a separating surface S.

Proposition 3.1. Let 5, 51, and 52 be subbodies such that

5=51 ∨52, 51 ∩52 =∅, (3-5)

let S be the normalized separating surface S = (∂∗51 ∩5)
?, and let

S1 = (∂
∗51 ∩5

c
2)
?, S2 = (∂

∗52 ∩5
c
1)
?. (3-6)

Then S, S1, and S2 are pairwise disjoint, and

S1g S2 = ∂
∗(51 ∨52), Sg S1 = ∂

∗51, Sg S2 = ∂
∗52. (3-7)

Proof. By (3-1),

S1 = (∂
∗51 ∩5

c
2)
?
= (∂∗5∩5c

2)
?, S2 = (∂

∗52 ∩5
c
1)
?
= (∂∗5∩5c

1)
?.

Then both S1 and S2 are subsurfaces of ∂∗5. By (3-4) and (2-3),

S1f S2 = (∂
∗5∩5c

1 ∩5
c
2)
?
= (∂∗5∩ (51 ∨52)

c)? = (∂∗5∩5c)? =∅,
S1g S2 = (∂

∗5∩ (5c
1 ∨5

c
2))

?
= (∂∗5∩ (51 ∩52)

c)? = (∂∗5)? = ∂∗5,

with the second to last equality due to the fact that 51 ∩52 is the empty set, and
therefore its complement is �. This proves (3-7)1. Moreover, since both S and S1

are subsurfaces of ∂∗51, by (3-4) and by the distributive property,

Sf S1 = (∂
∗51 ∩ (51 ∨52)∩5

c
2)
?

=
(
∂∗51 ∩ ((51 ∩5

c
2)∨ (52 ∩5

c
2))
)?
= (∂∗51 ∩51 ∩5

c
2)
?
=∅,

because both 52 ∩5
c
2 and ∂∗51 ∩51 are empty. Furthermore,

Sg S1 = (∂
∗51 ∩ (51 ∨52 ∨5

c
2))

?
= (∂∗51)

?
= ∂∗51,

with the second equality due to 52 ∨5
c
2 =�. To get Sf S2 =∅ and (3-7)3 note

that, by (3-2),
S = (∂∗51 ∩5)

?
= (∂∗52 ∩5)

?,

that is, both S and S2 are subsurfaces of ∂∗52. Then it is sufficient to repeat the
preceding proof, with the subscripts 1 and 2 interchanged. �

Another remarkable consequence of the relations (3-1) is the following decom-
position of the essential boundary of an intersection.9

9This proposition generalizes a relation proved in [Ziemer 1983] for nonnormalized surfaces, for
which (3-8) holds only to within sets of null area.
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Proposition 3.2. For every pair 51,52 in ℘(�),

∂∗(51 ∩52)= (∂
∗51 ∩52)

?g (∂∗52 ∩51)
?. (3-8)

Proof. By (3-1)1,

∂∗51 ∩52 = ∂
∗(51 ∩52)∩52, ∂∗52 ∩51 = ∂

∗(51 ∩52)∩51.

Then, by (3-3) and (3-4)1 with 5=51 ∩52,

(∂∗51 ∩52)
?g (∂∗52 ∩51)

?
= (∂∗(51 ∩52)∩ (52 ∨51))

?. (3-9)

On the other hand, by (3-3) and (3-4)2 with 5 = 51 ∩52 and with 51 ∨52 in
place of 51,(

(∂∗(51 ∩52)∩ (51 ∨52))
?
)5
= (∂∗(51 ∩52)∩ (51 ∨52)

c)?.

The right-hand side is the empty set, because

∂∗(51 ∩52)⊂ ∂
∗51 ∪ ∂

∗52, (51 ∨52)
c
=5c

1 ∩5
c
2,

and both ∂∗51 ∩5
c
1 and ∂∗52 ∩5

c
2 are empty. If the complement of a subsurface

of ∂∗(51 ∩52) is empty, the subsurface coincides with the whole surface:

(∂∗(51 ∩52)∩ (51 ∨52))
?
= ∂∗(51 ∩52).

Then combining with (3-9) the desired relation (3-8) follows. �

The surface ∂∗5 has a natural orientation, with the interior on the side of 5
and the exterior on the side of 5c. By (2-10)3, ∂∗5 can also be viewed as the
surface of 5c, and in this case it has the opposite orientation. The same holds for
the subsurfaces S1 = (∂

∗5∩51)
?. For a given orientation of ∂∗5, with the symbol

S
⇀

we denote the subsurface S with the same orientation, and with S
↼

we denote
the same subsurface with the opposite orientation.

By S
⇀

(5) we denote the set of all countable joins and complements of normal-
ized subsurfaces of ∂∗5, oriented as ∂∗5. This set is the σ -algebra generated
by the subsurfaces of ∂∗5. A Y-valued surface measure on ∂∗5 is a function
Q : S

⇀

(5)→ Y , additive on disjoint surfaces:

Q(S1g S2)= Q(S1)+ Q(S2), S1, S2 ∈ S
⇀

(5), S1f S2 =∅. (3-10)

4. Cauchy fluxes and pseudobalance equations

Let S(�) be the set of all oriented surfaces in �:

S(�)=
⋃

5∈℘(�)

{S
⇀

: S
⇀

∈ S
⇀

(5)}.
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A Y-valued Cauchy flux on � is a function Q : S(�)→ Y , whose restriction to
each S

⇀

(5) is a surface measure on ∂∗5. A Cauchy flux is symmetric if

Q(S
⇀

)= Q(S
↼

) for all S
⇀

∈ S(�),

and is skew-symmetric if

Q(S
⇀

)=−Q(S
↼

) for all S
⇀

∈ S(�).

An example of a real-valued symmetric Cauchy flux is the area measure. In the rest
of the paper, we will be interested in skew-symmetric Cauchy fluxes. For them,
the following additivity property for nondisjoint surfaces holds [Noll 1973, §8].

Proposition 4.1. For a Cauchy flux Q, the equation

Q(∂∗(51 ∨52))= Q(∂∗51)+ Q(∂∗52) (4-1)

holds for all pairs 51,52 of disjoint subbodies, if and only if Q is skew-symmetric.

Proof. Let S
⇀

be the subsurface (∂∗51 ∩ (51 ∨52))
? oriented as ∂∗51, and let

S
⇀

1 and S
⇀

2 be the subsurfaces (3-6) oriented as ∂∗51 and ∂∗52, respectively. By
Proposition 3.1 the three surfaces are pairwise disjoint, and equations (3-7), now
rewritten as

S
⇀

1g S
⇀

2 = ∂
∗(51 ∨52), S

⇀

g S
⇀

1 = ∂
∗51, S

↼

g S
⇀

2 = ∂
∗52,

hold. By the additivity property (3-10) on disjoint surfaces,

Q(∂∗(51 ∨52))= Q(S
⇀

1)+ Q(S
⇀

2),

Q(∂∗51)= Q(S
⇀

)+ Q(S
⇀

1), Q(∂∗52)= Q(S
↼

)+ Q(S
⇀

2).

