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Let V be a real finite-dimensional vector space. We introduce some physical
problems that may be described by V-valued homogeneous and isotropic ran-
dom fields on R3. We propose a general method for calculation of expectations
and two-point correlation functions of such fields. Our results are equivalent to
classical results by Robertson, when V = R3, and those by Lomakin, when V is
the space of symmetric second-rank tensors over R3. Our solution involves an
analogue of the classical Clebsch–Gordan coefficients.

1. Introduction

The entire field of continuum physics involves tensor fields. Overwhelmingly, most
of the existing models and theories are deterministic and their stochastic generaliza-
tions necessitate construction of tensor-valued random fields (RF). While the litera-
ture on scalar RFs is vast (for example, [Cressie 1993; Christakos 2005; Marinucci
and Peccati 2011; Leonenko and Sakhno 2012; Porcu et al. 2012]), that on vector
RFs is largely limited to statistical turbulence [Monin and Yaglom 1965], and the
case of higher tensor rank (second, fourth) RFs poses challenges. In this paper we
focus on wide-sense stationary and statistically isotropic RFs of tensors of the first
and second ranks. We present a new method of derivation of representations of
their correlation functions, which in the case of first-rank tensors gives the same
result as in [Robertson 1940], while in the case of second-rank tensors is equivalent
to the result of [Lomakin 1964].

These representations have applications to tensor random fields (TRFs) gov-
erned by the field equations of continuum physics as well as those representing
some spatially inhomogeneous constitutive properties of random media. The for-
mer type of TRFs is used in [Ostoja-Starzewski et al. 2013], where correlation
functions are subject to constraints such as the equilibrium equation or strain-
displacement relation. The basic properties of TRFs of a wide-sense homogeneous
and isotropic kind with generally anisotropic realizations have been determined
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in three continuum physics theories: thermal conduction, classical elasticity, and
micropolar elasticity. The field equations (such as the linear and angular mo-
mentum balances and strain-displacement relations), all in a quasistatic setting,
lead to consequences for the respective dependent fields involved. In effect, these
consequences are restrictions on the admissible forms of the correlation functions
describing the TRFs.

The latter type of TRFs provides models of random media described by the
second-rank TRF. The typical example here is the thermal conductivity tensor and
its mathematical analogies such as the antiplane stiffness tensor. Once the general
representation of this TRF is established and the conditions of positive definiteness
are imposed, one can turn to modeling and simulation of the entire range of statis-
tical constitutive behaviors of all heat-conducting media or, say, elastic materials
subjected to antiplane loading, for example, [Sena et al. 2013].

In particular, let V be a finite-dimensional real Hilbert space with norm ‖·‖. Let
T (x), x ∈ R3, be a random field taking values in (a subset of) V . Suppose that
E[‖T (x)‖2]<∞ and that T (x) is mean-square continuous, that is, for any x0 ∈R3

we have

lim
‖x−x0‖→0

E[‖T (x)− T (x0)‖
2
] = 0.

Let E(x)= E[T (x)] be the expectation of the field, and let B(x, y)= E[T (x)⊗
T ( y)] be the two-point correlation function of the random field T (x). The group
R3 acts on itself by translations. Assume that the above functions are invariant
with respect to this action, that is, for all x, y, z ∈ R3,

E(x+ z)= E(x),
B(x+ z, y+ z)= B(x, y).

It follows that E(x)= E ∈ V is constant, while B(x, y) ∈ V ⊗ V depends only on
the difference x− y.

Let K = SO(3) be the group of rotations in R3, and let (V, γ ) be an orthogonal
representation of K . Suppose that for all k ∈ K and all x ∈ R3 we have

E(kx)= γ (k)E(x),

B(kx)= γ (k)B(x)γ−1(k).
(1-1)

We would like to find a general form for the expectation and two-point correlation
function of such a field.

In Section 2, we consider mathematical preliminaries. We use the book [Adams
1969], in which Adams considers both real and complex representations at the same
time.

In Section 3 we consider two particular cases of the above problem:
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(1) V has dimension 3 and γ (k)= k.

(2) V is the space of all second-rank tensors over R3, T (x) takes values in the set
of all symmetric tensors, and the representation is γ (k)T = kTk−1.

In the first case, the answer has been known since the classic paper [Robertson
1940]. In Theorem 3.1, we prove that our method of solution gives the same answer.
Our new result is Theorem 3.2. Section 4 concludes. Proofs of our results are
collected in the Appendix.

2. Mathematical preliminaries

Let K be either the field R of real numbers or the field C of complex numbers,
and let K be a topological group with the identity element e. A representation of
the group K over K is a pair (V, γ ), where V is a finite-dimensional vector space
over K, and γ is a continuous homomorphism from K to the group Aut V of the
invertible linear operators in V . In other words, for each k ∈ K and for each v ∈ V
there is a vector γ (k)v ∈ V , and the following conditions hold true:

(1) γ (e)v = v and γ (k)(γ (k ′)v)= γ (kk ′)v.

(2) γ (k)v is a K-linear function of v.

(3) γ (k)v is a continuous function of k and v.

Let (V, γ ) and (W, δ) be two representations. A map G : V → W is called a
K-map if

G(γ (k)v)= δ(k)(Gv).

A K-linear K-map is called an intertwining operator. The set of all intertwining
operators is a vector space over K. The representations (V, γ ) and (W, δ) are
called equivalent if the above space contains an invertible operator.

Let (V, γ ) be a real representation of the group K . Build a complex represen-
tation (V ′, γ ′) as follows. Consider C as a vector space over R. Put V ′ = C⊗R V .
The space V ′ is a complex vector space, where multiplication by a complex number
z is defined as z(z′⊗ v)= zz′⊗ v. The representation γ ′ is

γ ′(k)(z⊗ v)= z⊗ γ (k)v.

Define a map j : V ′→ V ′ by j (z⊗ v)= z̄⊗ v. Then j is a structural map, that is,
a K-map with

j (zv)= z̄ j (v), j2
= 1.

Conversely, let (V ′, γ ′) be a complex representation of K that admits a structural
map j . Then V ′ is a direct sum of two eigenspaces V+ and V− of the map j that
correspond to the eigenvalues +1 and −1. These spaces carry two equivalent real



212 ANATOLIY MALYARENKO AND MARTIN OSTOJA-STARZEWSKI

representations. Multiplication by i is an invertible intertwining operator between
the above representations.

