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A MIXED BOUNDARY VALUE PROBLEM IN POTENTIAL
THEORY FOR A BIMATERIAL POROUS REGION:

AN APPLICATION IN THE ENVIRONMENTAL GEOSCIENCES

A. P. S. SELVADURAI

This paper develops an exact closed-form solution to a mixed boundary value
problem in potential theory for an elliptical opening located at an impervious
interface separating two dissimilar, nondeformable porous media. The resulting
solution provides a convenient result for estimating the leakage rate of an incom-
pressible fluid retained in the system at a hydraulic potential difference. The
result for the elliptical opening is also used to provide a Pólya–Szegö-type esti-
mate for leakage rates from openings of arbitrary shape located at the imperme-
able interface. The extension of the study to include leakage into a transversely
isotropic porous medium with the plane of isotropy inclined to the impervious
boundary is also discussed.

1. Introduction

In environmental geosciences there are a number of instances where porous media
are separated by relatively impervious barriers. Such situations can be found where
periodic geologic deposition results in laminated regions where a fluid transmissiv-
ity contrast can be created by sedimentation of fine-grained material that will form
a nearly impervious barrier. Examples of these include varved clays and other
stratified geological media, where the scale of the impervious layers can range
from a few millimeters to meters [Tschebotarioff 1951; Bear and Verruijt 1987;
Phillips 1991; Selvadurai and Carnaffan 1997; Selvadurai et al. 2005]. An example
that has direct relevance to the application discussed in this paper is the problem
of geosynthetic liners, made of polymeric materials and used quite extensively
as engineered barriers to prevent the migration of fluids containing hazardous and
toxic chemicals from reaching potable groundwater regimes. Nearly all current-day
waste management endeavors, ranging from sanitary landfills to storage reservoirs
from resource extraction, use a variation of the concept of a geosynthetic liner to
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contain the hazardous components of toxic fluids. The implicit assumption in these
endeavors is that the polymeric material will maintain its integrity as a barrier, in
perpetuity. This is a naive expectation for any man-made material, particularly
a geosynthetic material that is prone to degradation upon exposure to leachates
and other chemicals and ultraviolet light. Recent experimental and theoretical
investigations [Yu and Selvadurai 2005; 2007; Selvadurai and Yu 2006a; 2006b]
indicate that the flexible polymeric material can be rendered brittle as a result of the
loss of plasticizer, induced by the leaching action of relatively common chemicals
such as acetone and ethanol. Since the plasticizer contributes to the flexibility
of the geosynthetic material, the leaching process can lead to its embrittlement,
which can serve as a location for the development of cracks through which the
retained contaminant fluids can be released. The assessment of the leakage rate
from the retained fluid is therefore of interest to estimate the environmental hazard
associated with the long term use of geosynthetics.

This paper examines the problem of the leakage through an elliptical opening or
defect that is located at the impermeable interface between two isotropic porous ge-
ological media (Figure 1). The formulation of the problem takes into consideration
the Darcy flow properties of the porous media adjacent to the impervious barrier
containing the elliptical defect. The paper examines the mixed boundary value in
potential theory that can be applied to the fluid migration from an elliptical defect
at an impervious boundary. It is shown that an exact solution to this problem can be
obtained using the results originally presented by Lamb [1927] and recently applied
by Selvadurai [2010], who developed a result for the intake shape factor for a cir-
cular fluid intake terminating at the interface between a hydraulically transversely
isotropic porous medium and an impervious stratum with the principal planes of
permeability inclined to the impervious interface. This analytical approach is used
to develop an exact analytical result for the leakage from an elliptical defect in an
otherwise impervious geosynthetic liner. The analytical procedure yields an exact
closed-form solution, which takes into consideration the permeability characteris-
tics of porous regions on either side of the impervious barrier. It is shown that the
analytical result for the elliptical defect can also be used to develop a set of bounds
for estimating the leakage rate from a defect of arbitrary shape. In the particular
instance when the barrier with the elliptical defect is in contact with a single trans-
versely isotropic porous medium with the plane of transverse isotropy inclined to
the impervious interface, a closed-form analytical result can be developed for the
leakage rate from the elliptical defect.

2. The mixed boundary value problem

We restrict attention to a bimaterial porous region that contains a plane imper-
meable barrier at the interface of the two porous media and fluid leakage occurs



A MIXED BOUNDARY VALUE PROBLEM FOR A BIMATERIAL POROUS REGION 111

 

 

 

 

 

 

 

 

 

 

x
 

y
 

z

2a
2b

porous medium 2

porous medium 1 

impervious barrier

elliptical opening

: ( , )i ix y SΦ = Φ ∈

0 ; ( , )
n

ex y S
∂Φ

= ∈
∂

Figure 1. Elliptical opening at an impermeable interface separat-
ing two dissimilar porous media.

through an elliptical defect in the impervious barrier (Figure 1). The fluid flow
characteristics are governed by Darcy’s law and the permeabilities are defined by
K1 and K2 for the respective regions. The reduced Bernoulli potential associated
with Darcy flow is defined by 8(x) and this neglects the velocity potential. The
datum is taken as the plane of the interface and we assume that the regions 1 and
2 are subjected, respectively, to far-field reduced Bernoulli potentials 81 and 82,
with 81 > 82. For purposes of model development, we assume that the nonde-
formable dissimilar porous region shown in Figure 1 contains fluids with similar
properties, although it should be noted that the viscosity and other properties of the
contaminating leachates can be different from those of groundwater. In order to
develop a convenient analytical result that can be used to estimate the steady fluid
leakage through the crack, we shall adopt this assumption. It can be shown that
for isochoric Darcy flow in an isotropic nondeformable porous medium the mass
conservation law gives ∇.v = 0, where v(x) is the velocity vector and x is the
spatial coordinates. For an isotropic porous medium, Darcy’s law can be written
as

v(x)=−
Kγw
µ
∇8, (1)

where K is the permeability, γw is the unit weight of the fluid, and µ is its dynamic
viscosity. Combining Darcy’s law and the fluid mass conservation principle, we
obtain the partial differential equation governing 8(x) as

∇
28(x)= 0, (2)

where ∇2 is Laplace’s operator. We consider the mixed boundary value problem
in potential theory referred to a halfspace region, the boundary of which is subject
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to the relevant Dirichlet and Neumann boundary conditions applicable to an imper-
meable region with an elliptical opening. The planar region Si corresponding to
the elliptical defect is defined by

Si :
( x

a

)2
+

( y
b

)2
≤ 1, (3a)

while the region Se exterior to the defect is defined by

Se:
( x

a

)2
+

( y
b

)2
> 1, (3b)

where a and b are, respectively, the semimajor and the semiminor axes of the
elliptical region. We consider the mixed boundary value problem in potential theory
referred to the elliptical aperture such that

(8)z=0 =8i = constant, (x, y) ∈ Si , (4)

and (
∂8

∂z

)
z=0
= 0, (x, y) ∈ Se, (5)

where8i is the constant Bernoulli potential over the elliptical interior region, which
is dictated by the constant pressure potential over this region, and the datum is taken
as the plane of the defect. Since the problem examined has a three-dimensional
configuration, the regularity conditions applicable to a semiinfinite domain should
also be satisfied. In this case the far-field potential in region 1 is 81. For the
solution of the mixed boundary value problem posed by (4) and (5) we assume,
however, that the potential 8(x) decays uniformly to zero as x → ∞. Since
the Bernoulli potential is indeterminate to an arbitrary constant, the far-field value
can be added to satisfy the value of the constant potential regularity condition as
x→∞. The solution to the mixed boundary value problem in potential theory,
governed by the partial differential equation (2) and mixed boundary conditions
(4) and (5), can be developed in a variety of ways, the most widely accepted being
the formulation that employs a generalized ellipsoidal coordinate system and by
developing the solution to the opening with an elliptical plan form as a limiting case
of an ellipsoid. This approach was used by Lamb [1927] to develop a solution for
the motion of a perfect fluid through an elliptical aperture. The result can also be
developed using the formal developments in potential theory given by Morse and
Feshbach [1953, Section 10.3]. Similar developments have been used in [Green
and Sneddon 1950; Kassir and Sih 1968; Selvadurai 1982; Walpole 1991] in de-
veloping canonical results for elliptical cracks and elliptical inclusions embedded
in isotropic and transversely isotropic elastic solids. The solution can be most
conveniently formulated in relation to a set of ellipsoidal coordinates (ξ, η, ζ ) of
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the point (x, y, z), which are the roots of the cubic equation in θ defined by

x2

(a2+ θ)
+

y2

(b2+ θ)
+

z2

θ
− 1= 0. (6)

The ellipsoidal coordinate system (ξ, η, ζ ) chosen ensures that the interior Dirichlet
region Si corresponds to the ellipse ξ = 0 and the exterior Neumann region Se

corresponds to a hyperboloid of one sheet η = 0. The mixed boundary conditions
(4) and (5) can be explicitly satisfied by the harmonic function

8(x, y, z)=
a8i

K(σ )

∫
∞

ξ

ds√
s(a2+ s)(b2+ s)

, (7)

where

ξ = a2(sn−2 u− 1) (8)

and sn u represents the Jacobian elliptic function defined by∫ sn(u,σ )

0

dt√
(1− t2)(1− σ 2t2)

= (u, σ ). (9)

In a numerical evaluation of sn u, it is convenient to express the function in the
series form:

sn(u, σ )= u− (1+ σ 2)
u3

3!
+ (1+ 14σ 2

+ σ 4)
u5

5!

− (1+ 135σ 2
+ 135σ 4

+ σ 6)
u7

7!
+ · · · . (10)

The complete elliptic integral of the first kind K(σ ) is defined by

K(σ )=
∫ π/2

0

dς
√

1− σ 2 sin2 ς
, σ =

(
a2
− b2

a2

)1/2

. (11)

We can generalize the result (7) to account for the effect of the far-field potential
81 (> 8i ). This involves simply changing the potential 8i in (7) to (81−8i ).
The fluid velocity at the elliptical aperture associated with region 1 is now given
by

v(1)z (x, y, 0)=−
K1γw

µ

(
∂8

∂z

)
z=0

=
K1γw(81−8i )

bµK(σ )
1√

1− x2/a2− y2/b2
, (x, y) ∈ Si , (12)

where K1 is the permeability of the porous region 1. The flow rate out of the
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elliptical aperture is given by

Q =
K1γw(81−8i )

µbK(σ )

∫∫
Si

dx dy√
1− x2/a2− y2/b2

=
2πa(81−8i )γwK1

µK(σ )
. (13)

A similar result can be developed for the potential flow problem where flow takes
place from the porous halfspace region 2 at a far-field potential 82 (<8i ), which
gives the velocity field in the interface approached from region 2 as

v(2)z (x, y, 0)=−
K1γw

µ

(
∂8

∂z

)
z=0

=
K1γw(8i −82)

bµK(σ )
1√

1− x2/a2− y2/b2
, (x, y) ∈ Si , (14)

and the flow rate into region 2 is given by

Q =
2πa(8i −82)γwK2

µK(σ )
. (15)

The value of the interface potential 8i can be obtained, ensuring continuity of the
velocity field at the interface: that is,

v(1)z (x, y, 0)= v(2)z (x, y, 0), (16)

which gives 8i = (K181 + K282)/(K1 + K2). The leakage rate through the
elliptical aperture can now be obtained by eliminating 8i in either (13) or (15),
which gives

Q =
2πa(81−82)γwK1K2

µ(K1+ K2)K(σ )
. (17)

It is important to note that the result (17) is the exact closed-form solution for
the steady leakage of an incompressible fluid through an elliptical cavity located
at the impermeable interface separating isotropic nondeformable porous regions
of dissimilar permeability. The potential problem that is solved satisfies the gov-
erning equations of potential flow, the mixed boundary conditions applicable to
the potential problem and, continuity of both the potential and the flow velocity
at the interface where Dirichlet conditions are prescribed. From the uniqueness
theorem applicable to mixed boundary value problems in potential theory, this
solution is unique [Zauderer 1989, Section 6.8; Selvadurai 2000a, Section 5.7;
2000b, Section 9.5]. It should be noted that the solution is identical even if a
continuity of total flux boundary condition is imposed on the interface rather than a
continuity of flow velocity. It is noted from (12) and (14) that although the velocity
at the boundary of the elliptical entry region is singular, the volume flow rate to the
elliptical cavity region is finite. In the special case when the permeability value of
one region becomes large (for example, K2→∞), (17) reduces to
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Q =
2πa(81−82)γwK1

µK(σ )
. (18)

For the special case when the elliptical opening has the shape of a circular region of
radius a, K(0)→ π/2 and (18) reduces to the classical result that can be obtained
by solving the associated mixed boundary value problem in potential theory for
the circular opening at an impervious interface, by appeal to the theory of dual
integral equations [Sneddon 1966]. The solution presented for the elliptical defect
is valid for all aspect ratios of the defect, which permits the evaluation of leakage
rates from narrow cracks. Comparisons of the analytical estimates with computa-
tional results are given in [Selvadurai 2012] and the analytical solution provides
a benchmark for calibration of computational modeling of the potential problem.
It is also worth noting that in instances where the separate porous regions display
spatial heterogeneity with a log normal variation in the permeability, which can be
characterized by an effective permeability such as the geometric mean [Selvadurai
and Selvadurai 2010], the result (17) can be used to estimate the leakage from the
elliptical opening.

3. Fluid leakage from a defect
with an arbitrary plan form

The result (17) can also be used to estimate or develop bounds for the leakage
from a damaged region of arbitrary area AD, where the bounds for the effective
permeability K D are obtained by considering equivalent elliptical regions that ei-
ther inscribe or circumscribe the region AD (Figure 2), that is,

Q̄ I ≤
Qµ

2πγw(81−82)
√

AD K1K2
≤ Q̄C . (19)

In (19), Q̄n (n = I,C) denote the nondimensional flow rates, which refer to the
elliptical regions that either inscribe (I ) or circumscribe (C) the region AD and are
given by

Q̄n =
an
√

K1K2
√

AD(K1+ K2)K(σn)
(n = I,C). (20)

The nondimensionalization is accomplished by ensuring that the bounds corre-
spond to nondimensional versions derived from (20). Here, an and bn (n= I,C) are,
respectively, the semimajor and semiminor axes of the elliptical region associated
with the inscribed and circumscribed ellipses that contain the region of area AD,
and

K(σn)=

∫ π/2

0

dς
√

1− σ 2
n sin2 ς

, σn =

(
a2

n − b2
n

a2
n

)1/2

. (21)
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Figure 2. Defect with an arbitrary shape located at an imperme-
able interface between dissimilar nondeformable porous media.

This approach for bounding the result follows procedures that were proposed
by Maxwell [1892] for problems in electrostatics and applied by Pólya and Szegö
[1945; 1951] (see also [Protter and Weinberger 1984]) for a variety of problems
in potential theory and elastostatics to obtain bounds to problems that are usually
regarded as analytically intractable [Galin 1961; Selvadurai 1983].

4. Fluid leakage from an elliptical defect into
a hydraulically transversely isotropic porous medium

We now consider the problem of a transversely isotropic or stratified porous medium
of semiinfinite extent where the stratifications are inclined at an angle α to the
surface of the halfspace (Figure 3). The surface of the halfspace is impervious
except over an elliptical opening through which fluids can either enter or exit the
transversely isotropic porous medium. The orientation of the elliptical opening is
such that its minor axis is aligned with the y-axis of the spatial coordinate system
(x, y, z). To an extent, this is a simplification; otherwise the potential problem
would only be amenable to a complicated ellipsoidal harmonic function formula-
tion.

The permeability matrix for the hydraulically transversely isotropic material,
[K P
], referred to the principal directions aligned along the normal (n) and tangen-

tial (t) directions, is given by

[K P
] =

Kt 0 0
0 Kt 0
0 0 Kn

 , (22)
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Figure 3. A mixed boundary value problem for flow from an el-
liptical opening located at the surface of a transversely isotropic
porous halfspace.

and the permeability matrix [K RC
] referred to the rectangular Cartesian coordinate

system (x, y, z) is given by

[K RC
] = [H]T[K P

][H], (23)

where

[H] =

 cosα 0 sinα
0 0 0

−sinα 0 cosα

 . (24)

The mixed boundary value problem governing flow into the transversely isotropic
elastic halfspace is of the type given by the boundary conditions (4) and (5) in-
dicated previously. It can be shown that this mixed boundary value problem, if
formulated in the conventional way, will give rise, even for a circular opening,
to a series of dual integral equations of unmanageable complexity. The approach
adopted here follows from the transformation technique proposed by Selvadurai
[2010], which leads to a manageable problem. Referring to Figure 3, where the
principal planes of hydraulic transverse isotropy are aligned with the coordinate
system (x̄, ȳ, z̄), the fluid flow in the transversely isotropic porous medium is given
by

Kt

(
∂28

∂ x̄2 +
∂28

∂ ȳ2

)
+ Kn

∂28

∂ z̄2 = 0. (25)
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At the elliptical region on which the Dirichlet condition is prescribed,

x̄ = a cosα, ȳ = b, z̄ = a sinα. (26)

We now make the conventional transformation that converts (25) from a pseudo-
Laplacian to a Laplacian form, using the following transformations:

x̄ = X, ȳ = Y, z̄ = Z

√
Kn

Kt
, (27)

which reduces (25) to the Laplacian form

∂28

∂X2 +
∂28

∂Y 2 +
∂28

∂Z2 = 0. (28)

The coordinate directions X , Y , and Z are aligned with the axes x̄ , ȳ, and z̄,
respectively; the new orientation of the halfspace region is defined in relation to
the axes (x̃, ỹ, z̃) and the inclination of the halfspace is defined by β as shown
in Figure 4. The transformations (27), however, transform the original elliptical
cavity with semimajor axis a and semiminor axis b to an ellipse with semimajor
axis c and semiminor axis b, and the inclination β of the plane of the elliptical
Dirichlet region at the interface (Figure 4) gives

X = c cosβ, Y = b, Z = c sinβ. (29)

x�
 

x�
 

Y y�
 

X
 

z�
 

Z
 

0 ; ( , )
n

ex y S
∂Φ

= ∈
∂

�

 

2c
 

2b
 

0
 

: ( , )i ix y SΦ = Φ ∈ �

 

β
 

pseudo-isotropic 

porous medium  

Figure 4. A mixed boundary value problem for flow from an el-
liptical opening located at the surface of a pseudoisotropic porous
medium.
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Using (27) and (29), we obtain

c2
= a2

{
cos2 α+

Kt

Kn
sin2 α

}
. (30)

Since the representation of the potential problem in the (X, Y, Z) coordinate sys-
tem is isotropic, the choice of reference coordinate system to analyze the mixed
boundary value problem referred to the Dirichlet boundary conditions prescribed
on the transformed elliptical region is arbitrary and it is convenient to select the
coordinate system (x̃, ỹ, z̃) as shown in Figure 4. Referring to this coordinate sys-
tem, the mixed boundary value problem deals with Dirichlet boundary conditions
prescribed within the elliptical opening S̃i and null Neumann boundary conditions
prescribed in the exterior region S̃e, where

S̃i :
( x̃

c

)2
+

( ỹ
b

)2
≤ 1, and S̃e:

( x̃
c

)2
+

( ỹ
b

)2
> 1, (31)

where c will be the major axis if Kt/Kn > 1 and a minor axis if Kt/Kn < 1.
Following procedures similar to those outlined in Section 2 it can be shown that
the relevant solution for satisfying the mixed boundary conditions

(8)z̃=0 =8i = constant, (x̃, ỹ)∈ S̃i , (32)(
∂8

∂ z̃

)
z̃=0
= 0, (x̃, ỹ)∈ S̃e, (33)

is given by

8(x̃, ỹ, z)=
c8i

K(ρ)

∫
∞

ξ

ds√
s(c2+ s)(b2+ s)

, (34)

where

ρ =

√
Kn cos2 α+ Kt sin2 α− (b/a)2

Kn cos2 α+ Kt sin2 α
. (35)

The flow rate at the elliptical opening is given by

Q =
2π aγw8i

√
Kn Kt

µK(ρ)

√
cos2 α+

Kt

Kn
sin2 α. (36)

When Kt = Kn = K0, (36) is independent of the orientation α and reduces to a
result similar to that given by (18).

The mixed boundary value problem involving dissimilar transversely isotropic
porous halfspace regions with planes of transverse isotropy that are arbitrary (see
Figure 5) cannot be solved in an exact fashion similar to that outlined previously.
This limitation arises from the fact that when both the hydraulic transverse isotropies
of the two regions and the inclinations of the principal directions are arbitrary, in the
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Figure 5. Elliptical defect at an impermeable interface between
two dissimilar transversely isotropic porous media.

transformed configuration the dimensions of the ellipses will be different (by virtue
of (30)) and will be unequal even if the orientations of the transverse isotropies are
made to coincide along one principal direction. An approximate solution to the
leakage through an elliptical opening separating dissimilar transversely isotropic
regions under far-field potentials 81 and 82 (with 81 > 82) can be evaluated
by assuming that the total flow rate at the elliptical defect is the same for both
transversely isotropic regions irrespective of the misalignment in their principal
axes.

The flow rate can be estimated from the result

Q '
2πaγw(81−82)

µ
∑

i=1,2

K(ρi )√
Kni Kti {cos2 αi + (Kti/Kni ) sin2 αi }

, (37)

where

ρi =

√
Kni cos2 αi + Kti sin2 αi − (b/a)2

(Kni cos2 αi + Kti sin2 αi )
. (38)

In the instance when Kn1 = Kt1 = K1 and Kn2 = Kt2 = K2, the solution will be
independent of αi (i = 1, 2) and ρi = σ , which is defined by (11). In this case the
result (37) reduces to the exact solution given by (17). Similarly as Kn2= Kt2→∞,
and Kn1 = Kn , Kt1 = Kt , (37) reduces to the result (36) for a single halfspace.
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5. Concluding remarks

The mixed boundary value problem in potential theory for a halfspace region,
where Dirichlet boundary conditions are prescribed over an elliptical region and
null Neumann boundary conditions are prescribed exterior to the elliptical domain,
can be used to develop solutions to porous media flow problems of interest to en-
vironmental geosciences. The exact closed-form solutions developed for leakage
through an elliptical defect located at an impermeable interface between nonde-
formable dissimilar porous media can be extended to develop exact closed-form
results that can be used to benchmark the accuracy of computational schemes for
Darcy flow where singular behavior in the velocity field at the boundary is rarely
incorporated in the solution scheme.
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GEOMETRIC DEGREE OF NONCONSERVATIVITY

JEAN LERBET, MARWA ALDOWAJI, NOËL CHALLAMEL,
OLEG N. KIRILLOV, FRANÇOIS NICOT AND FÉLIX DARVE

This paper deals with nonconservative mechanical systems subjected to noncon-
servative positional forces leading to nonsymmetric tangential stiffness matrices.
The geometric degree of nonconservativity of such systems is then defined as
the minimal number ` of kinematic constraints necessary to convert the initial
system into a conservative one. Finding this number and describing the set of
corresponding kinematic constraints is reduced to a linear algebra problem. This
index ` of nonconservativity is the half of the rank of the skew-symmetric part
Ka of the stiffness matrix K that is always an even number. The set of constraints
is extracted from the eigenspaces of the symmetric matrix K 2

a . Several examples
including the well-known Ziegler column illustrate the results.

Introduction

This paper is concerned with the statics or dynamics of a discrete or discretized
system 6free. We assume that, after having started with different possible nonlinear
settings, convenient assumptions and approximations lead to a dynamic evolution
governed by the following equation of motion of the free system 6free:

M Ẍ + K (p)X = 0, (1)

where K (p) = Ks(p)+ Ka(p), with Ks(p) = 1
2 (K (p)+ K T (p)) and Ka(p) =

1
2 (K (p)−K T (p)); note that K (p) is generally a nonsymmetric matrix (Ka(p) 6= 0)
because of the nonconservativity of 6free, whereas M is symmetric positive definite.

The paradoxical effects of mechanical systems linearly governed by (1) with a
nonsymmetric stiffness matrix have been known for some time (see for example
[Ziegler 1952; Bolotin 1961]) and have been investigated in depth, especially con-
cerning the so-called destabilizing effect of adding friction in the system (see [Kir-
illov and Verhulst 2010] for recent developments). Bigoni and Noselli [2011] have
illustrated through an experimental device calculations starting from dynamics with
dry friction and coming to equations like (1). Circulatory forces seem to have
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Keywords: linear algebra, nonconservative system.
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appeared first in the rotor dynamics works of early 1920s. It is generally agreed
that E. L. Nikolai was the first to have found some curious paradoxes induced
by the nonconservative aspect of the loading system. Here, we only investigate
systems without rotating effects which means that circulatory forces are only non-
conservative positional loading. More precisely, by decomposing in the linear case
the stiffness matrix K (p) into a symmetric part and a skew-symmetric part, one
then decomposes nonpotential forces into a potential component and a circulatory
component. Zhuravlev [2007] suggests an extension of this decomposition for the
nonlinear case by using the trick of Poincaré in his theorem about exact and closed
differential forms. This could be a good way to tackle the nonlinear extension of
the present paper.

If p is a loading parameter any norm ‖Ka(p)‖ of the skew-symmetric part Ka(p)
of K (p) is an elementary measure of the nonconservativity of the corresponding
nonpotential forces by any norm on the space of matrices. However, this rough
measure indicates the amplitude of the nonconservativity and masks another more
intrinsic measure of this nonconservativity which is defined in this paper. This is
here defined by a lower semicontinuous function with only finite integer values (for
an increasing load). This function is then locally independent on the load parameter
value, except perhaps for a finite number of singular values {p∗0 < p∗1 < · · ·< p∗r } of
p. Obviously p∗0 = 0 is such a value, because for p = 0 the system is conservative
and Ka(0) = 0. In all the examples except the so-called Bigoni system, the only
value is p = 0. Because it is also linked to a dimension of a linear space, we
then propose to call this number the geometric degree of nonconservativity of the
system (or of the forces).

The genesis of the used approach lies in several papers [Challamel et al. 2009;
2010; Nicot et al. 2011; Lerbet et al. 2012] that investigated the deep rule of the
second-order work criterion proposed in [Hill 1958] for solids in the framework
of nonassociated plasticity, and independently also proposed for instabilities for
systems subjected to nonpotential forces in [Absi and Lerbet 2004]. This criterion
performs especially well for nonconservative systems because, contrary to the di-
vergence criterion, it remains “stable” under the action of additional kinematics
constraints: if this criterion holds for a free system and for a value p of the load
parameter, it still holds for the same value p and for a system subjected to any
family of additional kinematic constraints. This property, contrary to a similar
well-known consequence of the Rayleigh theorems for conservative systems, is
generally no more valid for nonconservative systems. This paradoxical behavior
of the mechanical system, or more precisely of the stability of the investigated equi-
librium configuration of the mechanical system when adding additional kinematic
constraints, is actually a characteristic of nonconservative systems.

Thus, extending the above-mentioned works concerning the effects of additional
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constraints on such n-DOF (degree of freedom) nonconservative mechanical sys-
tems [Challamel et al. 2010; Lerbet et al. 2012; 2013], we focus on families of
kinematic constraints that could convert 6free into a conservative system. More
precisely, we address both the problems of the existence of a minimal family (ac-
cording to the number of constraints) of such constraints and that of building the
set of such families. The minimal number of constraints required to convert the
nonconservative system 6free into a conservative system is then a measure of the
nonconservativity of 6free and will be called the geometric degree of nonconserva-
tivity of 6free.

The paper is organized as follows: in Section 1, the mechanical problem is
reduced to a linear algebra problem. In Section 2, the solution is developed leading
to the concept of the geometric degree of nonconservativity of a mechanical system.
In Section 3, several examples illustrate the mathematical results.

1. Modeling of the mechanical problem

Let 6free be a n-DOF discrete mechanical system and suppose, as above, that the
dynamic evolution of 6free is governed by (1). X is the vector of kinematic un-
knowns (X T

= (x1, . . . , xn) ∈M1n(R)), M is the mass matrix (symmetric definite
positive), and K = K (p) is the stiffness matrix. The latter is any square matrix
because of the nonconservativity of 6free. Let p be a (loading) parameter. Suppose
that m (independent) additional kinematic constraints C1, . . . ,Cm are set up on
6free. The linear framework leads us to model each kinematic constraint C j by
a linear relationship

∑n
k=1 α

j
k xk = 0. Thus C j is represented by and identified

with a vector α j
= (α j

1 , . . . , α
j
n ) of Rn (actually it is a linear form on Rn but

by the canonical scalar product we may identify both spaces). The family of m
constraints {α1, . . . , αm

} may be considered as an element of an nm-dimensional
vector space — for instance as an n×m matrix A =

(
α1
· · · αm

)
in Mnm(R), or

more precisely in Gnm(R), the open subset of matrices of Mnm(R) with rank m,
because of the independence of the constraints. If m is fixed (it will have to be
found in a first step), we then have to find the set Cm(6free)⊂ Gnm(R) such that if
A ∈ Cm(6free) then the constrained mechanical system 6cons =6cons(A) becomes
conservative. Thus

AT
=

α1T

...

αmT

=
α

1
1 · · · α

1
n

...
. . .

...

αm
1 · · · α

m
n


(every vector αiT

= (αi
1, . . . , α

i
n) could be normalized αiTαi

= 1).
Let 3 ∈Mm1(R), with 3T

= (λ1 . . . λm), be the Lagrange multiplier attached
to the constraints. The equation of motion of the constrained system 6cons(A) is
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AT X = 0, (2)

M Ẍ + K (p)X + A3= 0, (3)

Let T (A)=Vect{α1, . . . , αm
} and let H(A)= T (A)⊥ be the orthogonal to T (A)

in Rn identified with Mn1(R). Thus dim T (A)= m and dim H(A)= n−m.
Let us choose an orthonormal basis of T (A) (by Gram–Schmidt from (α1, . . . ,

αm), for example) (t1(A), . . . , tm(A)) and another (hm+1(A), . . . , hn(A)) of H(A)
such that b(A)= (t1(A), . . . , tm(A), hm+1(A), . . . , hn(A)) is an orthonormal basis
of Rn and let P = P(A) ∈ On(R) be the orthogonal matrix passing from the
canonical basis of Rn to b(A):

P = P(A)=mat(t1(A), . . . , tm(A), hm+1(A), . . . , hn(A)).