Then (4-1) holds if and only if Q(S
⇀

)=−Q(S
↼

). �

Let Q be a Cauchy flux, and let F : ℘(�)→ Y be the function

F(5) .=−Q(∂∗5). (4-2)

We are interested in whether F is a measure. The question is answered as follows:

Proposition 4.2. Let Q : S(�)→ Y be a Cauchy flux, and let F be as in (4-2).
Then F is a Y-valued measure on ℘(�) if and only if Q is skew-symmetric.

Proof. It is sufficient to prove that F is additive on disjoint subsets:

F(51 ∨52)= F(51)+ F(52), 51,52 ∈ ℘(�), 51 ∩52 =∅.

By (4-2), this is the same as (4-1). By Proposition 4.1, (4-1) holds if and only if
Q is skew-symmetric. �
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Thus, the restriction of a skew-symmetric Cauchy flux to the surfaces ∂∗5 of
all 5 ∈ ℘(�) can be identified with a measure F on ℘(�). Consider the Lebesgue
decomposition of F into the sum of an absolutely continuous and a singular part
with respect to the volume measure:

F = Fa
+ F s .

By the Radon–Nikodým theorem (see, e.g., [Ambrosio et al. 2000]), Fa has a
volume density f ∈ L1(�, Y ):

Fa(5)=

∫
5

f (x) dV for all 5 ∈ ℘(�), (4-3)

while F s is concentrated on a subset of 5 with zero volume. Moreover, the Cauchy
flux Q admits the decomposition Q = Qa

+ Qs , with

Qa(S
⇀

)=

∫
S

s(x, ∂∗5) d A for all S ∈ S
⇀

(5), (4-4)

where s( ·, ∂∗5)∈ L1(∂∗5, Y ) is the surface density associated with the restriction
of Qa to S

⇀

(5), and Qs is concentrated on a subset of ∂∗5 with null area measure.
Equation (4-2) then takes the form∫

5

f (x) dV + F s(5)+

∫
∂∗5

s(x, ∂∗5) d A+ Qs(∂∗5)= 0. (4-5)

The measure Q is absolutely continuous with respect to the area measure if Qs
= 0,

and F is absolutely continuous with respect to the volume measure if F s
= 0.

A sufficient condition for the A-absolute continuity of Q is the property of area
boundedness

|Q(S
⇀

)| ≤ K A(S
⇀

) for all S
⇀

∈ S(�), (4-6)

with K a positive constant and | · | the norm of Y . A sufficient condition for the
V-absolute continuity of F is the volume boundedness

|F(5)| ≤ K V (5) for all 5 ∈ ℘(�). (4-7)

The less restrictive condition that for every 5 ∈ ℘(�) there is a nonnegative func-
tion h5 ∈ L1(∂∗5,R) such that

|Q(S)| ≤
∫

S
h5(x) d A for all S ∈ S

⇀

(5), (4-8)

is necessary and sufficient for the A-absolute continuity of Q, and the condition
that there is a nonnegative function h ∈ L1(�,R) such that

|F(5)| ≤
∫
5

h(x) dV for all 5 ∈ ℘(�), (4-9)
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is necessary and sufficient for the V-absolute continuity of F [Šilhavý 1985]. A
flux with the properties (4-8) and (4-9) is called a weakly balanced Cauchy flux.10

Thus, F is a measure if and only if Q is skew-symmetric, and this measure is
V-absolutely continuous if and only if Q is weakly balanced. A skew-symmetric
weakly balanced Cauchy flux is called a bounded Cauchy flux [Šilhavý 2008]. For
such fluxes, (4-2) takes the special form∫

5

f (x) dV +
∫
∂∗5

s(x, ∂∗5) d A = 0. (4-10)

Equation (4-5) and its special form (4-10) will be called pseudobalance equations,
to distinguish them from the balance equations of continuum mechanics, which
have the same form but a different physical meaning.

The pseudobalance equation (4-10) has two important consequences. For almost
every x ∈�,

(i) the surface density

s(x, ∂∗5)= lim
r→0

Q(∂∗5∩ Br (x))
A(∂∗5∩ Br (x))

(4-11)

only depends on the exterior normal n to ∂∗5 at x ,

s(x, ∂∗5)= s(x, n), a.e. x ∈�, (4-12)

and

(ii) the dependence of s on n is linear.

The first consequence was considered a postulate by Cauchy, and was proved
later by Noll [1959]. The second is the object of the celebrated tetrahedron theorem
of Cauchy. Formally, they can be stated as follows.

Theorem 4.3. Let Q be a bounded Cauchy flux, and let 5 be a subbody. Let x
be a point of ∂∗5 at which the measure-theoretic exterior normal n exists, and let
s(x, ∂∗5) be the limit (4-11). Then for every other subbody 5′ with x ∈ ∂∗5′ and
with the same normal n at x ,

s(x, ∂∗5′)= s(x, ∂∗5). (4-13)

Theorem 4.4. Let Q and s be as above, and let the function h P in equation (4-15)
below be integrable. Then there is a mapping T ∈ L1(�,RN×N ) such that

s(x, n)= T (x)n (4-14)

for all n ∈ Y and for V-almost all x in �.

10See [Gurtin and Martins 1976], modified in [Šilhavý 1985].
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The proof of Theorem 4.3 given in Appendix A follows the lines of Noll’s
original proof [Noll 1959], with modifications dictated by the weaker regularity
assumed for the surfaces ∂∗5. For Theorem 4.4, the original proof based on the
tetrahedron argument11 is sufficient for the purposes of the present paper. It is
known [Noll 1973, §8] that Cauchy’s proof relies on the somehow artificial as-
sumption of continuity of the vector field s( ·, n). Later, the theorem was extended
to integrable functions [Gurtin et al. 1968].

A sufficient condition for integrability is the following. For every fixed direction
n, let Pn

ξ be the plane with normal n and with signed distance ξ from a fixed point
x0. For an absolutely continuous flux Q, the function s( ·, n) is integrable on each
Pn
ξ . Then, there is a nonnegative number h P , depending on ξ , such that∫

Pn
ξ ∩�

|s(x, n)| d A ≤ hP(ξ) A(Pn
ξ ∩�). (4-15)

Assume that the function ξ 7→ h P(ξ) is integrable over the real line. If� is bounded,
this guarantees the integrability of s( ·, n) over � [Kolmogorov and Fomin 1968,
§35, Problem 6].

For a bounded Cauchy flux, using (4-14) and the tensorial version of the diver-
gence theorem (2-7) ∫

∂∗5

T (x)n d A =
∫
5

div T (x) dV, (4-16)

which follows from (2-8) written for a constant v, the pseudobalance equation
(4-10) takes the form of a volume integral∫

5

( f (x)+ div T (x)) dV = 0. (4-17)

By the arbitrariness of 5, this implies the local relation

f (x)+ div T (x)= 0, a.e. x ∈�, (4-18)

between the divergence of T and the volume density of the measure F .12

5. The traditional approach to continuum mechanics

In this section we recall the traditional formulation of continuum mechanics. Some
alternative formulations present in the literature are summarized in the next section.

11See [Cauchy 1823]. For proofs not based on the tetrahedron argument see [Šilhavý 1985; 1990;
1991; 2008; Fosdick and Virga 1989; Marzocchi and Musesti 2003].

