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EFFECTS OF DAMPING ON THE STABILITY
OF THE COMPRESSED NICOLAI BEAM

ANGELO LUONGO, MANUEL FERRETTI AND ALEXANDER P. SEYRANIAN

The Nicolai problem concerning the stability of a quasisymmetric cantilever
beam embedded in a three-dimensional space, under a compressive dead load
and a follower torque, is addressed. The effect of external and internal damp-
ing on stability is investigated. The partial differential equations of motion, ac-
counting for the pretwist contribution, are recast in weak form via the Galerkin
method, and a linear algebraic problem, governing the stability of the rectilin-
ear configuration of the beam, is derived. Perturbation methods are used to
analytically compute the eigenvalues, starting with an unperturbed, undamped,
symmetric, untwisted beam, axially loaded, in both the subcritical and critical
regimes. Accordingly, an asymmetry parameter, the torque, the damping, and
the load increment are taken as perturbation parameters. Maclaurin series are
used for semisimple eigenvalues occurring in subcritical states, and Puiseux
series for the quadruple-zero eigenvalue existing at the Euler point. Based on
the eigenvalue behavior described by the asymptotic expansions, the stability
domains are constructed in the two or three-dimensional space of the bifurcation
parameters. It is found that dynamic bifurcations occur in the subcritical regime,
and dynamic or static bifurcations in the critical regime. It is shown that stability
is governed mostly by the bifurcation of the lowest eigenvalue. In all cases
the Nicolai paradox is recovered, and the beneficial effects of asymmetry and
damping are highlighted.

1. Introduction

The fascinating mechanical problem first formulated by Nicolai [1928] and now
bearing his name consists in determining the critical value of a follower (tangential)
torque acting at the free end of a uniform elastic cantilever beam embedded in a
three-dimensional space, with equal moments of inertia in the two planes. The
Nicolai paradox consists in the fact that the bifurcation value of the torque is zero,
in the sense that a vanishingly small torque is able to cause (dynamic) instability
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of the beam. Nicolai found this (apparently) surprising result by using a simplified
two-degree of freedom model with lumped mass; he also found that damping is
stabilizing. Subsequently he analyzed the effects of small asymmetries in the two
inertia moments, and found they have a beneficial effect on stability [Nicolai 1929].

The paradox has recently been explained in [Seyranian and Mailybaev 2011],
where it has been shown to be due to the bifurcation of a double semisimple
eigenvalue, which leads to a stability domain with a conic singularity at the origin
of parameter space, where the ideal symmetric system is located. Therefore, an
infinitesimal perturbation of this state can lead the system out of the cone, causing
instability. In the same paper the authors, by referring to a general discrete system,
briefly investigated damping effects, arriving at a justification of the findings of
Nicolai. In their paper, however, although they accounted for the presence of an
axial load, they assumed it as below the Euler critical value.

In [Seyranian et al. 2014], the continuous model was enriched by accounting
for the pretwist generated by the torque in the reference configuration. This effect,
which had been neglected in previous papers, was, however, found to not affect
the stability domain. The authors, by using analytical and numerical methods,
also studied the neighborhood of the Euler point, although they did not address the
(complex) mechanism of bifurcation. Moreover, they did not account for damping.

In this paper we reconsider the problem of Nicolai using a continuous model of
a beam with pretwisting and introducing damping forces. We mainly focus on the
influence of damping on the stability domains of the system. Thus, the problem
of Nicolai is studied in greater depth, with multiple aims, namely: to thoroughly
analyze the effects on stability of external and internal damping acting on the beam;
to study the regimes of subcritical and critical axial loads and their influence on the
critical value of the torque; to investigate the role of eigenvalues higher than the
first in affecting stability; and to explain, by analytical methods, the mechanism of
the bifurcation of the quadruple-zero eigenvalue which occurs at the Euler critical
load. All these aspects are believed to be new; the latter, moreover, could have
value that transcends the issue at hand.