Let Y be defined by X = P(A)Y . The previous system reads:

(P(A)T A)T Y = 0, (4)

PT (A)M P(A)Ÿ + PT (A)K (p)P(A)Y + P(A)T A3= 0, (5)

Considering Mcons(A) (resp. Kcons(A, p)) the square submatrix of PT (A)M P(A)
(resp. PT (A)K (p)P(A)) built by suppressing the first m rows and the first m
columns of PT (A)M P(A) (resp. of PT (A)K (p)P(A)), we get the following equa-
tions of the constrained system without the Lagrange multipliers:

Mcons(A)Ÿcons+ Kcons(A, p)Ycons = 0, (6)

where Y T
cons = (ym+1, . . . , yn) ∈M1 n−m(R).

We are then led to investigate when Kcons(A, p), a (n−m) × (n−m) square
submatrix of PT (A)K (p)P(A), is symmetric. Note that, in the standard case of
structural mechanics, K (p)= Kel− pKext with Kel the symmetric definite-positive
stiffness matrix relative to elastic actions and Kext the nonsymmetric matrix relative
to external actions (circulatory force). Kcons(A, p) reads:

Kcons(A, p)=

hT
m+1(A)K (p)hm+1(A) · · · hT

m+1(A)K (p)hn(A)
...

. . .
...

hT
n (A)K (p)hm+1(A) · · · hT

n (A)K (p)hn(A)

 .
The condition for the constraints defined by A to convert the free nonconserva-

tive system into a conservative one is then

hT
i (A)K (p)h j (A)= hT

i (A)K
T (p)h j (A) for all i, j,

or, in a more geometrical phrasing: for every pair u and v of two orthogonal vectors
of H(A) orthogonal to T (A) = Vect{α1, . . . , αm

}, uT K (p)v = uT K T (p)v. This
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is equivalent to uT Ka(p)v = 0 for every pair u and v of any two vectors of H(A)
with Ka(p) the skew-symmetric part of K (p). This is obviously right for m = n−1
because for any n− 1 independent constraints the submatrix becomes a scalar, the
skew-symmetric part of which is always nil!

Let φa(p) be the linear map whose matrix is in the canonical basis of Rn is
Ka(p). Geometrically, the condition means that for every vector u of H(A),
φa(p)(u) is orthogonal to H(A) or equivalently belongs to T (A):

φa(p)(u) ∈ T (A) for all u ∈ H(A). (7)

The initial mechanical problem has then been modeled into the following original
problem of linear algebra and more precisely of Euclidean spaces: Does there exist
an (n−m)-dimensional subspace of Rn which is sent onto its orthogonal by φa(p)?
We denote by ( · | · ) the scalar product of Rn ((u | v)= uT v with the identification
of Rn with Mn1(R)). In the following section, this problem is solved.

2. Solution of the mathematical modeling

We forget the p-dependency of all the quantities. In the introduction, we already
noted that the loading interval I = [0,+∞[ may be decomposed as {0} ∪ ]0, p∗1] ∪
]p∗1, p∗2] ∪ · · · ∪ ]p

∗
r ,+∞[ with p∗1, . . . , p∗r nonzero singular values of loading.

Forgetting the p-dependency means that p /∈ {0, p∗1, . . . , p∗r }. In the examples
excepted for Bigoni’s system, 0 is the only singular value. The singular problem
is not investigated in this paper.

Let Fa = Im(φa) and Ga = Ker(φa). We know that (as every skew-symmetric
linear map) φa has an even rank, r = 2`, and that its kernel and its image are
orthogonal spaces. Let Ga = Ker(φa). Thus Rn

= Fa
⊥

⊕Ga . We set the following:

Definition. The integer ` is called the geometric degree of nonconservativity of
6free.

As φ2
a is a symmetric linear mapping it is diagonalizable in an orthonormal basis.

Moreover Ga = Ker(φa) = Ker(φ2
a), the nonzero eigenvalues of φ2

a are negative,
and the associated eigenspaces are two-dimensional and mutually orthogonal. Note
these values −µ2

1, . . . ,−µ
2
` and E

−µ2
i
, the associated eigenspaces for i = 1, . . . , `.

Each of these spaces are φa-stable. Because of the φa-stability of each of the spaces
of the decomposition

Rn
= Ga

⊥

⊕ E
−µ2

1

⊥

⊕ . . .
⊥

⊕ E
−µ2

`
,

we deduce (by Cartan’s theorem) the existence of an orthonormal basis b′ of Rn
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such that the matrix of φa in b′ is

0 · · · · · · 0
...
. . .

...

0 · · ·

0 −µ1

µ1 0
. . .

... 0 −µ`
0 µ` 0


.

Thus

Rn
= Ga

⊥

⊕ E
−µ2

1

⊥

⊕ · · ·
⊥

⊕ E
−µ2

`
= Fa

⊥

⊕Ga = H(A)
⊥

⊕ T (A).

Proposition. Equation (7) holds if and only if m= ` and the family A of constraints
must be built by choosing αi

∈ E
−µ2

i
for i = 1, . . . , `= m, being, however, careful

that the property fails if two constraints are chosen in the same eigenspace E−µ2
i
.

Proof. Suppose first that m = ` = 1
2 rank(φa) and A built as proposed in the

proposition. Let u ∈ H(A). Complete the basis (α1, . . . , αm) by n− 2m vectors
β1, . . . , βn−2m of Ga and the m other vectors (φa(α

1), . . . , φa(α
m)) so that the

family (β1, . . . βn−2m, φa(α
1), . . . , φa(α

m)) is an orthogonal basis of T (A), as may
be easily checked. By definition,

u =
m∑

k=1

ukα
k,

and then
φa(p)(u)=

m∑
k=1

ukφ(α
k) ∈ T (A),

which is exactly (7).
Reciprocally, suppose now m < l or m = l but A is not built as proposed in the

proposition. Thus there is some i ∈ {1, . . . , l} such that any α j belongs to E
−µ2

i
meaning geometrically that T (A)∩E

−µ2
i
={0}. Choose now u 6= 0 in H(A)∩E

−µ2
i
.

Thus (u, φa(u)) is an orthogonal basis of E
−µ2

i
, meaning that φa(u)(6= 0) ∈ E

−µ2
i
,

implying φa(u) /∈ T (A). �

Thus, coming back to the mechanical problem, a free nonconservative mechani-
cal system 6free can be made conservative by means of m constraints if and only if
Ka(p) has rank 2m and the matrix A is formed by by m vectors α1, . . . , αm , each
αi being chosen in the eigenspace E

−µ2
i

of Ka(p)2; and Cm(6)= {A ∈Mnm(R) |

coli (A) ∈ E
−µ2

i
\ {0}} (with obvious notations) is an open 2m-dimensional cone of

Mnm(R).
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As stated previously, any constrained conservative system is still a conservative
system. Thus if there are k ≥m constraints, and m of the k constraints are chosen as
above, the constrained system is still conservative. If rank(Ka(p))= 2m, then m is
the minimum number of constraints needed to convert the system into a conserva-
tive one. The nonconservativity of the free system 6free is then characterized by two
measures of nonconservativity. The first is the norm of the skew-symmetric part
Ka(p), which indicates the amplitude of the nonconservativity, while the second is
the rank 2` of Ka(p), which acts as a geometric measure of the nonconservativity
or a sort of dimension (`) of the nonconservativity. This is the reason for the
above definition of the geometric degree of nonconservativity of 6free. Moreover
we may localize this nonconservativity because we may build families of ` vectors
(or constraints) allowing us to convert the initial nonconservative system into a
conservative one. Note also that the proof is constructive because it builds the kine-
matic constraints A converting the system 6free into a conservative one (6cons(A)).
There are 2m different independent systems A of constraints converting the non-
conservative 6free into a conservative 6cons(A). This result may be considered
as a sort of dual to the result about the destabilizing effect of adding kinematic
constraints in nonconservative systems (see again [Challamel et al. 2009; 2010;
Nicot et al. 2011; Lerbet et al. 2012]): by adding a suitable constraint in a suitable
eigenspace of Ks , one can destabilize a stable nonconservative system. Here, by
choosing appropriate constraints in suitable eigenspaces of K 2

a , one can convert a
nonconservative system into a conservative one. In the following section, several
examples issued from different mechanical systems illustrate these results.

3. Examples

In this section, we propose a collection of examples consisting in variations on the
paradigmatic Ziegler column. The degree of freedom (parameter n) and the nature
of the follower force (partial or complete follower force parameter γ ) may change.
In the most general case, the system 6 consists of n bars O A1, A1 A2, . . . , An−1 An

with O A1 = A1 A2 = · · · = An−1 An = h linked with n elastic springs with the same
stiffness k. EP is the follower nonconservative load acting on An . Adopting a
dimensionless format, we use p = ‖ EP‖h/k as a loading parameter. To investigate
how the algebraic method is performing, we conduct the complete calculation only
for the three-DOF Ziegler column.

In Section 3.1, we investigate the pure Ziegler system and we notice that the
geometric degree of nonconservativity is one for any number of rigid bars, meaning
for any degree of freedom. Increasing the number of bars or the degree of freedom
does not change its geometric degree of nonconservativity: from the geometric
point of view, the Ziegler system is weakly nonconservative. In Section 3.2, we
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investigate what we call the multiple-DOF Bigoni system, because it involves de-
vice like that of [Bigoni and Noselli 2011] at each joint. This system appears as
a generalization of the n-DOF Ziegler column where the load parameter is itself
distributed on the system and may vary on each joint. It also may be considered as
a discretized Leipholz column [Leipholz 1987]. In this case, the geometric degree
of nonconservativity increases with the number of bars and the degree of freedom.
Calculations are made only for n = 2 and n = 4. From a geometric point of view,
the Bigoni system is essentially more strongly nonconservative than the Ziegler
system.

3.1. Ziegler systems.

3.1.1. Two-DOF Ziegler column with complete follower force. The geometric stiff-
ness matrix is

Kext =

(
1 −1
0 0

)
.

Its skew-symmetric part is

Ka,ext =

(
0 −1

2
1
2 0

)
.

The square of Ka,ext is

K 2
a,ext =−

1
4

(
1 0
0 1

)
,

where µ2
1 = −

1
4 , K 2

a,ext is spheric, and Eµ1(φ
2
a,ext) = R2. Then α is any vector in

R2. Obviously any constraint converts the free system into a conservative one as a
one-DOF (elastic) system is always conservative because any continuous function
has a primitive.

3.1.2. Two-DOF Ziegler column with partial follower force. The geometric stiff-
ness matrix is

Kext =

(
1 −γ
0 1−γ

)
.

Its skew-symmetric part is

Ka,ext =

 0 −γ
2

γ

2
0

 .
The square of Ka,ext is

K 2
a,ext =−

γ 2

4

(
1 0
0 1

)
.

Our conclusions are similar to those above.
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3.1.3. Three-DOF Ziegler column with complete follower force. The geometric
stiffness matrix is

Kext =

1 0 −1
0 1 −1
0 0 0

 .
Its skew-symmetric part is

Ka,ext =
1
2

0 0 −1
0 0 −1
1 1 0

 .
Obviously rank(Ka,ext)= 2. The square of Ka,ext is:

K 2
a,ext =−

1
4

1 1 0
1 1 0
0 0 2

 .
Calculations give −µ2

1 =−
1
2 and

E
−

1
2
(K 2

a,ext)= Vec

α =
0

0
1

 , Ka,extα =
1
2

−1
−1

0

,
leading to two generic constraints converting the system into a conservative one:
θ3 = 0 and θ1+ θ2 = 0. In practice, any linear combination of these two constraints
lies in the corresponding plane and may be chosen as a possible constraint convert-
ing the system into a conservative one. We now propose to check for this case the
results coming from our algebraic method with respect to the direct approach to
the problem.

The virtual power of the follower force reads:

P∗(P)= Q1θ
∗

1 + Q2θ
∗

2 + Q3θ
∗

3 = Ph(sin(θ3− θ1)θ
∗

1 + sin(θ3− θ2)θ
∗

2 ). (8)

The complete nonlinear condition in order to have a conservative system is that
there is a function θ= (θ1, θ2, θ3) 7→U (θ1, θ2, θ3)=U (θ) such that Qk=−∂U/∂θk ,
which is here obviously impossible without an additional constraint: that the free
system is nonconservative!

Suppose now the system is subjected to a kinematic constraint φ(θ)= 0, which
leads to the following condition on the virtual parameters:

∂φ

∂θ1
θ∗1 +

∂φ

∂θ2
θ∗2 +

∂φ

∂θ3
θ∗3 = 0. (9)

Supposing the problem is resolvable with respect to the variable θ3, meaning that
∂φ/∂θ3 6= 0, we deduce from the implicit functions theorem that (locally in the
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neighborhood of θ = 0), θ3 = θ3(θ1, θ2) meaning that, to first order,

θ3 = θ3(θ1, θ2)≈
∂θ3

∂θ1

∣∣∣∣
θ=0
θ1+

∂θ3

∂θ2

∣∣∣∣
θ=0
θ2 = c1θ1+ c2θ2. (10)

Thus, to first order, the expansion reads: Q1 = Q1(θ1, θ2)≈ Ph((c1−1)θ1+ c2θ2)

and Q2 = Q2(θ1, θ2)≈ Ph((c1θ1+ (c2− 1)θ2). The condition of conservativity of
the loading then reads c1 = c2 = c. The kinematic relation is θ3 = c(θ1+ θ2) and
the quadratic potential is

U (θ)≈−Ph
(c−1

2
(θ2

1 + θ
2
2 )+ cθ1θ2

)
. (11)

For c = 0, we find the first generic kinematic constraint θ3 = 0, and for c 6= 0 it is,
as expected, a linear combination of both generic constraints.

Suppose now that the problem is not resolvable with respect to the variable θ3,
meaning that ∂φ/∂θ3 = 0. We then deduce that, linearly, the relation only concerns
θ1 and θ2 and reads linearly as

∂φ

∂θ1

∣∣∣∣
θ=0

θ1+
∂φ

∂θ2

∣∣∣∣
θ=0

θ2 = a1θ1+ a2θ2 ≈ 0, (12)

and that a1θ
∗

1 + a2θ
∗

2 = 0. Resolving these relations, for example, with respect to
the variable θ1 (θ1 =−bθ2 =−(a2/a1)θ2 and reporting this relation in (8) shows
that P∗(P) = Q2θ

∗

2 with Q2 = Q2(θ2, θ3) ≈ Ph(−b(θ3 − bθ2) + (θ3 − θ2)) ≈

Ph((b2
− 1)θ2+ (1− b)θ3). The condition of integrability then reads b = 1, the

kinematic relation is θ1+ θ2 = 0, and the potential is nil up to order two. Then we
will come back precisely to the second generic kinematic constraint. To sum up,
the direct calculations lead to both generic constraints obtained from our algebraic
method.

3.1.4. Three-DOF Ziegler column with partial follower force. The geometric stiff-
ness matrix is

Kext =

1 0 −γ
0 1 −γ
0 0 1− γ

 .
Its skew-symmetric part is

Ka,ext =
1
2γ

0 0 −1
0 0 −1
1 1 0

 .
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Obviously rank(Ka,ext)= 2. The square of Ka,ext is

K 2
a,ext =−

1
4
γ 2

1 1 0
1 1 0
0 0 2

 .
Calculations give −µ2

1 =−γ
2/2 and

E−γ 2/2(K
2
a,ext)= Vec

α =
0

0
1

 , Ka,extα =
γ

2

−1
−1

0


leading to the same two generic constraints as previously which convert the system
into a conservative one: θ3 = 0 and θ1+ θ2 = 0.

3.1.5. An n-DOF Ziegler column with complete follower force (γ = 1). The stiff-
ness matrix is

K (p)=



2−p −1 0 0 · · · 0 p
−1 2−p −1 0 · · · 0 p
0 −1 2−p −1 · · · 0 p
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2−p −1+p
0 0 0 0 · · · −1 1


.

Its skew-symmetric part is

Ka(p)=
p
2



0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 1
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
−1 −1 −1 −1 · · · −1 0


.

Obviously rank(Ka(p))= 2. The square of Ka(p) is

K 2
a (p)=−

p2

4



1 1 1 1 · · · 1 0
1 1 1 1 · · · 1 0
1 1 1 1 · · · 1 0
...
...
...
...
. . .

...
...

1 1 1 1 · · · 1 0
0 0 0 0 · · · 0 n−1


= p2 K̃ 2

a .
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Figure 1. An n-DOF Ziegler column with complete follower
force: the case θ1 + · · · + θn−1 = 0 (left) and the case θn = 0
(right).

Calculations give −µ2
1 =−(n− 1)/4 and

E−(n−1)/4(K̃ 2
a )= Vec


α =



0
0
0
...

0
1

, K̃ 2
aα =

1
2



−1
−1
−1
...

−1
0




leading to two generic constraints converting the system into a conservative one:
θ1+ · · ·+ θn−1 = 0, meaning that the motion of An−1 is constrained to remain on
the axis OY (Figure 1, left), and θn = 0 (Figure 1, right).

3.2. The Bigoni system or discretized Leipholz column. We now turn to the n-
DOF Bigoni system [Bigoni and Noselli 2011], which can also be regarded as an
n-DOF Leipholz column [1987]. The system 6 consists of n bars O A1, A1 A2,
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. . . , An−1 An , with O A1 = A1 A2 = · · · = An−1 An = h linked with n elastic springs
with the same stiffness k. Adopting the same device at the end of each bar of
6 leads to a family of follower forces EP1, . . . , EPn (see Figure 2, left). The pure
follower forces EP1, EP2, . . . , EPn are applied at the ends of O A1, A1 A2, . . . , An−1 An ,
respectively. Adopting a dimensionless format, we use pi = ‖ EPi‖h/k, for i =
1, . . . , n, as loading parameters. The stiffness matrix is K (p)= K (p1, p2, . . . , pn):

K (p)=



2−
n∑

i=2

pi −1+p2 p3 p4 p5 · · · pn−1 pn

−1 2−
n∑

i=3

pi −1+p3 p4 p5 · · · pn−1 pn

0 −1 2−
n∑

i=4

pi −1+p4 p5 · · · pn−1 pn

0 0 −1 2−
n∑

i=5

pi −1+p5 · · · pn−1 pn

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · −1+pn−1 pn

0 0 0 0 0 · · · 2−pn −1+pn

0 0 0 0 0 · · · −1 1



.

Its skew-symmetric part is

Ka(p)=
1
2



0 p2 p3 p4 p5 · · · pn−1 pn

−p2 0 p3 p4 p5 · · · pn−1 pn

−p3 −p3 0 p4 p5 · · · pn−1 pn

−p4 −p4 −p4 0 p5 · · · pn−1 pn
...

...
...

...
...

. . .
...

...

−pn−1 −pn−1 −pn−1 −pn−1 −pn−1 · · · 0 pn

−pn −pn −pn −pn −pn · · · −pn 0


and

rank(Ka(p))=

{
n if n even,

n− 1 if n odd,

thus

`=

{
n/2 if n even,

(n− 1)/2 if n odd.

For n = 2, calculations give

Ka
2
=−

1
4

p2
2

(
1 0
0 1

)
, −µ2

1 =−
1
4

p2
2.
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Figure 2. Bigoni systems with n DOF (left) and two DOF (right).

K 2
a is spherical, E

−µ2
1
(K 2

a ) = R2, and α is then any vector in R2. The geometric
degree of nonconservativity is equal to 1 and the constraint is a linear combination
of the two generic constraints θ1 = 0 and θ2 = 0: this is any linear constraint! (See
Figure 2, right.)

For n = 4, calculations give

−µ2
1 =−

3
8 p2

4 −
1
4 p2

3 −
1
8 p2

2 +
1
8 a, −µ2

2 =−
3
8 p2

4 −
1
4 p2

3 −
1
8 p2

2 −
1
8 a,

where a =
√

9p4
4 + 12p2

3 p2
4 + 2p2

4 p2
2 + 4p4

3 + 4p2
3 p2

2 + p4
2 , and

E
−µ2

1
(K 2

a )= Vec
{
α1 =

[
[2(−p2

3 p2
4a+ 2p3 p2 p2

4a− p2
4 p2

2a+ p3 p3
2a

+ p3
3 p2a− p2

4 p4
2 + 3p3 p3

2 p2
4 + 5p3

3 p2 p2
4 + 2p3 p2 p4

4 + p2
3 p2

2 p2
4 + p4

4 p2
2

+ 7p4
4 p2

3 + 6p6
4 + 2p2

4 p4
3 − 2p4

4a+ 2p5
3 p2+ 3p3

3 p3
2 + p3 p5

2)],

[−(2p3
3 p2+ 5p3 p2 p2

4 + p3 p3
2 + 3p2

4 p2
2 + p3 p2a+ 3p4

4

+ 2p2
3 p2

4 − p2
4a)(−p2

4 + p2
2 + a)], [(−3p4

4 − 2p2
3 p2

4 + 2p2
4 p2

2

+ p2
4a+ 2p2

3 p2
2 + p4

2 + p2
2a)(−p4

2
+ p2

2
+ a)], [0]

]}
, (13)
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E
−µ2

2
(K 2

a )= Vec
{
α2 =

[
[2p4(p3

3a+ p3
2a+ p2

3 p2a+ p3 p2
2a

+ 2p2
4 p2a+ 2p2

4 p3a+ p3 p4
2 + 2p4

4 p2+ 3p2
4 p3

2 + 3p2
3 p3

2 − 7p3
3 p2

4

− 6p3 p4
4 − 2p5

3 − p2
4 p2

2 p3+ 5p2
4 p2

3 p2− p2
2 p3

3 + 2p4
3 p2+ p5

2)],

[−p4(2p2
3 p2+ 5p2

4 p2+ p3
2 − 3p3 p2

2 + p2a− 3p2
4 p3− 2p3

3

+ p3a)(−p2
4 + p2

2 + a)], [0], [(−3p4
4 − 2p2

3 p2
4

+ 2p2
4 p2

2 + p2
4a+ 2p2

3 p2
2 + p4

2 + p2
2a)(−p2

4 + p2
2 + a)]

]}
. (14)

For pi =
c
ih

, we have

−µ2
1 =

c2

1152h2

(
−95+

√
7729

)
,

−µ2
2 =

c2

1152h2

(
−95−

√
7729

)
,

a = 1
144

√
7729c2

h2 ,

so

E
−µ2

1
(K 2

a )= Vec


α1 =

c6

h6


35
6

√
7729+137

27+
√

7729

−
1
24

(
281−

√
7729

)
1
8

(
57+
√

7729
)

0

, Kaα1


,

E
−µ2

2
(K 2

a )= Vec

α2 =
c6

h6


35
3

√
7729+37

27+
√

7729

−
1
12

(
1−
√

7729
)

0
1
8

(
57+
√

7729
)

, Kaα2

.
In this example, the geometric degree of nonconservativity is equal to 2: two ad-
ditional kinematic constraints φ1(θ1, . . . , θ4)= 0 and φ2(θ1, . . . , θ4)= 0 are then
necessary to convert the system into a conservative one, each constraint φi being
chosen in E

−µ2
i
(K 2

a ) for i = 1, 2. For example,

φ1(θ1, . . . , θ4)=
35
6

√
7729+137

27+
√

7729
θ1−

1
24

(
281−

√
7729

)
θ2+

1
8

(
57+
√

7729
)
θ3,

φ2(θ1, . . . , θ4)=
35
6

√
7729+137

27+
√

7729
θ1−

1
12

(
1−
√

7729
)
θ2+

1
8

(
57+
√

7729
)
θ4.

Conclusion

In this paper, we investigate nonconservative systems, meaning here elastic systems
with a nonsymmetric stiffness matrix. We associate with each mechanical system
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a minimal number ` of additional kinematic constraints allowing this system to be
converted into a conservative one. As this integer measure of the nonconservativity
of the mechanical system is linked with the dimension of a vector space, it is called
the geometric degree of nonconservativity of the system. Computations of this
integer and of the corresponding additional kinematic constraints are constructive
and several examples illustrate the results. The extension to the nonlinear case will
be developed in a forthcoming paper.
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ASYMPTOTIC ANALYSIS OF SMALL DEFECTS
NEAR A SINGULAR POINT IN ANTIPLANE ELASTICITY,

WITH AN APPLICATION TO THE NUCLEATION
OF A CRACK AT A NOTCH

THI BACH TUYET DANG, LAURENCE HALPERN AND JEAN-JACQUES MARIGO

We use matching asymptotic expansions to treat the antiplane elastic problem
associated with a small defect located at the tip of a notch. In a first part, we
develop the asymptotic method for any type of defect and present the sequential
procedure which allows us to calculate the different terms of the inner and outer
expansions at any order. This requires in particular separating in each term its
singular part from its regular part. In a second part, the asymptotic method is
applied to the case of a crack of variable length located at the tip of a given notch.
We show that the first two nontrivial terms of the expansion of the energy release
rate are sufficient to well approximate the dependence of the energy release rate
on the crack length in the range of values of the length which are sufficient
to treat the problem of nucleation. This problem is considered in the last part
where we compare the nucleation and the propagation of a crack predicted by
two different models: the classical Griffith law and the Francfort–Marigo law
based on an energy minimization principle. Several numerical results illustrate
the interest of the method.

1. Introduction

A major issue in fracture mechanics is how to model the initiation of a crack in a
sound material; see [Bourdin et al. 2008]. There are two difficulties: the first one
is to propose a law able to predict that nucleation; the second is a purely numerical
issue. Indeed, it is difficult to compute with good accuracy the energy release rate
associated with a crack of small length which appears at the tip of a notch; see
[Marigo 2010]. The classical finite element method (FEM) leads to inaccurate
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results because of the overlap of two singularities which cannot be correctly cap-
tured by this method: one is due to the tip of the notch; the other is due to the tip
of the crack. A specific method of approximation based on asymptotic expansions
is preferable as it is developed in analogous situations with localized defects; see
for instance [Abdelmoula and Marigo 2000; Abdelmoula et al. 2010; Bilteryst and
Marigo 2003; Bonnaillie-Noël et al. 2010; 2011; David et al. 2012; Geymonat et al.
2011; Leguillon 1989; Marigo and Pideri 2011; Vidrascu et al. 2012]. The first
part of the present paper is devoted to the presentation of this matched asymptotic
method (shortly, the MAM) in the case of a defect (which includes the case of
a crack) located at the tip of a notch in the simplified context of antiplane linear
elasticity. Therefore, our approach can be considered as a particular case of the
previous works which have been devoted to the study of elliptic problems in corner
domains, like [Dauge 1988; Dauge et al. 2010; Grisvard 1985; 1986]. However,
a major difference is that we want to use these asymptotic methods to predict the
nucleation or the propagation of defects (like cracks) near those singular points.
The second and third parts of our paper will be devoted to this task. This requires, of
course, to introduce a criterion of nucleation. This delicate issue has not received a
definitive answer at the present time and it was considered for a long time as a prob-
lem which could not be solved in the framework of Griffith’s theory of fracture [Bui
1978; Cherepanov 1979; Lawn 1993; Leblond 2003]. The main invoked reason is
that the release of energy due to a small crack tends to zero when the length of the
crack tends to zero; see [Chambolle et al. 2008; Marigo 2010]. Therefore, accord-
ing to the Griffith criterion which states that the crack can propagate only when the
energy release rate reaches a critical value characteristic of the material, no nucle-
ation is possible because the energy release rate vanishes when there is no preexist-
ing crack. This limitation of Griffith’s theory was one of the motivations which led
Francfort and Marigo [1998] to replace the Griffith criterion by a principle of least
energy, in the spirit of the original idea of [Griffith 1921]. It turns out that the princi-
ple of least energy is really able to predict the nucleation of cracks in a sound body.
However, as it was generically proved in [Chambolle et al. 2008; Francfort and
Marigo 1998], the nucleation is necessarily brutal in the sense that a crack of finite
length suddenly appears at a critical loading. Accordingly, we propose to revisit the
problem of nucleation of a crack at the tip of a notch by comparing the two criteria.
One of our goals is to use the MAM to obtain semianalytical expressions for the
critical loading at which a crack appears and the length of the nucleated crack.

Specifically, the paper is organized as follows. Section 2 is devoted to the de-
scription of the MAM on a generic antiplane linear elastic problem where the body
contains a defect near the tip of a notch. We first decompose the solution into
two expansions: the outer expansion is valid far enough from the tip of the notch
while the inner expansion is valid in a neighborhood of the tip of the notch. These
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expansions contain a sequence of inner and outer terms which are solutions of inner
and outer problems and are connected by the matching conditions. Moreover each
term contains a regular and a singular part. We explain how all the terms and the
coefficients entering in their singular and regular parts are sequentially determined.
The section finishes with an example where the exact solution is obtained in closed
form and hence where we can verify the relevance of the MAM.

In Section 3, the MAM is applied to the case where the defect is a crack. Its
main goal is to compute with good accuracy the energy release rate associated with
a crack of small length near the tip of the notch. Indeed, it is a real issue in the
case of a genuine notch (as opposed to a crack) because the energy release rate
starts from 0 when the length of the nucleated crack is 0, then is rapidly increasing
with the length of the crack before reaching a maximum and is finally decreasing.
Accordingly, after the setting of the problem, the computation of the energy release
rate by the FEM is described, and the reason why the numerical results are less
accurate when the crack length is small is given. Then, the MAM is used to com-
pute the energy release rate for small values of the crack length. As expected, the
computation shows that, the smaller the size of the defect, the more accurate is the
approximation by the MAM at a certain order. It even appears that very accurate
results can be obtained by computing a small number of terms in the matched
asymptotic expansions. We discuss also the influence of the angle of the notch on
the accuracy of the results, this angle playing an important role in the process of nu-
cleation (because, in particular, the length lm at which the maximum of the energy
release rate is reached depends on the angle of the notch). It turns out that when the
notch is sufficiently sharp, i.e., sufficiently close to a crack, the first two nontrivial
terms of the expansion of the energy release rate are sufficient to capture with very
good accuracy the dependence of the energy release rate on the crack length.

In Section 4, we study the problem of crack nucleation at the tip of a notch. We
first introduce the two competing evolution laws, i.e., the G-law and the FM-law:
the first one is the usual Griffith’s law based on the criterion of critical energy
release rate; the second is that introduced in [Francfort and Marigo 1998], which
is based on the concept of energy minimization. We recall some general results
previously established in [Marigo 2010] and extend them to the present case of a
notch-shaped body in an antiplane setting. By virtue of the good approximation
given by the MAM, we are able to solve the evolution problem in a quasiclosed
form, the solution depending only on two coefficients that must be computed by
the FEM. This permits a qualitative and quantitative comparison of the two laws.
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Figure 1. The domain �l for the real problem.
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Figure 2. The domains �0 and �∞ for, respectively, the outer
(left) and the inner (right) problems.