The direct sum of two representations (V, γ ) and (W, δ) is the representation
(V ⊕W, γ ⊕ δ), where

γ ⊕ δ(k)(v⊕w)= (γ (k)v)⊕ (δ(k)w).

The tensor product of two representations (V, γ ) and (W, δ) is the representation
(V ⊗W, γ ⊗ δ), where

γ ⊗ δ(k)(v⊗w)= (γ (k)v)⊗ (δ(k)w).

A representation (V, γ ) with V 6= {0} is called reducible if there exists a proper
subspace W of V with γ (k)w ∈ W for all w ∈ W and k ∈ K and irreducible
otherwise. If K is a compact group, then any representation (V, γ ) of K is a direct
sum of irreducible representations. Moreover, the decomposition onto irreducible
representations is unique in the following sense. If mi Vi denotes the direct sum
of mi copies of the representation Vi , and the representations

⊕
mi Vi and

⊕
ni Vi

are equivalent, then mi = ni for all i .
Let (V, γ ) be a complex representation of a compact topological group K . By

[Adams 1969, Proposition 3.16], there exists a K-invariant inner product ( ·, · )
on V . Moreover, if (V, γ ) admits a structural map j , one can choose the above
inner product in such a way that ( jv, jw)= (v,w), and the restriction of the inner
product to either space V+ or V− is again an inner product.

Choose an orthonormal basis e1, . . . , en in V . Then, the complex representation
γ takes values in the unitary group U (n) and is called a unitary representation. A
real representation takes values in the orthogonal group O(n) and is called an
orthogonal representation.

Realize R3 as the space of traceless Hermitian matrices in C2. Such a matrix
has the form

A =
(

x0 x1+x−1i
x1−x−1i −x0

)
, x−1, x0, x1 ∈ R.

The map A 7→ k−1 Ak, where k is an element of the group SU(2) of unitary 2× 2
matrices with unit determinant, is a rotation, that is, an element of the group SO(3).
The matrices k and −k determine the same rotation. Conversely, each rotation in
SO(3) corresponds to a pair of matrices k and −k.

Let (V, γ ) be an irreducible unitary representation of the group SU(2). If γ (k)=
γ (−k), then (V, γ ) is an irreducible unitary representation of the group SO(3), and
all irreducible unitary representations of SO(3) may be obtained in this way.
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Let

k =
(

α β

−β̄ ᾱ

)
, α, β ∈ C, |α|2+ |β|2 = 1,

be an element of the group SU(2). Let V ` be the space of homogeneous polyno-
mials of degree 2` in two complex variables ξ and η. The representation

γ`(k) f (ξ, η)= f (ᾱξ −βη, β̄ξ +αη) (2-1)

is irreducible. Conversely, any irreducible representation of the group SU(2) is
equivalent to the representation (2-1).

If ` is an integer, then γ`(k) = γ`(−k), and the representation (2-1) is an irre-
ducible representation of the group SO(3). Moreover, put

j f (ξ, η)= f̄ (−η, ξ),

where f̄ is the polynomial with coefficients which are complex conjugate to those
of f . Then j is a structural map. If we choose an orthonormal basis e`m ,−`≤m≤ `,
satisfying the condition

je`m = e`m, (2-2)

then the restriction (V `
+
, γ`,+) of the representation (V `, γ`) to the real linear span

V `
+

of the above basis is an irreducible real representation, and the matrix entries
of the operators γ`(k) are real-valued functions on the group SO(3). If the basis
e`m satisfies the condition

je`m =−e`m, (2-3)

then the restriction (V `
−
, γ`,−) of the representation (V `, γ`) to the real linear span

V `
−

of the above basis is an irreducible real representation, equivalent to (V `
+
, γ`,+),

and multiplication by i is an orthogonal intertwining operator between two equiv-
alent representations.

The usual orthonormal basis in the space V ` is as follows:

f `m(ξ, η)= (−1)`+m

√
(2`+ 1)!

(`+m)!(`−m)!
ξ `+mη`−m . (2-4)

The matrix entries of operators γ`(k) in this basis are called the Wigner D-functions
and are denoted by D`

mn(k). The basis (2-4) does not satisfy (2-2). Gordienko
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[2002] proposed the basis satisfying (2-2) as follows:

h`
−m(ξ, η)=

(−i)`−1
√

2
[(−1)m f `m(ξ, η)− f `

−m(ξ, η)],

h`0(ξ, η)= (−i)`e`0(ξ, η),

h`m(ξ, η)=−
(−i)`
√

2
[(−1)m f `m(ξ, η)+ f `

−m(ξ, η)],

where m ≥ 1. From now on, we define by U `(k) the matrices of the representation
(V `
+
, γ`,+) in the Gordienko basis and omit + and − for simplicity of notation.

Note that ih`m(ξ, η) is the Gordienko basis of the space V−. Its vectors satisfy
(2-3).

Any rotation k may be performed by three successive rotations:

• rotation k0(ψ) about the x0-axis through an angle ψ , 0≤ ψ < 2π ,

• rotation k−1(θ) about the x−1-axis through an angle θ , 0≤ θ ≤ π , and

• rotation k0(ϕ) about the x0-axis through an angle ϕ, 0≤ ϕ < 2π .

The angles ψ , θ , and ϕ are the Euler angles. The map which maps the product of
the above rotations k(ψ, θ, ϕ) to the point (ψ, θ, ϕ) ∈ (0, 2π)× (0, π)× (0, 2π) is
a chart of the group manifold SO(3), and the domain of this chart is an open dense
subset of SO(3). Moreover, the map which maps the rotation k(0, θ, ϕ)(0, 1, 0)>

to the point (θ, ϕ) ∈ (0, π)× (0, 2π) is a chart of the unit sphere S2 centered at the
origin of the space R3. The coordinates of the point k(0, θ, ϕ)(0, r, 0)>, r > 0, are
the spherical coordinates,

x−1 = r sinϕ sin θ,

x0 = r cos θ,

x1 = r cosϕ sin θ,

Gordienko [2002] calculated the matrix entries of the matrices U `(k). His result
is as follows. If k = k(ψ, θ, ϕ), then

U `(k)=U `(k0(ϕ))U `(k−1(θ))U `(k0(ψ)), (2-5)

by the definition of a representation. Denote the matrix entries of the matrix
U `(k0(ϕ)) by �`0,m,n(ϕ), where −`≤ m, n ≤ `. The nonzero entries are

�`0,0,0(ϕ)= 1, �`0,m,m(ϕ)= cos(mϕ), �`0,−m,m(ϕ)= sin(mϕ), (2-6)
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where m =±1,±2, . . . ,±`. Denote the matrix entries of the matrix U `(k−1(θ))

by �`
−1,m,n(θ). The nonzero entries are

�`
−1,±m,±n(θ)=

(−1)`−n

2`(1−µ2)n/2

√
(`+ n)!