The paper is organized as follows. In Section 2 the equations of motion are re-
called, a Galerkin reduction is carried out, and a linear eigenvalue problem is drawn.
In Section 3 the stability problem for subcritically loaded beams is addressed by per-
forming a perturbation of semisimple eigenvalues. In Section 4 the stability prob-
lem for nearly critically loaded beams is tackled. Here it is shown that a Puiseux
series expansion must be used to analyze bifurcation of the quadruple nonsemisim-
ple eigenvalue. Differences in the algorithms for undamped and damped systems
are also extensively commented upon for this occurrence. In all cases two or three-
dimensional stability domains are constructed and the type of bifurcation (static or
dynamic) occurring at the different branches of the boundaries is commented upon.
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2. Problem formulation

Continuous model. We consider a cantilever beam, of length l
and mass per unit length m, loaded at the free end by a compressive
axial dead load P and a follower torque L (see figure on the right).
The system is assumed to be “nearly symmetric”, in the sense that
its geometric characteristics in the two principal planes are almost
equal. The goal of this analysis is to evaluate the critical value of
the torque at which the beam loses stability, by accounting for
asymmetries, axial load, and damping.

x

y

z

P

L

The equations of motion for the elastic beam, modeled ac-
cording to the Euler–Bernoulli hypotheses, were derived in [Bolotin 1963]; in
[Seyranian et al. 2014] the effect of the pretwist induced by the torque was in-
cluded in the analysis. In this paper we consider a further improved model by
accounting for internal and external dampings. The relevant equations of motion
(see Appendix C for derivation) are

mü+E Iyu I V
+L

(
1−2 E

G
Ix+ Iy

J

)
v′′′+Pu′′−2P L

G J
v′+ξ u̇+ηIy u̇ I V

=0,

mv̈+E Ixv
I V
−L

(
1−2 E

G
Ix+ Iy

J

)
u′′′+Pv′′+2P L

G J
u′+ξ v̇+ηIx v̇

I V
=0,

(1)

with the boundary conditions

u(0)= u′(0)= 0, E Iyu′′(l)+ ηIy u̇′′(l)− 2L
E Iy

G J
v′(l)= 0,

v(0)= v′(0)= 0, E Ixv
′′(l)+ ηIx v̇

′′(l)+ 2L
E Ix

G J
u′(l)= 0,

−E Iyu′′′(l)− ηIy u̇′′′(l)− P
(

u′(l)− L
G J

v(l)
)
= 0,

−E Ixv
′′′(l)− ηIx v̇

′′′(l)− P
(
v′(l)+ L

G J
u(l)

)
= 0.

(2)

Here u(z, t) and v(z, t) are the transverse displacements of the centroid at the
abscissa z and time t , along the principal x and y axes, respectively; E is the
Young modulus of the material; Ix and Iy are the principal inertia moments of the
cross-section and J is its torsional inertia moment; ξ and η are the external damping
and viscosity coefficients, respectively; a dash denotes differentiation with respect
to z; and a dot denotes differentiation with respect to t . When the damping coeffi-
cients are set to zero, the equations studied in [Seyranian et al. 2014] are recovered.
These equations govern the small oscillations of the pretwisted beam around the
rectilinear configuration.
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The following nondimensional quantities are introduced:

z̃ := z
l
, ũ := u

l
, ṽ :=

v

l
, β := 2 E

G
Ix + Iy

J
, γ := 2 E

G
I0

J
,

L̃ := Ll
E I0

, P̃ := Pl2

E I0
, Ĩy :=

Iy

I0
, Ĩx :=

Ix

I0
, m̃ := m

m0
,

t̃ := t

√
E I0

m0l4 , ξ̃ := ξ

√
l4

m0 E I0
, η̃ := η

√
I0

m0l4 E
,

(3)

where I0 and m0 are an inertia moment and mass per unit length, respectively, taken
as characteristics of a “close” ideal symmetric system, from which the actual sys-
tem can be generated via a small perturbation (see Appendix A). With definitions
(3), the equations of motion transform into