2. The real problem and its expansion by the matched asymptotic method

2.1. The real problem. Here, we consider a small geometrical defect of size l (like
a crack or a void) located near the corner of a notch; see Figure 1. The geometry
of the notch is characterized by its angle ω; see Figure 2. The tip of the notch
is taken as the origin of the space. We will introduce two scales of coordinates:
the “macroscopic” coordinates x = (x1, x2) used in the outer domain, and the
“microscopic” coordinates y = x/ l = (y1, y2) used in the neighborhood of the tip
of the notch where the defect is located; see Figure 2. In the case of a crack, the
axis x1 is chosen in such a way that the crack corresponds to the line segment
(0, l)×{0}. The unit vector orthogonal to the (x1, x2) plane is denoted by e3.
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The natural reference configuration of the sound two-dimensional body is �0,
while the associated body which contains a defect of size l is �l . The part of the
boundary of �l which is due to the defect is denoted by 0l ; i.e.,

0l = ∂�l \ ∂�0, (1)

and 0l is contained in the disk of center (0, 0) and radius l. In the case of a crack, 0l

is the crack itself; i.e., 0l = (0, l)×{0}. The two edges of the notch are denoted by
0+ and 0−. To simplify the presentation, it is assumed that they are not modified
by the introduction of the defect; see Figure 1. When using polar coordinates
(r, θ), the pole is the tip of the notch and the origin of the polar angle is the edge
0−. Accordingly, we have

r=|x|, 0−={(r, θ) :0<r<r∗, θ=0}, 0+={(r, θ) :0<r<r∗, θ=ω}. (2)

This body is made of an elastic isotropic material whose shear modulus is µ > 0.
It is submitted to a loading such that the displacement field at equilibrium ul be
antiplane; i.e.,

ul(x)= ul(x1, x2)e3,

where the subscript letter l is used as a reminder that the real displacement depends
on the size of the defect. We assume that the body forces are zero and then ul must
be an harmonic function in order to satisfy the equilibrium equations in the bulk:

1ul = 0 in �l . (3)

The edges of the notch are free while 0l is submitted to a density of (antiplane)
surface forces. Accordingly, the boundary conditions on 0l and 0± are

∂ul

∂ν
= 0 on 0±,

∂ul

∂ν
(x)=

g( y)
l

on 0l . (4)

In (4), ν denotes the unit outer normal vector to �l , and we assume that the den-
sity of (antiplane) surface forces depends on the microscopic variable y and has a
magnitude of the order of 1/ l.

The remaining part of the boundary of�l is divided into two parts: 0D where the
displacement is prescribed and 0N where (antiplane) surface forces are prescribed.
Specifically, we have

ul = f on 0D,
∂ul

∂ν
= h on 0N . (5)

The following proposition is a characterization of those functions which are har-
monic in an angular sector and whose normal derivatives vanish on the edges of
the sector. It is of constant use throughout the paper.
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Proposition 1. Let r1 and r2 be such that 0 ≤ r1 < r2 ≤ +∞ and let Dr2
r1

be the
angular sector

Dr2
r1
= {(r, θ) : r ∈ (r1, r2), θ ∈ (0, ω)}.

Then any function u which is harmonic in Dr2
r1

and which satisfies the Neumann
condition ∂u/∂θ = 0 on the sides θ = 0 and θ = ω can be expanded as

u(r, θ)= a0 ln(r)+ d0+
∑
n∈N∗

(anr−nλ
+ dnrnλ) cos(nλθ), λ=

π

ω
, (6)

where the an and the dn constitute two sequences of real numbers which are char-
acteristic of u.

Proof. Since the normal derivative vanishes at θ = 0 and θ = ω, u(r, θ) can be
expanded in a Fourier series as

u(r, θ)=
∑
n∈N

fn(r) cos(nλθ).

In order that u be harmonic, the functions fn must satisfy r2 f ′′n +r f ′n−n2λ2 fn = 0
for each n. We easily deduce that f0(r)= a0 ln(r)+d0 and fn(r)= anr−nλ

+dnrnλ

for n ≥ 1. �

2.2. The matching asymptotic method (MAM). We will write two asymptotic ex-
pansions of ul in terms of the small parameter l. The inner expansion is valid in the
neighborhood of the tip of the notch, while the outer expansion is valid far from
this tip. These two expansions will be matched in an intermediate zone.

2.2.1. The outer expansion. Far from the tip of the notch, i.e., for r � l, ul does
not see the notch, and we assume that it can be expanded as

ul(x)=
∑
i∈N

l iλui (x). (7)

In (7), even if this expansion is valid far enough from r = 0 only, ui must be
defined in the whole outer domain �0 which corresponds to the sound body; see
Figure 2 (left). Inserting this expansion into (3), (4), and (5) yields the sequence
of problems for the ui :

The first outer problem, i = 0:

1u0
= 0 in �0,

∂u0

∂ν
= 0 on 0+ ∪0−,

∂u0

∂ν
= h(x) on 0N ,

u0
= f (x) on 0D.

(8)
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The other outer problems, i ≥ 1:

1ui
= 0 in �0,

∂ui

∂ν
= 0 on 0+ ∪0−,

∂ui

∂ν
= 0 on 0N ,

ui
= 0 on 0D.

(9)

Moreover, the behavior of ui in the neighborhood of r = 0 is singular and the
singularity will be given by the matching conditions.

2.2.2. The inner expansion. Near the tip of the notch, i.e., for r � 1, we assume
that the displacement field ul can be expanded as

ul(x)= ln(l)
∑
i∈N

l iλwi ( y)+
∑
i∈N

l iλvi ( y), y =
x
l
. (10)

In (10), even if this expansion is valid only in the neighborhood of r = 0, the
fields vi and wi must be defined in the infinite inner domain �∞. The domain �∞

is the infinite angular sector D∞0 of the (y1, y2) plane, from which the rescaled
defect of size 1 is removed; see Figure 2 (right). Accordingly, the rescaled bound-
ary 01 of the defect is

01 = ∂�
∞
\ ∂D∞0 . (11)

(In the case of a crack, 01 = (0, 1)×{0}.) Inserting this expansion into the set of
equations constituting the real problem yields the sequence of problems for the vi :

The first inner problem, i = 0:
1v0
= 0 in �∞,

∂v0

∂θ
= 0 on θ = 0 and θ = ω,

∂v0

∂ν
= g( y) on 01.

(12)

The other inner problems, i ≥ 1:
1vi
= 0 in �∞,

∂vi

∂θ
= 0 on θ = 0 and θ = ω,

∂vi

∂ν
= 0 on 01.

(13)
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The wi must satisfy, for every i ≥ 0, the same equations as the vi for i ≥ 1. To
complement the set of equations, the behavior at infinity of the vi and the wi must
be included. It is obtained by the matching conditions from the outer problems.

2.2.3. Matching conditions. In any sector Dr2
0 with l� r2� 1, the displacement

fields ui in the outer expansion are harmonic and satisfy homogeneous Neumann
boundary conditions on the edges. Therefore Proposition 1 applies, and

ui (x)= ai
0 ln(r)+ di

0+
∑
n∈N∗

(ai
nr−nλ

+ di
nrnλ) cos(nλθ). (14)

As for the inner expansion, the displacement fields vi and wi are harmonic in the
sector D∞1 of the y plane and satisfy homogeneous Neumann boundary conditions
on the edges. Therefore Proposition 1 applies, with the microscopic coordinates y
and ρ = | y| = r/ l replacing the macroscopic coordinates x and r :

vi ( y)= ci
0 ln(ρ)+ bi

0+
∑
n∈N∗

(ci
nρ
−nλ
+ bi

nρ
nλ) cos(nλθ), (15)

wi ( y)= ei
0 ln(ρ)+ fi

0+
∑
n∈N∗

(ei
nρ
−nλ
+ fi

nρ
nλ) cos(nλθ). (16)

The outer expansion and the inner expansion are both valid in any intermediate
zone Dr2

r1
such that l � r1 < r2 � 1. Inserting (14) into the outer expansion (7)

with r = lρ leads to

ul(x)=
∑
i∈N

ln(l)l iλai
0

+

∑
i∈N

l iλ
(
ai

0 ln(ρ)+ di
0+

∑
n∈N∗

(ai+n
n ρ−nλ

+ di−n
n ρnλ) cos(nλθ)

)
, (17)

with the convention that di−n
n = 0 when n > i . Inserting (15) and (16) into the inner

expansion (10) leads to

ul(x)=
∑
i∈N

ln(l)l iλ
(
ei

0 ln(ρ)+ fi
0+

∑
n∈N∗

(ei
nρ
−nλ
+ fi

nρ
nλ) cos(nλθ)

)
+

∑
i∈N

l iλ
(
ci

0 ln(ρ)+ bi
0+

∑
n∈N∗

(ci
nρ
−nλ
+ bi

nρ
nλ) cos(nλθ)

)
. (18)

Both expansions (17) and (18) are valid provided that 1� ρ� 1/ l. Identification
of these expansions provides the connections between the coefficients of the inner
and outer expansions described in Table 1.

Remark 1. From Table 1 can be deduced that the fields wi are constant in the
whole inner domain:

wi ( y)= ai
0 for all y ∈�∞ and all i ≥ 0. (19)
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ei
n = 0 i ≥ 0, n ≥ 0
fi
0 = ai

0 i ≥ 0
fi
n = 0 i ≥ 0, n ≥ 1
ai

n = 0 n > i ≥ 0
ci

n = ai+n
n i ≥ 0, n ≥ 0

bi
n = 0 n > i ≥ 0

di
n = bi+n

n i ≥ 0, n ≥ 0

Table 1. The relations between the coefficients of the inner and
outer expansions given by the matching conditions.

Therefore, these fields will be determined once the constants ai
0 are known.

2.2.4. The singular behavior of the ui and the vi . From the matching conditions
can be read the behavior of ui in the neighborhood of r = 0 and the behavior of vi

at infinity. In particular, the form of their singularities is visible, according to the
following definition.

Definition 1. A field u defined in �0 is regular in �0 if u ∈ H 1(�0); i.e., u ∈
L2(�0) and ∇u ∈ L2(�0)

2. It is singular otherwise.
A field u defined in the unbounded domain �∞ is regular in �∞ if ∇u ∈

(L2(�∞))2 and limρ→∞ u(ρ, θ)= 0. It is singular otherwise.

Remark 2. In other words, a field is regular if the associated elastic energy is finite.
It is singular otherwise. In the case of the unbounded domain �∞, a constant field
has finite energy, but the condition at infinity is added in order to fix the constant
and obtain the uniqueness in the forthcoming boundary value problems.

According to the analysis in the previous subsection, the field u0 can be ex-
panded in a neighborhood of the tip of the notch as

u0(x)= a0
0 ln(r)+

∑
n∈N

bn
nrnλ cos(nλθ). (20)

In the domain �0, ln(r) is singular, whereas rnλ cos(nλθ) is regular for n ≥ 0, in
the sense of Definition 1. Accordingly, u0 is split into its singular and regular parts
as follows:

u0(x)= u0
S(x)+ ū0(x), (21)

u0
S(x)= a0

0 ln(r), ū0
∈ H 1(�0). (22)
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In the same way, for i ≥ 1, the field ui can be expanded in a neighborhood of the
tip of the notch as

ui (x)= ai
0 ln(r)+

i∑
n=1

ai
nr−nλ cos(nλθ)+

∑
n∈N

bi+n
n rnλ cos(nλθ). (23)

Since r−nλ cos(nλθ) is singular (for n ≥ 0) in the sense of Definition 1, ui is split
into its singular and regular parts as follows:

ui (x)= ui
S(x)+ ūi (x), (24)

ui
S(x)= ai

0 ln(r)+
i∑

n=1

ai
nr−nλ cos(nλθ), ūi

∈ H 1(�0). (25)

For the fields vi of the inner expansion, the behavior at infinity comes into play.
By virtue of the analysis in the previous subsection, the field vi for i ≥ 0 can be
expanded for large ρ as

vi ( y)= ai
0 ln(ρ)+

i∑
n=0

bi
nρ

nλ cos(nλθ)+
∑
n∈N∗

ai+n
n ρ−nλcos(nλθ). (26)

The field ln(ρ) as well as the fields ρnλ cos(nλθ), for n ≥ 0, are singular in �∞

in the sense of Definition 1 (even the constant field 1 corresponding to n = 0 is
singular). Since the fields ρ−nλ cos(nλθ) are regular when n ≥ 1, vi is split into
its singular and regular parts as follows:

vi ( y)= vi
S( y)+ v̄i ( y), (27)

vi
S( y)=ai

0 ln(ρ)+
i∑

n=0

bi
nρ

nλ cos(nλθ), ∇v̄i
∈ L2(�∞), lim

| y|→∞
v̄i ( y)=0. (28)

Remark 3. This analysis of the singularities shows that the singular parts of the
fields ui and vi will be known once the coefficients ai

n and bi
n are determined for

0≤ n ≤ i .

2.2.5. The problems defining the regular parts ūi and v̄i . The singular parts (ui
S, v

i
S)

are harmonic and satisfy the homogeneous Neumann boundary conditions on the
edges of the notch. Therefore the regular parts are harmonic too, with data ex-
pressed in terms of the singular fields.
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The first outer problem, i = 0: Find ū0 regular in �0 such that

1ū0
= 0 in �0,

∂ ū0

∂ν
= 0 on 0+ ∪0−,

∂ ū0

∂ν
= h−

∂u0
S

∂ν
on 0N ,

ū0
= f − u0

S on 0D.

(29)

The other outer problems, i ≥ 1: Find ūi regular in �0 such that

1ūi
= 0 in �0,

∂ ūi

∂ν
= 0 on 0+ ∪0−,

∂ ūi

∂ν
=−

∂ui
S

∂ν
on 0N ,

ūi
=−ui

S on 0D.

(30)

The first inner problem, i = 0: Find v̄0 regular in �∞ such that
1v̄0
= 0 in �∞,

∂v̄0

∂ν
= 0 on 0+ ∪0−,

∂v̄0

∂ν
= g−

∂v0
S

∂ν
on 01.

(31)

The other inner problems, i ≥ 1: Find v̄i regular in �∞ such that
1v̄i
= 0 in �∞,

∂v̄i

∂ν
= 0 on 0+ ∪0−,

∂v̄i

∂ν
=−

∂vi
S

∂ν
on 01.

(32)

Consider first the outer problems. The well-posedness is a direct consequence
of classical results for the Laplace equation:

Proposition 2. Let i ≥ 0. For a given singular part ui
S , i.e., if the coefficients ai

n are
known for all n such that 0≤ n ≤ i , then there exists a unique solution ūi of (30)
(or of (29) when i = 0). Consequently, the coefficients bi+n

n are then determined
for all n ≥ 0.
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As for the inner problems, since they are Neumann problems (except for the
condition at infinity), defined in an infinite domain, more care must be taken. The
well-posedness is ensured by a compatibility condition, as stated in Proposition 3.

Proposition 3. Let i ≥ 0. For given bi
n with 0 ≤ n ≤ i , there exists a regular

solution v̄i for the i-th inner problem if and only if the coefficient ai
0 is such that

a0
0 =−

1
ω

∫
01

g(s) ds, ai
0 = 0 for i ≥ 1. (33)

Moreover, if this condition is satisfied, then the solution is unique and therefore the
coefficients ai+n

n are determined for all n ≥ 0.

Proof. The inner problems are pure Neumann problems in which no Dirichlet
boundary conditions are imposed on the vi except for the condition at infinity.
Consequently, they admit a solution (if and) only if the Neumann data satisfy a
global compatibility condition. Let us reestablish that condition. Let �R be the
part of �∞ included in the ball of radius R > 1; i.e., �R

= �∞ ∩ { y : | y| < R}.
Consider first the case i = 0. Integrating the equation 1v0

= 0 over �R and using
the boundary conditions leads to

0=
∫
∂�R

∂v0

∂ν
ds =

∫ ω

0

∂v0

∂ρ
(R, θ)R dθ +

∫
01

g(s) ds. (34)

Using (26) yields

R
∂v0

∂ρ
(R, θ)= a0

0+
∑
n∈N∗

nλ
(
−c0

n R−nλ
+ b0

n Rnλ) cos(nλθ).

Since
∫ ω

0 cos(nλθ) dθ = 0 for all n≥ 1, after inserting in (34), the desired condition
for a0

0 appears. For i ≥ 1, the same process is applied, and the integral over 01

vanishes, yielding the desired condition.
If the compatibility condition (33) is satisfied, then the existence of a regular

solution for v̄i is obtained by standard arguments. Note however that, since ∇v̄i

belongs to L2(�∞), v̄i tends to a constant at infinity and this constant is fixed to 0
by the additional regularity condition. As far as the uniqueness is concerned, the
solution of this pure Neumann problem is unique up to a constant and the constant
is fixed by the condition that v̄i vanishes at infinity.

Once vi is determined, the coefficients ai+n
n are obtained by virtue of Proposition 1

and (26). �

Remark 4. If the forces applied to the boundary of the defect are equilibrated, i.e.,
if
∫
01

g(s) ds = 0, then all the coefficients ai
0 vanish and hence the terms in ln(l)

disappear in the inner expansion. There are no more logarithmic singularities in
the ui and the vi .
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2.2.6. The construction of the outer and inner expansions. Recall the relationship
between the coefficients (a j

n, b
j
n) and the singular and regular parts of the u j and v j :

u j
= u j

S + ū j , u j
S←→

(
a j

n
) j

n=0, ū j
←→

(
b j+n

n
)

n≥0,

v j
= v

j
S + v̄

j , v
j
S←→

(
a

j
0,
(
b j

n
) j

n=0

)
, v̄ j

←→
(
a j+n

n
)

n≥0.
(35)

All the coefficients a
j
0 vanish, except for a0

0, which is given by (33).
The scheme of the algorithm is the following. Suppose i ≥ 1, and u j and v j are

known for 1≤ j ≤ i − 1. The order of operations at step i is the following:

(1) ui
S is determined by (v̄i−n)1≤n≤i ,

(2) ūi is determined by ui
S ,

(3) vi
S is determined by (ūi−n)0≤n≤i ,

(4) v̄i is determined by vi
S .

Details are given below.
Initialization:

(S1) Define a0
0 by (33), and hence u0

S by (22).

(S2) From u0
S , define ū0 by (29), and hence u0

= u0
S + ū0 is determined.

(S3) Define bn
n for n ≥ 0 from (20) as the coefficients of ū0; see the next subsection

for the practical method. Hence, v0
S = a0

0+ b0
0 ln(ρ) is determined from (28).

(S4) From v0
S , v̄0 is computed by (31), and hence v0

= v0
S + v̄

0 is determined.

(S5) Define an
n for n ≥ 1 from (26) as the coefficients of v̄0; see the next subsection

for the practical method.

For i ≥ 1, suppose that u j and v j have been determined, together with the
coefficients in (35), for 0≤ j ≤ i − 1.

(R1) Since ai
0 = 0, and writing, for 1 ≤ n ≤ i , ai

n = a
(i−n)+n
n , ui

S is given by (25),
where the coefficients are determined by those of the v̄ j for 1≤ j ≤ i − 1.

(R2) ūi is obtained by solving (30).

(R3) The coefficients bi+n
n for n ≥ 0 are extracted from ūi in (23) and (24); see the

next subsection for the practical method.

(R4) Since ai
0 = 0, and using bi

n = b
j+n
n with j = i −n, vi

S is determined from (28).

(R5) v̄i is obtained by solving (32).

(R6) ui and vi are obtained by summing the singular and regular parts.

This iterative method is summarized in Table 2.
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ai
n/bi

n i = 0 i = 1 i = 2 i = 3 i = 4

n = 0 (33)/Outer 0 0/Outer 1 0/Outer 2 0/Outer 3 0/Outer 4
n = 1 0 Inner 0/Outer 0 Inner 1/Outer 1 Inner 2/Outer 2 Inner 3/Outer 3
n = 2 0 0 Inner 0/Outer 0 Inner 1/ Outer 1 Inner 2/Outer 2
n = 3 0 0 0 Inner 0/Outer 0 Inner 1/Outer 1
n = 4 0 0 0 0 Inner 0/Outer 0

Table 2. Summary of the inductive method to obtain the coeffi-
cients ai

n and bi
n: in the corresponding cell is indicated the problem

which must be solved.

2.2.7. The practical method for determining the coefficients ai
n and bi

n for 0≤ n≤ i .
Throughout this section, Cr denotes the arc of the circle of radius r starting on 0−

and ending on 0+:
Cr = {(r, θ) : 0≤ θ ≤ ω}.

The coefficients ai
n and bi

n can be obtained by path integrals (which are path inde-
pendent) as asserted in the following proposition.

Proposition 4. Let i ≥ 0. Assume that v̄i and ūi are known. Then:

(1) For n ≥ 1, ai+n
n is given by the following path integral over Cρ , which is

independent of ρ provided that ρ > 1:

ai+n
n =

2ρnλ

ω

∫ ω

0
v̄i (ρ, θ) cos(nλθ) dθ. (36)

(2) For n ≥ 0, bi+n
n is given by the following path integral over Cr , which is

independent of r provided that 0< r < r∗:

bi
0=

1
ω

∫ ω

0
ūi (r,θ)dθ, bi+n

n =
2r−nλ

ω

∫ ω

0
ūi (r,θ)cos(nλθ)dθ for n ≥ 1. (37)

Proof. The proofs are identical for the two families of coefficients and only that
concerning bi+n

n will be given. By (23), ūi is given for 0< r < r∗ by

ūi (r, θ)=
∑
p∈N

bi+p
p r pλ cos(pλθ),

which is for fixed r the Fourier series of ūi (r, · ). Formulas (37) follow. �

2.3. Verification in the case of a small cavity. This subsection is devoted to the
verification of the construction of the matched asymptotic expansion (MAE) pre-
sented in the previous subsections on an example where the exact solution is
obtained in a closed form and hence can be directly expanded. Specifically, we
consider a Laplace problem posed in a domain which consists of an angular sector
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Γ�

Γ+
�

Γ−
�

Figure 3. The domain �l in the case of a cavity.

delimited by two arc of circles. The radius of the outer circle is equal to 1 while
the radius of the inner circle is l; see Figure 3. Thus,

�l = {x = r cos θe1+ r sin θe2 : r ∈ (l, 1), θ ∈ (0, ω)}.

The sides of the notch and the inner circle are free and hence the boundary
conditions on those parts of the boundary are

∂ul

∂ν
= 0 on 0+l ∪0

−

l ∪0l, (38)

where 0±l = {(r, θ) : l < r < 1, θ = 0 or ω}, 0l = {(r, θ) : r = l, 0≤ θ ≤ ω}. (Note
that 0±l depend on l, contrary to the assumption made in the remaining part of the
paper. But that has no influence on the results.) The displacement is prescribed on
the outer boundary 0D so that

ul(x)= cos λθ on 0D, λ=
π

ω
. (39)

Note that 0N is empty. Assuming that there is no body force, the exact solution of
this antiplane elastic problem is given by

ul(x)=
(

l2λ

1+ l2λ r−λ+
1

1+ l2λ rλ
)

cos λθ. (40)

Inserting the Taylor series of 1/(1+l2λ)=
∑

i∈N(−1)i (l2λ)i for l< 1, the expansion
of ul at a given x takes the form

ul(x)= rλ cos λθ +
∑
n∈N∗

l2nλ(r−λ− rλ) cos λθ. (41)
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Thus (41) corresponds to the outer expansion where the odd terms vanish and the
even terms are given by

u0(x)= rλ cos λθ, u2n(x)= (−1)n(rλ− r−λ) cos λθ for all n ≥ 1. (42)

To obtain the inner expansion, replace r by lρ in (40), to get

ul(l y)=
lλ

1+ l2λ (ρ
−λ
+ ρλ) cos λθ. (43)

Inserting the Taylor series as before, the expansion of ul(l y) is given by

ul(l y)=
∑
n∈N

(−1)nl(2n+1)λ(ρ−λ+ ρλ) cos λθ, (44)

which corresponds to the inner expansion where the even terms vanish and the odd
terms are given by

v2n+1( y)= (−1)n(ρ−λ+ ρλ) cos λθ for all n ≥ 0. (45)

It remains to be checked that the procedure described in the previous subsec-
tions yields the same coefficients. Since g = 0, ai

0 = 0 for all i ≥ 0 and there
is no logarithmic singularity; see Remark 4. The details for the first steps of the
procedure are given below.

(S1) By (33), a0
0 = 0 and hence u0

S = 0.

(S2) Hence (29) becomes: 1u0
= 0 in �0, ∂u0/∂θ = 0 on θ ∈ {0, ω}, u0

= cos λθ
on r = 1. The unique solution in H 1(�0) is u0 given by (42).

(S3) By (37), b1
1 = 1 and bn

n = 0 for n 6= 1. Hence v0
S = 0.

(S4) Since v0
S = 0 and g = 0, (31) gives v̄0

= 0 and hence v0
= 0.

(S5) By (36), an
n = 0 for n ≥ 1.

(S6) By (25), u1
S = 0.

(S7) By (30), ū1
= 0 and hence u1

= 0.

(S8) By (37), bn+1
n = 0 for all n. Hence v1

S = ρ
λ cos λθ .

(S9) Hence (32) for i = 1 becomes: 1v̄1
= 0 in �∞, ∂v̄1/∂θ = 0 on θ ∈ {0, ω},

∂v̄1/∂ρ =−λ cos λθ on ρ = 1. The unique regular solution is v̄1
= ρλ cos λθ

and hence v1 is given by (45).

(S10) By (36), a2
1 = 1 and an+1

n = 0 for n 6= 1.

(S11) By (25), u2
S = r−λ cos λθ .

(S12) Hence (30) for i = 2 becomes: 1ū2
= 0 in �0, ∂ ū2/∂θ = 0 on θ ∈ {0, ω},

ū2
=−cos λθ on r = 1. The unique solution in H 1(�0) is ū2

=−rλ cos λθ
and hence u2 is given by (42).
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Figure 4. Definition of the cracked notch-shaped body �l with
the various parts of the boundary.

Proceeding by induction, the expected expansions are finally recovered. The
end of the verification is left to the reader.

3. Application to the case of a crack

3.1. Setting the problem. In this section, the method is applied to a defect which
is a noncohesive crack. Specifically, let � be the rectangle (−H, L)× (−H,+H).
Let ε be a given parameter in (0, 1), N={x= (x1, x2) :−H < x1≤0, |x2|≤ ε|x1|)}.

The notch-shaped body is �0 =�\N. Finally the cracked body �l is obtained by
removing from �0 the line segment 0l = (0, l)×{0}; see Figure 4.

The boundary 0D where the displacement is prescribed corresponds to the sides
D± and DL , with boundary conditions

ul(x)=


+H on D+ = {−H}× [εH, H ],
−H on D− = {−H}× [−H,−εH ],

0 on DL = {L}× [−H, H ].

The remaining parts of the boundary (including the lips of the crack) are free; that
is,

∂ul

∂x2
=

{
0 on 0l = (0, l)×{0},
0 on N± = (−H, L)×{±H}

and
∂ul

∂n
= 0 on 0± = {(x1, x2) : −H < x1 < 0, x2 =±εx1}.

Remark 5. The amplitude of the prescribed displacement is normalized to H so
that ul has the dimension of a length. The fact that the amplitude is equal to the
height H has no importance in the present context of linearized elasticity. We
will introduce a time-dependent amplitude of the prescribed displacement when
we study the propagation of the crack. Then the prescribed displacement will take
“reasonable” values, controlled by the toughness of the material.
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Remark 6. The case ε = 0 corresponds to a body with an initial crack of length H
and this limiting case is also considered in this paper. The case ε = 1 corresponds
to a corner with an angle π/2, the sides D± being reduced to the points (−H,±H).
This limiting case will not be considered here.

Remark 7. We only consider the case where the crack path is the line segment
(0, L)× {0}. It is a rather natural assumption by virtue of the symmetry of the
geometry and the loading. An interesting extension should be to consider non-
symmetric geometry or loading and hence to take the direction of the crack as a
parameter. This extension is reserved for future works.

We are in the case where g = 0 on 0l . Therefore, by virtue of Proposition 3, all
the coefficients ai

0 vanish and there are no logarithmic singularities. Accordingly,
the solution can be expanded as follows:

Outer expansion: ul(x)= u0(x)+ lλu1(x)+ l2λu2(x)+ l3λu3(x)+ · · · ,

Inner expansion: ul(x)= v0( y)+ lλv1( y)+ l2λv2( y)+ l3λv3( y)+ · · · ,

with

λ=
π

ω
and ω = 2π − 2 arctan(ε). (46)

By symmetry of the geometry and the loading, the real field ul is an odd function
of x2; i.e.,

ul(x1,−x2)=−ul(x1, x2), ul(r, ω− θ)=−ul(r, θ).

Therefore, all the fields ui , ūi , vi , v̄i admit the same symmetry. Therefore, by
Proposition 4, all coefficients bi+2n

2n and ai+2n
2n vanish. Consequently, the odd terms

of the outer expansion and the even terms of the inner expansions vanish; i.e.,
u2i+1

= 0 and v2i
= 0 for all i ∈ N. Finally, the solution admits the following

expansions:

Outer expansion: ul(x)=
∑
i∈N

l2iλu2i (x), (47)

Inner expansion: ul(x)=
∑
i∈N

l(2i+1)λv2i+1( y). (48)

By symmetry, the following coefficients vanish:

ai
n=0 when n or i−n are even, bi

n=0 when n is even or i−n is odd. (49)

Examine now the singularities of ∇ul (in the sense that ∇ul is not bounded) ac-
cording to whether or not l = 0, and according to whether or not ε = 0.
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(1) When ε > 0 and l = 0. Then ∇u0 is infinite at the tip of the notch and in its
neighborhood has the form

∇u0(x)=
λb1

1

r1−λ

(
cos(λθ)er − sin(λθ)eθ

)
+ regular terms.