(`− n)!(`−m)!(`+m)!

×

{(1−µ
1+µ

)n/2 d`−n

dµ`−n [(1+µ)
`+m(1−µ)`−m

]

± (−1)m
(1+µ

1−µ

)n/2 d`−n

dµ`−n [(1+µ)
`−m(1−µ)`+m

]

}
,

�`
−1,0,0(θ)=

(−1)`

2``!
d`

dµ`
(1−µ2)`,

�`
−1,0,n(θ)=

(−1)`−n

2``!

√
2(`+ n)!
(`− n)!

1
(1−µ2)n/2

d`−n

dµ`−n (1−µ
2)`,

�`
−1,m,0(θ)=−

(−1)`

2``!

√
2(`+m)!
(`−m)!

1
(1−µ2)m/2

d`−m

dµ`−m (1−µ
2)`,

(2-7)

where m ≥ 1, n ≥ 1, and where µ= cos θ .
Let (V m, γm) and (V p, γp) be two irreducible orthogonal representations of the

group SO(3). Their tensor product (V m
⊗ V p, γm ⊗ γp) is equivalent to the direct

sum (V |m−p|
⊕V |m−p|+1

⊕· · ·⊕V m+p, γ|m−p|⊕γ|m−p|+1⊕· · ·⊕γm+p). Let G be
the orthogonal intertwining operator between the above equivalent representations.
Then we have

G(γm(k)⊗ γp(k))= (γ|m−p|(k)⊕ γ|m−p|+1(k)⊕ · · ·⊕ γm+p(k))G. (2-8)

In the usual basis (2-4), this equality takes the form

m∑
i=−m

p∑
j=−p

C s`
mipj Dm

ni (k)D
p
q j (k)=

s∑
t=−s

U s
t`(k)C

st
mnpq ,

which is [Varshalovich et al. 1975, Equation (5), §4.6]. The matrix entries of the
operator G in the basis (2-4), C s`

mipj , are called the Clebsch–Gordan coefficients.
In the Gordienko basis, the same equality takes the form

m∑
i=−m

p∑
j=−p

g`[i, j]
s[m,p]U

m
ni (k)U

p
q j (k)=

s∑
t=−s

U s
t`(k)g

t[n,q]
s[m,p].

We call the matrix entries of the operator G in the Gordienko basis, g`[i, j]
s[m,p], the
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Godunov–Gordienko coefficients. They were calculated in [Godunov and Gordi-
enko 2004].

It follows in particular that the matrix G transforms the uncoupled basis hs
t ,

|m− p| ≤ s ≤ m+ p, −s ≤ t ≤ s, to the coupled basis hm
n ⊗ hp

q :

hm
n ⊗ hp

q =

m+p∑
r=|m−p|

r∑
s=−r

gs[n,q]
r [m,p]h

r
s . (2-9)

We multiply both sides of (2-8) by G−1 from the left and write the result in the
Gordienko basis. We obtain

U m
ni (k)U

p
q j (k)=

m+p∑
s=|m−p|

s∑
t=−s

s∑
`=−s

gt[n,q]
s[m,p]U

s
t`(k)g

`[i, j]
s[m,p]. (2-10)

The same equality in the usual basis is [Varshalovich et al. 1975, Equation (1),
§4.6]. It is called the Clebsch–Gordan expansion.

Lemma 2.1 [Malyarenko 2013]. Let U be an irreducible representation of a topo-
logical group K in a Hilbert space H. Let x ∈ H be a common eigenvector of all
operators U (k), g ∈ K . If U is not trivial, then x = 0.

Lemma 2.2. The second equation in (1-1) may be written in the Gordienko basis
as follows:

B(kx)= (U ⊗U )(k)B(x). (2-11)

3. The results

Theorem 3.1 [Robertson 1940]. Let T (x) be a V-valued random field on R3 satis-
fying (1-1) with U (k)= k. Then

E[T (x)] = 0

and there exist two continuous functions K0, K2 : [0,∞)→ R with K2(0)= 0 such
that

Bi j (x)= δi j K0(‖x‖)+ xi x j K2(‖x‖).

Let kx , x 6= 0, be the rotation with Euler angles (0, θ, ϕ), where θ and ϕ are
angular spherical coordinates of the point x. We introduce the following notation:
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M1
i j`m(x)=

1
3
δi jδ`m,

M2
i j`m(x)=

1
√

5

2∑
n=−2

gn[i, j]
2[1,1]g

n[`,m]
2[1,1] ,

M3
i j`m(x)=

1
√

6

[
δi j

2∑
n=−2

gn[`,m]
2[1,1] U 2

n0(kx)+ δ`m

2∑
n=−2

gn[i, j]
2[1,1]U

2
n0(kx)

]
,

M4
i j`m(x)=

2∑
n=−2

2∑
p=−2

gn[i, j]
2[1,1]g

p[`,m]
2[1,1]

2∑
q=−2

gq[n,p]
2[2,2] U

2
q0(kx),

M5
i j`m(x)=

2∑
n=−2

2∑
p=−2

gn[i, j]
2[1,1]g

p[`,m]
2[1,1]

4∑
q=−4

gq[n,p]
4[2,2] U

4
q0(kx).

(3-1)

Theorem 3.2. Let V be the space of all symmetric second-rank tensors over R3,
let T (x) be a V-valued random field on R3 satisfying (1-1) with U (k)T = kTk−1.
Then Ei j (x)= Cδi j , C ∈ R, and there exist five continuous functions K1, . . . , K5 :

[0,∞)→ R with K3(0)= K4(0)= K5(0)= 0 such that

Bi j`m(x)=
5∑

n=1

Mn
i j`m(x)Kn(‖x‖). (3-2)

A formula similar to (3-2) has been obtained by Lomakin [1964]. For any fixed
x ∈ R3, the tensor in the left-hand side of (3-2) is a symmetric linear operator
acting in the space of symmetric tensors of the second rank. Following Boehler
et al. [1994], denote the space of all such tensors by T e

4 . Under the action of SO(3),
the space T e

4 decomposes into the following direct sum:

T e
4 = V 0

⊕ V 0
⊕ V 2

⊕ V 2
⊕ V 4,

where V i may be considered as the space of completely symmetric traceless tensors
of the i-th rank linearly dependent on xi . Using the general form of such a tensor
given by invariant theory (see, for example, [Spencer 1971]), we obtain the result
of [Lomakin 1964]:

Bi j`m(x)=
5∑

n=1

Ln
i j`m(x)Kn(‖x‖),

where (compare with [Boehler et al. 1994, Lemma, pp. 98–99])
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L1
i j`m(x)= δi jδ`m,

L2
i j`m(x)= δi`δ jm + δimδ jl,

L3
i j`m(x)=

x j x`
‖x‖2

δim +
xi xm

‖x‖2
δ j`+

xi x`
‖x‖2

δ jm +
x j xm

‖x‖2
δi`,

L4
i j`m(x)=

xi x j

‖x‖2
δ`m +

x`xm

‖x‖2
δi j ,

L5
i j`m(x)=

xi x j x`xm

‖x‖4
.