12Because f is integrable by assumption, not only T , but also its divergence is integrable. The
regularity of T has been successively relaxed to L p with divergence in L p [Ziemer 1983; Šilhavý
1985], to L∞ with divergence measure [Chen and Torres 2005], to L1 with divergence measure
[Degiovanni et al. 1999], and to measures with divergence measure [Chen and Frid 1999].
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Let � be the region of EN occupied by a continuous body. The interaction
of a body with the exterior is assumed to consist of two vector-valued measures,
a volumic measure µ : ℘(�) → RN , called the distance action, and a surface
measure Q : S

⇀

(�)→ RN , called the contact action.13 They are subject to two
fundamental axioms, the Euler laws of motion and the cut principle of Euler and
Cauchy [Truesdell 1991, §III.1].

The Euler laws are the balance laws of linear momentum and of angular mo-
mentum. They state that the total action and the total moment exerted on � by the
exterior are zero:14∫

�

dµ+
∫
∂∗�

d Q = 0,
∫
�

x × dµ+
∫
∂∗�

x × d Q = 0. (5-1)

The cut principle states that the same balance laws hold for every subbody 5 of
�. This hypothesis requires, in particular, that the contact action be defined on
all surfaces ∂∗5 and not only on the boundary ∂∗�, and that (5-1) holds with �
replaced by 5. In other words, the cut principle requires that Q be a Cauchy flux.

The measures µ and Q are supposed to have a volume density b and an area
density s( ·, ∂∗5), respectively. Then the balance laws take the form∫

�

b(x) dV +
∫
∂∗�

s(x, ∂∗�) d A = 0,∫
�

x × b(x) dV +
∫
∂∗�

x × s(x, ∂∗�) d A = 0.
(5-2)

By the cut principle, the same laws hold for every subbody 5.15 Then, using the
arbitrariness of 5, from the first balance law the dependence of s(x, · ) on the
normal, the action-reaction law

s(x, n)=−s(x,−n), (5-3)

and the existence of a stress tensor T such that

s(x, n)= T (x)n (5-4)

are deduced using Theorems 4.3 and 4.4 with f replaced by b. (For the deduction
of (5-3), see [Noll 1959].) As a consequence, the balance equations (5-2) are

13Inertia forces are included in µ; see [Noll 1963, §7].
14Here and in the following, we denote with the same symbol x both a point in EN and the

position vector x−o with respect to an origin o chosen once and for all.
15In fact, writing (5-2) with � replaced by 5 requires some physical assumptions. Namely, using

the same volume density b for � and for 5 requires the assumption that the distance actions between
parts of the body are negligible. Also, treating the contact actions at the interior surfaces of the body
in the same way as the contact actions at the boundary means to exclude any special structure of the
body’s surface, such as, for example, the structure of the material surfaces studied in [Gurtin and
Murdoch 1975].
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reduced to the local forms

div T (x)+ b(x)= 0, T (x)= T T(x), a.e. x ∈�. (5-5)

These are the local equations of motion, or, in the absence of inertia forces, the
local equilibrium equations at the internal points of �. After introducing a set
V of virtual displacements v, (5-5)1 multiplied by v and integrated over 5, the
Gauss–Green formula (2-8), the relation (5-4), and the symmetry condition (5-5)2

lead to the equation of virtual power∫
5

b(x) · v(x) dV +
∫
∂∗5

s(x, n) · v(x) d A =
∫
5

T (x) · ∇Sv(x) dV
for all v ∈ V. (5-6)

This equation states the equality of the external power of the actions b and s with
the internal power, given by the product of the internal force T by the generalized
deformation ∇Sv. This equation has been deduced from the equilibrium equations
(5-5). Conversely, if (5-6) is assumed to hold, (5-5) follows after replacing s(x, n)
by T (x)n. Thus, (5-6) is an alternative definition of equilibrium. It can be regarded
as the weak form of the definition of an equilibrated system of actions.

Assume that the external body forces b are known, that surface tractions s(x) are
prescribed on a portion ∂∗s � of ∂∗�, and that null displacements are prescribed on
the complement (∂∗s �)

c of ∂∗s �. Denoting by Vo the set of all virtual displacements
which vanish on (∂∗s �)

c, from (5-6) written for 5=� it follows that∫
�

b(x) · v(x) dV +
∫
∂∗s �

s(x) · v(x) d A =
∫
�

T (x) · ∇Sv(x) dV for all v ∈ Vo.

(5-7)
By introducing the constitutive equation of an elastic material16

T = g(∇u), (5-8)

the weak form of the equilibrium problem for an elastic body is obtained (see
[Ciarlet 1988, Theorem 5.2-1]). For nonelastic bodies the formulation is more
complicated, since it requires the introduction of additional variables and of the cor-
responding generalized forces and evolution equations (see for example, [Halphen
and Nguyen 1975]). Nonelastic continua will not be considered in this paper.

6. Alternative approaches

The traditional approach to continuum mechanics illustrated in the previous sec-
tion grew over the centuries, starting from the pioneering work of Newton, Euler,

16Here and in the following, the constitutive equations are relative to the current deformed con-
figuration of the body, taken as the reference configuration. This is the reason why the kinematical
variable is the gradient of the virtual displacement.
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and Cauchy. Relatively recent is the realization that the balance laws (5-2) are
consequences of a more fundamental physical principle, the indifference, that is,
the invariance under changes of observer, of the external power [Noll 1963].17 For
the external power given by the left side of (5-6)

Pext(5, v)=

∫
5

b(x) · v(x) dV +
∫
∂∗5

s(x, n) · v(x) d A, (6-1)

indifference is expressed by the condition

Pext(5, v)= Pext(5, v+ a+W ( · )), (6-2)

to be satisfied for all 5 ∈ ℘(�), for all vectors a, and for all skew-symmetric
tensors W .18 By the linear dependence of Pext on v, this condition holds if and
only if

Pext(5, a)= 0, Pext(5,W ( · ))= 0, (6-3)

for all a and for all W , and from these conditions the balance equations (5-2) easily
follow.

Recently, alternative approaches have appeared in the literature. One of them
consists in taking the equation of virtual power (5-6) as a postulate. In this case,
the weak formulation (5-7) of the equilibrium problem follows directly from (5-6)
written for 5 = � and v ∈ Vo, and the balance equations (5-2) follow from the
same equation written for v = a and v = W ( · ), respectively. This approach has
been largely used to construct models of continua with microstructure [Germain
1973a; 1973b]. Some of its advantages and drawbacks will be discussed later.

Also very common is the variational approach, which consists in minimizing
an energy functional, whose Euler equation coincides with (5-7). For an elastic
continuum, the energy is

E(v)=
∫
�

w(∇v(x)) dV −
∫
�

b(x) · v(x) dV −
∫
∂�

s(x) · v(x) d A, (6-4)

where w is the strain energy density, and T = dw(∇v)/d∇v is the constitutive
equation. Thus, in the variational approach the constitutive equation enters from
the very beginning. Since it is our intention to keep the equilibrium conditions
separate from the constitutive assumptions, the variational approach will not be
considered here.