mü+ Iyu I V
+ L(1−β)v′′′+ Pu′′− P Lγ v′+ ξ u̇+ ηIy u̇ I V

= 0,

mv̈+ Ixv
I V
− L(1−β)u′′′+ Pv′′+ P Lγ u′+ ξ v̇+ ηIx v̇

I V
= 0,

(4)

and the boundary conditions into

u(0)= u′(0)= 0, Iyu′′(1)+ ηIy u̇′′(1)− γ L Iyv
′(1)= 0,

v(0)= v′(0)= 0, Ixv
′′(1)+ ηIx v̇

′′(1)+ γ L Ix u′(1)= 0,

−Iyu′′′(1)− ηIy u̇′′′(1)− P
(
u′(1)− 1

2 Lγ v(1)
)
= 0,

−Ixv
′′′(1)− ηIx v̇

′′′(1)− P
(
v′(1)+ 1

2 Lγ u(1)
)
= 0,

(5)

where the tilde has been suppressed for notational convenience.

Discrete model. A weak form of the problem (4), (5) is derived according to the
weighted residuals (or extended Galerkin [Leipholz 1974; Zienkiewicz et al. 2005])
method. The unknown displacement fields are expressed as linear combinations of
2N unknown time-dependent amplitudes, x := (xi (t))T and y := (yi (t))T , and N
known space-dependent trial functions φ := (φi (z))T , namely

u(z, t)= φT x,

v(z, t)= φT y,
(6)

where φi (0) = φ′i (0) = 0 satisfy the geometrical boundary conditions; however,
they are not required to satisfy the mechanical boundary conditions [Leipholz 1974;
Zienkiewicz et al. 2005].

By substituting (6) into the field equations (4) and boundary conditions (5), resid-
uals in the domain and at the free end z = 1 are found, which are required to be
orthogonal to the trial function itself:
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N∑
i=1

{∫ 1

0
φ j [mφi ẍi + Iyφ

I V
i xi + L(1−β)φ′′′i yi + Pφ′′i xi − P Lγφ′i yi

+ ξφi ẋi + ηIyφ
I V
i ẋi ] dz+φ′j [Iyφ

′′

i xi + ηIyφ
′′

i ẋi − γ L Iyφ
′

i yi ]z=1

+φ j

[
−Iyφ

′′′

i xi − ηIyφ
′′′

i ẋi − Pφ′i xi +
P Lγ

2
φi yi

]
z=1

}
= 0,

N∑
i=1

{∫ 1

0
φ j [mφi ÿi + Ixφ

I V
i yi − L(1−β)φ′′′i xi + Pφ′′i yi + P Lγφ′i xi

+ ξφi ẏi + ηIxφ
I V
i ẏi ] dz+φ′j [Ixφ

′′

i yi + ηIxφ
′′

i ẏi + γ L Ixφ
′

i xi ]z=1

+φ j

[
−Ixφ

′′′

i yi − ηIxφ
′′′

i ẏi − Pφ′i yi −
P Lγ

2
φi xi

]
z=1

}
= 0,

(7)

where j = 1, 2, . . . , N . After integration by parts and accounting for the geometric
boundary conditions, all terms at the boundaries disappear. From these, a set of
2N ordinary differential equations is derived:

Mq̈+Cq̇+ (K + H)q = 0, (8)

where q := (x, y)T is a 2N column vector of the unknown amplitudes, and M is
the mass, C the damping, K the stiffness, and H the circulatory matrices, all of
dimension 2N × 2N , defined by

C :=
[
ξm+ηIy kE 0

0 ξm+ηIx kE

]
, M :=m

[
m 0
0 m

]
,

K :=
[

Iy kE+PkG 0
0 Ix kE+PkG

]
, Hu :=

[
0 h1

−h1 0

]
,

Ht :=

[
0 −βh1−Pγ h2−γ Iy h3

βh1+Pγ h2+γ Ix h3 0

]
, H :=L(Hu+Ht).