(3-3)

We prove that Theorem 3.2 is equivalent to the result of [Lomakin 1964]. Indeed,
we have

M1
i j`m(x)=

1
3

L1
i j`m(x),

M2
i j`m(x)= −

1

3
√

5
L1

i j`m(x)+
1

2
√

5
L2

i j`m(x),

M3
i j`m(x)= −

1
3

L1
i j`m(x)+

1
2

L4
i j`m(x),

M4
i j`m(x)=

2
√

2

3
√

7
L1

i j`m(x)−
1
√

14
L2

i j`m(x)+
3

2
√

14
L3

i j`m(x)−
√

2
√

7
L4

i j`m(x),

M5
i j`m(x)=

1

2
√

70
L1

i j`m(x)+
1

2
√

70
L2

i j`m(x)−
√

5

2
√

14
L3

i j`m(x)

−

√
5

2
√

14
L4

i j`m(x)+
√

35

2
√

2
L5

i j`m(x).

(3-4)

It is easy to check that the transition matrix between Lomakin’s functions (3-3)
and the functions (3-1) is invertible. A proof of (3-4) may be found in the Appendix.

Given that T has diagonal and off-diagonal components, there are five special
cases of Bi j`m that shed light on the physical meaning of the Kn:

(1) E[Ti j (0)Tkl(x)]|i= j=k=l ; that is, auto-correlations of diagonal terms

E[T11(0)T11(x)] = K1+ 2K2+ 2x2
1 K3+ 4x2

1 K4+ x4
1 K5

and then E[T22(0)T22(x)] and E[T33(0)T33(x)] by cyclic permutations 1→
2→ 3.

(2) E[Ti j (0)Tkl(x)]|i= j 6=k=l ; that is, cross-correlations of diagonal terms

E[T11(0)T22(x)] = K1+ (x2
2 + x2

1)K3+ x2
2 x2

1 K5

and then E[T22(0)T33(x)] and E[T33(0)T11(x)] by cyclic permutations 1→
2→ 3.
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(3) E[Ti j (0)Tkl(x)]|i=k 6= j=l ; that is, auto-correlations of off-diagonal terms

E[T12(0)T12(x)] = K2+ (x2
1 + x2

2)K4+ x2
1 x2

2 K5

and then E[T23(0)T23(x)] and E[T31(0)T31(x)] by cyclic permutations 1→
2→ 3.

(4) E[Ti j (0)Tkl(x)]| j 6=i=k 6=l 6= j ; that is, cross-correlations of off-diagonal terms

E[T12(0)T13(x)] = x2x3K4+ x2
1 x2x3K5

and then E[T13(0)T32(x)] and E[T32(0)T12(x)] by cyclic permutations 1→
2→ 3.

(5) E[Ti j (0)Tkl(x)]|i= j=k 6=l 6= j ; that is, cross-correlations of diagonal terms with
off-diagonal terms such as

E[T11(0)T12(x)] = x1x2(K3+ 2K4)+ x1x3
2 K5

and
E[T12(0)T13(x)] = x2x3K3+ x2

1 x2x3K5

and the others by cyclic permutations 1→ 2→ 3.

In principle, we can determine these five correlations for a specific physical
situation. For example, when T is the antiplane elasticity tensor for a given res-
olution (or mesoscale) [Ostoja-Starzewski 2008], we can use micromechanics or
experiments and then determine the best fits of the Kn (n = 1, . . . , 5) coefficients.

4. Concluding remarks

Remark 4.1. On the one hand, Lomakin’s functions (3-3) are simpler than func-
tions (3-1). On the other hand, the restrictions of the functions (3-1) to the unit
sphere S2

⊂ R3 are orthogonal in the space of the square-integrable functions on
S2. Using this property, in a forthcoming paper we will obtain spectral expan-
sions of tensor-valued homogeneous and isotropic random fields similar to those
of Yaglom [1957].

Remark 4.2. The spherical harmonics Y`m(θ, ϕ) are proportional to the Wigner
D-functions by [Varshalovich et al. 1975, Equation (37), §5.2]:

Y`m(θ, ϕ)= (−1)m
√

2`+1
4π

D`
−m0(0, θ, ϕ).

The matrix entries U i
`0(kx) are proportional to the zonal, sectorial, and tesseral

harmonics defined by [Varshalovich et al. 1975, Equation (14), §5.1].
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Remark 4.3. The matrix entries U i
j0(kx), the Godunov–Gordienko coefficients,

and (3-4) were calculated and proved by hand. Afterwards, they were checked
using MATLAB and Symbolic Math Toolbox™ [Mathworks 2013]. The problem
of an algebraic proof of the second and fourth equations in (3-4) remains open.

Appendix: Proofs

Proof of Lemma 2.2. The two-point correlation function B(x) is a linear operator
in V . It is known that the space of linear operators in V is isomorphic to the tensor
product V ∗⊗ V , where V ∗ is the set of all R-linear maps v∗ : V → R. We need to
prove that for any S ∈ V ∗⊗ V the following equality holds true:

U (k)SU−1(k)= (U ⊗U )(k)S.

Note that the set of tensors satisfying the above equality form a linear space. There-
fore, it is enough to prove this equality for tensors of the form v∗⊗ v, where v ∈ V
and v∗ ∈ V ∗. The linear operator v∗⊗ v acts on V by

(v∗⊗ v)w = v∗(w)v, w ∈ V .

For this operator,

(U (k)v∗⊗ vU−1(k))w =U (k)v∗(U−1(k)w)v = (U (k)v∗)(w)U (k)v

= (U (k)v∗)⊗ (U (k)v)w = (U ⊗U )(k)(v∗⊗ v)w.