17In Lagrangian mechanics, the deduction of the balance of linear momentum from the trans-
lational indifference of the Lagrangian is a well-known consequence of Noether’s theorem on the
correspondence between the indifference properties of a functional and conservation laws; see, for
example, [Lanczos 1949, p. 403].

18Here a is the rigid translation a(x) = a, and W is the skew-symmetric tensor W x = w × x
associated with the rotation vector w, see Appendix B.
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In the approach based on the properties of bounded Cauchy fluxes introduced
in Section 4, the pseudobalance equation (4-10) holds. A comparison of its local
form (4-18) with (5-5)1 leads to the identification

f = b. (6-5)

That is, the volume density f of Q coincides with the body force. With this iden-
tification, the procedure leading to the equilibrium problem becomes identical to
the one followed in the traditional approach.

Thus, at a first glance, the difference of the two approaches looks irrelevant.
On the contrary, as pointed out in Section 1, when the external actions involve
additional measures µα and Qα, some problems are met in defining additional
microscopic balance equations with the traditional approach. As shown in the
following section, the assumption that all Qα are bounded Cauchy fluxes provides
a quite general solution to this difficulty.

7. Nonclassical continua

A continuum with microstructure is a continuum in which the deformations act
on two length scales of different orders of magnitude, macroscopic and micro-
scopic.19 The macrodeformation is described by the displacement vector u, and
the microdeformation is described by a finite number of order parameters dα , also
called internal variables or state variables, defined on finite-dimensional inner
product spaces Y α . Each order parameter describes a microstructure, and each set
of order parameters describes a continuum with microstructure. Here we will use
the terms nonclassical continua and classical continua to denote continua with and
without microstructure, respectively.

Just as the macrodeformation u is associated with a pair (µ, Q) of vector-valued
measures describing the macroscopic external actions, to each dα corresponds a
pair (µα, Qα) of Y α-valued measures, describing the microscopic external actions
due to the α-th microstructure. We confine our attention to the case in which all
measures µα are absolutely continuous with respect to the volume measure, and
all Qα are absolutely continuous with respect to the area measure.20 In this case

19Historically, the first example of a continuum with microstructure is the continuum with couple
stresses [Cosserat and Cosserat 1909]. A short history of successive developments and a broad list
of applications can be found in the book [Capriz 1989].

20In general, this assumption is too restrictive. Stress concentrations corresponding to singular
Cauchy fluxes appear even in some classical problems of linear elasticity. Examples of concen-
trated contact interactions are discussed in [Podio-Guidugli 2004], and examples of stress fields
equilibrated with continuous surface tractions at the boundary and exhibiting, at the interior, stress
concentrations on singular surfaces or lines are given in [Lucchesi et al. 2006; 2009]. An appropri-
ate environment for the study of stress concentrations is provided by stress fields with divergence
measure, see [Chen and Frid 1999; Degiovanni et al. 1999; Chen and Torres 2005; Šilhavý 2008].
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each µα has a volume density, the body microforce βα, each Qα has a surface
density, the surface microtraction σ α, and the external power has the form

Pext(5, v, ν
α)=

∫
5

(b · v+βα · να) dV +
∫
∂∗5

(s · v+ σ α · να) d A, (7-1)

where να are virtual variations of the order parameters dα.21

We also assume that Q and all Qα are bounded Cauchy fluxes, and we extend
to continua with microstructure the approach based on bounded Cauchy fluxes,
described in Section 4 for classical continua.

For a bounded Cauchy flux, the pseudobalance equation (4-10) holds for Q, and
for each Qα the pseudobalance equation∫

5

φα dV +
∫
∂∗5

σ α d A = 0 (7-2)

holds as well, with φα the volume density associated with the flux Qα. By Theo-
rems 4.3 and 4.4, the relations

s = T n, σ α =6αn, (7-3)

and the local pseudobalance equations

div T + f = 0, div6α +φα = 0, (7-4)

follow, where each 6α is a linear map on the corresponding Y α.22

It is convenient to decompose the volume densities f and φα into the sums

f = b− z, φα = βα − ζ α, (7-5)

where z and ζ α measure the deviations of the external body forces b and βα from
the densities f and φα.

Using (7-4), (7-5), and the Gauss–Green formula (2-8), the external power (7-1)
transforms into the internal power

Pint(5, v, ν
α)=

∫
5

(z · v+ T · ∇v+ ζ α · να +6α · ∇να) dV . (7-6)

This is a sum of terms, each of which is the scalar product of an internal force by
the corresponding generalized deformation. Therefore, the terms z and ζ α in (7-5)
are characterized as internal forces, and v and να are the corresponding generalized
deformations.

21Summation over repeated superscripts α is understood. For simplicity of notation, from here
onwards the argument x is omitted.

22For Yα equal to R, RN , and RN×N , the values 6α(x) are vectors, second-order tensors, and
third-order tensors, respectively.
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The difference between the internal power (7-6) and the internal power (5-6) of
a classical continuum is not only the presence of microstructural terms. Indeed,
in (7-6) there is the extra term (z · v), and the generalized deformation ∇Sv is
replaced by ∇v. This is due to the indifference requirements. In all examples to be
discussed below, the internal power has the translational indifference property23

Pint(5, a, 0)= 0, (7-7)

which implies
z = 0, (7-8)

and, therefore, leads to the same identification f = b found for the classical contin-
uum. On the contrary, the condition of rotational indifference varies according to
the physical nature of the order parameters. Therefore, the symmetry of T found
for a classical continuum is not preserved, in general, in nonclassical continua.
These are the reasons for the differences between (7-6) and (5-6) remarked above.

As a consequence of (7-8), z can be dropped from the list of the internal forces
and, consequently, v can be dropped from the list of the generalized deformations.
With this modification, the equation of virtual power for a continuum with mi-
crostructure takes the form∫
5

(b · v+βα · να) dV +
∫
∂∗5

(s · v+ σ α · να) d A

=

∫
5

(T · ∇v+ ζ α · να +6α · ∇να) dV . (7-9)

Just as (5-6) for the classical continuum, this equation defines an equilibrated
system of actions for a continuum with microstructure.

The constitutive equations are relations between the internal forces and the gen-
eralized deformations

T = T̂ (∇v, να,∇να), ζ α = ζ̂ α(∇v, να,∇να),

6α = 6̂α(∇v, να,∇να).
(7-10)

Substituting into (7-9) written for 5=� and imposing boundary conditions either
on the kinematical variables u and dα or on the corresponding contact actions s and
σ α, a generalization of (5-7) is obtained. This is the weak form of the equilibrium
problem for an elastic continuum with microstructure.