(9)

In these equations, the following N × N submatrices appear, which depend on the
trial functions only:

m =
∫ 1

0
φφT dz, kE =

∫ 1

0
φ′′φ′′T dz,

kG =−

∫ 1

0
φ′φ′T dz, h1 =

∫ 1

0
φφ′′′T dz,

h2 =

∫ 1

0
φφ′T dz− 1

2
φφT

∣∣
z=1, h3 = φ

′φ′T
∣∣
z=1,

(10)

where the indices E and G refer to the elastic and geometric parts of the stiffness
matrix and the indices u and t refer to the untwisted and twisted beams, that is, to
the torsionally rigid or torsionally elastic beams. Notice that the coupling between
the x and y variables is exclusively due to the torque.



6 ANGELO LUONGO, MANUEL FERRETTI AND ALEXANDER P. SEYRANIAN

In the numerical simulations to be performed ahead, we will take as trial func-
tions the (mutually orthogonal) eigenfunctions of the free undamped oscillations
of the unprestressed planar cantilever (see Appendix B). Due to their orthogonality
properties and normalization, it follows that m = I and kE = diag(ω2

i ), where ωi

are the (nondimensional) natural frequencies; in contrast, kG and hi , i = 1, . . . , 3,
are full matrices. Moreover, while M, C , and K are symmetric matrices, H is not
symmetric nor antisymmetric. Finally, the damping submatrices are linear combi-
nations of the mass and elastic stiffness submatrices, as in the Rayleigh model of
damping.

The algebraic eigenvalue problem. Substitution of q(t)= weλt in (8) and premul-
tiplication by M−1 leads to the algebraic eigenvalue problem

(A+ λD+ λ2 I)w = 0, (11)

in which A := M−1(K + H) and D := M−1C . The trivial equilibrium is (asymp-
totically) stable if Re λ < 0 for all λ, and is unstable if Re λ > 0 for at least one λ.

When the system is undamped (that is, D = 0), the eigenvalue problem is more
conveniently recast in the standard form:

(A−µI)w = 0, (12)

where µ := −λ2. The trivial equilibrium is stable if all µ are real and positive (that
is, λ is purely imaginary), and it is unstable if at least one µ is negative or complex
(entailing that one root λ has a positive real part).

3. Stability analysis for subcritically compressed beams

The perturbed eigenvalue problem. We address the stability problem for the case
in which the (nondimensional) axial load P is lower than the (nondimensional)
Eulerian critical load PE := π

2/4. We assume that the cross-section is nearly
symmetric, affected by a small asymmetry parameter α; both the internal, η, and
external, ξ , damping coefficients are small; and the follower torque, L , is also
small. Accordingly, we introduce the following parameter rescaling:

(α, L , ξ, η)→ ε(α, L , ξ, η), (13)

where 0 < ε � 1 is a perturbation parameter (artificially introduced, and to be
reabsorbed at the end of the procedure). The (nondimensional) geometric charac-
teristics and the mass per unit length (with a proper choice of I0 and m0 appearing
in (3)), after series expansion, read (see Appendix A for an example)Ix

Iy

m

=
1

1
1

+ εα
Ix1

Iy1

m1

+ O(ε2); (14)
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moreover, β = β0+ O(ε) and γ = γ0+ O(ε), with β0 = 2γ0. Consequently, the
matrices in (11) can also be expressed in series form as

A= A0+ εA1+ O(ε2), D = εD1+ O(ε2), (15)

where

A0 =

[
kE+PkG 0

0 kE+PkG

]
,

A1 = A1u+A1t ,

A1u =

[
α(Iy1−m1)kE−αm1 PkG Lh1

−Lh1 α(Ix1−m1)kE−αm1 PkG

]
A1t =

[
0 −L(β0h1+Pγ0h2+γ0h3)

L(β0h1+ Pγ0h2+γ0h3) 0

]
,

D1 =

[
ξm+ηkE 0

0 ξm+ηkE

]
.

(16)

The eigenvalue problem (11), therefore, appears as a perturbation of the prob-
lem relevant to the symmetric, undamped, subcritically prestressed beam, with
no torque, namely:

[A0+ λ
2 I + ε(A1+ λD1)+ · · · ]w = 0, (17)

where A1 accounts for (first-order) asymmetry and torque, while D1 accounts for
damping.