By linearity, this equality follows for any S ∈ V ∗⊗ V . �

Proof of Theorem 3.1. The first equation in (1-1) may be written in the Gordienko
basis as

U 1(k)E = E.

The representation U 1 is irreducible. By Lemma 2.1, E = 0.
We cannot apply Lemma 2.1 to (2-11), because the representation U 1

⊗U 1

acting in V 1
⊗ V 1 is reducible.

By definition, a tensor field B(x) is a function on R3 with values in the linear
space of real-valued bilinear forms on V 1

×V 1. The component Bi j (x) is the value
of the bilinear form B(x) at the point (h1

i , h1
j ) ∈ V 1

× V 1:

Bi j (x)= B(x; h1
i , h1

j ).

The last equality may be rewritten as

Bi j (x)= B(x; h1
i ⊗ h1

j ),

where the right-hand side is the value of the linear form B(x) at the point h1
i ⊗h1

j ∈

V 1
⊗ V 1. In other words, tensor products simplify multilinear forms to linear ones.
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Using (2-9) with m = p = 1, n = 1, and q = j , we obtain

Bi j (x)= B(x; h1
i ⊗ h1

j )= B
(

x;
2∑

m=0

m∑
`=−m

g`[i, j]
m[1,1]h

m
`

)
=

2∑
m=0

m∑
`=−m

g`[i, j]
m[1,1]B(x; h

m
` ).

(A.1)

Let Bm(x) ∈ V m be the vector field with components B(x; hm
` ), −m ≤ ` ≤ m.

For this field, we have

Bm(kx)=U m(k)Bm(x), k ∈ SO(3). (A.2)

By Lemma 2.1, Bm(0)= 0 for m ≥ 1, while B0(0) may take any real value.
Let SO(2) be the subgroup of rotations around x0 axis. The restriction of the

representation U m to SO(2) is the direct sum of the trivial representation W 0 of
SO(2) acting in the one-dimensional space spanned by the vector hm

0 and of the
irreducible representations

W `(ϕ)=

(
cos(`ϕ) sin(`ϕ)
− sin(`ϕ) cos(`ϕ)

)
, ϕ ∈ SO(2),

acting in the two-dimensional spaces spanned by the vectors hm
` and hm

−`, 1≤ `≤m.
If x = (0, ‖x‖, 0)> 6= 0, then kx = x, k ∈ SO(2), and

(B(x; hm
−`), B(x; em

` ))
>
=W `(ϕ)(B(x; hm

−`), B(x; hm
` ))
>, 1≤ `≤ m.

By Lemma 2.1, B(x; hm
−`) = B(x; hm

` ) = 0, if 1 ≤ ` ≤ m, while B(x; hm
0 ) is an

arbitrary continuous real-valued function with B(0; hm
0 ) = 0 for m ≥ 1. In what

follows, we denote this function by Bm(‖x‖).
By (A.2),

B(x; hm
` )=U m

`0(kx)Bm(‖x‖). (A.3)

Substitute (A.3) into (A.1). We obtain

Bi j (x)=
2∑

m=0

m∑
`=−m

g`[i, j]
m[1,1]U

m
`0(kx)Bm(‖x‖).

In other words, Bi j (x) is the sum of three matrix-valued functions

Bi j (x)=
2∑

m=0

Bm
i j (x),

with

Bm
i j (x)=

m∑
`=−m

g`[i, j]
m[1,1]U

m
`0(kx)Bm(‖x‖).
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Let m = 0. Then
U 0

00(kx)= 1, (A.4)

the matrix entry of the 1× 1 identity matrix. To calculate the Godunov–Gordienko
coefficients g0[i, j]

0[1,1], use the following property [Godunov and Gordienko 2004]:

gn[n1,n2]
N [N1,N2]

= (−1)N+N1+N2

√
2N+1
2N1+1

gn1[n,n2]
N1[N ,N2]

, (A.5)

with N = n = 0, N1 = N2 = 1, n1 = i , and n2 = j . We have

g0[i, j]
0[1,1] =

√
1/3gi[0, j]

1[0,1].

The coefficients in the right-hand side can be calculated using (2-9):

h0
0⊗ h1

j =

1∑
i=−1

gi[0, j]
1[0,1]h

1
i .

The left-hand side is clearly equal to h1
j . Therefore, gi[0, j]

1[0,1] = δi j ,

g0[i, j]
0[1,1] =

√
1/3δi j , (A.6)

and the first matrix is
B0

i j (x)=
√

1/3δi j B0(‖x‖).

Let m = 1. Using (2-5)–(2-7), we obtainU 1
−10(ϕ, θ)

U 1
00(ϕ, θ)

U 1
10(ϕ, θ)

=
 cosϕ 0 sinϕ

0 1 0
− sinϕ 0 cosϕ

 0
cos θ
sin θ

=
sinϕ sin θ

cos θ
cosϕ sin θ

 ,
or

U 1
`0(kx)=

x`
r
.

The Godunov–Gordienko coefficients g`[i, j]
1[1,1] are calculated by [Godunov and

Gordienko 2004, Formulae (1.26)–(1.29)]. The nonzero coefficients are

g−1[1,0]
1[1,1] = g0[−1,1]

1[1,1] = g1[0,−1]
1[1,1] =

√
1/2,

g−1[0,1]
1[1,1] = g0[1,−1]

1[1,1] = g1[−1,0]
1[1,1] =−

√
1/2.

The second matrix becomes

1

r
√

2

 0 −x1 x0

x1 0 −x−1

−x0 x−1 0

 B1(‖x‖).
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This matrix is not symmetric but skew-symmetric. The matrix Bi j (x) is symmetric
if and only if B1(‖x‖)= 0.

The matrix entries U 2
`0(kx) can be calculated using (2-5)–(2-7) as

U 2
−20(kx)=−

√
3x−1x1

r2 , U 2
−10(kx)=

√
3x−1x0

r2 , U 2
00(kx)=

3x2
0

2r2 −
1
2
,

U 2
10(kx)=

√
3x0x1

r2 , U 2
20(kx)=

√
3(x2
−1− x2

1)

2r2 .

To calculate the Godunov–Gordienko coefficients g`[i, j]
2[1,1], use (A.5) with N = 2,

N1 = N2 = 1, n = `, n1 = i , and n2 = j . We have

g`[i, j]
2[1,1] =

√
5/3gi[`, j]

1[2,1].