(2) When ε > 0 and l > 0. Then ∇ul is no longer infinite at the tip of the notch
but becomes infinite at the tip of the crack, with the usual singularity in 1/

√
r ;

see [Bui 1978]. Specifically, ∇ul has the form

∇ul(x)=
Kl

µ
√

2πr ′

(
sin
(
θ ′

2

)
er + cos

(
θ ′

2

)
eθ
)
+ regular terms. (50)

In (50), (r ′, θ ′) denotes the polar coordinate system with x= (l+r ′ cos θ ′)e1+

r sin θ ′e2 and the angular function of θ ′ is normalized so that Kl be the usual
stress intensity factor. Kl depends on l and is “strongly” influenced by the
presence of the notch when l is small. (In fact, Kl goes to 0 when l goes to 0
as we will see below.) So, even if the stresses are only singular at the tip of the
crack, there is a kind of overlapping of the previous singularity at the tip of
the notch. This phenomenon renders the computations by the finite element
method less accurate when l is small.

(3) When ε = 0. Then the notch is already a crack and it is unnecessary to treat
separately l = 0 and l > 0. In any case ∇ul has the classical singularity in 1

√
r

as in (50) and there is no more overlapping of two singularities. The computa-
tions by the finite element method are accurate in the full range of values of l.

3.2. The issue of the computation of the energy release rate. The main goal of
this section is to obtain accurate values for the elastic energy Pl stored in the
cracked body and for its derivative with respect to l, the so-called energy release
rate Gl , when l is small. By definition, the elastic energy is given by

Pl =
1
2

∫
�l

µ∇ul · ∇ul dx . (51)

By virtue of Clapeyron’s formula, the elastic energy stored in the body when the
body is at equilibrium is equal to one half the work done by the external loads
over the prescribed displacement on D±. Therefore, using the symmetry of ul , the
elastic energy can also be written as an integral over D+:

Pl =−

∫ H

εH
µH

∂ul

∂x1
(−H, x2) dx2, (52)

which involves only the displacement field far from the tip of the notch.
By definition (see [Bourdin et al. 2008; Leblond 2003]), the energy release

rate Gl is the opposite of the derivative of the elastic energy with respect to the
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Figure 5. Examples of paths for which JC is equal to Gl .

length of the crack:

Gl =−
dPl

dl
. (53)

Even though Pl involves the l-dependent displacement field ul , its derivative does
not involve the derivative dul/dl but can be expressed in terms of ul only. This
property is a consequence of the fact that ul satisfies the equilibrium equations.
Specifically, Gl can be computed either with the help of path integrals like the J inte-
gral of [Rice 1968] or by using the so-called G-θ method developed in [Destuynder
and Djaoua 1981]. We recall below the main ingredients of both methods when
0< l < L . The cases l = 0 and l = L are treated separately.

In the former method, the integral JC over the path C is defined by

JC =

∫
C

(
µ

2
∇ul · ∇uln1−µ

∂ul

∂n
∂ul

∂x1

)
ds,

where n denotes the outer normal of the path. This integral is (theoretically) path-
independent and equal to Gl provided that the path C starts from the lip of the
crack, circumvents the tip of the crack and finishes on the lip of the crack like in
Figure 5; see [Bui 1978]. This path independence is used to obtain Irwin’s formula
[Irwin 1958; Leblond 2003]. Indeed, taking for path the circle Cr ′ centered at the
tip of the crack with radius r ′, using (50) and passing to the limit when r ′→ 0,
the following link between the energy release rate and the stress intensity factor
Kl introduced in (50) is obtained:

Gl = lim
r ′→0

JCr ′
=

K 2
l

2µ
.

For the computations, the particularities of the geometry and of the loading can be
exploited, to choose a path made of line segments parallel to the axes like the path
C in Figure 5:

C={a}×(−H, 0)∪[a, b]×{−H}∪{b}×(−H, H)∪[a, b]×{+H}∪{a}×(0, H)
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with 0< a < l < b < L . Then JC = Gl . Therefore, since n1 = 0 and ∂ul/∂n = 0
on the sides x2 =±H and by virtue of the symmetry of ul , Gl takes the form

Gl = µ

∫
{b}×(0,H)

((
∂ul

∂x2

)2

−

(
∂ul

∂x1

)2)
dx2

−µ

∫
{a}×(0,H)

((
∂ul

∂x2

)2

−

(
∂ul

∂x1

)2 )
dx2. (54)

From a theoretical point of view, a and b can be chosen arbitrarily, provided that
they satisfy the constraints above. Indeed, the integral over the line segment x1 = a
(respectively, x1 = b) does not depend on a (respectively, on b) because ul is har-
monic and satisfies homogeneous Neumann boundary conditions on N± and 0l .
(This verification is left to the reader; see [Marigo 2010, Proposition 8] for a
proof.) However, from a numerical point of view, this is no longer true because
the computed displacement field does not satisfy exactly the equilibrium equations.
Consequently, the computed values of Gl depend on the choice of a and b. More-
over, since the integral over the line a involves the gradient of the displacement,
this integral can be badly approximated when l is small because of the singularity.

The G-θ method is based on a change of variables which sends the l-dependent
domain �l onto a fixed domain. In essence, it is the basic method to prove that
l 7→ Pl is differentiable; see [Destuynder and Djaoua 1981] for the genesis of this
method and [Chambolle et al. 2010] for a discussion on a generalization of the
concept of energy release rate. In turn the G-θ approach gives a practical method
to compute the energy release rate; see the previous two references. Specifically,
for a given l > 0, we associate to a Lipschitz continuous vector field θ defined on
�l the volume integral

Gθ =

∫
�l

(
2∑

i, j=1
µ
∂θi

∂x j

∂ul

∂xi

∂ul

∂x j
−
µ

2
∇ul · ∇ul div θ

)
dx .

It can shown that, if θ is such that θ(l, 0) = e1 and θ · n = 0 on ∂�l , then Gθ is
independent of θ and equal to Gl . Of course, this result of independence holds only
when ul is the true displacement field. If it is numerically approximated, then Gθ
becomes θ dependent. In our case, owing to the simplicity of the geometry, we can
use a very simple vector field θ which renders the computations easier. Specifically,
let θ be given by

θ(x)=


0 if x1 < 0,

x1

l
e1 if 0≤ x1 ≤ l,

L − x1

L − l
e1 if l ≤ x1 < L .

(55)
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It satisfies the required conditions and hence Gθ = Gl . Accordingly, owing to the
symmetry, Gl takes the form

Gl =
µ

L − l

∫ L

l

∫ H

0

((
∂ul

∂x2

)2

−

(
∂ul

∂x1

)2 )
dx2dx1

−
µ

l

∫ l

0

∫ H

0

((
∂ul

∂x2

)2

−

(
∂ul

∂x1

)2 )
dx2dx1. (56)

Comparing (56) with (54), (56) can be seen as an average of all the line integrals
appearing in (54) when a and b vary, respectively, from 0 to l and from l to L .
Accordingly, it can be expected that (56) gives more accurate computations than
(54) when l is small.

3.3. Numerical results obtained for Gl by the FEM. All the computations based
on the finite element method are implemented in the industrial code COMSOL.
They are performed after introducing dimensionless quantities. Specifically, in all
the computations, the dimensions of the body are H = 1 and L = 5, the shear
modulus µ= 1. That does not restrict the generality of the study because the scale
dependencies are known in advance. Indeed, the true physical quantities are related
to the normalized quantities (denoted with a tilde) by

l = Hl̃, ul = Hũl, Pl = µH 2P̃l, Gl = µH G̃l . (57)

For a given l̃ ∈ (0, 5) and a given ε ∈ (0, 1), we use the symmetry of the body and of
the load to mesh only its upper half and prescribe ũl = 0 on the segment l̃ ≤ x̃1 ≤ 5,
x̃2 = 0. We use 6-node triangular elements, i.e., quadratic Lagrange interpolations.
The mesh is refined near the singular corners and a typical mesh contains 25000 el-
ements and 50000 degrees of freedom. We compute the discretized solution (still
denoted) ũl by solving the linear system. Then, the energy P̃l and the energy
release rate G̃l are obtained by postprocessing. The energy is obtained by a direct
integration of the elastic energy density over the body. The derivative of the energy
is obtained by using formula (56), which needs to integrate the different parts of
the elastic energy density over the two rectangles (0, l̃)× (0, 1) and (l̃, 5)× (0, 1).
For a given ε, we compute P̃l and G̃l for l̃ varying from 0.001 to 5, first by steps
of 0.001 in the interval (0, 0.05), then by steps of 0.002 in the interval (0.05, 0.2),
finally by steps of 0.01 in the interval (0.2, 5). The computations can be considered
sufficiently accurate for l̃ ≥ 0.002, even if this lower bound depends on ε, the
computations being less accurate for small (but nonzero) values of ε. Below this
value, if we try to refine the mesh near the corner of the notch, the results become
mesh-sensitive, and the linear system becomes ill-conditioned. Since only the part
of the graph of G̃l close to l̃ = 0 is interesting when ε is small, we cannot obtain
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Figure 6. Computation by the Finite Element Method of the en-
ergy release rate Gl as a function of the crack length l for five
values of the notch angle.

accurate results when ε is too small. (Of course, this remark does not apply when
ε = 0, because l̃ = 0 is not a “singular” case.)

The cases l̃ = 0 and l̃ = 5 with ε 6= 0 are treated with specific meshes. We have
only to compute ũ0, P̃0, ũL and P̃L , since G̃0 = G̃L = 0.

The case ε = 0 is treated separately by adapting the previous methods. In par-
ticular, to calculate G̃l , the second integral in (56) is replaced by an integral over
the rectangle (−1, 0)× (0, 1), and this integral is divided by 1+ l̃ instead of l̃.
Moreover, the mesh is refined only near the tip of the crack; l̃ = 0 is no longer a
particular case and the computations of G̃l are accurate in the full range of l̃.

Let us highlight the main features of the numerical results plotted in Figure 6.
These properties will be the basic assumptions from which we study the crack
propagation at the end of the present section.

(P1) For ε = 0, Gl/µH is monotonically decreasing from 0.4820 to 0 when l/H
grows from 0 to 5.

(P2) For ε > 0, Gl/µH starts from 0 at l/H = 0, then is rapidly increasing. This
growth is of such magnitude (for instance, Gl/µH = 0.1443 when l/H =
0.002 for ε = 0.4) that it cannot be correctly captured by the FEM.

(P3) Still for ε > 0, Gl is monotonically increasing as long as l ≤ lm. At l = lm, G

takes its maximal value Gm. Those values which depend on ε are given in the
table below. It turns out that lm/H is rather small.
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ε 0 0.1 0.2 0.3 0.4

lm/H 0 0.024 0.058 0.092 0.130
Gm/µH 0.4820 0.3900 0.3260 0.2733 0.2279

(P4) For ε > 0 again, Gl is monotonically decreasing from Gm to 0 when l grows
from lm to 5H .

3.4. Evaluation of the energy release rate by the MAM. By virtue of (52), Pl can
be expanded by using the outer expansion of ul . Using (47) leads to

Pl =
∑
i∈N

P2i

(
l
H

)2iλ

µH 2, (58)

where the coefficients P2i of the expansions are dimensionless. The expansion of
the energy release rate can be immediately deduced from that of the energy:

Gl =−
∑
i∈N∗

2iλP2i

(
l
H

)2iλ−1

µH, (59)

and it is not necessary to use the path integrals JC or the G-θ method. Let us
remark that

G0 =

{
0 if ε 6= 0,

−P2µH = K 2
0/2> 0 if ε = 0,

(60)

because λ > 1/2 in the former case while λ= 1/2 in the latter.
To obtain the i-th term of the expansion of Pl and Gl , both the singular part ui

S
and the regular part ūi of ui must be recovered. The singular part involves the
coefficients ai

n for 1≤ n ≤ i which are obtained as the regular parts of the v j for
j ≤ i ; see Section 2.2.6. Therefore, the inner problems must be solved to determine
the coefficients bi

n for 0 ≤ n ≤ i . In practice, these coefficients are obtained by
using Proposition 4 after the inner and the outer problems have been solved with
a finite element method. The advantage is that those problems do not contain a
small defect and the accuracy is guaranteed. The drawback is that more and more
problems have to be solved, in order to obtain accurate values of Gl when l/H is
not small.

In Tables 3 and 4 are given the computed values of the first coefficients of the
inner and outer expansions (still with H = 1, L = 5, µ= 1). These tables contain
all the terms which are necessary to compute the expansions of the energy up to
the sixth order, i.e., P2i for i ∈ {0, 1, 2, 3}. (Note that P0 does not appear in the
expansion of Gl .) The graphs of l 7→ Gl obtained from these expansions are plotted
in Figure 7 in the cases ε = 0.2 and ε = 0.4. They are compared with the values
obtained directly by the finite element code COMSOL. From these comparisons,
the following conclusions can be drawn:
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ε a2
1 P2

0 −0.3930 −0.4820
0.1 −0.3756 −0.4413
0.2 −0.3559 −0.3957
0.3 −0.3342 −0.3486
0.4 −0.3106 −0.3005

a4
1 a4

3 P4

0.1888 0.0987 0.3282
0.1766 0.0943 0.3001
0.1619 0.0893 0.2673
0.1453 0.0838 0.2320
0.1273 0.0778 0.1952

a6
1 a6

3 a6
5 P6

−0.1365 −0.0537 −0.0494 −0.2013
−0.1279 −0.0507 −0.0472 −0.1931
−0.1165 −0.0470 −0.0446 −0.1787
−0.1029 −0.0427 −0.0418 −0.1603
−0.0880 −0.0380 −0.0389 −0.1385

Table 3. The computed values of the (nonzero) coefficients ai
n for

1 ≤ n ≤ i ≤ 6 and of the leading terms P2, P4 and P6 of the
expansion of the potential energy for several values of the angle
of the notch.

ε b1
1 b3

1 b3
3

0 −0.7834 0.2384 −0.2059
0.1 −0.7482 0.2091 −0.2085
0.2 −0.7089 0.1777 −0.2081
0.3 −0.6657 0.1451 −0.2045
0.4 −0.6187 0.1125 −0.1977

b5
1 b5

3 b5
5

−0.1943 0.1058 −0.0172
−0.1730 0.0992 −0.0283
−0.1489 0.0905 −0.0379
−0.1232 0.0800 −0.0454
−0.0974 0.0683 −0.0508

Table 4. The computed values of the (nonzero) coefficients bi
n for

1≤ n ≤ i ≤ 5 for several values of the angle of the notch.

(C1) For very small values of l, the first nontrivial term (corresponding to i = 1
in (59)) of the matched asymptotic expansion (denoted by MAM 2 in Figure 7)
is sufficient to well approximate Gl while the FEM is unable to deliver accu-
rate values.

(C2) For values of l of the order of lm, at least the first two nontrivial terms (corre-
sponding to i = 1 and 2 in (59)) of the MAE (denoted by MAM 4 in Figure 7)
are necessary to capture the change of monotonicity of Gl . Indeed, the first
term, being monotonically increasing, is unable, alone, to capture that change
of behavior.

(C3) Still for values of l of the order of lm, the first two terms are really sufficient
to well approximate Gl provided that lm/H is sufficiently small. Specifically,
the first two terms are sufficient as long as l/H < 0.2.

(C4) Accordingly, the approximation of Gl by the first two nontrivial terms of the
MAE can be used, in the range [0, 2lm] of l when ε ∈ (0, 0.4).

(C5) As l/H grows beyond 0.2, more and more terms of the MAE must be added,
in order to get a good approximation of Gl . Consequently, in the range of
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“large” values of l/H , the direct FEM is more accurate and hence is better to
use.

4. Application to the determination of the nucleation of the crack

The theoretical and numerical results obtained in the previous sections are used
here to study the delicate issue of the nucleation of a crack in a sound body or
the most classical question of the onset of a preexisting crack. Specifically, we
consider the notched body �0 which either contains a preexisting crack l0 > 0 or is
sound; i.e., l0 = 0. We have also to distinguish different cases according to whether
ε = 0 or ε > 0. The nucleation or the onset of cracking is governed by either the
so-called G-law or the so-called FM-law and one goal of this section is to compare
those laws. The interested reader can also refer to [Bourdin et al. 2008; Francfort
and Marigo 1998; Negri 2010; Negri and Ortner 2008; Marigo 2010] where other
comparisons between the G-law and the FM-law are proposed.

The notched body is submitted to a time-dependent loading process which con-
sists of a monotonically increasing amplitude of the displacement prescribed on
the sides D±. Specifically, consider the new boundary conditions

u =±t H on D±, t ≥ 0. (61)

The others remain unchanged. (Note that the “time” parameter t is dimensionless.)
The evolution problem consists of finding the time evolution of the length of the
crack, i.e., t 7→ l(t) for t ≥ 0, under the initial condition l(0) = l0 ∈ [0, L). For
that, we first remark that, for a given time t ≥ 0 and a given crack length l ∈ [0, L],
the displacement field which equilibrates the body is

u(t, l)= tul, (62)

where ul is the displacement field introduced in Section 3.1. Accordingly, the
potential energy and the energy release rate at time t with a crack length l can be
expressed as

P(t, l)= t2Pl, G(t, l)= t2Gl, (63)

where Pl and Gl are given by (51) and (53).
The two evolution laws are based on Griffith’s crucial assumption [1921] con-

cerning the surface energy associated with a crack. Specifically, assume that there
exists a material constant Gc > 0 such that the surface energy of the body with a
crack of length l is

S(l)= Gcl. (64)
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Figure 7. Comparison of the graphs of Gl obtained by the MAM
and by COMSOL for ε = 0.2 (top two plots) and ε = 0.4 (bottom
two). The curve labeled FEM indicates points obtained by COM-
SOL, while the curves labeled MAM 2i , i ∈ {1, 2, 3}, indicate that
the first i nontrivial terms in the expansion of Gl were considered.
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Accordingly, the total energy of the body at equilibrium at time t with a crack of
length l becomes

E(t, l) := P(t, l)+S(l)= t2Pl +Gcl. (65)

Throughout this section we assume that l 7→Pl is continuously differentiable and
monotonically decreasing. Moreover, some monotonic properties of l 7→ Gl will
be added when necessary according to the analysis made in the previous sections.

4.1. The two evolution laws. Let us briefly introduce the two evolution laws; the
reader interested in the details should refer to [Marigo 2010]. The first one, called
the G-law, is the usual Griffith law based on the critical potential energy release
rate criterion; see [Bui 1978; Leblond 2003; Nguyen 2000]. In essence, this law
only investigates smooth (i.e., at least continuous) evolutions of the crack length
with the loading. It consists of the three following items:

Definition 2 (G-law). Let l0 ∈ [0, L]. A continuous function t 7→ l(t) is said to
satisfy (or to be a solution of) the G-law in the interval [t0, t1] with the initial
condition l(t0)= l0, if the three following properties hold:

(1) Irreversibility: t 7→ l(t) is not decreasing;

(2) Energy release rate criterion: G(t, l(t))≤ Gc for all t ∈ [t0, t1];

(3) Energy balance: l(t) is increasing only if G(t, l(t))= Gc; i.e., if G(t, l(t)) <
Gc at some t , then l(t ′)= l(t) for every t ′ in a certain neighborhood [t, t + h)
of t .

The third item implies that the release of potential energy is equal to the cre-
ated surface energy when the crack propagates, which justifies its name “energy
balance”. Consequently, if t 7→ l(t) is absolutely continuous, then the third item is
equivalent to

∂E

∂l
(t, l(t))l̇(t)= 0

for almost all t , and the following equality holds for almost all t :

d
dt

E(t, l(t))=
∂E

∂t
(t, l(t)). (66)

A major drawback of the G-law is the inability to take into account discontinuous
crack evolutions, which renders it useless in many situations as we will see in the
next subsection. It must be replaced by another law which admits discontinuous
solutions. Another motivation of changing the G-law is to reinforce the second item
by introducing a full stability criterion; see [Francfort and Marigo 1998; Nguyen
2000; Bourdin et al. 2008]. Specifically, let us consider the local stability condition

∀t ≥ 0, ∃h(t) > 0 : E(t, l(t))≤ E(t, l) ∀l ∈ [l(t), l(t)+ h(t)], (67)
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which requires that the total energy at t is a “unilateral” local minimum. (The qual-
ifier unilateral is added because the irreversibility condition leads to comparing the
energy at t with only that corresponding to greater crack length; see [Bourdin et al.
2008].) Taking l = l(t)+h with h> 0 in (67), dividing by h and passing to the limit
when h→ 0, we recover the critical energy release rate criterion. Thus, the second
item can be seen as a first-order stability condition, weaker than (67). A stronger
requirement is obtained by replacing local minimality by global minimality. It was
the condition introduced in [Francfort and Marigo 1998] in the spirit of the original
Griffith idea [1921], and we will adopt it here.

Definition 3 (FM-law). A function t 7→ l(t) (defined for t ≥ 0 and with values in
[0, L]) is said to satisfy (or to be a solution of) the FM-law if the three following
properties hold:

(1) Irreversibility: t 7→ l(t) is not decreasing;

(2) Global stability: E(t, l(t))≤ E(t, l) for all t ≥ 0 and all l ∈ [l(t), L];

(3) Energy balance: E(t, l(t))= E(0, l0)+
∫ t

0 ∂E/∂t ′(t ′, l(t ′)) dt ′ for all t ≥ 0.

Let us note that the irreversibility condition is unchanged, while the energy
balance condition is now written as the integrated form of (66), which does not
require that t 7→ l(t) be continuous. Note also that the energy balance implies
l(0)= l0 because 0=E(0, l(0))−E(0, l0)=Gc(l(0)− l0), and that the second item
is automatically satisfied at t = 0 because E(0, l)= Gcl.

4.2. The main properties of the G-law and the FM-law. We recall or establish
in this subsection some results for the two evolution laws under the assumptions
of monotonicity of l 7→ Gl resulting from the numerical computations; see (P1)–
(P4) in Section 3.3. Some of those results have a general character and have been
previously established in [Bourdin et al. 2008; Francfort and Marigo 1998; Marigo
2010], while the other ones are specific to the present problem. In the case of
properties which have already been obtained, we simply recall them without proofs.

Let us first consider the case when the notch is in fact a crack. Then, the two
laws are equivalent by virtue of:

Proposition 5. In the case ε = 0, since l 7→ Gl is decreasing from G0 > 0 to 0 when
l goes from 0 to L (see property (P1)), the G-law and the FM-law admit the same
unique solution. Specifically, the preexisting crack begins to propagate at time ti
such that ti2Gl0 = Gc. Then the crack propagates continuously and l(t) is such that
t2Gl(t) = Gc. Since GL = 0, the crack will not reach the end L in a finite time.

Proof. See [Marigo 2010, Proposition 18]. �

In the case of a genuine notch, as far as the nucleation and the propagation of a
crack with the G-law are concerned, we have:
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Proposition 6. In the case ε > 0, according to l0 = 0 or l0 ∈ (0, lm) or l0 ∈ [lm, L),
the crack evolution predicted by the G-law is as follows:

(1) If l0 = 0, since G0 = 0, the unique solution to the G-law is l(t) = 0 for all t ;
i.e., there is no crack nucleation.

(2) If l0 ∈ (0, lm), then the preexisting crack begins to propagate at time ti such
that ti2Gl0 = Gc. But at ti the propagation is necessarily discontinuous and
hence there is no continuous solution to the G-law for t ≥ ti.

(3) If l0 ∈ [lm, L), since l 7→Gl is monotonically decreasing in the interval (lm, L),
the situation is the same as in Proposition 5. There exists a unique solution
for the G-law: the crack begins to propagate at ti (still given by ti

2Gl0 = Gc)
and then propagates continuously until L , which is reached asymptotically.

Proof. Let us give the sketch of the proof for the first two items.

(1) Since l0 = 0 and G0 = 0, then for all t ≥ 0 one gets 0= G(t, 0) < Gc and hence
l(t)= 0 is a solution. The uniqueness follows from the initial condition and
the energy balance.

(2) Since 0< l0 < lm, then Gl0 > 0 and hence t2Gl0 = G(t, l0)≤ Gc if and only if
t ∈ [0, ti]. Since the inequality is strict when t ∈ [0, ti), then l(t) = 0 is the
unique solution in this interval because of the initial condition and the energy
balance. By continuity, it is also the unique solution in the closed interval
[0, ti]. On the other hand, since G(t, l0) > Gc when t > ti, the crack must
begin to propagate at ti.

Let us show that no (continuous) evolution can satisfy the G-law for t > ti.
Indeed, by construction G(ti, l(ti))= ti

2Gl0 = Gc. But since l(t)≥ li for t > ti
and since l 7→ Gl is monotonically increasing in the neighborhood of l0 < lm,
we have for t ∈ (ti, ti+ h) and a sufficiently small h > 0:

l0 < l(t) < lm, G(t, l(t)) > G(ti, l0)= Gc.

Therefore the energy release rate criterion cannot be satisfied by a continuous
evolution in a neighborhood of ti. The unique possibility is that the length of
the crack jumps from l0 to some li > lm at time ti. But that requires reformu-
lating the G-law.

The proof of the third item is the same as in the previous proposition and hence
we refer to [Marigo 2010, Proposition 18]. �

Remark 8. This property of no nucleation of a crack at a notch or of brutal prop-
agation of a short crack is due to the fact that a notch with Neumann boundary
conditions induces a weak singularity only; i.e., λ > 1/2. If one changes the
boundary conditions by imposing the displacement on one edge of the notch and
the stress on the other edge, then the singularity becomes strong for ω large enough
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and in such a case all the properties of nucleation are changed; see [Francfort and
Marigo 1998, Proposition 4.19].

Consider now the FM-law. It is proved in [Marigo 2010, Proposition 3] that,
in the case of a monotonically increasing loading, the FM-law is equivalent to a
minimization problem of the total energy at each time, as precisely stated in the
following lemma:

Lemma 7. Let l0 ∈ [0, L) be the initial length of the crack. A function t 7→ l(t)
satisfies the FM-law if and only if , at each t , l(t) is a minimizer of l 7→ E(t, l)
over [l0, L]. Therefore, the FM-law admits at least one solution and each solution
grows from l0 to L.

This property holds true for any ε ≥ 0. In the case ε > 0 we can deduce precise
results:

Proposition 8. In the case ε > 0, according to l0 ∈ [0, lm) or l0 ∈ [lm, L), the crack
evolution predicted by the FM-law is as follows:

(1) If l0 ∈ [0, lm), then the nucleation (if l0 = 0) or the propagation of the preexist-
ing crack (if l0 6= 0) starts at time ti > 0 and at this time the crack length jumps
instantaneously from l0 to li. The length li is the unique length in (lm, L) such
that∫ li

l0

Gl dl = (li− l0)Gli, or, equivalently, Pl0 −Pli = (li− l0)Gli, (68)

while the time ti is given by

ti
2Gli = Gc. (69)

After this jump, the crack propagates continuously from li to L , the evolution
satisfying then the G-law; i.e.,

t2Gl(t) = Gc for all t > ti.

(2) If l0 ∈ [lm, L), since l 7→Gl is monotonically decreasing in the interval (lm, L),
the situation is the same as in Proposition 5. There exists a unique solution for
the FM-law which is the same as for the G-law: the crack begins to propagate
at ti such that ti2Gl0 = Gc and then propagates continuously until L , which is
reached asymptotically.

Remark 9. Before the proof of this proposition, let us comment and interpret (68)
giving the jump of the crack at ti.
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Figure 8. Graphical interpretation of the criterion of crack nucle-
ation given by the FM-law and which obeys the Maxwell rule of
equal areas.

• Let us first prove that li is well defined by (68). Let l 7→ g(l) be the function
defined for l ∈ (lm, L) by

g(l)=
∫ l

l0

Gl dl − (l − l0)Gl .

Its derivative is given by g′(l)=−(l − l0)G
′

l and hence is positive because Gl

is decreasing in (lm, L). Since Gl < Gm := Glm , g(lm) < 0, whereas g(L) > 0
because GL = 0. Therefore, there exists a unique l ∈ (lm, L) such that g(l)= 0,
what is precisely the definition of li.

• Equation (68) giving li has a graphical interpretation. Indeed, the integral over
(l0, li) represents the area under the graph of l 7→ Gl between the lengths l0

and li. On the other hand the product (li − l0)Gli represents the area of the
rectangle whose height is Gi := Gli . Therefore, since these two areas are equal,
the two gray areas of Figure 8 are also equal. This rule of equality of the areas
determines li and, by essence, the line G = Gi is the classical Maxwell line
which appears in any problem of minimization of a nonconvex function.

• Note that li is independent of the toughness Gc and of the shear modulus µ
of the material. It is a characteristic of the structure and merely depends on
the geometry and the type of loading. Here, it depends on ε, H and L . For a
given ε and a given ratio L/H , li is proportional to H , li = l̃iH . This property
is a consequence of the Griffith assumption on the surface energy.

• The critical loading amplitude ti depends on the toughness and on the size of
the body. Since Gli = G̃liµH , ti varies like 1/

√
H . This size effect is also a

consequence of the Griffith assumption on the surface energy.
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• By virtue of (68) and (69), the energy balance holds at time ti even if the
crack jumps at this time; i.e., the total energy of the body just before the jump
is equal to the total energy just after. Indeed, those energies are respectively
given by

E(ti−, l0)= ti
2Pl0 +Gcl0, E(ti+, li)= ti

2Pli +Gcli.

Using (68), (69) and the equality Pl0 − Pli =
∫ li

l0
Gl dl, then E(ti−, l0) =

E(ti+, li).

Proof of Proposition 8. We just prove the first part of the proposition and the reader
should refer to [Marigo 2010, Proposition 18] for the proof of the second part. Let
l0 ∈ [0, lm). By virtue of Lemma 7, l(t) is a minimizer of l 7→ E(t, l) over [l0, L].
(The minimum exists because the energy is continuous and the interval is compact.)
Let li, ti be given by (68)–(69), let Gi = Gli and let l∗i be the other length such that
Gl∗i = Gi; see Figure 8. Let us first remark that the function l 7→ ḡ(l) defined on
[l0, L] by

ḡ(l) := Gi(l − l0)− (Pl0 −Pl)

is nonnegative and vanishes only at l0 and li. Indeed, its derivative is ḡ′(l)=Gi−Gl .
Hence, ḡ is first increasing from 0 when l grows from l0 to l∗i , then decreasing to 0
when l grows from l∗i to li, and finally increasing again from 0 when l grows from
li to L .

Let us show that l0 is the unique minimizer of the total energy when t < ti. From
(68) and (69), we get for all l ∈ [l0, L] and all t ≤ ti:

E(t, l)−E(t, l0)=−t2(Pl0 −Pl)+Gc(l − l0)≥ t2ḡ(l)≥ 0.