Perturbation analysis.

The damped case. The eigenvalue problem (17) is solved by a perturbation method.
Due to the symmetry of the unperturbed mechanical system, the eigenvalue λ0 is
a semisimple eigenvalue for the matrix A0, that is, two independent eigenvectors
are associated with any eigenvalue, each representing a mode of oscillation in the
(x, z)-plane or the (y, z)-plane. Such an eigenvalue and its associated eigenvectors
admit Maclaurin series expansion [Seyranian and Mailybaev 2003]:

λ= λ0+ ελ1+ · · · , w = w0+ εw1+ · · · . (18)

By introducing (18) in the eigenvalue problem (17) and separately equating to zero
terms with the same powers of ε, the following perturbation equations are obtained:

ε0
: (A0+ λ

2
0 I)w0 = 0,

ε1
: (A0+ λ

2
0 I)w1 =−(A1+ λ0 D1+ 2λ0λ1 I)w0.

(19)
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Since A0 is symmetric and positive definite, its eigenvalues λ0 are pairs of
complex conjugate purely imaginary numbers, that is, ±iωk , k = 1, 2, . . . , N .
The associated eigenvectors are real, and right and left eigenvectors coincide. We
take λ0 =+iωk , and denote by u1 and u2 the associated eigenvectors, which are
mutually orthogonal and normalized, that is, uT

i u j = δi j . Hence, the ε0-order
perturbation equation admits the general solution

w0 = U a, (20)

where U = (u1, u2) is a 2N ×2 modal matrix and a= (a1, a2)
T is a column vector

listing two unknown amplitudes. Note that, at this order, any linear combination
of u1 and u2 is an eigenvector, the indeterminacy being resolved only at the next
order.

With (20), the ε-order equation reads

(A0+ λ
2
0 I)w1 =−(A1+ λ0 D1+ 2λ0λ1 I)U a. (21)

This is a nonhomogeneous problem in which the linear operator A0+ λ
2
0 I is sin-

gular. In order to solve it, the right-hand member must be orthogonal to the kernel
of the adjoint operator (the compatibility condition). Since this space is spanned
by the rows of U T , the compatibility reads

( Â1+ λ0 D̂1+ 2λ0λ1 I)a = 0, (22)
where

Â1 := U T A1U and D̂1 := U T D1U (23)

are 2× 2 matrices representing the restrictions of A1 and D1 to the plane spanned
by the columns of U ; moreover, U T U = I has been used, which follows from the
orthonormalization properties of the eigenvectors. A remarkable result is that the
matrix Â1 does not depend on the pretwist, since the restriction of the matrix A1t

to the plane of the eigenvectors is zero (see Appendix D for details). Therefore, to
first order, stability is unaffected by the pretwist.

Equation (22) is an eigenvalue problem in the λ1 unknown. The relevant char-
acteristic equation is

λ2
1+ I1λ1+ I2 = 0, (24)

where

I1 :=
1

2λ0
tr( Â1+ λ0 D̂1) and I2 :=

1
4λ2

0
det( Â1+ λ0 D̂1) (25)

are linear and quadratic invariants, respectively, which are complex numbers. From
(24) two (generally distinct) roots, λ±1 := (−I1±

√

I 2
1 − 4I2)/2, are drawn, which

cause the splitting (or bifurcation) of the double semisimple eigenvalue iωk into

λ± = iωk + ελ
±

1 . (26)
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Each eigenvalue λ±1 is associated with a (distinct) eigenvector a±; therefore w± =
U a±+ O(ε), so that the indeterminacy of the eigenvectors is resolved at this order.