The coefficients gi[`, j]
1[2,1] are calculated by [Godunov and Gordienko 2004, Formu-

lae (1.30)–(1.34)]. The nonzero Godunov–Gordienko coefficients are

g−2[−1,1]
2[1,1] = g−2[1,−1]

2[1,1] = g2[1,1]
2[1,1] =−

√
1/2,

g0[−1,−1]
2[1,1] = g0[1,1]

2[1,1] =−
√

1/6,

g−1[−1,0]
2[1,1] = g−1[0,−1]

2[1,1] = g1[0,1]
2[1,1] = g1[1,0]

2[1,1] = g2[−1,−1]
2[1,1] =

√
1/2,

g0[0,0]
2[1,1] =

√
2/3.

In (2-10) put k = j = 0, m = p = 1, n = i , and q = j . We have

U 1
i0(k)U

1
j0(k)=

2∑
s=0

s∑
t=−s

s∑
`=−s

gt[i, j]
s[1,1]U

s
t`(k)g

`[0,0]
s[1,1] .

Using the above-calculated values of the matrix entries and Godunov–Gordienko
coefficients, we may rewrite this formula as

xi x j

r2 =
1
3
δi j +

√
2
3

2∑
t=−2

gt[i, j]
2[1,1]U

2
t0(kx)

or
2∑

t=−2

gt[i, j]
2[1,1]U

2
t0(kx)=

√
3

√
2r2

(
x j x j −

r2

3
δi j

)
. (A.7)

We introduce the following notation:

K0(‖x‖)=
1
√

3
B0(‖x‖)−

1
√

6
B2(‖x‖), K2(‖x‖)=

√
3

√
2r2

B2(‖x‖).

The theorem is proved. Note that the space V 0 consists of tensors proportional to
the Kronecker delta, V 1 consists of skew-symmetric tensors, and V 2 consists of
symmetric traceless tensors. �
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Proof of Theorem 3.2. Use Lemma 2.2 to write the representation U as U =
U 1
⊗U 1. The first equation in (1-1) takes the form

E(kx)= (U 1
⊗U 1)(k)E(x).

or
E = (U 1

⊗U 1)(k)E, k ∈ SO(3).

In other words, E lies in the subspace of V where the trivial representation is
realized, or

E[Ti j (x)] = Cδi j , C ∈ R.

The second equation in (1-1) takes the form

B(kx)= (U 1
⊗U 1

⊗U 1
⊗U 1)(k)B(x).

We write B(x) as a bilinear form on pairs of tensors, (V 1
⊗ V 1)× (V 1

⊗ V 1):

Bi jk`(x)= B(x; h1
i ⊗ h1

j , h1
`⊗ h1

m).

Note that the tensor field Bi j`m(x) is symmetric in the following sense:

B`mi j (x)= Bi j`m(x).

Recall that V 1
⊗ V 1

= V 0
⊕ V 1

⊕ V 2. Rewrite B(x) as a bilinear form on
(V 0
⊕ V 1

⊕ V 2)× (V 0
⊕ V 1

⊕ V 2):

Bi j`m(x)= B
(

x;
2∑

n=0

n∑
p=−n

g p[i, j]
n[1,1]h

n
p,

2∑
q=0

q∑
r=−q

gr [`,m]
q[1,1] h

q
r

)
.

In fact, B(x) is a bilinear form on pairs of symmetric tensors, which is to say, on
(V 0
⊕ V 2)× (V 0

⊕ V 2):

Bi j`m(x)= B
(

x;
∑

n∈{0,2}

n∑
p=−n

g p[i, j]
n[1,1]h

n
p,

∑
q∈{0,2}

q∑
r=−q

gr [`,m]
q[1,1] h

q
r

)

=

∑
(n,q)∈{0,2}×{0,2}

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1] B(x; h

n
p, hq

r )

=

∑
(n,q)∈{0,2}×{0,2}

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1] B(x; h

n
p⊗ hq

r )

=

∑
(n,q)∈{0,2}×{0,2}

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1] B

(
x;

n+q∑
s=|n−q|

s∑
t=−s

gt[n,q]
s[m,p]h

s
t

)
.

The possible values for s are 0 ≤ s ≤ 4. Let As be the set of all pairs (n, q) ∈
{0, 2}× {0, 2} such that V s

⊆ V n
⊗ V q . We have



STATISTICALLY ISOTROPIC TENSOR RANDOM FIELDS 225

A0 = {(0, 0), (2, 2)}, A1 = A3 = A4 = {(2, 2)}, A2 = {(0, 2), (2, 0), (2, 2)},

and

Bi j`m(x)=
4∑

s=0

Bi j`m
s (x),

where

Bi j`m
s (x)=

∑
(n,q)∈As

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1]

s∑
t=−s

gt[n,q]
s[m,p]B(x; h

s
t (n, q)),

and where the pairs (n, q) ∈ As enumerate copies of the vector hs
t . By (A.3),

B(x; hs
t (n, q))=U s

t0(kx)Bs(n,q)(‖x‖),

where Bs(n,q)(‖x‖) are continuous real-valued functions with Bs(n,q)(0) = 0 for
s ≥ 1. We obtain

Bi j`m
s (x)=

∑
(n,q)∈As

C i j`m
nqs (x),

where

C i j`m
nqs (x)=

n∑
p=−n

q∑
r=−q

g p[i, j]
n[1,1]g

r [`,m]
q[1,1]

s∑
t=−s

gt[p,r ]
s[n,q]U

s
t0(kx)Bs(n,q)(‖x‖).

We calculate the functions C i j`m
nqs (x).

Let (n, q)= (0, 0) ∈ A0. The corresponding term is

C i j`m
000 (x)=

1
3 δi jδ`m B0(0,0)(‖x‖)= M1

i j`m(x)K1(‖x‖),

by (A.4) and (A.6) with K1(‖x‖)= B0(0,0)(‖x‖).
Let (n, q)= (2, 2) ∈ A0. The corresponding term is

C i j`m
220 (x)=

2∑
r=−2

2∑
s=−2

gr [i, j]
2[1,1]g

s[`,m]
2[1,1] g

0[r,s]
0[2,2]U

0
00(kx)B0(2,2)(‖x‖).

The Godunov–Gordienko coefficients gr [i, j]
2[1,1] and gs[`,m]

2[1,1] are calculated by (A.6),
while the coefficients g0[n,q]

0[2,2] are calculated using (A.5) with n = N = 0, n1 = r ,
n2 = s, N1 = N2 = 2 and (2-9):

g0[r,s]
0[2,2] =

√
1/5gr [0,s]

2[0,2] =
√

1/5δrs .