In models based on generalizations of the traditional approach, the pseudobal-
ance equation (7-4)1 is replaced by the balance equation of linear momentum

23Just like (3-7) for classical continua, in the present approach the equation of virtual power is
in fact an identity, which holds when all systems of contact actions are strongly balanced Cauchy
fluxes. By consequence, the external power is indifferent if and only if the internal power is. In the
following, we will systematically impose the indifference of the internal power.
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(5-5)1. Equations identical to (7-4)2, called microforce balance equations, are
either postulated,24 or deduced from the equation of virtual power, assumed as
a basic postulate.25 In both cases, the way these equations are introduced is not
completely satisfactory. In the first case, it is difficult to attribute to such equations,
which are so strongly dependent on the number and physical nature of the order
parameters, the same status of the balance equation of linear momentum, which is
a general law of mechanics.26. In the second case, it is not clear how much liberty
is allowed in the choice of the internal power, once the external power has been
defined. The choice cannot be completely arbitrary, because it must be compatible
with the balance laws (5-2). Then there must be a tacit preselection of admissible
forms of the internal power, in contrast with the character of a postulate attributed
to the equation of virtual power.

On the contrary, the approach based on bounded Cauchy fluxes provides the
most general form of the internal power compatible with the assumed external
power (7-1), that is, with the chosen order parameters. We say that this choice de-
termines the structural properties of a continuum. Together with the indifference
requirements, these properties define specific classes of continua. Within each
class, the constitutive equations (7-10) define subclasses of materials. In many
models present in the literature, the assumed form of the internal power is a spe-
cial case of (7-6), resulting from a mix of structural properties and constitutive
assumptions.27

A bounded Cauchy flux is skew-symmetric, and this is the property from which
the pseudobalance equations (4-10) and (7-2) follow. From the foundational view-
point, I find this fact very intriguing. Indeed, the balance equations of linear and
angular momentum are expressions of Newton’s first two laws of motion, and the
skew-symmetry of Q is an expression of the third law, the law of action and reac-
tion. For classical continua, as seen in Section 5, the third law is a consequence of
the first two. Accordingly, in classical continuum mechanics the third law is not
considered as a general principle. (See, for example, [Truesdell 1991, §12].) For
continua with microstructure, the third law gives a precise status to the microforce
balance equations, transforming them into pseudobalance equations. In this respect,
the third law recovers the role of a general principle.

24See, for example, [Capriz 1989, §8]. It is interesting that the assumption that z is zero while
ζα need not be zero, made on page 22 of the book, coincide with our conclusions deduced from the
indifference of power.

25This is the method proposed by Germain. Examples of models constructed in this way are
given in [Gurtin 2003, Footnote 1] and in [Del Piero 2012, Chapter 2].

26An alternative is to view the microforce balance equations as constitutive assumptions. To my
knowledge, the nature of these equations has never been clearly specified.

27In this respect, it is instructive to compare the two models for strain-gradient plasticity of
[Gurtin 2003; 2004]; see [Del Piero 2012, §2.4].
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8. Continua with indifferent microstructure

Here and in the following sections, we assume that the translational indifference
condition (7-7) holds in general. For the rotational condition, consider first the
case in which all microstructures are indifferent:

Pext(5,W ( · ), 0)= 0. (8-1)

Because scalars are invariant under changes of observer, this is the case of all
microstructures whose order parameters are scalars. Examples are given by the
scalar theories of damage, strain-gradient plasticity, and crystal plasticity. (See,
for example, [Del Piero 2012, §2.2].)

The result of this condition applied to the internal power (7-6) is the symmetry
of T . In this way condition (5-5)2, which in the traditional approach was a conse-
quence of the balance of angular momentum, is recovered. There are no restrictions
on the virtual velocities ζ α and 6α. In the constitutive equations (7-10), the only
change is that now the values of the constitutive function T̂ are symmetric second-
order tensors.

9. Micropolar continua

Micropolar continua are continua with microstructure whose order parameters dα

are vector fields, called directors. They may represent, for example, the orienta-
tions of a crystalline lattice or the directions of some crystal defects. Since the
directors change their orientation with the body’s deformation, the rotational in-
difference requires the invariance of the internal power under simultaneous rigid
rotations of the body and of the directors:

Pint(5,W ( · ),W dα( · ))= 0. (9-1)

From (7-6) with z = 0 it follows that

0=
∫
5

(T ·W + ζ α ·W dα +6α ·W∇dα) dV

=W ·
∫
5

(T + ζ α ⊗ dα +6α∇Tdα) dV,
(9-2)

where ∇Tdα is the transpose of ∇dα. This implies the symmetry of the integrand
function. Then T is not symmetric in general, and its skew-symmetric part is

T W
=−(6α∇Tdα + ζ α ⊗ dα)W . (9-3)

We say that T W is the reactive part of the internal force T , and that the symmetric
part T S is the active part. While T W is a known function of the microstructural
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internal forces ζ α and 6α , T S has to be determined by a constitutive equation. The
internal power takes the form∫
5

(T S
· ∇v+ ζ α · να − (6α∇Tdα + ζ α ⊗ dα)W · ∇v+6α · ∇να) dV

=

∫
5

(T S
· ∇

Sv+ ζ α · (να −∇Wvdα)+6α · (∇να −∇Wv∇dα)) dV . (9-4)

It shows that the generalized deformations corresponding to the internal forces T S ,
ζ α, and 6α are

∇
Sv, ψα = να −∇Wvdα, 9α

=∇να −∇Wv∇dα, (9-5)

respectively. Note that ψα is the relative rotation between the director dα and the
corresponding direction in the deformed body. Thus, the equation of virtual power
becomes∫
5

(b · v+βα · να) dV +
∫
∂∗5

(s · v+ σ α · να) d A

=

∫
5

(T S
· ∇

Sv+ ζ α ·ψα +6α ·9α) dV, (9-6)

and the constitutive equations (7-10) take the form

T S
= T̂ S(∇Sv, ψα, 9α), ζ α = ζ̂ α(∇Sv, ψα, 9α),

6α = 6̂α(∇Sv, ψα, 9α).
(9-7)

Equation (9-6) defines an equilibrated system of actions for a micropolar continuum.
When coupled with the constitutive equations (9-7), it provides the weak formula-
tion for the equilibrium problem for a micropolar continuum.

Special micropolar continua are the Cosserat continua. In a three-dimensional
body, they are characterized by three mutually orthogonal directors dα, whose
virtual velocities are

να = ω× dα, (9-8)

with ω a vector field. With this assumption the directors preserve length and mu-
tual orthogonality in all infinitesimal deformations, and ω measures their common
rotation. In the expression (7-1) of the external power, we have

βα · να = βα ·ω× dα = dα ×βα ·ω, (9-9)

and, similarly,

σ α · να = dα × σ α ·ω. (9-10)
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By setting (with α summed)

c = dα ×βα, m = dα × σ α, (9-11)

the external power takes the form

Pext(5, v, ω)=

∫
5

(b · v+ c ·ω) dV +
∫
∂∗5

(s · v+m ·ω) d A. (9-12)

Here c and m are the body couple and the surface couple, respectively. Thus, due to
assumption (9-8), the Cosserat continuum is a micropolar continuum with a single
vectorial microstructure.