The undamped case. To tackle the undamped system one would most easily start
from the standard form (12) of the eigenvalue problem. However, the same results
can be derived from the general damped case, by letting D̂1 = 0 in (22). Since
µ := −λ2, or, in series form, µ0 + εµ1 + · · · = −(λ

2
0 + 2ελ0λ1 + · · · ), we have

µ0 =−λ
2
0 and µ1 := −2λ0λ1. Therefore, (22) becomes

( Â1−µ1 I)a = 0, (27)

which has the advantage of having real coefficients. The relevant characteristic
equation,

µ2
1− (tr Â1)µ1+ det Â1 = 0, (28)

provides the roots µ±1 :=
(
tr Â1±

√
tr2 Â1− 4 det Â1

)
/2; hence

µ± = ω2
k + εµ

±

1 . (29)

Stability domains. We look for the stability domains of the trivial equilibrium in
the plane of the bifurcation parameters α and L , for fixed axial load P and damping
ξ and η, taken as auxiliary parameters. We separately address the undamped and
damped cases.

Undamped system. As we said earlier, the equilibrium is stable when µ > 0; since,
in (29), εµ±1 is a small correction of ω2

k , this happens when µ±1 is real, irrespective
of its sign, that is, when the discriminant of the second-degree (28) is positive.
Since

tr2 Â1− 4 det Â1 = α
2c2
α − L2c2

L , (30)

where cα and cL are numerical coefficients, the stability condition reads

L2
≤

(
cα
cL

)2

α2. (31)

This equation expresses the Nicolai paradox: when the asymmetry parameter α is
zero (an ideal system), then an evanescent torque makes the equilibrium unstable;
when, instead, a small asymmetry exists (α 6= 0), a small threshold Lc exists, pro-
portional to α, which has to be reached by L to make the system unstable. Note
that the stable domain depends on the order number k of the eigenvalue λ0 = iωk

which bifurcates. Therefore, we have to analyze all the eigenvalues in order to
determine which of them prevails in triggering instability.

Figure 1 reports the numerical results for the elliptical cross-section. Figure 1a
shows the stable domain (the shaded zone) relevant to the lower eigenvalue (k = 1),
when the axial load is zero, by comparing asymptotic (thick lines) and numerical
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(thin lines) results, the latter deriving from the exact solution of the algebraic eigen-
value problem. The domain is found to be independent of the number N of trial
functions used, since, due to the fact the elastic stiffness matrix is diagonal, the
eigenvectors u1 and u2 are canonical vectors. The angular coefficient of the bound-
ary lines is equal, in its absolute value, to 3.26. In the figure, a sketch on the com-
plex plane of the four λ-eigenvalues involved (that is, the double ±iω1 eigenvalues)
and their “velocities” is also given. It is seen that in the stable zone the eigenvalues
are purely imaginary and distinct; on the boundary of the region they coalesce in
pairs on the imaginary axis; and out of the stable zone, they separate in two pairs of
stable and unstable eigenvalues. Therefore, in crossing the boundaries, a dynamic
bifurcation takes place. The boundaries are a codimension-1 geometrical locus
on which the degeneracy of the eigenvalues, existing in the symmetrical unloaded
system, persists. The origin of the parameter plane is therefore a codimension-2
bifurcation point.

- -

-

-

-

α

L

L L 2345

SS

(a)

-0.10 -0.05 0.05 0.10

-0.3

-0.2
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-0.10
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-0.4
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αα

L L

k = 1

k = 1

2
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3

4
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5

S S

(a)

(b) (c)

Figure 1. Stability domain S in the (α, L)-plane for the un-
damped system subcritically loaded: (a) k = 1, P = 0 (thick line:
asymptotic results; thin line: numerical results); (b) k = 1, P = 0
(solid line) and P = PE/2 (dashed line), with N = 5 trial functions;
(c) higher eigenvalue domains (k = 1, . . . , 5, N = 5) when P =
PE/2.
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Figure 1b compares the domains relevant to the lower eigenvalue when P is 0
and PE/2, showing a moderate reduction produced by the axial load (the angular
coefficient reduces from 3.26 to 2.81). When P 6= 0, the domain depends on the
discretization adopted. It was found that when N = 5 (that is, when the system is
reduced to ten degrees of freedom) a numerical convergence is reached; this num-
ber of trial functions will be therefore adopted ahead. Finally, Figure 1c compares
the stability domains relevant to the higher eigenvalues (k = 1, . . . , 5). It is found
that the domains of higher modes include the domains of the lower modes (that is,
when the lowest eigenvalue bifurcates, the higher ones are still on the imaginary
axis, so that just the first mode is significant for stability).