Moreover, the inequalities above are equalities if and only if l = l0 when t < ti and
the result follows. Using the same estimates, we can deduce that l0 and li are the
two minimizers of the total energy at t = ti.

Let us show now that the minimizer is in the open interval (li, L) when t > ti.
From (68) and (69), we get for all l ∈ [l0, li) and all t > ti:

E(t, l)−E(t, li)= t2(Pl −Pli)−Gc(li− l) > ti
2(Pl −Pli −Gi(li− l)

)
= ti

2(ḡ(l)− ḡ(li)
)
= ti

2ḡ(l)≥ 0.

Hence, the minimizer cannot be in [l0, li). Since the derivative of the total energy
at l = li is equal to Gc− t2Gi < 0, li is not the minimizer. In the same manner, since
the derivative of the total energy at l = L is equal to Gc− t2GL = Gc > 0, L cannot
be the minimizer. Therefore, the minimizer is in the interval (li, L) when t > ti.
Hence, it must be such that the derivative of the total energy vanishes, which yields
t2Gl(t) = Gc. Since l 7→ Gl is monotonically decreasing from Gi to 0 when l goes
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from li to L , there exists a unique l(t) ∈ (li, L) such that Gl(t) = Gc/t2 < Gi. The
proof of the first part is complete. �

4.3. Computation of the crack nucleation by the MAM. Let us consider the cases
where ε is sufficiently small in order that l 7→ Gl be well approximated by the
first two nontrivial terms of its matched asymptotic expansion for l in the interval
[0, 2lm]; see (C4). Accordingly, we have

Gl

µH
≈ 2λ|P2|

(
l
H

)2λ−1

− 4λ|P4|

(
l
H

)4λ−1

, (70)

using the fact that P2 < 0 and P4 > 0. Therefore, the length lm where Gl is maximal
and the maximum Gm are approximated by

lm
H
≈

(
(2λ− 1)|P2|

2(4λ− 1)|P4|

) 1
2λ

,
Gm

µH
≈

4λ2
|P2|

4λ− 1

(
(2λ− 1)|P2|

2(4λ− 1)|P4|

)2λ−1
2λ

. (71)

Comparing with the values obtained by the FEM (see (P3) and Table 5), it appears
that the agreement is very good for the maximum Gm, and less good for lm. The
reason is that the localization of lm by the FEM is quite imprecise because the graph
of Gl is very flat near lm: for instance, for ε = 0.3, Gl computed at l̃ = 0.092 is
equal to 0.27327 while it is equal to 0.27307 at l̃ = 0.082, with a relative difference
less than 10−4.

One can see also in Table 5 that the contribution of the next term, i.e., MAM
6, is weak when ε is less than 0.2. Its influence, in particular on li, can no longer
be neglected when ε ≥ 0.3. Note also that MAM 4 underestimates while MAM 6
overestimates the lengths lm and li. This bounding property is due to the alternating
of the sign of the coefficients P2i with i . However, it is checked numerically only;
we are not able to prove it. Using MAM 4 to calculate the nucleation, we obtain
the following result:

Proposition 9. In the case of a genuine notch ε > 0:

(1) If the body does not contain a preexisting crack (l0 = 0), then the time ti at
which the crack nucleates and the length li of the nucleated crack at this time
are approximated with the MAM 4 by

li
H
≈ 2

1
2λ

lm
H
≈

(
(2λ− 1)|P2|

(4λ− 1)|P4|

) 1
2λ

,

ti
2
≈

1

λ 2
1

2λ

Gc

Gm
≈

tc
2

8λ3

(
4λ− 1
|P2|

)2− 1
2λ
(

4P4

2λ− 1

)1− 1
2λ

,

(72)

where tc
2
= Gc/µH.
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ε 0 0.1 0.2 0.3 0.4
λ 0.5 0.5164 0.5335 0.5511 0.5689

lm/H by FEM 0 0.024 0.058 0.092 0.130
lm/H by MAM 4 0 0.0255 0.0533 0.0823 0.1124
lm/H by MAM 6 0 0.0267 0.0584 0.0953 0.1387

Gm/µH by FEM 0.4820 0.3900 0.3260 0.2733 0.2279
Gm/µH by MAM 4 0.4820 0.3917 0.3264 0.2724 0.2257
Gm/µH by MAM 6 0.4820 0.3917 0.3274 0.2743 0.2287

li/H by FEM 0 0.0517 0.1131 0.1814 0.2561
li/H by MAM 4 0 0.0499 0.1020 0.1544 0.2067
li/H by MAM 6 0 0.0530 0.1163 0.1923 0.2964

Gi/µH by FEM 0.4820 0.3864 0.3195 0.2650 0.2188
Gi/µH by MAM 4 0.4820 0.3877 0.3195 0.2635 0.2157
Gi/µH by MAM 6 0.4820 0.3881 0.3208 0.2662 0.2201

ti/tc by FEM 1.440 1.605 1.766 1.938 2.132
ti/tc by MAM 4 1.440 1.606 1.769 1.916 2.153
ti/tc by MAM 6 1.440 1.605 1.766 1.938 2.131

Table 5. Comparisons of the values of lm, Gm, li, Gi and ti obtained
by the FEM with those obtained by MAM 4 and MAM 6.

(2) If the body contains a preexisting crack of length l0 such that 0< l0 < lm, then
the length li at which the crack jumps at the onset of the propagation is the
unique solution greater than lm of

0= |P2|
(
(2λ− 1)l2λ

i − 2λl0l2λ−1
i + l2λ

0
)
H 2λ

− P4
(
(4λ− 1)l4λ

i + 4λl0l4λ−1
i − l4λ

0
)
, (73)

while the time ti at which the onset occurs is given by ti
2
=Gc/Gli . Therefore, li

and ti decrease from the values given by (72) to lm and
√
Gc/Gm given by (71)

when l0 runs from 0 to lm.

Proof. When l0 = 0, using MAM 4, then (68) becomes

0= (2λ− 1)|P2|

(
li
H

)2λ

− (4λ− 1)|P4|

(
li
H

)4λ

.

Using (71), (72) can be deduced after some calculations left to the reader. In the
same manner, (73) is a direct consequence of (68) and (70). The monotonicity of li
and ti with respect to l0 is easily checked from the graphical interpretation of (73);
see Figure 8. �
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Figure 9. Time at which a preexisting crack starts as a function
of its length in the case where the notch parameter ε equals 0.4.
Plain line: from the FM-law; dashed line: from the G-law.

Therefore, since 1/2 < λ < 1 for a genuine notch, the length of the nucleated
crack li is less than 2lm while the critical time ti is not greater than 21/4√Gc/Gm.
For a very sharp notch, i.e., when ε is small, then 2λ≈ 1+ ε/π and

li ≈
ε|P2|

π P4
H, ti

2
≈

Gc

|P2|µH
,

where P2 ≈ −0.4820 and P4 ≈ 0.3282. Therefore we recover the response as-
sociated with a crack when the notch angle tends to 2π . The FM-law delivers
an evolution which depends continuously on the parameter ε, in contrast with the
G-law.

As long as the dependence of ti on l0 is concerned, it turns out that the FM-law
predicts that the variation of ti is small when l0 goes from 0 to lm as can be seen
in Figure 9 for ε = 0.4. Indeed, ti/tc decreases from 2.153 to 2.105 when l0 varies
from 0 to lm= 0.112H . This constitutes also a strong difference with the prediction
of the G-law for which ti goes to infinity when l0 goes to 0.

5. Conclusion and perspectives

We have presented here a general method based on matched asymptotic expansions
which can be applied to determine the mechanical fields and all related mechanical
quantities in the case of a defect located at the tip of a notch. Applying this method
to the case of a noncohesive crack, it turns out that it is sufficient to solve a few
inner and outer problems to compute with very good accuracy the dependency of
the energy and the energy release rate on the length of the crack. Moreover, this
approximation can be used for very small values of the length of the crack and
hence to determine the onset of the cracking, whereas a classical finite element
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method gives rise to inaccurate results. In particular, the matched asymptotic
method permits a comparison of the nucleation process of a crack at the tip of
the notch which is predicted by the classical Griffith criterion with that predicted
by the principle of energy minimization proposed in [Francfort and Marigo 1998].
It turns out that the latter principle gives rise to much more relevant results than
the former, from a physical viewpoint.

A natural extension of this work is to consider situations where the geometry and
the loading have no symmetry and hence the direction that the nucleated crack will
choose must also be predicted. Let us note that the G-law alone is not able to give
an answer, and another criterion must be supplemented. In an antiplane setting,
the principle of local symmetry, which is by essence made for an isotropic plane
setting, cannot be used. It turns out that the FM-law in its general statement can
also predict the direction and more generally the path of the crack; see [Chambolle
et al. 2009; 2010; Francfort and Marigo 1998]. So, an interesting challenge should
be to use the MAM and the FM-law in a nonsymmetric case to predict also the
direction of nucleation. Another natural and desirable extension of the present
work is to develop the method in a plane elasticity setting. It seems that there is no
conceptual difficulty in doing that. The last perspective concerns the choice of the
surface energy. Indeed, the present study is based on the crucial Griffith assumption
that the surface energy is proportional to the crack area. This assumption has very
important consequences on the nucleation as we have seen in the paper. With this
hypothesis, there is no cohesive force and hence the model does not contain the
concept of critical stress. An important step will be to apply the MAM in the case
of a cohesive crack [Barenblatt 1962; Dugdale 1960; Del Piero and Raous 2010],
which automatically contains a critical stress and even a characteristic length. The
goal will be to study the influence of the critical stress and characteristic length on
the nucleation and the propagation of a crack in the spirit of the previous works
based on the variational approach to fracture [Abdelmoula et al. 2010; Bourdin
et al. 2008; Charlotte et al. 2006; Del Piero and Truskinovsky 2009; Ferdjani et al.
2007; Giacomini 2005; Jaubert and Marigo 2006; Marigo and Truskinovsky 2004].
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UNIDIRECTIONAL FIBER-REINFORCED COMPOSITE

MATERIALS IN THE CASE OF DEBONDED FIBERS

YAHYA BERREHILI AND JEAN-JACQUES MARIGO

This paper is devoted to the analysis of the homogenized behavior of unidirec-
tional composite materials once the fibers are debonded from (but still in contact
with) the matrix. This homogenized behavior is built by an asymptotic method in
the framework of the homogenization theory. The main result is that the homog-
enized behavior of the debonded composite is that of a generalized continuous
medium with an enriched kinematics. Indeed, besides the usual macroscopic
displacement field, the macroscopic kinematics contains two other scalar fields.
The former one corresponds to the displacement of the matrix whereas the two
latter ones correspond to the sliding and the rotation of the debonded fibers with
respect to the matrix. Accordingly, new homogenized coefficients and new cou-
pled equilibrium equations appear. This problem is addressed in a linear elastic
three-dimensional setting.

1. Introduction

The use of unidirectional fiber-reinforced composite materials does not cease to
grow in various domains and particularly in the domains of aerospace and aero-
nautics. This is due to their various properties and especially to their interesting
mechanical behavior in terms of their specific effective stiffness in the direction of
the fibers. (Throughout the paper, the word effective is a synonym of homogenized
or macroscopic.) The effective elastic behavior of such composites is now well
known and well modeled by the homogenization theory as long as the fibers are
assumed to be perfectly bonded to the matrix [Léné 1984; Michel et al. 1999;
Sánchez-Palencia 1980; Suquet 1982].

However, since their mechanical performance is considered optimal when the
components remain bonded, it remains to evaluate the loss of performance when
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the fibers are debonded. Of course, if one considers that the elastic behavior is due
to the matrix alone, the specific stiffness drops drastically. But this type of estimate
simply gives a lower bound to the stiffness and one must define more precisely the
effective behavior of completely or partially debonded unidirectional composites.

Many works have been devoted to this task; see for instance [Bouchelaghem et al.
2007; Caporale et al. 2006; Gonzàlez and LLorca 2007; Greco 2009; Jendli et al.
2009; Kulkarni et al. 2009; Kushch et al. 2011; Léné and Leguillon 1982; Marigo
et al. 1987; Matouš and Geubelle 2006; Moraleda et al. 2009; Teng 2010]. In
general, these studies consist in replacing the perfect bond of the interface by some
“cohesive law” or simply in removing the fibers when the debonding is complete.
In any case, the calculation of the new homogenized mechanical coefficients is per-
formed by considering the usual elementary problems set on the unit cell without
reconsidering the general procedure of homogenization. However, when following
the two-scale asymptotic approach, it appears that the argument used to obtain that
the zero-order displacement field does not depend on the microscopic variable is no
longer valid. Therefore, in the zone where the fibers are debonded, the macroscopic
displacement field must be replaced by another “macroscopic” displacement field,
corresponding to the independent displacement of the fibers [Berrehili and Marigo
2010]. Consequently, one must also construct the macroscopic problem which
gives this additional field. That is the purpose of this paper.

Specifically, the paper is organized as follows. The next section is devoted to
the setting of the problem: one considers a composite structure �, constituted by
a periodic distribution of elastic unidirectional fibers whose direction is e3 and
embedded in an elastic matrix. In a part �c of � the fibers are assumed to be
bonded to the matrix whereas in the complementary part �d they are assumed to be
debonded but still in contact without friction with the matrix. We then formulate the
elastostatic problem which contains the small parameter ε related to the size of the
microstructure and which governs the displacement field uε and the stress field σ ε .
The third section is devoted to the asymptotic analysis, i.e., the behavior of uε

and σ ε when ε goes to 0. Following a two-scale approach, we first postulate that uε

and σ ε can be expanded in powers of ε, the coefficients ui (x, y) and σ i (x, y) of
the expansion being periodic functions of the microscopic coordinates y. We then
obtain a sequence of variational equations in terms of the ui and the σ i . These
equations are sequentially solved to finally obtain the effective behavior of the
composite in its bonded and debonded parts. In the fourth section, we study the
properties of the effective model and, in particular, the properties of the effective
coefficients provided by the solutions of linear elastic problems posed either on
the bonded or on the debonded cell. Then, some examples are treated. We finally
conclude giving some perspectives.

The summation convention on repeated indices is used throughout the paper.
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The set of real numbers, the set of n-dimensional vectors and the set of symmetric
second-order n-dimensional tensors are, respectively, denoted by R, Rn and Mn

s .
Vectors and second-order tensors are indicated by boldface letters, like u and σ
for the displacement field and the stress field. Their components are denoted by
italic letters, like ui and σi j . Fourth-order tensors as well as their components are
indicated by sans-serif letters, like A or Ai jkl for the stiffness tensor. Such tensors
are considered as linear maps acting on second-order tensors. The application of
A to ε is denoted Aε, with components Ai jklεkl . The inner product between two
vectors or two tensors of the same order is indicated by a dot, like a · b which
stands for ai bi or σ · ε for σi jεi j . The symbol ⊗ denotes the tensor product and
⊗s denotes its symmetric part; i.e., 2e1⊗s e2 = e1⊗ e2+ e2⊗ e1.

In our frequent use of multiple scaling techniques, we adopt the related nota-
tion. For instance, x = (x1, x2, x3) always denotes a macroscopic coordinate while
y = (y1, y2) represents a microscopic one. Since the fibers are oriented along
the direction e3, we distinguish the longitudinal coordinate x3 from the transversal
coordinates x′ = (x1, x2). Latin indices run from 1 to 3, while Greek indices run
from 1 to 2. When a spatial (scalar, vectorial or tensorial) field depends both on x
and y, the partial derivative with respect to one of the coordinates appears explicitly
as an index: for example, divx σ and εx(v) denote, respectively, the divergence of
the stress tensor field σ and the symmetric gradient of the vector field v with respect
to x, while div y σ and ε y(v) are the corresponding derivatives with respect to y:

divx σ (x, y)=
∂σi j

∂x j
(x, y)ei , div y σ (x, y)=

∂σiβ

∂yβ
(x, y)ei , (1)

εx(v)(x, y)=
(
∂v j

∂xi
(x, y)+

∂vi

∂x j
(x, y)

)
ei ⊗s e j , (2)

ε y(v)(x, y)=
(
∂vα

∂yβ
(x, y)+

∂vβ

∂yα
(x, y)

)
eα ⊗s eβ +

∂v3

∂yα
(x, y)eα ⊗s e3. (3)

On a surface I across which a field f is discontinuous, we denote by [[ f ]] its jump
discontinuity.

2. Statement of the problem

We consider a heterogeneous elastic body whose natural reference configuration
is a bounded open domain � of R3 with a smooth boundary ∂�. We denote by
(e1, e2, e3) the canonical basis of R3 and by (x1, x2, x3) the coordinates of a point
x ∈ �. The body is made of two isotropic linearly elastic materials, called the
fibers and the matrix, whose Lamé coefficients and mass density are, respectively,
(λ f , µ f , ρ f ) and (λm, µm, ρm). The fibers are aligned in the direction e3 and have
a circular cross-section with radius εR. They are periodically distributed in the
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Figure 1. The composite structure and the two periodic cells.

matrix, εa and εb being the two vectors of the plane (e1, e2) characterizing the
periodicity. The number of fibers is large so that the dimensionless parameter ε
characterizing the fineness of the microstructure (for instance, the ratio between
the spatial period and the size of the structure) is small. The domain occupied by
the fibers is �εf , that occupied by the matrix is �εm , while the set of all interfaces
between fibers and matrix is I ε . Accordingly, one has

�=�εf ∪ I ε ∪�εm . (4)

The fibers are perfectly bonded in a part �c of � and debonded in the complemen-
tary part �d ; see Figure 1. Both parts contain a large number of fibers and will
be considered as given and independent of ε. Moreover we assume that in �d the
fibers remain in contact with the matrix but can slip without friction. Accordingly,
denoting by

I εc =�c ∩ I ε, I εd =�d ∩ I ε, (5)

respectively, the bonded and debonded interfaces, the interface conditions in terms
of the displacement and the stress fields read as{

[[u]] = 0, [[σ ]]n= 0 on I εc ,
[[u]] · n= 0, [[σ ]]n · n= 0, σn∧ n= 0 on I εd .

(6)

In (6), n is the outer normal to the fiber at an interface and the brackets denote the
jump of the involved field across the interface. The conditions on I εc mean that
the displacement and the vector stress are continuous; the conditions on I εd mean
that the normal displacement and the normal stress are continuous while the shear
stress vanishes.

Remark 1. In the above conditions on the interface between the fibers and the
matrix after debonding, we assume that contact always occurs without friction.
This allows us to treat linear elastic problems and then the analysis is simplified.
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It would be easy to follow the same procedure by assuming that the fibers are no
longer in contact with the matrix after debonding. It is more difficult to consider
unilateral frictionless contact conditions where the contact conditions depend on
the sign of the normal stress. That leads to nonlinear (but still elastic) problems
where the superposition principle can no longer be used. Much more difficult is the
case where the contact occurs with friction. Then the effective behavior is no longer
elastic and one must introduce internal variables. All these more elaborated cases
are outside the scope of this didactic paper and will be the subject of future works.

The body is submitted to a specific body force density g (independent of ε). The
part 0c of the boundary ∂� is fixed while the complementary part 0s = ∂� \0c is
submitted to a surface force density F (independent of ε).

We are now in a position to set the problem which governs the response of the
body at equilibrium under the given loading. For a fixed ε > 0, the problem consists
in finding a displacement field uε and a stress field σ ε , such that:

Equilibrium:
{

div σ ε + ρ f g = 0 in �εf ,
div σ ε + ρm g = 0 in �εm,

(7)

Constitutive relations:
{
σ ε = λ f div uεδ+ 2µ f ε(uε) in �εf ,
σ ε = λm div uεδ+ 2µmε(uε) in �εm,

(8)

Compatibility: 2ε(uε)=∇uε +∇T uε in �εf ∪�
ε
m, (9)

Boundary conditions:
{

uε = 0 on 0c,

σ εn= F on 0s,
(10)

Interface conditions:
{

[[uε]] = 0, [[σ ε]]n= 0 on I εc ,
[[uεn]] = 0, σ εn= σ εnnn, [[σ εnn]] = 0 on I εd .

(11)

In (8), δ is the identity tensor with δi j = 1 when i = j and δi j = 0 when i 6= j . This
set of equations constitutes a linear boundary value problem which can be written
in a variational form as follows.

Let Cε be the linear space of kinematically admissible displacement fields; i.e.,

Cε =
{
v ∈ H 1(� \ I εd ;R

3) : [[v]] · n= 0 on I εd , v = 0 on 0c
}
, (12)

let fε be the continuous linear form associated with the applied forces; i.e.,

fε(v)=

∫
�εf

ρ f g · v dx +
∫
�εm

ρm g · v dx +
∫
0s

F · v d0 for v ∈ Cε, (13)

and let aε be the bilinear continuous form associated with the elastic energy; i.e.,

aε(u, v)=
∫
�εf

A f ε(u) · ε(v) dx +
∫
�εm

Amε(u) · ε(v) dx . (14)
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In (14), A f and Am stand for the fourth-order elasticity tensors of the fibers and
the matrix, respectively; i.e.,

A
f,m
i jkl = λ f,mδi jδkl +µ f,m(δikδ jl + δilδ jk). (15)

Then uε must satisfy the variational problem

find uε ∈ Cε such that aε(uε, v)= fε(v) for all v ∈ Cε, (16)

and σ ε is the associated stress field given in terms of the strain field by (8). The
existence and the uniqueness of the solution uε of (16) is guaranteed provided that
the boundary 0c is such that there does not exist any (nonzero) rigid displacement
which is kinematically admissible. Specifically, let us denote by Rε the set of
displacement fields which are both kinematically admissible and corresponding to
a null strain field; i.e.,

Rε
= {v ∈ Cε : ε(v)= 0 in � \ I εd }. (17)

By standard arguments, we have:

Proposition 1. Under the condition that Rε
= {0} and that the density of forces

g and F are smooth enough, the variational problem (16) admits a unique solu-
tion uε .

The necessary and sufficient condition above for the existence and the unique-
ness of the solution depends in general both on 0c and �d . However, the existence
of a solution is guaranteed if Rε

= {0}, that is, if no rigid displacements are allowed.
We will assume henceforth that this condition is satisfied.

3. Asymptotic analysis

This section is devoted to the behavior of uε , the unique solution of (16), when ε
goes to 0. For that we use a formal double-scale asymptotic method like in [Abdel-
moula and Marigo 2000; Allaire 1992; Bensoussan et al. 1978; David et al. 2012;
Marigo and Pideri 2011]. The goal is not to obtain rigorous results of convergence,
but simply to formally construct the “limit” problem.

3.1. The assumed asymptotic expansion of uε . By virtue of the unidirectional
character of the fibers, one can choose a two-dimensional domain V as the rescaled
periodic cell characterizing the spatial distribution of the fibers; see [Bouchelaghem
et al. 2007; Léné 1984; Marigo and Pideri 2011]. The fiber part and the matrix part
of this cell are, respectively, the open sets Vf and Vm of the (y1, y2) plane, while
the interface is I = ∂Vf ∩ ∂Vm . Accordingly, one has

V = Vf ∪ I ∪ Vm . (18)
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Moreover, the rigidity tensor and the mass density fields can be read as

Aε(x)= A

(
x′

ε

)
with A( y)=

{
A f if y ∈ Vf ,

Am if y ∈ Vm,
(19)

ρε(x)= ρ
(

x′

ε

)
with ρ( y)=

{
ρ f if y ∈ Vf ,

ρm if y ∈ Vm .
(20)

This allows us to write problem (16) in the equivalent form

find uε ∈Cε such that
∫
�\Iεd

Aεε(uε)·ε(v) dx=
∫
�

ρε g·v dx+
∫
0s

F·v d0

for all v ∈ Cε . (21)

Following the classical two-scale procedure in homogenization theory of periodic
media [Allaire 1992; Bensoussan et al. 1978], we assume that uε can be expanded
as follows:

uε(x)=
∞∑

i=0

εi ui
(

x,
x′

ε

)
, (22)

where the fields ui are defined in �× V and V -periodic (with respect to the mi-
croscopic variable y). As far as their regularity with respect to y is concerned,
one can discriminate according to whether x belongs to �c or �d . Specifically, if
x ∈�c, then ui (x, · ) must be continuous across I , while if x ∈�d , then ui

n(x, · )
only must be continuous across I .

Using the chain rule, the strain field admits the expansion

ε(uε)(x)=
∞∑

i=−1

εi
(
ε y(ui+1)

(
x,

x′

ε

)
+ εx(ui )

(
x,

x′

ε

))
, (23)

where εx(v) and ε y(v) denote, respectively, the symmetrized gradient of the dis-
placement field v with respect to the macroscopic and microscopic coordinates;
see (2)–(3).

3.2. Equations at various orders. Let us choose a two-scale smooth displacement
field vε(x) = v(x, x′/ε), V -periodic and such that v(x, y) = 0 when x ∈ 0c, as
an element of Cε and let us insert it into (21) as the test field. After inserting the
asymptotic expansion of uε into (21) and identifying the terms at the same power
of ε, one obtains a sequence of variational problems for the ui , the first three of
which are given below. (One formally replaces simple integrals over � by multiple
integrals over �× V in the spirit of the double-scale approach [Allaire 1992].)

(1) At order ε−2:

0=
∫
�c

∫
V
Aε y(u0) · ε y(v) dydx +

∫
�d

∫
V\I

Aε y(u0) · ε y(v) dydx . (24)
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(2) At order ε−1:

0=
∫
�c

∫
V
Aε y(u0) · εx(v) dydx +

∫
�d

∫
V\I

Aε y(u0) · εx(v) dydx

+

∫
�c

∫
V
A
(
ε y(u1)+ εx(u0)

)
· ε y(v) dydx

+

∫
�d

∫
V\I

A
(
ε y(u1)+ εx(u0)

)
· ε y(v) dydx . (25)

(3) At order ε0:∫
�c

∫
V
A
(
ε y(u2)+εx(u1)

)
·ε y(v) dydx+

∫
�d

∫
V\I

A
(
ε y(u2)+εx(u1)

)
·ε y(v) dydx

+

∫
�c

∫
V
A
(
ε y(u1)+εx(u0)

)
·εx(v) dydx+

∫
�d

∫
V\I

A
(
ε y(u1)+εx(u0)

)
·εx(v) dydx

=

∫
�

∫
V
ρg·v dydx+

∫
0s

∫
V

F·v dyd0. (26)

In (24)–(26), A and ρ stand for the V -periodic functions of y introduced in
(19) and (20). Moreover, these variational equalities must hold for any smooth
v(x, y) which vanishes when x ∈ 0c as a function of x, which is V -periodic in y,
continuous across I when x ∈�c and whose normal component vn is continuous
across I when x ∈�d .

3.3. The form of u0. By choosing v = u0 in (24) (which is licit) and owing to the
positivity of the elasticity tensors A f and Am , one deduces that

ε y(u0)= 0 in �c× V and in �d × (V \ I).

Let us discriminate the case when x ∈�c and that when x ∈�d .

(1) When x ∈�c, since ε(u0)(x, y)= 0 for all y ∈ V , u0 must be a rigid displace-
ment with respect to y. Recalling that u0(x, y) ∈ R3 and that y = (y1, y2), using
(3) leads to

u0(x, y)= u(x)+ω(x)e3 ∧ y for all y ∈ V ,

where u(x) ∈ R3 and ω(x) ∈ R. (Note that the rotations of axes e1 and e2 are
automatically eliminated because u0 is independent of y3.) But since u0 must be
V -periodic, one gets also ω(x)= 0. Finally, we have obtained that

for x ∈�c : u0(x, y)= u(x) for all y ∈ V . (27)

This result is the classical property of the homogenization theory which states that
the leading term of the asymptotic displacement field expansion does not depend
on the microscopic coordinates. However, this property holds true only because
the fiber is perfectly bonded to the matrix, as we will see hereafter.
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(2) When x ∈�d , one has separately ε y(u0)(x, · )= 0 in Vf and in Vm . Therefore,
u0(x, y) must be a rigid displacement field with respect to y in the matrix part Vm

and a priori another rigid displacement field in the fiber part Vf of the cell V .
Accordingly, u0(x, y) must read as

u0(x, y)=
{

um(x)+ωm(x)e3 ∧ y for all y ∈ Vm,

u f (x)+ω f (x)e3 ∧ y for all y ∈ Vf ,

where um(x) and u f (x) are in R3, ωm(x) and ω f (x) are in R. Since u0 must be
V -periodic, one still gets ωm(x)= 0. Let us write now the continuity of u0

n across
I . We can take the center of the (circular) fiber cross-section as the origin of the
(y1, y2) plane without loss of generality. Accordingly, n= y/R = cos θe1+sin θe2

for y ∈ I . Therefore, [[u0
]] · n= 0 on I reads as

cos θ(um(x)− u f (x)) · e1+ sin θ(um(x)− u f (x)) · e2 = 0 for all θ ∈ [0, 2π ],

from which one immediately deduces that u f (x)= um(x)+ δ(x)e3. Finally, we
have obtained that

for x ∈�d : u0(x, y)=
{

u(x) for all y ∈ Vm,

u(x)+ δ(x)e3+ω(x)e3 ∧ y for all y ∈ Vf .
(28)

For future reference, let us denote by Rd the set of the V -periodic displacement
fields w such that ε y(w)= 0 in V \ I and [[wn]] = 0 on I ; i.e.,

Rd =

{
w :w( y)=

{
a for y ∈ Vm,

a+ δe3+ωe3 ∧ y for y ∈ Vf ,
a ∈R3, δ ∈R, ω ∈R

}
. (29)

Thus u0(x, · ) ∈ Rd when x ∈ �d . This result differs from the usual property of
the homogenization theory. Indeed, because of the debonding of the fiber from the
matrix, the leading term of the asymptotic displacement field expansion depends
here on the microscopic coordinates. Moreover, two new macroscopic scalar fields
appear in the effective kinematics of the composite. Specifically, the vector field
u represents the macroscopic displacement of the matrix while the scalar fields δ
and ω represent the longitudinal sliding and the relative rotation of the fibers with
respect to the matrix. We have obtained a generalized continuous medium.

Let us summarize all results obtained in this subsection:

Proposition 2. The first-order displacement u0(x, y) takes two different forms ac-
cording to whether x is in �c or in �d . Specifically,

for x ∈�c : u0(x, y)= u(x) for all y ∈ V ,

for x ∈�d : u0(x, y)=
{

u(x) for all y ∈ Vm,

u(x)+ δ(x)e3+ω(x)e3 ∧ y for all y ∈ Vf .