If all σ α are the densities of bounded Cauchy fluxes, by the definition of the
cross product of a vector and a tensor given in Appendix B, from (7-3) we get

m = dα × σ α = dα × (6αn)= (dα ×6α)n = Mn, (9-13)

where M = dα ×6α is the couple stress. Then using the Gauss–Green formula
and setting

ζ = c+ div M, (9-14)

the external power transforms into the internal power

Pint(5, v, ω)=

∫
5

(T · ∇v+ ζ ·ω+M · ∇ω) dV . (9-15)

The rotational indifference condition (9-1) now requires that

Pint(5, a× ( · ), a)= 0, (9-16)

for all constant vectors a. The identity a× x = (a× I )x and the relation (B-7) in
Appendix B imply

T (x) · ∇(a× x)= T (x) · (a× I )= 2t (x) · a, (9-17)

with t the vector associated with the skew-symmetric part of T . Then, by (9-15)
and (9-16),

2t + ζ = 0. (9-18)

This determines the skew-symmetric part of T in the case of Cosserat continua.
In the macroscopic deformation, the infinitesimal rotation is represented by the

vector associated with the skew-symmetric part of ∇v. By (B-8), this vector is one
half of curl v. Then, again from (B-7),

T ·∇v+ζ ·ω= T S
·∇

Sv+2t · 12 curl v+ζ ·ω= T S
·∇

Sv+ζ ·
(
ω− 1

2 curl v
)
. (9-19)
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Then the internal power further reduces to

Pint(5, v, ω)=

∫
5

(
T S
· ∇

Sv+ ζ ·
(
ω− 1

2 curl v
)
+M · ∇ω

)
dV, (9-20)

and the constitutive equations (9-7) take the form

T S
= T̂ S(

∇
Sv, ω− 1

2 curl v,∇ω
)
, ζ = ζ̂

(
∇

Sv, ω− 1
2 curl v,∇ω

)
,

M = M̂
(
∇

Sv, ω− 1
2 curl v,∇ω

)
.

(9-21)

Comparison with the constitutive equations (9-7) shows that the relative rotation(
ω− 1

2 curl v
)

corresponds to the relative rotation ψα of the general micropolar
continuum.

Again, the equation of virtual power obtained by equating the powers (9-12)
and (9-20) defines an equilibrated system of actions for a Cosserat continuum,
and this same equation coupled with the constitutive equations (9-21) provides the
corresponding weak form of the equilibrium problem.

10. Second-gradient continua

A second-gradient continuum is a continuum with microstructure whose unique
order parameter is the displacement gradient ∇u [Toupin 1962; Mindlin 1964; Ger-
main 1973a]. See also [Forte and Vianello 1988; Noll and Virga 1990; Dell’Isola
and Seppecher 1997; Podio-Guidugli and Vianello 2010]. The corresponding vir-
tual velocity is ∇v, and the external power has the form

Pext(5, v)=

∫
5

(b · v+ B · ∇v) dV +
∫
∂∗5

(s · v+ S · ∇v) d A. (10-1)

If the second-order tensor field S is the surface density of a bounded Cauchy flux,
the tensorial version28 of Theorems 4.3 and 4.4 ensures the existence of a third-
order tensor field T such that

S = Tn, div T+8= 0,

Si j = Ti jknk, Ti jk,k +8i j = 0,
(10-2)

where 8 is the volume density associated with the Cauchy flux. The internal power,
given by the right-hand side of (7-9), now has the form

Pint(5, v)=

∫
5

((T + Z) · ∇v+T · ∇∇v) dV, (10-3)

where Z = B−8 is the gap between the external body microforce B and 8. The
rotational indifference is expressed by condition (6-3)2, which now implies the

28See, for example, [Del Piero 2009, Appendix].
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symmetry of (T + Z):
(T + Z)W = 0. (10-4)

Then the generalized deformation associated with the internal force (T + Z) is ∇Sv

instead of ∇v. Moreover, due to the symmetry of ∇∇v with respect to the last two
subscripts, only the part of T symmetric with respect to the last two subscripts,
here denoted by T×S , contributes to the power. Therefore, for a second-gradient
continuum the internal forces are the symmetric tensors (T + Z) and T×S , and ∇Sv

and ∇∇v are the corresponding generalized deformations. For an elastic material,
the constitutive equations are

T + Z = F̂(∇Sv,∇∇v), T×S
= T̂(∇Sv,∇∇v), (10-5)

with F̂ symmetric, and with T̂ symmetric with respect to the last two subscripts.29

The name second-order continuum is due to presence of ∇∇v among the gener-
alized deformations. This presence causes some complication in the formulation
of the boundary conditions. Indeed, the displacement gradient at the boundary has
a normal and a tangential component, and the tangential component is determined
by the values of v at the boundary. Then, boundary conditions of place can be
prescribed only to v and to the normal component of ∇v.

The boundary conditions are a part of the strong formulation of the equilibrium
problem. For a three-dimensional body �, at the boundary ∂∗� take an orthonor-
mal local reference frame (eα, en), where eα, α ∈ {1, 2}, are tangent vectors, and
en is the exterior normal n. After decomposing the product S · ∇v into a sum of
normal and tangential parts, the Gauss–Green formula applied to ∂∗� yields∫

∂∗�

S · ∇v dA=
∫
∂∗�

(Sinvi,n + Siαvi,α) dA

=

∫
∂∗�

(Sinvi,n−Siα,αvi ) dA =
∫
∂∗�

(Sn ·∇nv−divα S ·v) dA.
(10-6)

In a similar way, a double application of the Gauss–Green formula provides a well-
known transformation of the second-gradient term [Toupin 1962; Mindlin 1964]:∫
�

T·∇∇v dV=
∫
�

T×S
i jk vi, jk dV =−

∫
�

T×S
i jk,kvi, j dV +

∫
∂∗�

T×S
i jnvi, j dA

=

∫
�

T×S
i jk,k jvi dV+

∫
∂∗�

(T×S
innvi,n+T×S

iαknkvi,α)−T×S
ink,kvi ) dA

=

∫
�

T×S
i jk,k jvi dV +

∫
∂∗�

(T×S
innvi,n−(T

×S
iαn,α+T×S

ink,k)vi ) dA. (10-7)

29In particular, the constitutive equations are independent of ∇W v. See [Grioli 1960, Equa-
tion 19], and [Toupin 1962, Equations 5.1–5.3].
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By the symmetry of T×S ,

T×S
iαn,α = T×S

inα,α = (divα(T×Sn))i ,

T×S
ink,k = T×S

inα,α +T×S
inn,n = (divα(T×Sn))i + (∇n(T

×Snn))i .