Therefore, we obtain

C i j`m
220 (x)=

√
1/5

2∑
r=−2

gr [i, j]
2[1,1]g

r [`,m]
2[1,1] B0(2,2)(‖x‖)= M2

i j`m(x)K2(‖x‖)

with K2(‖x‖)= B0(2,2)(‖x‖).
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Let (n, q)= (2, 2) ∈ A1. The corresponding term is

C i j`m
221 (x)=

2∑
p=−2

2∑
s=−2

g p[i, j]
2[1,1]g

r [`,m]
2[1,1]

1∑
s=−1

gs[p,r ]
1[2,2]U

1
s0(kx)B1(2,2)(‖x‖).

The Godunov–Gordienko coefficients gs[p,r ]
1[2,2] are calculated by [Godunov and Gor-

dienko 2004, Formulae (1.26)–(1.29)]. The nonzero elements of the Godunov–
Gordienko matrix G−1

1[2,2] are

g−1[0,1]
1[2,2] =−

√
3/10, g−1[−2,−1]

1[2,2] = g−1[2,1]
1[2,2] =−

√
1/10,

g−1[1,0]
1[2,2] =

√
3/10, g−1[−1,−2]

1[2,2] = g−1[1,2]
1[2,2] =

√
1/10,

and those of the matrix G0
1[2,2] are

g0[2,−2]
1[2,2] =−

√
2/5, g0[1,−1]

1[2,2] =−
√

1/10,

g0[−2,2]
1[2,2] =

√
2/5, g0[−1,1]

1[2,2] =
√

1/10.

Finally, the nonzero elements of the Godunov–Gordienko matrix G−1
1[2,2] are

g1[0,−1]
1[2,2] =

√
3/10, g1[1,−2]

1[2,2] = g1[2,−1]
1[2,2] =−

√
1/10,

g1[−1,0]
1[2,2] =−

√
3/10, g1[−2,1]

1[2,2] = g1[−1,2]
1[2,2] =

√
1/10.

We see that the Godunov–Gordienko matrices gs
1[2,2], −1 ≤ s ≤ 1, are skew-

symmetric. We have B1(2,2)(‖x‖) = 0 by the same reasons as B1(‖x‖) = 0 in
the proof of Theorem 3.1.

Let (n, q)= (0, 2) ∈ A2. The corresponding term is

C i j`m
022 (x)= g0[i, j]

0[1,1]

2∑
p=−2

g p[`,m]
2[1,1]

2∑
s=−2

gs[0,p]
2[0,2]U

2
s0(kx)B2(0,2)(‖x‖).

Using (A.6), we obtain

C i j`m
022 (x)=

√
1/3δi j

2∑
p=−2

g p[`,m]
2[1,1]

2∑
s=−2

gs[0,r ]
2[0,2]U

2
s0(kx)B2(0,2)(‖x‖).

Clearly gs[0,p]
2[0,2] = δps . Therefore,

C i j`m
022 (x)=

√
1/3δi j

2∑
p=−2

g p[`,m]
2[1,1] U 2

p0(kx)B2(0,2)(‖x‖).

Let (n, q)= (2, 0) ∈ A2. The corresponding term is

C i j`m
202 (x)= g0[`,m]

0[1,1]

2∑
p=−2

g p[i, j]
2[1,1]

2∑
s=−2

gt[p,0]
2[2,0]U

2
s0(kx)B2(2,0)(‖x‖).
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Using (A.6), we obtain

C i j`m
202 (x)=

√
1/3δ`m

2∑
p=−2

g p[i, j]
2[1,1]

2∑
s=−2

gt[p,0]
2[2,0]U

2
s0(kx)B2(2,0)(‖x‖).

Clearly gs[p,0]
2[2,0] = δps . Therefore,

C i j`m
202 (x)=

√
1/3δ`m

2∑
p=−2

g p[i, j]
2[1,1]U

2
p0(kx)B2(2,0)(‖x‖).

We see that the tensor field Bi j`m(x) is symmetric if and only if B2(0,2)(‖x‖)=
B2(2,0)(‖x‖). Denote their common value by K3(‖x‖) and put

C i j`m
2 (x)=

1
√

2
(C i j`m

022 (x)+C i j`m
202 (x)).

We obtain

C i j`m
2 (x)= M3

i j`m(x)K3(‖x‖).

Let (n, q)= (2, 2) ∈ A2. The corresponding term is

C i j`m
222 (x)=

2∑
p=−2

2∑
r=−2

g p[i, j]
2[1,1]g

r [`,m]
2[1,1]

2∑
s=−2

gs[p,r ]
2[2,2]U

2
s0(kx)B2(2,2)(‖x‖)

= M4
i j`m(x)K4(‖x‖),

with K4(‖x‖)= B2(2,2)(‖x‖).
To calculate Godunov–Gordienko coefficients gs[p,r ]

2[2,2] , we use generating func-
tion from [Godunov and Gordienko 2004, Formula (2.6)]. The nonzero coefficients
are:

g−2[0,−2]
2[2,2] = g−2[−2,0]

2[2,2] = g0[−2,−2]
2[2,2] = g0[2,2]

2[2,2] = g2[2,0]
2[2,2] = g2[0,2]

2[2,2] =−
√

2/7,

g−2[1,−1]
2[2,2] = g−2[−1,1]

2[2,2] = g−1[1,−2]
2[2,2] = g−1[−2,1]

2[2,2] = g1[−1,−2]
2[2,2] = g1[−2,−1]

2[2,2] = g1[2,1]
2[2,2]

= g1[1,2]
2[2,2] = g2[1,1]

2[2,2] =−
√

3/14,

g−1[0,−1]
2[2,2] = g−1[−1,0]

2[2,2] = g0[−1,−1]
2[2,2] = g0[1,1]

2[2,2] = g1[0,1]
2[2,2] = g1[1,0]

2[2,2] =
√

1/14,

g−1[2,−1]
2[2,2] = g−1[−1,2]

2[2,2] = g2[−1,−1]
2[2,2] =

√
3/14,

g0[0,0]
2[2,2] =

√
2/7.