Therefore, the effective kinematic behavior in the debonded part of the composite
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body is that of a generalized continuous medium where appear the sliding and the
rotation of the fibers with respect to the matrix.

Remark 2. The macroscopic displacement fields u, δ and ω can be defined in the
whole domain � but δ and ω must vanish in �c. Moreover, those fields have to be
sufficiently smooth in order that the effective elastic energy be finite. Their smooth-
ness will be specified once the effective behavior is obtained. In the same way, the
boundary conditions that u, δ and ω have to satisfy on 0c will be specified later.

3.4. The elementary cell problems. Inserting (27) and (28) into (25) leads to

0=
∫
�c

∫
V
A
(
ε y(u1)+ ε(u)

)
· ε y(v) dydx

+

∫
�d

∫
V\I

A
(
ε y(u1)+ ε(u)+ ε(δe3)+ εx(ωe3 ∧ y)

)
· ε y(v) dydx . (30)

Assuming at this stage that the fields u, δ and ω are known, (30) will allow us
to determine u1 in terms of the gradient of u, δ and ω. For that, we have still to
discriminate between the domains �c and �d .

(1) Let us first choose v such that v(x, y) = ϕ(x)w( y) with ϕ ∈ D(�c) (the set
of indefinitely differentiable functions with compact support in �c) and w ∈Hc,
where Hc denotes the Hilbert space of vector fields which are V -periodic and whose
components are in H 1(V ); i.e.,

Hc = {w ∈ H 1(V ;R3) : w is V -periodic}.

Then (30) becomes: at almost all x ∈�c and for all w ∈Hc,∫
V
A( y)ε y(u1)(x, y) · ε(w)( y) dy+ ε(u)(x) ·

∫
V
A( y)ε(w)( y) dy = 0.

Hence, by linearity, u1 can read as

for x ∈�c : u1
k(x, y)= ε(u)i j (x)χ

i j
k ( y)+ ūk(x) for all y ∈ V , (31)

where, for i, j ∈ {1, 2, 3}, the vector fields χ i j are the elements of Hc solving the
so-called cell problems∫

V
Apqrsε(χ

i j )pqε(w)rs dy+
∫

V
Ai jrsε(w)rs dy = 0 for all w ∈Hc. (32)

In (31), ū(x) remains undetermined at this stage.

(2) Let us now choose v such that v(x, y)=ϕ(x)w( y) with ϕ ∈D(�d) andw∈Hd ,
where

Hd =
{
w ∈ H 1(V \ I;R3) : w is V -periodic, [[wn]] = 0 on I

}
.
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Then (30) becomes: at almost all x ∈�d and for all w ∈Hd ,

0=
∫

V\I
A( y)ε y(u1)(x, y) · ε(w)( y) dy

+ ε(u)(x) ·
∫

V\I
A( y)ε(w)( y) dy+ ε(δe3)(x) ·

∫
Vf

A f ε(w)( y) dy

+ ε(ωe2)(x) ·
∫

Vf

y1A
f ε(w)( y) dy− ε(ωe1)(x) ·

∫
Vf

y2A
f ε(w)( y) dy.

Hence, by linearity, u1 can read as

for x∈�d : u1(x, y)=ε(u)i j (x)ξ i j ( y)+
∂δ

∂xi
(x)Di ( y)+

∂ω

∂xi
(x)W i ( y)+ū(x, y)

for all y ∈ V \ I, (33)

where ū(x, · ) is an element of Rd that remains undetermined at this stage, and the
vector fields ξ i j , Di and W i , for i, j ∈ {1, 2, 3}, are the elements of Hd solving the
following new cell problems:∫

V\I
Apqrsε(ξ

i j )pqε(w)rs dy+
∫

V\I
Ai jrsε(w)rs dy=0, (34)∫

V\I
Apqrsε(Di )pqε(w)rs dy+

∫
Vf

A
f
3irsε(w)rs dy=0, (35)∫

V\I
Apqrsε(W i )pqε(w)rs dy+

∫
Vf

(e3∧ y)·eqA
f
iqrsε(w)rs dy=0. (36)

In (34)–(36) equality holds for all w∈Hd .

Let us study each of these cell problems.

• Each χ i j is uniquely determined up to a translation which can be fixed by
imposing that

∫
V χ

i j dy=0. It corresponds to the microscopic response of the
representative volume element submitted to the macroscopic strain tensor ei⊗s e j .
In other words, the χ i j are given by the classical microscopic problems appearing
in the homogenization theory [Allaire 1992; Bensoussan et al. 1978]. By virtue
of the symmetries of the rigidity tensors A f and Am , one has χ i j

=χ j i and hence
there exist exactly six independent cell problems. Since the periodicity is two-
dimensional and since the fibers and the matrix are isotropic, all the χ i j enjoy
some general properties. For instance,

χ
αβ

3 =χ
33
3 =χ

α3
β =0 for all α, β∈{1, 2}.

Additional symmetry properties appear when the cell itself enjoys additional sym-
metries [Léné 1984]. The practical determination of the χ i j requires some numer-
ical computation.
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• All preceding comments on the χ i j remain true for the ξ i j (except that ξ i j is
uniquely determined up to an element of Rd ). Note however that ξ i j differs (in gen-
eral) from χ i j because of the possibility of a tangential discontinuity of ξ i j on I . A
consequence of this additional degree of freedom is that the shear stress associated
with ξ i j necessarily vanishes on I while this is not in general the case for χ i j .

• The fields D1 and D2 can be obtained in a closed form. Specifically, one gets

for α∈{1, 2} : Dα(y)=
{

0, y∈Vm,

−yαe3, y∈Vf ,
+ an arbitrary element of Rd . (37)

The verification is straightforward and left to the reader. On the other hand, D3

cannot be obtained in a closed form (except if λ f =0) but can be simplified. Indeed,
as for the ξ i j , by virtue of the isotropy of the fibers and the matrix, one gets that
D3

3=0 and finally the problem for D3 can read as∫
V\I

λε(D3)ααε(w)ββ+2µε(D3)αβε(w)αβ dy+
∫

V f

λ f ε(w)ββ dy=0

for all w∈Hd . (38)

It corresponds to the response of the cell when the fiber is submitted to a macro-
scopic longitudinal stretching e3⊗e3 while the matrix is macroscopically unstrained.
That response is not trivial because of the contact between the fiber and the matrix.
This contact implies the existence of a normal stress σnn at the interface I which
induces a deformation of the matrix.

• All the fields W i can be obtained in a closed form. Let us first show that

W3
∈Rd . (39)

Indeed, the integral over Vf in (36) for i=3 vanishes as proved below:∫
Vf

(e3∧ y)·eβA
f
3βklε(w)kl dy =

∫
Vf

µ f (e3∧ y)·eβ
∂w3

∂yβ
dy

=−

∫
Vf

µ f (e3∧eβ)·eβw3 dy+
∫

I
µ f (e3∧ y)·nw3 ds

=0.

The last equality above is due to the fact that n= y/R on I . Inserting this property
and taking w=W3 in (36) for i=3 leads to∫

V\I
Aε(W3)·ε(W3) dy=0.

Therefore ε(W3)=0 which is the desired result. Since the undetermined element
of Rd does not play any role, one can consider that W3

=0. Note that this property
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holds true because the fiber has a circular section and is isotropic.
Let us now verify that W1 and W2 are given by

for α∈{1, 2} : Wα(y)=
{

0, y∈Vm,

−yαe3∧ y, y∈Vf ,
+ an arbitrary element of Rd . (40)

Let us first remark that [[Wα
]]·n=0 on I because (e3∧ y)·n=0. Hence Wα

∈Hd .
Let us now calculate the strain field ε(Wα) for α∈{1, 2}:

2ε(Wα)pq=−(e3∧ y)·epδαq−(e3∧ y)·eqδαp for all p, q∈{1, 2, 3}.

Therefore, one gets A
f
pqrsε(Wα)pq=−(e3∧ y)·eqA

f
αqrs , from which one easily de-

duces that (36) is satisfied for i=α.

3.5. The form of σ 0. The form of the leading term σ 0 of the stress field is obtained
via the constitutive relations (8) and the strain expansion (23). Specifically, one gets

σ 0(x, y)=A( y)
(
εx(u0)(x, y)+ε y(u1)(x, y)

)
. (41)

Let us discriminate once more between the domains �c and �d to obtain the stress
field σ 0 in terms of the generalized strain fields ε(u), ∇δ, ∇ω and of the micro-
scopic strain fields associated with the solutions of the cell problems.

(1) For x∈�c. By virtue of (27) and (31), one gets

σ 0(x, y)=A( y)
(
ε(u)(x)+ε(u)i j (x)ε(χ i j )( y)

)
, (42)

which is the usual expression of the stress distribution given by the homogenization
theory. Of course, all cell problems give a contribution to that stress distribution.

(2) For x∈�d . By virtue of (28) and (33), one gets, for all y∈V \ I ,

σ 0(x, y)=A( y)
(
ε(u)(x)+ε(u)i j (x)ε(ξ i j )( y)

)
+
∂δ

∂xi
(x)Si( y)+

∂ω

∂xi
(x)T i( y), (43)

with

Si
rs( y)=

{
Am

pqrsε(Di )pq( y) if y∈Vm,

A
f
pqrsε(Di )pq( y)+A f

3irs if y∈Vf
(44)

T i
rs( y)=

{
Am

pqrsε(W i )pq( y) if y∈Vm,

A
f
pqrsε(W i )pq( y)+A f

iqrs(e3∧ y)·eq if y∈Vf .
(45)

Moreover, (37) gives Sα=0 and (40) gives Tα
=0 for α∈{1, 2}. In other words

the cell problems associated with ∂δ/∂xα or with ∂ω/∂xα induce no stress. Since
W3 vanishes, T 3 reads as

T 3( y)=
{

0 if y∈Vm,

2µ f (−y2e3⊗s e1+y1e3⊗s e2) if y∈Vf .
(46)



194 YAHYA BERREHILI AND JEAN-JACQUES MARIGO

Note that this stress distribution corresponds to that given by a torsion of a cylinder
with a circular cross-section. The only nonzero component is the orthoradial one
σ3θ which is proportional to r , the distance to the axis. Moreover, there is no
interaction with the matrix.

On the other hand, S3 cannot be obtained in a closed form, but can be simplified
by using (38):

S3
αβ( y)=

{
λmεγ γ (D3)( y)δαβ+2µmεαβ(D3)( y) if y∈Vm,

λ f
(
1+εγ γ (D3)( y)

)
δαβ+2µ f εαβ(D3)( y) if y∈Vf ,

(47)

S3
33( y)=

{
λmεγ γ (D3)( y) if y∈Vm,

λ f
(
1+εγ γ (D3)( y)

)
+2µ f if y∈Vf ,

(48)

and S3
α3=0 in Vf ∪Vm . As it was already noted, there is an interaction between

the fiber and the matrix because of the contact assumption.
Finally, σ 0(x, · ) can read in V \ I as

σ 0(x, y)=A( y)
(
ε(u)(x)+ε(u)i j (x)ε(ξ i j )( y)

)
+
∂δ

∂x3
(x)S3( y)+

∂ω

∂x3
(x)T 3( y), (49)

which includes the contribution of the longitudinal stretching and the torsion of the
fibers.

3.6. The macroscopic problem. To obtain the problem which gives the macro-
scopic fields u, δ and ω, we choose a displacement field v in (26) of the same type
as u0, i.e., such that ε y(v)=0. Specifically, one sets

v∗(x, y)=
{

u∗(x) in (�c×V )∪(�d×Vm),

u∗(x)+δ∗(x)e3+ω
∗(x)e3∧ y in �d×Vf

(50)

and inserts such a v∗ into (26). Then the terms in ε y(u2)+εx(u1) disappear be-
cause ε y(v)=0. By virtue of (41), (26) becomes∫
�

∫
V
σ 0(x, y)·ε(u∗)(x)dydx

+

∫
�d

∫
Vf

σ 0(x, y)·
(
ε(δ∗e3)(x)+ε(ω∗e3∧eα)(x)yα

)
dydx

=

∫
�

∫
V
ρ( y)g(x)·u∗(x)dydx+

∫
�d

∫
Vf

ρ f
(
g3(x)δ∗(x)+(e3∧ y)·g(x)ω∗(x)

)
dydx

+

∫
0s

∫
V

F(x)·u∗(x)dyd0+
∫
0s

∫
Vf

(
F3(x)δ∗(x)+(e3∧ y)·F(x)ω∗(x)

)
dyd0. (51)

Let us denote by 〈ϕ〉 the mean value of ϕ over the cell V :

〈ϕ〉=
1
|V |

∫
V
ϕ( y) dy, 〈ϕ〉(x)=

1
|V |

∫
V
ϕ(x, y) dy, (52)
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and by 〈ϕ〉f (respectively, 〈ϕ〉m) the mean value over the whole cell V of the field ϕ
only defined in or restricted to V f (respectively, Vm); i.e.,

〈ϕ〉 f,m=
1
|V |

∫
V f,m

ϕ( y) dy, 〈ϕ〉 f,m(x)=
1
|V |

∫
V f,m

ϕ(x, y) dy. (53)

Recalling that the center of the fiber is taken as the origin of the y-coordinates, one
has

∫
Vf

y dy=0. Accordingly, after easy calculations, (51) can read as∫
�c

〈σ 0
〉·ε(u∗) dx+

∫
�d

(
〈σ 0
〉·ε(u∗)+〈σ 0

〉f e3 ·∇δ
∗
+〈yασ 0

〉f ·ε(ω
∗e3∧eα)

)
dx

=

∫
�c

〈ρ〉g ·u∗ dx+
∫
�d

(
〈ρ〉g ·u∗+ρ f V f g3δ

∗
)

dx+
∫
0s

(F ·u∗+V f F3δ
∗) d0, (54)

where V f denotes the volume fraction of the fibers; i.e.,

V f =
|Vf |

|V |
, Vm=1−V f .

Remark 3. Let us note that ω∗ does not appear in the right-hand side of (54). This
is due to the assumption made on the applied forces, specifically that both the
specific bulk forces g and the surface forces F do not depend on y, and on the
choice of the center of the fiber as the origin of the y coordinates.

Let us examine each term of the left-hand side of (54).

• For x∈�c, by virtue of (42), 〈σ 0
〉(x) reads as

〈σ 0
〉(x)=Acε(u)(x), (55)

where Ac denotes the (classical) homogenized stiffness tensor of the (perfectly
bonded) composite; i.e.,

Ac
i jkl=〈Ai jkl+Ai j pqε(χ

kl)pq〉=〈Ai jkl−Aε(χ
i j )·ε(χ kl)〉. (56)

The last equality above is obtained by using (32) with w=χ kl . It allows us to
check that Ac has the major symmetry Ac

i jkl=Ac
kli j .

• For x∈�d , by virtue of (49), 〈σ 0
〉(x) reads as

〈σ 0
〉(x)=Adε(u)(x)+〈S3

〉
∂δ

∂x3
(x)+〈T 3

〉
∂ω

∂x3
(x), (57)

where Ad denotes the homogenized stiffness tensor of the debonded composite;
i.e.,

Ad
i jkl=〈Ai jkl+Ai j pqε(ξ

kl)pq〉=〈Ai jkl−Aε(ξ
i j )·ε(ξ kl)〉. (58)

The last equality above is obtained by using (34) with w=ξ kl and implies that
Ad

i jkl=Ad
kli j for all i, j, k, l. The tensor Ad will be compared to the tensor Ac in
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the next section. Then, using (46) and the fact that 〈 y〉f =0, one gets 〈T 3
〉=0 and

finally

〈σ 0
〉(x)=Adε(u)(x)+〈S3

〉
∂δ

∂x3
(x). (59)

• For x∈�d , using (49), the component i of 〈σ 0
〉f e3(x) reads as

〈σ 0
3i 〉f (x)=

〈
A

f
3ikl+A

f
3irsε(ξ

kl)rs
〉
f ε(u)kl(x)+〈S3

3i 〉f
∂δ

∂x3
(x)+〈T 3

3i 〉f
∂ω

∂x3
(x).

Let us first show that 〈
A

f
3ikl+A

f
3irsε(ξ

kl)rs
〉
f =〈S

3
kl〉δi3. (60)

Considering (35) with w=ξ kl gives

〈Aε(Di )·ε(ξ kl)〉+
〈
A

f
3irsε(ξ

kl)rs
〉
f =0.

Considering (34) with kl instead of i j and setting w= Di give

〈Aε(Di )·ε(ξ kl)〉+〈Aklrsε(Di )rs〉=0.

Therefore 〈A f
3irsε(ξ

kl)rs〉f =〈Aklrsε(Di )rs〉 and hence〈
A

f
3ikl+A

f
3irsε(ξ

kl)rs
〉
f =〈Aklrsε(Di )rs〉+

〈
A

f
3ikl

〉
f =〈S

i
kl〉,

where the last equality is a direct consequence of the definition (44) of Si . Since
Sα=0, one gets (60).

Recalling now that S3
3α=0 and 〈T 3

〉f =〈T 3
〉=0, one finally obtains

〈σ 0
〉f e3(x)=〈S3

〉·ε(u)(x)e3+〈S3
33〉f

∂δ

∂x3
(x)e3. (61)

• The last term in the left-hand side of (54) can also read as

〈yασ 0
〉f (x)·ε(ω∗e3∧eα)(x)=

〈
(e3∧ y)·eqσ

0
qi
〉
f (x)

∂ω∗

∂xi
(x).

Using (49), one gets〈
(e3∧ y)·eqσ

0
qi
〉
f (x)=

〈
(e3∧ y)·eq

(
A

f
qikl+A

f
qirsε(ξ

kl)rs
)〉

f ε(u)kl(x)

+
〈
(e3∧ y)·eq S3

qi
〉
f
∂δ

∂x3
(x)+

〈
(e3∧ y)·eq T 3

qi
〉
f
∂ω

∂x3
(x).

Let us calculate the three effective coefficients appearing in the right side.
We first show that

〈
(e3∧ y)·eq

(
A

f
qikl+A

f
qirsε(ξ

kl)rs
)〉

f =0. First,〈
(e3∧ y)·eqA

f
qikl

〉
f =(e3∧〈 y〉f )·eqA

f
qikl=0.

Then, recalling that W3
=0 and using (36) with i=3 and w=ξ kl give〈
(e3∧ y)·eqA

f
qirsε(ξ

kl)rs
〉
f =0
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and hence the desired result.
Next we show that 〈(e3∧ y)·eq S3

qi 〉f =0. By virtue of (44), one has〈
(e3∧ y)·eq S3

qi
〉
f =

〈
(e3∧ y)·eq

(
A

f
qi33+A

f
qirsε(D

3)rs
)〉

f .

Therefore, one can follow the same procedure as for the first coefficient. First,〈
(e3∧ y)·eqA

f
qi33

〉
f =0.

Then, using (36) with i=3 and w= D3 give〈
(e3∧ y)·eqA

f
qirsε(D

3)rs
〉
f =0

and hence the desired result.
For the third effective coefficient, a direct calculation using (46) gives 〈(e3∧ y)·

eq T 3
qi 〉f =(π/2)µ f R4δi3.

Therefore, one finally obtains〈
(e3∧ y)·eqσ

0
qi
〉
f (x)=

πR4µ f

2|V |
∂ω

∂x3
(x)δi3. (62)

Inserting (55), (59), (61) and (62) into (54), the variational equation (54) finally
reads as∫
�c

Acε(u)·ε(u∗) dx+
∫
�d

πR4µ f

2|V |
∂ω

∂x3

∂ω∗

∂x3
dx

+

∫
�d

(
Adε(u)·ε(u∗)+〈S3

〉·

(
ε(u)

∂δ∗

∂x3
+
∂δ

∂x3
ε(u∗)

)
+〈S3

33〉f
∂δ

∂x3

∂δ∗

∂x3

)
dx

=

∫
�

〈ρ〉g ·u∗ dx+
∫
�d

ρ f V f g3δ
∗ dx+

∫
0s

(F ·u∗+V f F3δ
∗) d0. (63)

The equality (63) must hold for all (u∗, δ∗, ω∗) such that the associated displace-
ment field v∗ given by (50) is admissible. These admissibility conditions will be
specified in the next subsection.

Proposition 3. The macroscopic displacement fields (u, δ, ω) are a stationary
point of the following potential energy P0:

P0(u∗, δ∗, ω∗)

=

∫
�c

1
2
Acε(u∗)·ε(u∗) dx+

∫
�d

T
2
∂ω∗

∂x3

∂ω∗

∂x3
dx

+

∫
�d

(
1
2
Adε(u∗)·ε(u∗)+6 ·ε(u∗)

∂δ∗

∂x3
+

K
2
∂δ∗

∂x3

∂δ∗

∂x3

)
dx

−

∫
�

〈ρ〉g ·u∗ dx−
∫
�d

ρ f V f g3δ
∗ dx−

∫
0s

(F ·u∗+V f F3δ
∗) d0, (64)
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where the effective stiffness tensors Ac and Ad , the effective stress tensor 6 and
the effective rigidity coefficients K and T are obtained by solving the different cell
problems. Specifically, Ac is given by (56), Ad by (58), 6=〈S3

〉 and K =〈S3
33〉f ,

where S3 is given by (47)–(48) and T =πR4µ f /(2|V |).

Proof. It suffices to remark that (63) is equivalent to

d
dh

P0(u+hu∗, δ+hδ∗, ω+hω∗)
∣∣
h=0=0.

Hence, P0 can be seen as the effective potential energy of the composite body. �

4. Discussion and examples

4.1. Properties of the effective coefficients.

Proposition 4. The effective rigidity tensor Ac of the perfectly bonded composite
satisfies the minimization problem

for ε∗∈M3
s , Acε∗ ·ε∗= min

w∈Hc
Ec(w), (65)

where

Ec(w)=
〈
A
(
ε∗+ε(w)

)
·
(
ε∗+ε(w)

)〉
.

The effective rigidity tensor Ad , the effective tensor 6 and the effective rigidity
coefficient K of the debonded composite satisfy the minimization problem

for ε∗∈M3
s and d∗∈R, Adε∗ ·ε∗+2d∗6 ·ε∗+K d∗2= min

w∈Hd
Ed(w), (66)

where

Ed(w)=
〈
Am(ε∗+ε(w))·(ε∗+ε(w))〉m

+
〈
A f (ε∗+d∗e3⊗e3+ε(w)

)
·
(
ε∗+d∗e3⊗e3+ε(w)

)〉
f .

Therefore, there exist two positive constants αc>0 and αd>0 such that, for all
ε∗∈M3

s and all d∗∈R,

Acε∗ ·ε∗≥αcε
∗
·ε∗, Adε∗ ·ε∗+2d∗6 ·ε∗+K d∗2≥αd(ε

∗
·ε∗+d∗2). (67)

Moreover, Ac and Ad are well ordered in the sense that

Acε∗ ·ε∗≥Adε∗ ·ε∗ for all ε∗∈M3
s .

Proof. Let us prove the property of minimization for the debonded composite, the
proof being similar for the perfectly bonded composite. Let w∗ be a minimizer
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of Ed over Hd ; w∗ is unique up to an element of Rd and satisfies the variational
equation〈
Am(ε∗+ε(w∗))·ε(w)〉m+〈A f(ε∗+d∗e3⊗e3+ε(w

∗)
)
·ε(w)

〉
f =0

for all w∈Hd . (68)

By linearity and using (34)–(35), one deduces that w∗( y)=ε∗i jξ
i j ( y)+d∗D3( y).

Moreover, using (68) with w=w∗ yields

Ed(w∗)=〈Amε∗ ·ε∗−Amε(w∗)·ε(w∗)〉m

+
〈
A f (ε∗+d∗e3⊗e3)·(ε

∗
+d∗e3⊗e3)−A

f ε(w∗)·ε(w∗)
〉
f

=〈Aε∗ ·ε∗−Aε(w∗)·ε(w∗)〉+2V f A
f
33i jε

∗

i j d
∗
+V f A

f
3333d∗2

=〈Ai jkl−Aε(ξ
i j )·ε(ξ kl)〉ε∗i jε

∗

kl+2
(
V f A

f
33i j−〈Aε(ξ

i j )·ε(D3)〉
)
ε∗i j d

∗

+
(
V f A

f
3333−〈Aε(D

3)·ε(D3)〉
)
d∗2.

Using (34) with w= D3, (35) with Di
=w= D3 and (58), one gets

Ed(w∗)=Adε∗·ε∗+2
(
V f A

f
33i j+〈Ai jklε(D3)kl〉

)
ε∗i j d

∗
+
〈
A

f
3333+A

f
33klε(D

3)kl
〉
f d∗2.

Then it suffices to use (44) with i=3 to obtain that V f A
f
33i j+〈Ai jklε(D3)kl〉=

〈S3
i j 〉=6i j and 〈A f

3333+A
f
33klε(D

3)kl〉f =〈S3
33〉f =K . This yields (66).

We now prove the positivity of Ed(w∗). First, Ed(w∗)≥0 by definition and by
the positivity of Am and A f . We show that equality holds if and only if ε∗=0 and
d∗=0. By the expression of Ed(w∗), equality holds if and only if

ε(w∗)( y)=
{

−ε∗ for all y∈Vm,

−ε∗−d∗e3⊗e3 for all y∈Vf .

But since ε(w∗)33=0, one gets ε∗33=d∗=0. Accordingly, ε(w∗)( y)=−ε∗ for
all y∈V \ I . But, since w∗ is V -periodic, one finally gets ε∗=0. Therefore the
quadratic form Adε∗ ·ε∗+2d∗6 ·ε∗+K d∗2 is definite positive on M3

s×R.
To prove that Ac and Ad are well ordered, let us take d∗=0. Then, by virtue of

the minimization properties, one gets

Acε∗ ·ε∗= min
w∈Hc

〈
A
(
ε∗+ε(w)

)
·
(
ε∗+ε(w)

)〉
,

Adε∗ ·ε∗= min
w∈Hd

〈
A
(
ε∗+ε(w)

)
·
(
ε∗+ε(w)

)〉
.

Since Hc⊂Hd , one obtains the desired inequality Acε∗ ·ε∗≥Adε∗ ·ε∗ for all ε∗

in M3
s . �

4.2. The relevant functional framework of the effective model. Let us discuss
here what are the relevant functional spaces so that the effective problem coming
from the asymptotic analysis is well posed. The natural framework is the set of
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all functions with finite energy P0. Specifically, u∗ must belong to H 1(�,R3)

while δ∗ and ω∗ must belong to H 1
L(�d), where

H 1
L(�d)=

{
ϕ :ϕ=0 in �c, ϕ∈ L2(�d),

∂ϕ

∂x3
∈ L2(�d)

}
.

Accordingly, one can define as usual the trace of u∗ on the boundary of � (and
more generally on any sufficiently smooth surface included in �̄). Therefore, the
Dirichlet boundary condition u∗=0 on 0c has a sense. But this is not the case
for the elements of H 1

L(�d). Indeed, since one only controls its first derivative
with respect to x3, one can define the trace of such an element ϕ on surfaces of
the type x3=constant but not necessarily on surfaces with arbitrary orientations.
Accordingly, the definition of the boundary conditions on 0c and the continuity
conditions at the interface between �c and �d need more developed arguments
which are outside the scope of the present paper. As far as the linear part of the po-
tential energy is concerned, the work done by the external forces is finite provided
that the density g and F are sufficiently smooth. For the work of the specific forces,
it suffices that g be in L2(�;R3) in order that both integrals over � and �d be
finite. The question is more delicate for F. It is sufficient that F be in L2(0s;R

3)

in order that
∫
0s

F ·u∗ d0<+∞. But, the term
∫
0s∩∂�d

F3δ
∗ d0 makes sense only

on the part of the boundary where either F3=0 or δ∗ is defined. Accordingly, we
will assume that the following hypothesis holds:

Hypothesis 1. The given density of forces is such that g∈ L2(�;R3) and F∈
L2(0s;R

3). Moreover, on the part 0s∩∂�d , F3=0.

Finally, introducing the set of all kinematically admissible displacement fields

C0
=
{
(u∗, δ∗, ω∗)∈H 1(�;R3)×H 1

L(�d)
2
:u∗=0 on 0c

}
, (69)

the effective problem can be formulated as follows:

find (u, δ, ω)∈C0 which minimizes P0 over C0. (70)

We are now in the position to establish the final result.

Proposition 5. Let R0 be the subset of C0 made of all displacement fields with
null elastic energy:

R0
=

{
(u∗, δ∗, ω∗)∈C0

:ε(u∗)=0 in �,
∂δ∗

∂x3
=
∂ω∗

∂x3
=0 in �d

}
.

Then, if R0
={(0, 0, 0)} and if the given forces g and F satisfy Hypothesis 1, prob-

lem (70) admits a unique solution.
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Proof. Uniqueness is guaranteed by virtue of the assumption on R0 and of the
positivity of the elastic energy. The existence is due to the smoothness assumption
on the loading and to the positivity property (67) which ensures the coercivity. �

Remark 4. The relative rotation of the fiber ω∗ is not coupled with the macroscopic
displacement field u∗ and the sliding of the fiber δ∗ in the elastic energy. Since ω∗

does not appear in the work of the given external forces, one immediately obtains
that the solution is such that ∂ω/∂x3=0 in �d and hence there does not exist a
fiber torsional energy. But this property will no longer hold true if one changes
some assumptions on the composite behavior or on the loading.

The solution (u, δ) of the effective problem satisfies the following set of local
equilibrium equations in �d :

div
(
Adε(u)+

∂δ

∂x3
6

)
+〈ρ〉g=0,

∂

∂x3

(
K
∂δ

∂x3
+6 ·ε(u)

)
+V f ρ f g3=0.

(71)

These equations must be understood in the sense of distributions when the loading
is not sufficiently smooth. The first one is a vectorial equation while the second one
is scalar. Both are second-order partial differential equations and they are coupled
by the term which involves the effective internal stress tensor 6.