Therefore,∫
�

T · ∇∇v dV =
∫
�

div div T×S
· v dV +

∫
∂∗�

T×Snn · ∇nv d A

−

∫
∂∗�

(2 divα(T×Sn)+∇n(T
×Snn)) · v d A. (10-8)

After the transformation∫
�

B · ∇v dV =−
∫
�

div B · v dV +
∫
∂∗�

Bn · v d A, (10-9)

and a similar transformation for (T + Z), the equation of virtual power eventually
takes the form∫
�

(b− div B) · v dV +
∫
∂∗�

(Sn · ∇nv+ (Bn+ s− divα S) · v) d A

=

∫
�

(div div T×S
− div(T + Z)) · v dV +

∫
∂∗�

T×Snn · ∇nv d A

+

∫
∂∗�

((T + Z)n− 2 divα(T×Sn)−∇n(T
×Snn)) · v d A. (10-10)

From the arbitrariness of v, the equilibrium equation

div div T×S
− div(T + Z)= b− div B, (10-11)

at the interior points, and the conditions

((T×Sn)n− Sn) · ∇nv = 0,(
(T + Z)n− 2 divα(T×Sn)−∇n((T

×Sn)n)− Bn− s+ divα S
)
· v = 0,

(10-12)

at the boundary, are deduced. The latter provide the desired forms of the boundary
conditions of traction

(T×Sn)n = Sn,

(T + Z)n− 2 divα(T×Sn)−∇n((T
×Sn)n)= Bn+ s− divα S,

(10-13)

on the portion of the boundary on which the values of the contact actions S and s
are prescribed.30

30These are the equations in [Mindlin 1964], in the improved version of [Bleustein 1967], plus
the simplification (10-8) due to the symmetry of T×S . An interesting interpretation of the boundary
conditions in terms of orthofibers is given in [Froiio et al. 2010].
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The operator (divα), obtained in (10-6) and (10-7) when applying the Gauss–
Green formula to ∂∗�, must be interpreted in the distributional sense. Then, if the
boundary ∂∗� has an edge line, that is, a line at which the normal is discontinuous,
the terms divα S in (10-6) and divα(T×Sn) in (10-8) include singularities, called
edge forces, represented by forces per unit length applied to the edge line.31

In (10-6), the power of the hypertractions S is represented as the sum of the
powers of two ordinary tractions, (Sn) and (divα S), and the latter has singularities
at points at which the normal is discontinuous. Some authors believe that the
presence of singularities requires a reformulation of Theorems 4.3 and 4.4. This
does not seem to be the case, as long as the field S itself is not singular, that
is, as long as the Cauchy flux Qα is absolutely continuous with respect to the
area measure. Indeed, in this case the tensorial versions of Theorems 4.3 and
4.4 apply. The singularities are merely apparent, because they originate from the
representation of the power in a discontinuous local basis.32

On the contrary, more regular regions and generalized versions of Noll’s and
Cauchy’s theorems become necessary when the external actions involve singular
measures. In spite of some valuable progress,33 the construction of a comprehen-
sive, self-consistent theory of higher-order continua in the presence of singular
measures is still an open problem.

11. Continua with latent microstructure

A continuum with latent microstructure is a continuum subject to internal con-
straints relating the order parameters to the macroscopic deformation [Capriz 1985;
1989]. By effect of the constraint, the internal forces decompose into the sum of
an active part and a reactive part. The latter does not appear in the constitutive
equations or in the equilibrium equations.

31Similarly, in a third-gradient continuum, concentrated forces, called wedge forces, appear at ver-
tices, and higher-order terms appear in higher-gradient continua. See [Noll and Virga 1988; Di Carlo
and Tatone 2001; Podio-Guidugli and Vianello 2010; Dell’Isola et al. 2011]. A characterization of
the power of a n-th gradient continuum based on the concept of diffused subbody was proposed in
[Degiovanni et al. 2007].

32As stated in [Noll and Virga 1990], “edge interactions should not be confused with external
actions concentrated along curves”. The problems caused by writing the power equation in terms of
tangential and normal components have a long history. They were perhaps met for the first time in
the theory of the bending of plates. The determination of the boundary conditions for this problem
kept scientists of the caliber of Poisson, Lagrange, Kirchhoff, and Kelvin busy for a good part of the
nineteenth century. For a history of the problem see [Timoshenko 1953].

33The problem of the regularity of regions was posed in [Noll and Virga 1990]. Sets with curva-
ture measure have been introduced by [Degiovanni et al. 2006]. For extensions of Theorems 4.3 and
4.4 in the presence of singular measures see [Dell’Isola and Seppecher 1997; Marzocchi and Musesti
2003; Degiovanni et al. 2006; Dell’Isola et al. 2011].
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An example is the second-gradient continuum described in the preceding section.
It has a single tensorial order parameter, whose virtual velocity V α is subject to
the constraint

V α
=∇v. (11-1)

By (10-3), the internal forces are (T + Z) and T, and the active parts are (T + Z)S

and T×S .
A second example is given by the Cauchy–Born hypothesis, by which the orien-

tations of the directors dα are forced to follow the macroscopic deformation. That
is, their variations να must satisfy the internal constraint34

να =∇v dα. (11-2)

In this case, the external power (7-1) takes the form (with α summed)

Pext(5, v)=

∫
5

(b · v+ (βα ⊗ dα) · ∇v) dV +
∫
∂∗5

(s · v+ (σ α ⊗ dα) · ∇v) d A.

This is a special case of (10-1), with

B = βα ⊗ dα, S = σ α ⊗ dα. (11-3)

The internal power is

Pint(5, v)=

∫
5

((T +6α∇Tdα+ ζ α⊗ dα) · ∇v+ (6α⊗ dα) · ∇∇v) dV, (11-4)

with ζ α as in (7-5)2. This is a special case of (10-3), with

Z =6α∇Tdα + ζ α ⊗ dα, T =6α ⊗ dα. (11-5)

Thus, a micropolar continuum obeying the Cauchy–Born hypothesis is a second-
gradient continuum with particular forms for B, S, Z , and T.

Another special case is the Cosserat continuum with constrained rotation [Toupin
1964]. For this continuum, the virtual velocities να are subject to the internal
constraint

να =∇Wv dα. (11-6)

By (B-4) and (B-8), this constraint can be put in the equivalent form να= 1
2 curl v×dα.

Comparing with (9-8), we see that the internal constraint reduces to

ω = 1
2 curl v. (11-7)

34If the directors dα form a basis for the underlying space and if dα is the dual basis, this is a
special case of (11-1), with V α

= να ⊗ dα .
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That is, the rotations ω of all directors coincide with the rotation 1
2 curl v in the

macroscopic deformation. The external power (9-12) reduces to

Pext(5, v)=

∫
5

(
b · v+ 1

2 c · curl v
)

dV +
∫
∂∗5

(
s · v+ 1

2 m · curl v
)

d A, (11-8)

and the internal power (9-20) reduces to

Pint(5, v)=

∫
5

(
T S
· ∇

Sv+ 1
2 M · ∇ curl v

)
dV . (11-9)

Therefore, the generalized deformations corresponding to the internal forces T S

and M are ∇Sv and 1
2∇ curl v, respectively. The constitutive equations (9-21)

become

T S
= T̂ S(

∇
Sv, 1

2∇ curl v
)
, M = M̂

(
∇

Sv, 1
2∇ curl v

)
. (11-10)

This is still a second-order continuum. Indeed, by (B-8),

1
2 M · curl v = 1

2 Mi j eihkvk,hj = T · ∇∇v, (11-11)

with T the third-order tensor

Tkh j =
1
2 Mi j eihk . (11-12)

Note that T is skew-symmetric with respect to the first two subscripts. Thus T

has nine independent components, as many as the couple stress tensor M . For the
internal forces T , ζ , and M in (9-15), the active parts are T S , 0, and M , and the
reactive parts are T W , ζ , and 0, respectively. The latter do not appear in (11-9) and
(11-10).

Appendix A: Proof of Theorem 4.3

The proof is divided into four steps.