Damped system. When the system is damped, its eigenvalues are given by (26),
and the analysis, with major difficulties, must be carried out on complex quantities.
The trivial equilibrium is asymptotically stable when Re λ± < 0, that is, when
Re λ±1 < 0. In order for (24) to admit roots with real parts less than zero, the
following conditions must be satisfied (the Bilharz theorem; see [Seyranian and
Mailybaev 2003, p. 15]):

Re I1 > 0, (Im I2)
2
−Re I1 Im I1 Im I2− (Re I1)

2 Re I2 < 0. (32)

Condition (32)1 is always satisfied when the damping coefficients are positive;
(32)2 instead gives the following (asymptotic) stability condition:

L2 <

(
cα
cL

)2

α2
+

(
cξ
cL
ξ +

cη
cL
η

)2

, (33)

where the c’s are numerical coefficients. It turns out that damping, both external
and internal, as well asymmetries, has a stabilizing effect on the equilibrium. If ξ =
η = 0, then the result relevant to the undamped system is recovered. The numerical
values of the c-coefficients are reported in Table 1 for the elliptical section and
selected values of the compressive dead load P , when N = 5.

Figure 2 shows the stability domain for a damped system, as compared with
Figure 1 for the corresponding undamped system. As already noted in [Seyranian
and Mailybaev 2011], it appears (see Figure 2a) that damping destroys the Nicolai
paradox, since a nonzero torque is needed to trigger instability at α = 0. The
figure also illustrates the mechanism of bifurcation. Inside the stability domain

cα/cL cξ/cL cη/cL

P = 0 3.26 0.93 11.47
P = 1

2 PE 2.81 0.57 7.12

Table 1. Numerical coefficients in (33) when k = 1.
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Figure 2. Stability domain S in the (α, L)-plane for the damped
system (ξ = 0.01, η= 0.004): (a) k = 1, P = 0 (thick line: asymp-
totic results; thin line: numerical results); (b) k = 1, P = 0 (solid
line) and P = PE/2 (dashed line), with N = 5 trial functions; (c)
higher eigenvalue domains (k = 1, . . . , 3, N = 5) when P = PE/2.

the eigenvalues are complex in the left half-plane. By approaching the boundary
moving parallel to the L-axis, the eigenvalues approach each other by keeping their
real parts constant; then, after the collision, they move in opposite directions by
varying their real parts, up to crossing the imaginary axis. As for the undamped
system, the effect of the axial load is weak (see Figure 2b), and the higher modes
are ineffective in determining stability. However, under very particular choices of
the parameters, stability can be governed by the second mode, which is consistent
with results found in [Seyranian and Mailybaev 2011].

4. Stability analysis for critically compressed beams

We address now the stability problem of the beam when the axial load is close to
the Eulerian critical load. Accordingly, since the codimension of the problem is
higher, we introduce a third bifurcation parameter δP := P − PE , and look for a
stability domain in the three-dimensional (α, L , δP) parameter space.
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Perturbation analysis for semisimple eigenvalues. Guided by the results obtained
for the subcritically loaded beam, we introduce the rescaling

(α, L , δP, ξ, η)→ ε(α, L , δP, ξ, η), (34)

in which all the quantities are ordered at the same level. Accordingly, the matri-
ces A and D admit series expansions as in (15), but with new meanings for the
coefficients:

A0 =

[
kE+PE kG 0

0 kE+PE kG

]
,

A1 = A1u+A1t ,

A1u =

[
α(Iy1−m1)kE+(δP−αm1 PE)kG Lh1

−Lh1 α(Ix1−m1)kE+(δP−αm1 PE)kG

]

A1t =

[
0 −L(β0h1+PEγ0h2+γ0h3)

L(β0h1+PEγ0h2+γ0h3) 0

]
,

D1 =

[
ξm+ηkE 0

0 ξm+ηkE

]
.