4.3. Case of a regular hexagonal cell. Let L be a characteristic length of the
body, `=3−1/4

√
2L , a=`e1, b=`(e1+

√
3e2)/2 and Vf be the disk of center 0

and radius R<`/2. Thus V is a regular hexagon centered at 0 with area L2; see
Figure 2. Since the material is isotropic, we can use the results of [Léné 1984] to
obtain that Ac and Ad are positive transversely isotropic fourth-order tensors with
axis e3. Therefore, Ac and Ad are such that, for all ε∈M3

s ,

Acε ·ε= Ac
Lε

2
33+λ

c
Lε33εαα+λ

c
T ε

2
αα+2µc

T εαβεαβ+2µc
Lε3αε3α, (72)

Adε ·ε= Ad
Lε

2
33+λ

d
Lε33εαα+λ

d
T ε

2
αα+2µd

T εαβεαβ+2µd
Lε3αε3α, (73)

Vm

Vf

b

a

y2

I
Vf

Vm

y1

Figure 2. The case when the cell is a regular hexagon (left:
bonded; right: debonded).
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where the ten moduli satisfy the following inequalities:

Ac
L≥ Ad

L>0, µc
T ≥µ

d
T >0, µc

L≥µ
d
L>0,

Ac
L(λ

c
T+µ

c
T )>λ

c
L

2
, Ad

L(λ
d
T+µ

d
T )>λ

d
L

2
.

In the same manner, 6 is transversely isotropic and hence can read

6=σT (e1⊗e1+e2⊗e2)+σL e3⊗e3. (74)

Let us compare the longitudinal shear moduli µc
L and µd

L . They are given, respec-
tively, by the two antiplane minimization cell problems

µc
L= min

ϕ∈H1
# (V )
〈µ(∇ϕ+e1)·(∇ϕ+e1)〉,

µd
L= min

ϕ∈H1
# (V\I)

〈µ(∇ϕ+e1)·(∇ϕ+e1)〉. (75)

The minimizers are the nonzero components χ13
3 and ξ 13

3 of χ13 and ξ 13. They
satisfy

0=〈µ(∇χ13
3 +e1)·∇ϕ〉 for all ϕ∈H 1

# (V ),

0=〈µ(∇ξ 13
3 +e1)·∇ϕ〉 for all ϕ∈H 1

# (V \ I), (76)

where # stands for periodic. It is easy to check that ξ 13
3 ( y)=−y1 (plus an arbitrary

constant) in Vf . Therefore

µd
L=〈µm(∇ξ

13
3 +e1)·(∇ξ

13
3 +e1)〉m= min

ϕ∈H1
# (Vm)

〈µm(∇ϕ+e1)·(∇ϕ+e1)〉m .

In other words, the longitudinal shear modulus of the debonded composite is as if
there were a hole instead of a fiber. Accordingly, µc

L and µd
L satisfy the following

bounds:

0<µd
L<Vmµm<

1
Vm
µm
+

V f
µ f

<µc
L<Vmµm+V fµ f ,

the last two inequalities corresponding to the classical Voigt and Reuss bounds.
In the particular case where the Poisson ratios of the fibers and the matrix equal 0,

then λ f =λm=0. Moreover µ f =E f and µm=Em , E f and Em denoting the
Young moduli of the fibers and the matrix. In this case, one easily deduces from
(32), (34) and (35) that

χ33
=ξ 33

= D3
=0.

Therefore, one gets

Ac
L= Ad

L=Vm Em+V f E f , λc
L=λ

d
L=0, σT =0, σL=K =V f E f .

Let us remark that Ac and Ad are not strictly well ordered because Ac
L= Ad

L .
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4.4. Example. Let us finish this section by an example of application. We consider
a cylinder �= S×(0, L) whose cross-section S is an open connected bounded sub-
set of R2 and whose axis e3 corresponds to the vertical. This cylinder, submitted to
the uniform gravity g=−ge3, is fixed on its section S×{L} and free on all other
boundaries S×{0} and ∂S×(0, L). It is made of a unidirectional composite, the
fibers of which are periodically distributed according to a regular hexagonal lattice
with axis e3. The Poisson ratios of the fibers and the matrix are equal to 0. Accord-
ingly, we are in the situation described at the end of the previous subsection; i.e.,

Acε ·ε=〈E〉ε2
33+λ

c
T ε

2
αα+2µc

T εαβεαβ+2µc
Lε3αε3α,

Adε ·ε=〈E〉ε2
33+λ

d
T ε

2
αα+2µd

T εαβεαβ+2µd
Lε3αε3α,

6=E f V f e3⊗e3, K =E f V f .

Moreover, we assume that the fibers are debonded in the part �d= S×(0, `) and
still bonded in the complementary part �c= S×(`, L) where 0<`< L . Accord-
ingly, the work of the gravity reads as

f0(u∗, δ∗)=−
∫

S×(0,L)
〈ρ〉gu∗3 dx−

∫
S×(0,`)

ρ f V f gδ∗ dx,

and the conditions of admissibility for the displacement fields are

u∗∈H 1(S×(0, L);R3), (δ∗, ω∗)∈H 1
L(S×(0, `))

2,

u∗=0 on S×{L}, δ∗=ω∗=0 on S×{`}.

Therefore R0
=(0, 0, 0), we are in the situation of Proposition 5 and the effective

problem admits a unique solution. Let us search for the solution under the form

u(x)=u(x3)e3, δ(x)=δ(x3), ω(x)=0 with u(L)=0, δ(`)=0.

Then, the effective stress reads as

Acε(u)(x)=Adε(u)(x)=〈E〉u′(x3)e3⊗e3,

where the prime denotes the derivative with respect to x3. Inserting this form
into (63), the variational effective problem becomes

0=
∫

S×(0,`)

((
〈E〉u′+E f V f δ

′

)
∂u∗3
∂x3
+〈ρ〉gu∗3+E f V f (δ

′
+u′)

∂δ∗

∂x3
+ρ f V f gδ∗

)
dx

+

∫
S×(`,L)

(
〈E〉u′

∂u∗3
∂x3
+〈ρ〉gu∗3

)
dx, (77)

and the equality must hold for all admissible (u∗, δ∗). Taking first (u∗, δ∗) of the
same form as the expected solution, i.e., u∗(x)=v(x3)e3 and δ∗(x)=ϕ(x3), we
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obtain the following one-dimensional variational problem for (u, δ):

0=
∫ `

0

(
(〈E〉u′+E f V f δ

′)v′+〈ρ〉gv+E f V f (δ
′
+u′)ϕ′+ρ f V f gϕ

)
dx3

+

∫ L

`

(
〈E〉u′v′+〈ρ〉gv

)
dx3,

where the equality must hold for all v∈H 1(0, L) such that v(L)=0 and all ϕ∈
H 1(0, `) such that ϕ(`)=0. By standard arguments of calculus of variations, we
find that u and δ are the unique solution of the following boundary value problem:

in (0, `) :
{
〈E〉u′′+E f V f δ

′′
=〈ρ〉g,

E f (δ
′′
+u′′)=ρ f g;

in (`, L) : 〈E〉u′′=〈ρ〉g; (78)

u′(0)=δ′(0)=0; δ(`)=0, [[u]](`)=0,
〈E〉[[u′]](`)=E f V f δ

′(`−); u(L)=0.
(79)

After some calculations, we eventually find

u′(x3)=


ρm

Em
gx3, 0<x3<`,

〈ρ〉

〈E〉
gx3, `<x3<L ,

u(L)=0, δ(x3)=

(
ρ f

E f
−
ρm

Em

)
g
2
(x2

3−`
2). (80)

Conversely, the reader could verify that (77) is satisfied for any admissible (u∗, δ∗)
with (u, δ) given by (80). Therefore, we have found the unique solution of the
effective problem. Using (42) and (49), we can see the influence of the debonding
on the repartition of the stresses inside the composite:

in S×(0, `) : σ 0(x, y)=


E f

〈E〉
〈ρ〉gx3e3⊗e3 in Vf ,

Em

〈E〉
〈ρ〉gx3e3⊗e3 in Vm,

(81)

in S×(`, L) : σ 0(x, y)=
{
ρ f gx3e3⊗e3 in Vf ,

ρm gx3e3⊗e3 in Vm .
(82)

5. Conclusion and perspectives

We have shown that the effective behavior of a unidirectional composite material
in the case where the fibers are debonded but still in contact with the matrix is
formally similar to a generalized continuous medium whose kinematics contain not
only the usual macroscopic displacement fields but also two scalar fields of internal
variables describing the sliding and the rotation of the fibers. The two-scale proce-
dure based on asymptotic expansions allowed us to formulate the effective problem
giving the response of a composite body submitted to a mechanical loading. This
problem can be formulated as the minimization of the effective potential energy of
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the composite body. This effective potential energy, difference of the effective elas-
tic energy and the effective work of the applied forces, contains effective stiffness
coefficients which are obtained by solving 12 elementary cell problems. Five of
them can be solved in a closed form, the remaining seven requiring in general nu-
merical computations. None of the problems are standard problems of the homog-
enization theory. Finally, the effective global problem leads to a system of coupled
partial differential equations of second order which involve the kinematical fields.

The procedure was developed here in the particular case where the fibers and the
matrix are linearly elastic isotropic materials with the assumption that the fibers
remain in contact without friction with the matrix. We claim that it is possible to
extend this work by removing some assumptions and enlarging the setting. For
example, a first extension should be to consider prestresses in the composite and
hence to develop the procedure in the case of an affine stress-strain relation. An-
other natural extension could be to consider more general and more realistic contact
conditions between matrix and fibers: unilateral contact without friction or cohe-
sive forces [Charlotte et al. 2006], for instance. The difficulty would be to solve
nonlinear cell problems, and in such cases the effective behavior would no longer
be described by a finite number of coefficients. An interesting mathematical chal-
lenge is to give a rigorous proof, by 0-convergence for instance, that the effective
behavior is really the one proposed here. It is a real issue because, as we have
shown, the additional kinematical fields are less regular than the classical one. The
consequences are that convergence could probably be proved only if the external
forces satisfy certain smoothness conditions, and that the additional field should
not satisfy arbitrary boundary conditions.

But the most interesting challenge is to introduce a law for the debonding evo-
lution. Indeed, we have considered here that the domain where the fibers are
debonded is given. But of course the real question is to find how this domain
evolves with the loading. If we consider a Griffith-like assumption and suppose
that debonding corresponds to an increase of the surface energy proportional to the
new surface created [Bourdin et al. 2008], then the problem of debonding evolu-
tion will consist in finding when and how the potential energy is transformed into
surface energy [Bilteryst and Marigo 2003]. If one adopts the global minimization
principle proposed in [Francfort and Marigo 1993], then major mathematical diffi-
culties will occur. Indeed, in the simplest case where the behavior of the material
is described by two stiffness tensors, the damaged and the undamaged ones, it
was shown in [Francfort and Marigo 1993] that the minimization energy problem
does not admit classical solutions but must be relaxed to consider fine mixtures
of damaged and undamaged material. In the present case the same phenomenon
should probably also occur, but, because of the additional kinematical fields, its
mathematical treatment should be much more difficult.
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STATISTICALLY ISOTROPIC TENSOR RANDOM FIELDS:
CORRELATION STRUCTURES

ANATOLIY MALYARENKO AND MARTIN OSTOJA-STARZEWSKI

Let V be a real finite-dimensional vector space. We introduce some physical
problems that may be described by V-valued homogeneous and isotropic ran-
dom fields on R3. We propose a general method for calculation of expectations
and two-point correlation functions of such fields. Our results are equivalent to
classical results by Robertson, when V = R3, and those by Lomakin, when V is
the space of symmetric second-rank tensors over R3. Our solution involves an
analogue of the classical Clebsch–Gordan coefficients.

1. Introduction

The entire field of continuum physics involves tensor fields. Overwhelmingly, most
of the existing models and theories are deterministic and their stochastic generaliza-
tions necessitate construction of tensor-valued random fields (RF). While the litera-
ture on scalar RFs is vast (for example, [Cressie 1993; Christakos 2005; Marinucci
and Peccati 2011; Leonenko and Sakhno 2012; Porcu et al. 2012]), that on vector
RFs is largely limited to statistical turbulence [Monin and Yaglom 1965], and the
case of higher tensor rank (second, fourth) RFs poses challenges. In this paper we
focus on wide-sense stationary and statistically isotropic RFs of tensors of the first
and second ranks. We present a new method of derivation of representations of
their correlation functions, which in the case of first-rank tensors gives the same
result as in [Robertson 1940], while in the case of second-rank tensors is equivalent
to the result of [Lomakin 1964].

These representations have applications to tensor random fields (TRFs) gov-
erned by the field equations of continuum physics as well as those representing
some spatially inhomogeneous constitutive properties of random media. The for-
mer type of TRFs is used in [Ostoja-Starzewski et al. 2013], where correlation
functions are subject to constraints such as the equilibrium equation or strain-
displacement relation. The basic properties of TRFs of a wide-sense homogeneous
and isotropic kind with generally anisotropic realizations have been determined
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in three continuum physics theories: thermal conduction, classical elasticity, and
micropolar elasticity. The field equations (such as the linear and angular mo-
mentum balances and strain-displacement relations), all in a quasistatic setting,
lead to consequences for the respective dependent fields involved. In effect, these
consequences are restrictions on the admissible forms of the correlation functions
describing the TRFs.

The latter type of TRFs provides models of random media described by the
second-rank TRF. The typical example here is the thermal conductivity tensor and
its mathematical analogies such as the antiplane stiffness tensor. Once the general
representation of this TRF is established and the conditions of positive definiteness
are imposed, one can turn to modeling and simulation of the entire range of statis-
tical constitutive behaviors of all heat-conducting media or, say, elastic materials
subjected to antiplane loading, for example, [Sena et al. 2013].

In particular, let V be a finite-dimensional real Hilbert space with norm ‖·‖. Let
T (x), x ∈ R3, be a random field taking values in (a subset of) V . Suppose that
E[‖T (x)‖2]<∞ and that T (x) is mean-square continuous, that is, for any x0 ∈R3

we have

lim
‖x−x0‖→0

E[‖T (x)− T (x0)‖
2
] = 0.

Let E(x)= E[T (x)] be the expectation of the field, and let B(x, y)= E[T (x)⊗
T ( y)] be the two-point correlation function of the random field T (x). The group
R3 acts on itself by translations. Assume that the above functions are invariant
with respect to this action, that is, for all x, y, z ∈ R3,

E(x+ z)= E(x),
B(x+ z, y+ z)= B(x, y).

It follows that E(x)= E ∈ V is constant, while B(x, y) ∈ V ⊗ V depends only on
the difference x− y.

Let K = SO(3) be the group of rotations in R3, and let (V, γ ) be an orthogonal
representation of K . Suppose that for all k ∈ K and all x ∈ R3 we have

E(kx)= γ (k)E(x),

B(kx)= γ (k)B(x)γ−1(k).
(1-1)

We would like to find a general form for the expectation and two-point correlation
function of such a field.

In Section 2, we consider mathematical preliminaries. We use the book [Adams
1969], in which Adams considers both real and complex representations at the same
time.

In Section 3 we consider two particular cases of the above problem:
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(1) V has dimension 3 and γ (k)= k.

(2) V is the space of all second-rank tensors over R3, T (x) takes values in the set
of all symmetric tensors, and the representation is γ (k)T = kTk−1.

In the first case, the answer has been known since the classic paper [Robertson
1940]. In Theorem 3.1, we prove that our method of solution gives the same answer.
Our new result is Theorem 3.2. Section 4 concludes. Proofs of our results are
collected in the Appendix.

2. Mathematical preliminaries

Let K be either the field R of real numbers or the field C of complex numbers,
and let K be a topological group with the identity element e. A representation of
the group K over K is a pair (V, γ ), where V is a finite-dimensional vector space
over K, and γ is a continuous homomorphism from K to the group Aut V of the
invertible linear operators in V . In other words, for each k ∈ K and for each v ∈ V
there is a vector γ (k)v ∈ V , and the following conditions hold true:

(1) γ (e)v = v and γ (k)(γ (k ′)v)= γ (kk ′)v.

(2) γ (k)v is a K-linear function of v.

(3) γ (k)v is a continuous function of k and v.

Let (V, γ ) and (W, δ) be two representations. A map G : V → W is called a
K-map if

G(γ (k)v)= δ(k)(Gv).

A K-linear K-map is called an intertwining operator. The set of all intertwining
operators is a vector space over K. The representations (V, γ ) and (W, δ) are
called equivalent if the above space contains an invertible operator.

Let (V, γ ) be a real representation of the group K . Build a complex represen-
tation (V ′, γ ′) as follows. Consider C as a vector space over R. Put V ′ = C⊗R V .
The space V ′ is a complex vector space, where multiplication by a complex number
z is defined as z(z′⊗ v)= zz′⊗ v. The representation γ ′ is

γ ′(k)(z⊗ v)= z⊗ γ (k)v.

Define a map j : V ′→ V ′ by j (z⊗ v)= z̄⊗ v. Then j is a structural map, that is,
a K-map with

j (zv)= z̄ j (v), j2
= 1.

Conversely, let (V ′, γ ′) be a complex representation of K that admits a structural
map j . Then V ′ is a direct sum of two eigenspaces V+ and V− of the map j that
correspond to the eigenvalues +1 and −1. These spaces carry two equivalent real
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representations. Multiplication by i is an invertible intertwining operator between
the above representations.

The direct sum of two representations (V, γ ) and (W, δ) is the representation
(V ⊕W, γ ⊕ δ), where

γ ⊕ δ(k)(v⊕w)= (γ (k)v)⊕ (δ(k)w).

The tensor product of two representations (V, γ ) and (W, δ) is the representation
(V ⊗W, γ ⊗ δ), where

γ ⊗ δ(k)(v⊗w)= (γ (k)v)⊗ (δ(k)w).

A representation (V, γ ) with V 6= {0} is called reducible if there exists a proper
subspace W of V with γ (k)w ∈ W for all w ∈ W and k ∈ K and irreducible
otherwise. If K is a compact group, then any representation (V, γ ) of K is a direct
sum of irreducible representations. Moreover, the decomposition onto irreducible
representations is unique in the following sense. If mi Vi denotes the direct sum
of mi copies of the representation Vi , and the representations

⊕
mi Vi and

⊕
ni Vi

are equivalent, then mi = ni for all i .
Let (V, γ ) be a complex representation of a compact topological group K . By

[Adams 1969, Proposition 3.16], there exists a K-invariant inner product ( ·, · )
on V . Moreover, if (V, γ ) admits a structural map j , one can choose the above
inner product in such a way that ( jv, jw)= (v,w), and the restriction of the inner
product to either space V+ or V− is again an inner product.

Choose an orthonormal basis e1, . . . , en in V . Then, the complex representation
γ takes values in the unitary group U (n) and is called a unitary representation. A
real representation takes values in the orthogonal group O(n) and is called an
orthogonal representation.

Realize R3 as the space of traceless Hermitian matrices in C2. Such a matrix
has the form

A =
(

x0 x1+x−1i
x1−x−1i −x0

)
, x−1, x0, x1 ∈ R.

The map A 7→ k−1 Ak, where k is an element of the group SU(2) of unitary 2× 2
matrices with unit determinant, is a rotation, that is, an element of the group SO(3).
The matrices k and −k determine the same rotation. Conversely, each rotation in
SO(3) corresponds to a pair of matrices k and −k.

Let (V, γ ) be an irreducible unitary representation of the group SU(2). If γ (k)=
γ (−k), then (V, γ ) is an irreducible unitary representation of the group SO(3), and
all irreducible unitary representations of SO(3) may be obtained in this way.
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Let

k =
(

α β

−β̄ ᾱ

)
, α, β ∈ C, |α|2+ |β|2 = 1,

be an element of the group SU(2). Let V ` be the space of homogeneous polyno-
mials of degree 2` in two complex variables ξ and η. The representation

γ`(k) f (ξ, η)= f (ᾱξ −βη, β̄ξ +αη) (2-1)

is irreducible. Conversely, any irreducible representation of the group SU(2) is
equivalent to the representation (2-1).

If ` is an integer, then γ`(k) = γ`(−k), and the representation (2-1) is an irre-
ducible representation of the group SO(3). Moreover, put

j f (ξ, η)= f̄ (−η, ξ),

where f̄ is the polynomial with coefficients which are complex conjugate to those
of f . Then j is a structural map. If we choose an orthonormal basis e`m ,−`≤m≤ `,
satisfying the condition

je`m = e`m, (2-2)

then the restriction (V `
+
, γ`,+) of the representation (V `, γ`) to the real linear span

V `
+

of the above basis is an irreducible real representation, and the matrix entries
of the operators γ`(k) are real-valued functions on the group SO(3). If the basis
e`m satisfies the condition

j e`m =−e`m, (2-3)

then the restriction (V `
−
, γ`,−) of the representation (V `, γ`) to the real linear span

V `
−

of the above basis is an irreducible real representation, equivalent to (V `
+
, γ`,+),

and multiplication by i is an orthogonal intertwining operator between two equiv-
alent representations.

The usual orthonormal basis in the space V ` is as follows:

f `m(ξ, η)= (−1)`+m

√
(2`+ 1)!

(`+m)!(`−m)!
ξ `+mη`−m . (2-4)

The matrix entries of operators γ`(k) in this basis are called the Wigner D-functions
and are denoted by D`

mn(k). The basis (2-4) does not satisfy (2-2). Gordienko
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[2002] proposed the basis satisfying (2-2) as follows:

h`
−m(ξ, η)=

(−i)`−1
√

2
[(−1)m f `m(ξ, η)− f `

−m(ξ, η)],

h`0(ξ, η)= (−i)`e`0(ξ, η),

h`m(ξ, η)=−
(−i)`
√

2
[(−1)m f `m(ξ, η)+ f `

−m(ξ, η)],

where m ≥ 1. From now on, we define by U `(k) the matrices of the representation
(V `
+
, γ`,+) in the Gordienko basis and omit + and − for simplicity of notation.

Note that ih`m(ξ, η) is the Gordienko basis of the space V−. Its vectors satisfy
(2-3).

Any rotation k may be performed by three successive rotations:

• rotation k0(ψ) about the x0-axis through an angle ψ , 0≤ ψ < 2π ,

• rotation k−1(θ) about the x−1-axis through an angle θ , 0≤ θ ≤ π , and

• rotation k0(ϕ) about the x0-axis through an angle ϕ, 0≤ ϕ < 2π .

The angles ψ , θ , and ϕ are the Euler angles. The map which maps the product of
the above rotations k(ψ, θ, ϕ) to the point (ψ, θ, ϕ) ∈ (0, 2π)× (0, π)× (0, 2π) is
a chart of the group manifold SO(3), and the domain of this chart is an open dense
subset of SO(3). Moreover, the map which maps the rotation k(0, θ, ϕ)(0, 1, 0)>

to the point (θ, ϕ) ∈ (0, π)× (0, 2π) is a chart of the unit sphere S2 centered at the
origin of the space R3. The coordinates of the point k(0, θ, ϕ)(0, r, 0)>, r > 0, are
the spherical coordinates,

x−1 = r sinϕ sin θ,

x0 = r cos θ,

x1 = r cosϕ sin θ,

Gordienko [2002] calculated the matrix entries of the matrices U `(k). His result
is as follows. If k = k(ψ, θ, ϕ), then

U `(k)=U `(k0(ϕ))U `(k−1(θ))U `(k0(ψ)), (2-5)

by the definition of a representation. Denote the matrix entries of the matrix
U `(k0(ϕ)) by �`0,m,n(ϕ), where −`≤ m, n ≤ `. The nonzero entries are

�`0,0,0(ϕ)= 1, �`0,m,m(ϕ)= cos(mϕ), �`0,−m,m(ϕ)= sin(mϕ), (2-6)
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where m =±1,±2, . . . ,±`. Denote the matrix entries of the matrix U `(k−1(θ))

by �`
−1,m,n(θ). The nonzero entries are

�`
−1,±m,±n(θ)=

(−1)`−n

2`(1−µ2)n/2

√
(`+ n)!

(`− n)!(`−m)!(`+m)!

×

{(1−µ
1+µ

)n/2 d`−n

dµ`−n [(1+µ)
`+m(1−µ)`−m

]

± (−1)m
(1+µ

1−µ

)n/2 d`−n

dµ`−n [(1+µ)
`−m(1−µ)`+m

]

}
,

�`
−1,0,0(θ)=

(−1)`

2``!
d`

dµ`
(1−µ2)`,

�`
−1,0,n(θ)=

(−1)`−n

2``!

√
2(`+ n)!
(`− n)!

1
(1−µ2)n/2

d`−n

dµ`−n (1−µ
2)`,

�`
−1,m,0(θ)=−

(−1)`

2``!

√
2(`+m)!
(`−m)!

1
(1−µ2)m/2

d`−m

dµ`−m (1−µ
2)`,

(2-7)

where m ≥ 1, n ≥ 1, and where µ= cos θ .
Let (V m, γm) and (V p, γp) be two irreducible orthogonal representations of the

group SO(3). Their tensor product (V m
⊗ V p, γm ⊗ γp) is equivalent to the direct

sum (V |m−p|
⊕V |m−p|+1

⊕· · ·⊕V m+p, γ|m−p|⊕γ|m−p|+1⊕· · ·⊕γm+p). Let G be
the orthogonal intertwining operator between the above equivalent representations.
Then we have

G(γm(k)⊗ γp(k))= (γ|m−p|(k)⊕ γ|m−p|+1(k)⊕ · · ·⊕ γm+p(k))G. (2-8)

In the usual basis (2-4), this equality takes the form

m∑
i=−m

p∑
j=−p

C s`
mipj Dm

ni (k)D
p
q j (k)=

s∑
t=−s

U s
t`(k)C

st
mnpq ,

which is [Varshalovich et al. 1975, Equation (5), §4.6]. The matrix entries of the
operator G in the basis (2-4), C s`

mipj , are called the Clebsch–Gordan coefficients.
In the Gordienko basis, the same equality takes the form

m∑
i=−m

p∑
j=−p

g`[i, j]
s[m,p]U

m
ni (k)U

p
q j (k)=

s∑
t=−s

U s
t`(k)g

t[n,q]
s[m,p].

We call the matrix entries of the operator G in the Gordienko basis, g`[i, j]
s[m,p], the
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Godunov–Gordienko coefficients. They were calculated in [Godunov and Gordi-
enko 2004].

It follows in particular that the matrix G transforms the uncoupled basis hs
t ,

|m− p| ≤ s ≤ m+ p, −s ≤ t ≤ s, to the coupled basis hm
n ⊗ hp

q :

hm
n ⊗ hp

q =

m+p∑
r=|m−p|

r∑
s=−r

gs[n,q]
r [m,p]h

r
s . (2-9)

We multiply both sides of (2-8) by G−1 from the left and write the result in the
Gordienko basis. We obtain

U m
ni (k)U

p
q j (k)=

m+p∑
s=|m−p|

s∑
t=−s

s∑
`=−s

gt[n,q]
s[m,p]U

s
t`(k)g

`[i, j]
s[m,p]. (2-10)

The same equality in the usual basis is [Varshalovich et al. 1975, Equation (1),
§4.6]. It is called the Clebsch–Gordan expansion.

Lemma 2.1 [Malyarenko 2013]. Let U be an irreducible representation of a topo-
logical group K in a Hilbert space H. Let x ∈ H be a common eigenvector of all
operators U (k), g ∈ K . If U is not trivial, then x = 0.

Lemma 2.2. The second equation in (1-1) may be written in the Gordienko basis
as follows:

B(kx)= (U ⊗U )(k)B(x). (2-11)

3. The results

Theorem 3.1 [Robertson 1940]. Let T (x) be a V-valued random field on R3 satis-
fying (1-1) with U (k)= k. Then

E[T (x)] = 0

and there exist two continuous functions K0, K2 : [0,∞)→ R with K2(0)= 0 such
that

Bi j (x)= δi j K0(‖x‖)+ xi x j K2(‖x‖).

Let kx , x 6= 0, be the rotation with Euler angles (0, θ, ϕ), where θ and ϕ are
angular spherical coordinates of the point x. We introduce the following notation:
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M1
i j`m(x)=

1
3
δi jδ`m,

M2
i j`m(x)=

1
√

5

2∑
n=−2

gn[i, j]
2[1,1]g

n[`,m]
2[1,1] ,

M3
i j`m(x)=

1
√

6

[
δi j

2∑
n=−2

gn[`,m]
2[1,1] U 2

n0(kx)+ δ`m

2∑
n=−2

gn[i, j]
2[1,1]U

2
n0(kx)

]
,

M4
i j`m(x)=

2∑
n=−2

2∑
p=−2

gn[i, j]
2[1,1]g

p[`,m]
2[1,1]

2∑
q=−2

gq[n,p]
2[2,2] U

2
q0(kx),

M5
i j`m(x)=

2∑
n=−2

2∑
p=−2

gn[i, j]
2[1,1]g

p[`,m]
2[1,1]

4∑
q=−4

gq[n,p]
4[2,2] U

4
q0(kx).

(3-1)

Theorem 3.2. Let V be the space of all symmetric second-rank tensors over R3,
let T (x) be a V-valued random field on R3 satisfying (1-1) with U (k)T = kTk−1.
Then Ei j (x)= Cδi j , C ∈ R, and there exist five continuous functions K1, . . . , K5 :

[0,∞)→ R with K3(0)= K4(0)= K5(0)= 0 such that

Bi j`m(x)=
5∑

n=1

Mn
i j`m(x)Kn(‖x‖). (3-2)

A formula similar to (3-2) has been obtained by Lomakin [1964]. For any fixed
x ∈ R3, the tensor in the left-hand side of (3-2) is a symmetric linear operator
acting in the space of symmetric tensors of the second rank. Following Boehler
et al. [1994], denote the space of all such tensors by T e

4 . Under the action of SO(3),
the space T e

4 decomposes into the following direct sum:

T e
4 = V 0

⊕ V 0
⊕ V 2

⊕ V 2
⊕ V 4,

where V i may be considered as the space of completely symmetric traceless tensors
of the i-th rank linearly dependent on xi . Using the general form of such a tensor
given by invariant theory (see, for example, [Spencer 1971]), we obtain the result
of [Lomakin 1964]:

Bi j`m(x)=
5∑

n=1

Ln
i j`m(x)Kn(‖x‖),

where (compare with [Boehler et al. 1994, Lemma, pp. 98–99])
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L1
i j`m(x)= δi jδ`m,

L2
i j`m(x)= δi`δ jm + δimδ jl,

L3
i j`m(x)=

x j x`
‖x‖2

δim +
xi xm

‖x‖2
δ j`+

xi x`
‖x‖2

δ jm +
x j xm

‖x‖2
δi`,

L4
i j`m(x)=

xi x j

‖x‖2
δ`m +

x`xm

‖x‖2
δi j ,

L5
i j`m(x)=

xi x j x`xm

‖x‖4
.