Step 1. For simplicity, write Br in place of Br (x). Consider the definition (4-2) for
the set 5∩ Br :

F(5∩ Br )+ Q(∂∗(5∩ Br ))= 0.

By Proposition 3.2, the set ∂∗(5∩ Br ) admits the decomposition (3-8):

∂∗(5∩ Br )= (5∩ ∂
∗Br )

?g (∂∗5∩ Br )
?.

Then, by the additivity property (3-10),

Q(∂∗(5∩ Br ))= Q((5∩ ∂∗Br )
?)+ Q((∂∗5∩ Br )

?),

and the pseudobalance equation reduces to

F(5∩ Br )+ Q((5∩ ∂∗Br )
?)+ Q((∂∗5∩ Br )

?)= 0. (A-1)



NONCLASSICAL CONTINUA, PSEUDOBALANCE, ACTION AND REACTION 101

Step 2. Let us prove that

lim
r→0

F(5∩ Br )

A(∂∗Br )
= 0. (A-2)

By the property (4-9) of the bounded Cauchy fluxes, there is a positive function
h ∈ L1(�,R) such that

|F(5∩ Br ))| = |Q(∂∗(5∩ Br ))| ≤

∫
5∩Br

h(x) dV .

Therefore,

lim
r→0

∣∣∣∣F(5∩ Br )

A(∂∗Br )

∣∣∣∣≤ lim
r→0

∫
5∩Br

h(x) dV

V (5∩ Br )

V (5∩ Br )

A(∂∗Br )
.

The first term on the right converges to a finite value V-almost everywhere, by
the Lebesgue–Besicovitch differentiation theorem (see, e.g., [Evans and Gariepy
1992]), and the second term converges to zero, because the volume of Br goes to
zero faster than the area. Then, (A-2) follows.

Step 3. Let us prove that

lim
r→0

Q((∂∗Br ∩5)
?)

A(∂∗Br )
= lim

r→0

Q((∂∗Br ∩ H)?)
A(∂∗Br )

, (A-3)

where H = H(x, n) is the half-space with x as a boundary point and with exterior
normal n. From the identity

5= (5∩ H)∨ (5∩ H c)

it follows that

(∂∗Br ∩5)
?
= (∂∗Br ∩ (5∩ H))?g (∂∗Br ∩ (5∩ H c))?,

(∂∗Br ∩ H)? = (∂∗Br ∩ (H ∩5))?g (∂∗Br ∩ (H ∩5c))?.

Then it is sufficient to prove that

lim
r→0

Q((∂∗Br ∩5∩ H c)?)

A(∂∗Br )
= 0, lim

r→0

Q((∂∗Br ∩ H ∩5c)?)

A(∂∗Br )
= 0. (A-4)

Since H c
= H(x,−n), from the definition of the measure-theoretic normal we

have

lim
r→0

V (Br ∩5∩ H c)

V (Br )
= 0. (A-5)

On the other hand, by the coarea formula [Ziemer 1983, Equation (8)]

V (Br ∩5∩ H c)=

∫ r

0
A(∂∗Bη ∩5∩ H c) dη,
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that is, the map r 7→ V (Br ∩5∩ H c) is differentiable, and

d
dr

V (Br ∩5∩ H c)= A(∂∗Br ∩5∩ H c) (A-6)

for almost every r , again by the Lebesgue–Besicovitch theorem. (The same holds
for the identity next to (A-7) below.) Since V (Br )= O(r N ), from (A-5) it follows
that V (Br ∩5∩H c)= o(r N ), and from (A-6) it follows that A(∂∗Br ∩5∩H c)=

o(r N−1). Because A(∂∗Br )= O(r N−1), we conclude that

lim
r→0

A(∂∗Br ∩5∩ H c)

A(∂∗Br )
= 0. (A-7)

In the identity

lim
r→0

Q((∂∗Br∩5∩H c)?)

A(∂∗Br )
= lim

r→0

Q((∂∗Br∩5∩H c)?)

A((∂∗Br∩5∩H c)?)
lim
r→0

A((∂∗Br∩5∩H c)?)

A(∂∗Br )
,

by the absolute continuity of Q, the first limit on the right exists and is finite for
A-almost every x in �. The second limit is zero by (A-7), because a subsurface
differs from the corresponding normalized surface at most by a set of area zero.
Then (A-4)1 follows. Equation (A-4)2 is proved in the same way.

Step 4. From (A-1), (A-2), and (A-3) it follows that

lim
r→0

Q((∂∗5∩ Br )
?)

A(∂∗Br )
= lim

r→0

Q((∂∗H ∩ Br )
?)

A(∂∗Br )
. (A-8)

If the first limit exists for some 5, it also exists for H and, by consequence, it
exists for any other 5′ with normal n at x . On the other hand,

lim
r→0

Q((∂∗5∩ Br )
?)

A(∂∗Br )
= lim

r→0

Q((∂∗5∩ Br )
?)

A((∂∗5∩ Br )?)
lim
r→0

A((∂∗5∩ Br )
?)

A(∂∗Br )
.

At A-almost every x on ∂∗5, the first limit on the right is equal to s(x, ∂∗5), and
the second limit is equal to one [Ziemer 1983, Equation (5)]. By (A-8), the same
conclusion holds with 5 replaced by H . This proves that

s(x, ∂∗5)= s(x, ∂∗H) (A-9)

at all points x ∈ ∂∗5 at which the limit s(x, ∂∗5) exists, that is, A-almost every-
where on ∂∗5.

If x is one of such points and if 5′ is another surface such that x ∈ ∂∗5′ and n
is the normal at x , in the same way as above it can be proved that

s(x, ∂∗5′)= s(x, ∂∗H). (A-10)

Then it is possible to denote by s(x, n) the common value of all s(x, ∂∗5′), and
(4-13) follows from (A-9) and (A-10). �
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Appendix B: The cross product of a vector by a tensor

The cross product of a vector w by a second-order tensor A is the second-order
tensor (w× A) such that35

(w× A)v = w× (Av) (B-1)

for all vectors v. In components,

(w× A)i j = eihkwh Ak j . (B-2)

In particular, w× I is the second-order tensor such that

(w× I )v = w× v (B-3)

for all v. By definition, (w× I ) is the skew-symmetric tensor associated with w.
In components, for W = w× I the relations

Wi j = eik jwk, wi =
1
2 e j ik W jk, (B-4)

hold. In particular, let V and W be the skew-symmetric tensors associated with v
and w, respectively. Then, by (B-1),

2w · v = e j ik W jkvi =−(v×W )i i =−I · (v×W ), (B-5)

and, by (B-1) and (B-3),

v×W = (v× I )W = V W. (B-6)

Then, by the skew-symmetry of V and W ,

2w · v =−I · V W = V ·W. (B-7)

Finally, consider the curl of a vector field v

(curl v)h = ehsrvr,s .

By (B-2),

(curl v× I )i j = eihkehsrvr,sδk j = vi, j − v j,i = 2(∇Wv)i j , (B-8)

that is, 2∇Wv is the skew-symmetric tensor associated with curl v.

35This definition is modified from [Antman and Osborn 1979].
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