Let (n, q)= (2, 2) ∈ A3. The corresponding term is

C i j`m
223 (x)=

2∑
r=−2

2∑
s=−2

gr [i, j]
2[1,1]g

s[`,m]
2[1,1]

3∑
t=−3

gt[r,s]
3[2,2]U

3
t0(kx)B3(2,2)(‖x‖).
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The nonzero elements of the Godunov–Gordienko matrix g−3
3[2,2] are

g−3[−1,−2]
3[2,2] = g−3[2,1]

3[2,2] =−1/2, g−3[−2,−1]
3[2,2] = g−3[1,2]

3[2,2] = 1/2,

those of the matrix g−2
3[2,2] are

g−2[2,0]
3[2,2] =−

√
1/2, g−2[0,2]

3[2,2] =
√

1/2,

those of the matrix g−1
3[2,2] are

g−1[0,1]
3[2,2] =−

√
1/5, g−1[1,0]

3[2,2] =
√

1/5,

g−1[−1,−2]
3[2,2] = g−1[1,2]

3[2,2] =−
√

3/20, g−1[−2,−1]
3[2,2] = g−1[2,1]

3[2,2] =
√

3/20,

those of the matrix g0
3[2,2] are

g0[1,−1]
3[2,2] =−

√
2/5, g0[−1,1]

3[2,2] =
√

2/5,

g0[−2,2]
3[2,2] =−

√
1/10, g0[2,−2]

3[2,2] =
√

1/10,

those of the matrix g1
3[2,2] are

g1[−1,0]
3[2,2] =−

√
1/5, g1[0,1]

3[2,2] =
√

1/5,

g1[−2,1]
3[2,2] = g1[−1,2]

3[2,2] =−
√

3/20, g1[1,−2]
3[2,2] = g1[2,−11]

3[2,2] =
√

3/20,

and those of the matrix g2
3[2,2] are

g2[−2,0]
3[2,2] =−

√
1/2, g2[0,−22]

3[2,2] =
√

1/2.

Finally, the nonzero elements of the Godunov–Gordienko matrix g3
3[2,2] are

g3[−1,2]
3[2,2] = g3[1,−2]

3[2,2] =−1/2, g3[−2,1]
3[2,2] = g3[2,−1]

3[2,2] = 1/2.

We see that the Godunov–Gordienko matrices gt
3[2,2], −3 ≤ t ≤ 3, are skew-

symmetric. We have B2(2,2)(‖x‖)= 0 by the same reasons as before.
Let (n, q)= (2, 2) ∈ A4. The corresponding term is

C i j`m
224 (x)=

2∑
r=−2

2∑
s=−2

gr [i, j]
2[1,1]g

s[`,m]
2[1,1]

4∑
t=−4

gt[r,s]
4[2,2]U

4
t0(kx)B4(2,2)(‖x‖)

= M5
i j`m(x)K5(‖x‖)

with K5(‖x‖)= B4(2,2)(‖x‖).
The nonzero elements of the Godunov–Gordienko matrices g±4

4[2,2] are

g−4[−2,2]
4[2,2] = g−4[2,−2]

4[2,2] = g4[2,2]
4[2,2] =−

√
1/2, g4[−2,−2]

4[2,2] =
√

1/2,
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those of the matrices g±3
4[2,2] are

g−3[−2,1]
4[2,2] = g−3[1,−2]

4[2,2] = g−3[−1,2]
4[2,2] = g−3[2,−1]

4[2,2] = g3[1,2]
4[2,2] = g3[2,1]

4[2,2] =−1/2,

g3[−2,−1]
4[2,2] = g3[−1,−2]

4[2,2] = 1/2,

those of the matrices g±2
4[2,2] are

g−2[−1,1]
4[2,2] = g−2[1,−1]

4[2,2] = g2[1,1]
4[2,2] =−

√
2/7,

g−2[−2,0]
4[2,2] = g−2[0,−2]

4[2,2] = g2[0,2]
4[2,2] = g2[2,0]

4[2,2] =
√

3/14,

g2[−1,−1]
4[2,2] =

√
2/7,

and those of the matrices g±1
4[2,2] are

g−1[−1,2]
4[2,2] = g−1[2,−1]

4[2,2] =−1/(2
√

7),

g−1[−2,1]
4[2,2] = g−1[1,−2]

4[2,2] = g1[−2,−1]
4[2,2] = g1[−1,−2]

4[2,2] = g1[1,2]
4[2,2] = g1[2,1]

4[2,2] = 1/(2
√

7),

g−1[−1,0]
4[2,2] = g−1[0,−1]

4[2,2] = g1[0,1]
4[2,2] = g1[1,0]

4[2,2] =
√

3/7.

Finally, the nonzero elements of the Godunov–Gordienko matrix g0
4[2,2] are

g0[−1,−1]
4[2,2] = g0[1,1]

4[2,2] =−
√

8/35,

g0[−2,−2]
4[2,2] = g0[2,2]

4[2,2] =
√

1/70,

g0[0,0]
4[2,2] = 6/

√
70. �

Proof of (3-4). The first equation is obvious. The second and fourth equations may
be checked by brute force, using the values of the matrix entries and Godunov–
Gordienko coefficients calculated above. To prove the third equation, substitute
(A.7) into (3-1). For the fifth equation, put i = j = 0 and m = p = 2 in (2-10). We
have

U 2
r0(kx)U 2

s0(kx)=

4∑
t=0

t∑
v=−t

t∑
w=−t

gv[r,s]t[2,2]U
t
vw(kx)g

w[0,0]
t[2,2] .

Using the matrix entries calculated above and the Godunov–Gordienko coefficients,
we may rewrite this formula as

U 2
r0(kx)U 2

s0(kx)=
1
5
δrs +

√
2/7

2∑
t=−2

gt[r,s]
2[2,2]U

2
t0(kx)+

3
√

2
√

35

4∑
t=−4

gt[r,s]
4[2,2]U

4
t0(kx).
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Move all terms but the last from the right-hand side to the left-hand side, and
substitute the result into the fifth line in (3-1). We obtain

M5
i j`m(x)=

√
35

3
√

2

2∑
n=−2

2∑
p=−2

gn[i, j]
2[1,1]g

p[`,m]
2[1,1]

(
U 2

r0(kx)U 2
s0(kx)−

1
5δnp

−
√

2/7
2∑

t=−2

gt[r,s]
2[2,2]U

2
t0(kx)

)
.

Using (A.7) and (3-1), we get

M5
i j`m(x)=

√
35

3
√

2

( 3
2 L5

i j`m(x)−
1
2 L4

i j`m(x)+
1
6 L1

i j`m(x)
)

−

√
7

3
√

2
M2

i j`m(x)−
√

5
3

M4
i j`m(x).

We finish the proof by using the second and fourth equations. �
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