(3-3)

We prove that Theorem 3.2 is equivalent to the result of [Lomakin 1964]. Indeed,
we have

M1
i j`m(x)=

1
3

L1
i j`m(x),

M2
i j`m(x)= −

1

3
√

5
L1

i j`m(x)+
1

2
√

5
L2

i j`m(x),

M3
i j`m(x)= −

1
3

L1
i j`m(x)+

1
2

L4
i j`m(x),

M4
i j`m(x)=

2
√

2

3
√

7
L1

i j`m(x)−
1
√

14
L2

i j`m(x)+
3

2
√

14
L3

i j`m(x)−
√

2
√

7
L4

i j`m(x),

M5
i j`m(x)=

1

2
√

70
L1

i j`m(x)+
1

2
√

70
L2

i j`m(x)−
√

5

2
√

14
L3

i j`m(x)

−

√
5

2
√

14
L4

i j`m(x)+
√

35

2
√

2
L5

i j`m(x).

(3-4)

It is easy to check that the transition matrix between Lomakin’s functions (3-3)
and the functions (3-1) is invertible. A proof of (3-4) may be found in the Appendix.

Given that T has diagonal and off-diagonal components, there are five special
cases of Bi j`m that shed light on the physical meaning of the Kn:

(1) E[Ti j (0)Tkl(x)]|i= j=k=l ; that is, auto-correlations of diagonal terms

E[T11(0)T11(x)] = K1+ 2K2+ 2x2
1 K3+ 4x2

1 K4+ x4
1 K5

and then E[T22(0)T22(x)] and E[T33(0)T33(x)] by cyclic permutations 1→
2→ 3.

(2) E[Ti j (0)Tkl(x)]|i= j 6=k=l ; that is, cross-correlations of diagonal terms

E[T11(0)T22(x)] = K1+ (x2
2 + x2

1)K3+ x2
2 x2

1 K5

and then E[T22(0)T33(x)] and E[T33(0)T11(x)] by cyclic permutations 1→
2→ 3.
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(3) E[Ti j (0)Tkl(x)]|i=k 6= j=l ; that is, auto-correlations of off-diagonal terms

E[T12(0)T12(x)] = K2+ (x2
1 + x2

2)K4+ x2
1 x2

2 K5

and then E[T23(0)T23(x)] and E[T31(0)T31(x)] by cyclic permutations 1→
2→ 3.

(4) E[Ti j (0)Tkl(x)]| j 6=i=k 6=l 6= j ; that is, cross-correlations of off-diagonal terms

E[T12(0)T13(x)] = x2x3K4+ x2
1 x2x3K5

and then E[T13(0)T32(x)] and E[T32(0)T12(x)] by cyclic permutations 1→
2→ 3.

(5) E[Ti j (0)Tkl(x)]|i= j=k 6=l 6= j ; that is, cross-correlations of diagonal terms with
off-diagonal terms such as

E[T11(0)T12(x)] = x1x2(K3+ 2K4)+ x1x3
2 K5

and
E[T12(0)T13(x)] = x2x3K3+ x2

1 x2x3K5

and the others by cyclic permutations 1→ 2→ 3.

In principle, we can determine these five correlations for a specific physical
situation. For example, when T is the antiplane elasticity tensor for a given res-
olution (or mesoscale) [Ostoja-Starzewski 2008], we can use micromechanics or
experiments and then determine the best fits of the Kn (n = 1, . . . , 5) coefficients.

4. Concluding remarks

Remark 4.1. On the one hand, Lomakin’s functions (3-3) are simpler than func-
tions (3-1). On the other hand, the restrictions of the functions (3-1) to the unit
sphere S2

⊂ R3 are orthogonal in the space of the square-integrable functions on
S2. Using this property, in a forthcoming paper we will obtain spectral expan-
sions of tensor-valued homogeneous and isotropic random fields similar to those
of Yaglom [1957].

Remark 4.2. The spherical harmonics Y`m(θ, ϕ) are proportional to the Wigner
D-functions by [Varshalovich et al. 1975, Equation (37), §5.2]:

Y`m(θ, ϕ)= (−1)m
√

2`+1
4π

D`
−m0(0, θ, ϕ).

The matrix entries U i
`0(kx) are proportional to the zonal, sectorial, and tesseral

harmonics defined by [Varshalovich et al. 1975, Equation (14), §5.1].
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Remark 4.3. The matrix entries U i
j0(kx), the Godunov–Gordienko coefficients,

and (3-4) were calculated and proved by hand. Afterwards, they were checked
using MATLAB and Symbolic Math Toolbox™ [Mathworks 2013]. The problem
of an algebraic proof of the second and fourth equations in (3-4) remains open.

Appendix: Proofs

Proof of Lemma 2.2. The two-point correlation function B(x) is a linear operator
in V . It is known that the space of linear operators in V is isomorphic to the tensor
product V ∗⊗ V , where V ∗ is the set of all R-linear maps v∗ : V → R. We need to
prove that for any S ∈ V ∗⊗ V the following equality holds true:

U (k)SU−1(k)= (U ⊗U )(k)S.

Note that the set of tensors satisfying the above equality form a linear space. There-
fore, it is enough to prove this equality for tensors of the form v∗⊗ v, where v ∈ V
and v∗ ∈ V ∗. The linear operator v∗⊗ v acts on V by

(v∗⊗ v)w = v∗(w)v, w ∈ V .

For this operator,

(U (k)v∗⊗ vU−1(k))w =U (k)v∗(U−1(k)w)v = (U (k)v∗)(w)U (k)v

= (U (k)v∗)⊗ (U (k)v)w = (U ⊗U )(k)(v∗⊗ v)w.

By linearity, this equality follows for any S ∈ V ∗⊗ V . �

Proof of Theorem 3.1. The first equation in (1-1) may be written in the Gordienko
basis as

U 1(k)E = E.

The representation U 1 is irreducible. By Lemma 2.1, E = 0.
We cannot apply Lemma 2.1 to (2-11), because the representation U 1

⊗U 1

acting in V 1
⊗ V 1 is reducible.

By definition, a tensor field B(x) is a function on R3 with values in the linear
space of real-valued bilinear forms on V 1

×V 1. The component Bi j (x) is the value
of the bilinear form B(x) at the point (h1

i , h1
j ) ∈ V 1

× V 1:

Bi j (x)= B(x; h1
i , h1

j ).

The last equality may be rewritten as

Bi j (x)= B(x; h1
i ⊗ h1

j ),

where the right-hand side is the value of the linear form B(x) at the point h1
i ⊗h1

j ∈

V 1
⊗ V 1. In other words, tensor products simplify multilinear forms to linear ones.
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Using (2-9) with m = p = 1, n = 1, and q = j , we obtain

Bi j (x)= B(x; h1
i ⊗ h1

j )= B
(

x;
2∑

m=0

m∑
`=−m

g`[i, j]
m[1,1]h

m
`

)
=

2∑
m=0

m∑
`=−m

g`[i, j]
m[1,1]B(x; h

m
` ).

(A.1)

Let Bm(x) ∈ V m be the vector field with components B(x; hm
` ), −m ≤ ` ≤ m.

For this field, we have

Bm(kx)=U m(k)Bm(x), k ∈ SO(3). (A.2)

By Lemma 2.1, Bm(0)= 0 for m ≥ 1, while B0(0) may take any real value.
Let SO(2) be the subgroup of rotations around x0 axis. The restriction of the

representation U m to SO(2) is the direct sum of the trivial representation W 0 of
SO(2) acting in the one-dimensional space spanned by the vector hm

0 and of the
irreducible representations

W `(ϕ)=

(
cos(`ϕ) sin(`ϕ)
− sin(`ϕ) cos(`ϕ)

)
, ϕ ∈ SO(2),

acting in the two-dimensional spaces spanned by the vectors hm
` and hm

−`, 1≤ `≤m.
If x = (0, ‖x‖, 0)> 6= 0, then kx = x, k ∈ SO(2), and

(B(x; hm
−`), B(x; em

` ))
>
=W `(ϕ)(B(x; hm

−`), B(x; hm
` ))
>, 1≤ `≤ m.

By Lemma 2.1, B(x; hm
−`) = B(x; hm

` ) = 0, if 1 ≤ ` ≤ m, while B(x; hm
0 ) is an

arbitrary continuous real-valued function with B(0; hm
0 ) = 0 for m ≥ 1. In what

follows, we denote this function by Bm(‖x‖).
By (A.2),

B(x; hm
` )=U m

`0(kx)Bm(‖x‖). (A.3)

Substitute (A.3) into (A.1). We obtain

Bi j (x)=
2∑

m=0

m∑
`=−m

g`[i, j]
m[1,1]U

m
`0(kx)Bm(‖x‖).

In other words, Bi j (x) is the sum of three matrix-valued functions

Bi j (x)=
2∑

m=0

Bm
i j (x),

with

Bm
i j (x)=

m∑
`=−m

g`[i, j]
m[1,1]U

m
`0(kx)Bm(‖x‖).
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Let m = 0. Then
U 0

00(kx)= 1, (A.4)

the matrix entry of the 1× 1 identity matrix. To calculate the Godunov–Gordienko
coefficients g0[i, j]

0[1,1], use the following property [Godunov and Gordienko 2004]:

gn[n1,n2]
N [N1,N2]

= (−1)N+N1+N2

√
2N+1
2N1+1

gn1[n,n2]
N1[N ,N2]

, (A.5)

with N = n = 0, N1 = N2 = 1, n1 = i , and n2 = j . We have

g0[i, j]
0[1,1] =

√
1/3gi[0, j]

1[0,1].

The coefficients in the right-hand side can be calculated using (2-9):

h0
0⊗ h1

j =

1∑
i=−1

gi[0, j]
1[0,1]h

1
i .

The left-hand side is clearly equal to h1
j . Therefore, gi[0, j]

1[0,1] = δi j ,

g0[i, j]
0[1,1] =

√
1/3δi j , (A.6)

and the first matrix is
B0

i j (x)=
√

1/3δi j B0(‖x‖).

Let m = 1. Using (2-5)–(2-7), we obtainU 1
−10(ϕ, θ)

U 1
00(ϕ, θ)

U 1
10(ϕ, θ)

=
 cosϕ 0 sinϕ

0 1 0
− sinϕ 0 cosϕ

 0
cos θ
sin θ

=
sinϕ sin θ

cos θ
cosϕ sin θ

 ,
or

U 1
`0(kx)=

x`
r
.

The Godunov–Gordienko coefficients g`[i, j]
1[1,1] are calculated by [Godunov and

Gordienko 2004, Formulae (1.26)–(1.29)]. The nonzero coefficients are

g−1[1,0]
1[1,1] = g0[−1,1]

1[1,1] = g1[0,−1]
1[1,1] =

√
1/2,

g−1[0,1]
1[1,1] = g0[1,−1]

1[1,1] = g1[−1,0]
1[1,1] =−

√
1/2.

The second matrix becomes

1

r
√

2

 0 −x1 x0

x1 0 −x−1

−x0 x−1 0

 B1(‖x‖).
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This matrix is not symmetric but skew-symmetric. The matrix Bi j (x) is symmetric
if and only if B1(‖x‖)= 0.

The matrix entries U 2
`0(kx) can be calculated using (2-5)–(2-7) as

U 2
−20(kx)=−

√
3x−1x1

r2 , U 2
−10(kx)=

√
3x−1x0

r2 , U 2
00(kx)=

3x2
0

2r2 −
1
2
,

U 2
10(kx)=

√
3x0x1

r2 , U 2
20(kx)=

√
3(x2
−1− x2

1)

2r2 .

To calculate the Godunov–Gordienko coefficients g`[i, j]
2[1,1], use (A.5) with N = 2,

N1 = N2 = 1, n = `, n1 = i , and n2 = j . We have

g`[i, j]
2[1,1] =

√
5/3gi[`, j]

1[2,1].

The coefficients gi[`, j]
1[2,1] are calculated by [Godunov and Gordienko 2004, Formu-

lae (1.30)–(1.34)]. The nonzero Godunov–Gordienko coefficients are

g−2[−1,1]
2[1,1] = g−2[1,−1]

2[1,1] = g2[1,1]
2[1,1] =−

√
1/2,

g0[−1,−1]
2[1,1] = g0[1,1]

2[1,1] =−
√

1/6,

g−1[−1,0]
2[1,1] = g−1[0,−1]

2[1,1] = g1[0,1]
2[1,1] = g1[1,0]

2[1,1] = g2[−1,−1]
2[1,1] =

√
1/2,

g0[0,0]
2[1,1] =

√
2/3.

In (2-10) put k = j = 0, m = p = 1, n = i , and q = j . We have

U 1
i0(k)U

1
j0(k)=

2∑
s=0

s∑
t=−s

s∑
`=−s

gt[i, j]
s[1,1]U

s
t`(k)g

`[0,0]
s[1,1] .

Using the above-calculated values of the matrix entries and Godunov–Gordienko
coefficients, we may rewrite this formula as

xi x j

r2 =
1
3
δi j +

√
2
3

2∑
t=−2

gt[i, j]
2[1,1]U

2
t0(kx)

or
2∑

t=−2

gt[i, j]
2[1,1]U

2
t0(kx)=

√
3

√
2r2

(
x j x j −

r2

3
δi j

)
. (A.7)

We introduce the following notation:

K0(‖x‖)=
1
√

3
B0(‖x‖)−

1
√

6
B2(‖x‖), K2(‖x‖)=

√
3

√
2r2

B2(‖x‖).

The theorem is proved. Note that the space V 0 consists of tensors proportional to
the Kronecker delta, V 1 consists of skew-symmetric tensors, and V 2 consists of
symmetric traceless tensors. �
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Proof of Theorem 3.2. Use Lemma 2.2 to write the representation U as U =
U 1
⊗U 1. The first equation in (1-1) takes the form

E(kx)= (U 1
⊗U 1)(k)E(x).

or
E = (U 1

⊗U 1)(k)E, k ∈ SO(3).

In other words, E lies in the subspace of V where the trivial representation is
realized, or

E[Ti j (x)] = Cδi j , C ∈ R.

The second equation in (1-1) takes the form

B(kx)= (U 1
⊗U 1

⊗U 1
⊗U 1)(k)B(x).

We write B(x) as a bilinear form on pairs of tensors, (V 1
⊗ V 1)× (V 1

⊗ V 1):

Bi jk`(x)= B(x; h1
i ⊗ h1

j , h1
`⊗ h1

m).

Note that the tensor field Bi j`m(x) is symmetric in the following sense:

B`mi j (x)= Bi j`m(x).

Recall that V 1
⊗ V 1

= V 0
⊕ V 1

⊕ V 2. Rewrite B(x) as a bilinear form on
(V 0
⊕ V 1

⊕ V 2)× (V 0
⊕ V 1

⊕ V 2):

Bi j`m(x)= B
(

x;
2∑

n=0

n∑
p=−n

g p[i, j]
n[1,1]h

n
p,

2∑
q=0

q∑
r=−q

gr [`,m]
q[1,1] h

q
r

)
.

In fact, B(x) is a bilinear form on pairs of symmetric tensors, which is to say, on
(V 0
⊕ V 2)× (V 0

⊕ V 2):

Bi j`m(x)= B
(

x;
∑

n∈{0,2}

n∑
p=−n

g p[i, j]
n[1,1]h

n
p,

∑
q∈{0,2}

q∑
r=−q

gr [`,m]
q[1,1] h

q
r

)

=

∑
(n,q)∈{0,2}×{0,2}

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1] B(x; h

n
p, hq

r )

=

∑
(n,q)∈{0,2}×{0,2}

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1] B(x; h

n
p⊗ hq

r )

=

∑
(n,q)∈{0,2}×{0,2}

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1] B

(
x;

n+q∑
s=|n−q|

s∑
t=−s

gt[n,q]
s[m,p]h

s
t

)
.

The possible values for s are 0 ≤ s ≤ 4. Let As be the set of all pairs (n, q) ∈
{0, 2}× {0, 2} such that V s

⊆ V n
⊗ V q . We have
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A0 = {(0, 0), (2, 2)}, A1 = A3 = A4 = {(2, 2)}, A2 = {(0, 2), (2, 0), (2, 2)},

and

Bi j`m(x)=
4∑

s=0

Bi j`m
s (x),

where

Bi j`m
s (x)=

∑
(n,q)∈As

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1]

s∑
t=−s

gt[n,q]
s[m,p]B(x; h

s
t (n, q)),

and where the pairs (n, q) ∈ As enumerate copies of the vector hs
t . By (A.3),

B(x; hs
t (n, q))=U s

t0(kx)Bs(n,q)(‖x‖),

where Bs(n,q)(‖x‖) are continuous real-valued functions with Bs(n,q)(0) = 0 for
s ≥ 1. We obtain

Bi j`m
s (x)=

∑
(n,q)∈As

C i j`m
nqs (x),

where

C i j`m
nqs (x)=

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1]

s∑
t=−s

gt[p,r ]
s[n,q]U

s
t0(kx)Bs(n,q)(‖x‖).

We calculate the functions C i j`m
nqs (x).

Let (n, q)= (0, 0) ∈ A0. The corresponding term is

C i j`m
000 (x)=

1
3 δi jδ`m B0(0,0)(‖x‖)= M1

i j`m(x)K1(‖x‖),

by (A.4) and (A.6) with K1(‖x‖)= B0(0,0)(‖x‖).
Let (n, q)= (2, 2) ∈ A0. The corresponding term is

C i j`m
220 (x)=

2∑
r=−2

2∑
s=−2

gr [i, j]
2[1,1]g

s[`,m]
2[1,1] g

0[r,s]
0[2,2]U

0
00(kx)B0(2,2)(‖x‖).

The Godunov–Gordienko coefficients gr [i, j]
2[1,1] and gs[`,m]

2[1,1] are calculated by (A.6),
while the coefficients g0[n,q]

0[2,2] are calculated using (A.5) with n = N = 0, n1 = r ,
n2 = s, N1 = N2 = 2 and (2-9):

g0[r,s]
0[2,2] =

√
1/5gr [0,s]

2[0,2] =
√

1/5δrs .

Therefore, we obtain

C i j`m
220 (x)=

√
1/5

2∑
r=−2

gr [i, j]
2[1,1]g

r [`,m]
2[1,1] B0(2,2)(‖x‖)= M2

i j`m(x)K2(‖x‖)

with K2(‖x‖)= B0(2,2)(‖x‖).
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Let (n, q)= (2, 2) ∈ A1. The corresponding term is

C i j`m
221 (x)=

2∑
p=−2

2∑
s=−2

g p[i, j]
2[1,1]g

r [`,m]
2[1,1]

1∑
s=−1

gs[p,r ]
1[2,2]U

1
s0(kx)B1(2,2)(‖x‖).

The Godunov–Gordienko coefficients gs[p,r ]
1[2,2] are calculated by [Godunov and Gor-

dienko 2004, Formulae (1.26)–(1.29)]. The nonzero elements of the Godunov–
Gordienko matrix G−1

1[2,2] are

g−1[0,1]
1[2,2] =−

√
3/10, g−1[−2,−1]

1[2,2] = g−1[2,1]
1[2,2] =−

√
1/10,

g−1[1,0]
1[2,2] =

√
3/10, g−1[−1,−2]

1[2,2] = g−1[1,2]
1[2,2] =

√
1/10,

and those of the matrix G0
1[2,2] are

g0[2,−2]
1[2,2] =−

√
2/5, g0[1,−1]

1[2,2] =−
√

1/10,

g0[−2,2]
1[2,2] =

√
2/5, g0[−1,1]

1[2,2] =
√

1/10.

Finally, the nonzero elements of the Godunov–Gordienko matrix G−1
1[2,2] are

g1[0,−1]
1[2,2] =

√
3/10, g1[1,−2]

1[2,2] = g1[2,−1]
1[2,2] =−

√
1/10,

g1[−1,0]
1[2,2] =−

√
3/10, g1[−2,1]

1[2,2] = g1[−1,2]
1[2,2] =

√
1/10.

We see that the Godunov–Gordienko matrices gs
1[2,2], −1 ≤ s ≤ 1, are skew-

symmetric. We have B1(2,2)(‖x‖) = 0 by the same reasons as B1(‖x‖) = 0 in
the proof of Theorem 3.1.

Let (n, q)= (0, 2) ∈ A2. The corresponding term is

C i j`m
022 (x)= g0[i, j]

0[1,1]

2∑
p=−2

g p[`,m]
2[1,1]

2∑
s=−2

gs[0,p]
2[0,2]U

2
s0(kx)B2(0,2)(‖x‖).

Using (A.6), we obtain

C i j`m
022 (x)=

√
1/3δi j

2∑
p=−2

g p[`,m]
2[1,1]

2∑
s=−2

gs[0,r ]
2[0,2]U

2
s0(kx)B2(0,2)(‖x‖).

Clearly gs[0,p]
2[0,2] = δps . Therefore,

C i j`m
022 (x)=

√
1/3δi j

2∑
p=−2

g p[`,m]
2[1,1] U 2

p0(kx)B2(0,2)(‖x‖).

Let (n, q)= (2, 0) ∈ A2. The corresponding term is

C i j`m
202 (x)= g0[`,m]

0[1,1]

2∑
p=−2

g p[i, j]
2[1,1]

2∑
s=−2

gt[p,0]
2[2,0]U

2
s0(kx)B2(2,0)(‖x‖).
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Using (A.6), we obtain

C i j`m
202 (x)=

√
1/3δ`m

2∑
p=−2

g p[i, j]
2[1,1]

2∑
s=−2

gt[p,0]
2[2,0]U

2
s0(kx)B2(2,0)(‖x‖).

Clearly gs[p,0]
2[2,0] = δps . Therefore,

C i j`m
202 (x)=

√
1/3δ`m

2∑
p=−2

g p[i, j]
2[1,1]U

2
p0(kx)B2(2,0)(‖x‖).

We see that the tensor field Bi j`m(x) is symmetric if and only if B2(0,2)(‖x‖)=
B2(2,0)(‖x‖). Denote their common value by K3(‖x‖) and put

C i j`m
2 (x)=

1
√

2
(C i j`m

022 (x)+C i j`m
202 (x)).

We obtain

C i j`m
2 (x)= M3

i j`m(x)K3(‖x‖).

Let (n, q)= (2, 2) ∈ A2. The corresponding term is

C i j`m
222 (x)=

2∑
p=−2

2∑
r=−2

g p[i, j]
2[1,1]g

r [`,m]
2[1,1]

2∑
s=−2

gs[p,r ]
2[2,2]U

2
s0(kx)B2(2,2)(‖x‖)

= M4
i j`m(x)K4(‖x‖),

with K4(‖x‖)= B2(2,2)(‖x‖).
To calculate Godunov–Gordienko coefficients gs[p,r ]

2[2,2] , we use generating func-
tion from [Godunov and Gordienko 2004, Formula (2.6)]. The nonzero coefficients
are:

g−2[0,−2]
2[2,2] = g−2[−2,0]

2[2,2] = g0[−2,−2]
2[2,2] = g0[2,2]

2[2,2] = g2[2,0]
2[2,2] = g2[0,2]

2[2,2] =−
√

2/7,

g−2[1,−1]
2[2,2] = g−2[−1,1]

2[2,2] = g−1[1,−2]
2[2,2] = g−1[−2,1]

2[2,2] = g1[−1,−2]
2[2,2] = g1[−2,−1]

2[2,2] = g1[2,1]
2[2,2]

= g1[1,2]
2[2,2] = g2[1,1]

2[2,2] =−
√

3/14,

g−1[0,−1]
2[2,2] = g−1[−1,0]

2[2,2] = g0[−1,−1]
2[2,2] = g0[1,1]

2[2,2] = g1[0,1]
2[2,2] = g1[1,0]

2[2,2] =
√

1/14,

g−1[2,−1]
2[2,2] = g−1[−1,2]

2[2,2] = g2[−1,−1]
2[2,2] =

√
3/14,

g0[0,0]
2[2,2] =

√
2/7.

Let (n, q)= (2, 2) ∈ A3. The corresponding term is

C i j`m
223 (x)=

2∑
r=−2

2∑
s=−2

gr [i, j]
2[1,1]g

s[`,m]
2[1,1]

3∑
t=−3

gt[r,s]
3[2,2]U

3
t0(kx)B3(2,2)(‖x‖).
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The nonzero elements of the Godunov–Gordienko matrix g−3
3[2,2] are

g−3[−1,−2]
3[2,2] = g−3[2,1]

3[2,2] =−1/2, g−3[−2,−1]
3[2,2] = g−3[1,2]

3[2,2] = 1/2,

those of the matrix g−2
3[2,2] are

g−2[2,0]
3[2,2] =−

√
1/2, g−2[0,2]

3[2,2] =
√

1/2,

those of the matrix g−1
3[2,2] are

g−1[0,1]
3[2,2] =−

√
1/5, g−1[1,0]

3[2,2] =
√

1/5,

g−1[−1,−2]
3[2,2] = g−1[1,2]

3[2,2] =−
√

3/20, g−1[−2,−1]
3[2,2] = g−1[2,1]

3[2,2] =
√

3/20,

those of the matrix g0
3[2,2] are

g0[1,−1]
3[2,2] =−

√
2/5, g0[−1,1]

3[2,2] =
√

2/5,

g0[−2,2]
3[2,2] =−

√
1/10, g0[2,−2]

3[2,2] =
√

1/10,

those of the matrix g1
3[2,2] are

g1[−1,0]
3[2,2] =−

√
1/5, g1[0,1]

3[2,2] =
√

1/5,

g1[−2,1]
3[2,2] = g1[−1,2]

3[2,2] =−
√

3/20, g1[1,−2]
3[2,2] = g1[2,−11]

3[2,2] =
√

3/20,

and those of the matrix g2
3[2,2] are

g2[−2,0]
3[2,2] =−

√
1/2, g2[0,−22]

3[2,2] =
√

1/2.

Finally, the nonzero elements of the Godunov–Gordienko matrix g3
3[2,2] are

g3[−1,2]
3[2,2] = g3[1,−2]

3[2,2] =−1/2, g3[−2,1]
3[2,2] = g3[2,−1]

3[2,2] = 1/2.

We see that the Godunov–Gordienko matrices gt
3[2,2], −3 ≤ t ≤ 3, are skew-

symmetric. We have B2(2,2)(‖x‖)= 0 by the same reasons as before.
Let (n, q)= (2, 2) ∈ A4. The corresponding term is

C i j`m
224 (x)=

2∑
r=−2

2∑
s=−2

gr [i, j]
2[1,1]g

s[`,m]
2[1,1]

4∑
t=−4

gt[r,s]
4[2,2]U

4
t0(kx)B4(2,2)(‖x‖)

= M5
i j`m(x)K5(‖x‖)

with K5(‖x‖)= B4(2,2)(‖x‖).
The nonzero elements of the Godunov–Gordienko matrices g±4

4[2,2] are

g−4[−2,2]
4[2,2] = g−4[2,−2]

4[2,2] = g4[2,2]
4[2,2] =−

√
1/2, g4[−2,−2]

4[2,2] =
√

1/2,
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those of the matrices g±3
4[2,2] are

g−3[−2,1]
4[2,2] = g−3[1,−2]

4[2,2] = g−3[−1,2]
4[2,2] = g−3[2,−1]

4[2,2] = g3[1,2]
4[2,2] = g3[2,1]

4[2,2] =−1/2,

g3[−2,−1]
4[2,2] = g3[−1,−2]

4[2,2] = 1/2,

those of the matrices g±2
4[2,2] are

g−2[−1,1]
4[2,2] = g−2[1,−1]

4[2,2] = g2[1,1]
4[2,2] =−

√
2/7,

g−2[−2,0]
4[2,2] = g−2[0,−2]

4[2,2] = g2[0,2]
4[2,2] = g2[2,0]

4[2,2] =
√

3/14,

g2[−1,−1]
4[2,2] =

√
2/7,

and those of the matrices g±1
4[2,2] are

g−1[−1,2]
4[2,2] = g−1[2,−1]

4[2,2] =−1/(2
√

7),

g−1[−2,1]
4[2,2] = g−1[1,−2]

4[2,2] = g1[−2,−1]
4[2,2] = g1[−1,−2]

4[2,2] = g1[1,2]
4[2,2] = g1[2,1]

4[2,2] = 1/(2
√

7),

g−1[−1,0]
4[2,2] = g−1[0,−1]

4[2,2] = g1[0,1]
4[2,2] = g1[1,0]

4[2,2] =
√

3/7.

Finally, the nonzero elements of the Godunov–Gordienko matrix g0
4[2,2] are

g0[−1,−1]
4[2,2] = g0[1,1]

4[2,2] =−
√

8/35,

g0[−2,−2]
4[2,2] = g0[2,2]

4[2,2] =
√

1/70,

g0[0,0]
4[2,2] = 6/

√
70. �

Proof of (3-4). The first equation is obvious. The second and fourth equations may
be checked by brute force, using the values of the matrix entries and Godunov–
Gordienko coefficients calculated above. To prove the third equation, substitute
(A.7) into (3-1). For the fifth equation, put i = j = 0 and m = p = 2 in (2-10). We
have

U 2
r0(kx)U 2

s0(kx)=

4∑
t=0

t∑
v=−t

t∑
w=−t

gv[r,s]t[2,2]U
t
vw(kx)g

w[0,0]
t[2,2] .

Using the matrix entries calculated above and the Godunov–Gordienko coefficients,
we may rewrite this formula as

U 2
r0(kx)U 2

s0(kx)=
1
5
δrs +

√
2/7

2∑
t=−2

gt[r,s]
2[2,2]U

2
t0(kx)+

3
√

2
√

35

4∑
t=−4

gt[r,s]
4[2,2]U

4
t0(kx).
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Move all terms but the last from the right-hand side to the left-hand side, and
substitute the result into the fifth line in (3-1). We obtain

M5
i j`m(x)=

√
35

3
√

2

2∑
n=−2

2∑
p=−2

gn[i, j]
2[1,1]g

p[`,m]
2[1,1]

(
U 2

r0(kx)U 2
s0(kx)−

1
5δnp

−
√

2/7
2∑

t=−2

gt[r,s]
2[2,2]U

2
t0(kx)

)
.

Using (A.7) and (3-1), we get

M5
i j`m(x)=

√
35

3
√

2

( 3
2 L5

i j`m(x)−
1
2 L4

i j`m(x)+
1
6 L1

i j`m(x)
)

−

√
7

3
√

2
M2

i j`m(x)−
√

5
3

M4
i j`m(x).

We finish the proof by using the second and fourth equations. �
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