(35)

Here A0 is evaluated at the Eulerian bifurcation point, A1 accounts for the (first-
order) asymmetry, torque, pretwist, and axial load increment, and D1 describes
the damping. The eigenvalue problem formally appears as in (17), with matrices
updated. By assuming the series expansions (18) for the eigenvalues and eigen-
vectors, the perturbation (19) is still obtained. The generating problem (19)1, how-
ever, now admits a multiplicity-four zero eigenvalue, in addition to nonzero, purely
imaginary, double eigenvalues; therefore λ0 = 0,±iω2, . . . ,±iωN . Here the zero
eigenvalue can be thought of as produced by the coalescence of two vanishingly
small double eigenvalues ω1 = ±iε, when ε→ 0. Since only two eigenvectors
are associated with the zero eigenvalue, this latter is nonsemisimple (or defective),
while the nonzero eigenvalues are semisimple. Therefore:

(1) When we take λ0 = iωk , with k = 2, . . . , N , we recover the results of the
previous section, that is, (26) for the damped case and (29) for the undamped
case.

(2) When we take λ0 = 0, the ε-order perturbation equation (19)2 becomes

(A0+ λ
2
0 I)w1 =−A1w0, (36)

that is, it does not contain the first-order eigenvalue sensitivity λ1. As a
consequence, since A1w0 is generally out of the range of the operator, the
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compatibility condition cannot be satisfied and the equation cannot be solved!
This means that the series expansion (18) lacks the ability to describe the split-
ting mechanism of the nonsemisimple eigenvalue, similarly to what happens
for coalescent eigenvalues of more general nonconservative systems [Luongo
et al. 2000; Seyranian and Mailybaev 2003].

This drawback does not manifest itself when the system is undamped, and the
standard form (12) of the eigenvalue problem is used. As a matter of fact, the
relevant perturbation equations read

ε0
: (A0−µ0 I)w0 = 0,

ε1
: (A0−µ0 I)w1 =−(A1−µ1 I)w0.

(37)

Now, compatibility for the ε-order equation can be written either for µ0 6= 0 or
µ0 = 0. The reason for this different behavior lies in the fact that µ0 = 0 is
a semisimple (not defective!) root for the characteristic equation det(A0) = 0.
Moreover, since µ = µ0 + εµ1 + · · · = −λ

2, when µ0 = 0 then λ = O(ε1/2) so
that a Puiseux series of the type λ = ε1/2λ1/2 + · · · must be used, instead of a
Maclaurin series. Note that, in (37), µ1 assumes a different meaning, according
to the value of λ0; it is µ1 := −2λ0λ1 when λ0 6= 0, but it is µ1 := −λ

2
1/2 when

λ0 = 0!
Summarizing: in the undamped case, (29) describes the eigenvalue sensitivities,

both for zero and nonzero eigenvalues; in the damped case, (26) describes the
sensitivities of the nonzero eigenvalues only. To complete the analysis, we have
therefore still to analyze perturbations of the quadruple zero in the damped case.

Perturbation analysis for nonsemisimple zero-eigenvalues. We tackle the prob-
lem of finding the sensitivities of the nonsemisimple quadruple zero eigenvalue by
using a Puiseux series of order ε1/2, that is,

λ= ε1/2λ1/2+ ελ1+ · · · , w = w0+ ε
1/2w1/2+ εw1+ · · · . (38)

This problem is similar to the perturbation of a Jordan block of order 2, admitting
just one eigenvector [Luongo 1993; Seyranian and Mailybaev 2003].

To ensure that the damping and bifurcation parameters appear at the same level
in the perturbation scheme, we use a different ordering for them, namely

(α, L , δP)→ ε(α, L , δP), (ξ, η)→ ε1/2(ξ, η). (39)

Accordingly,
A= A0+ εA1+ O(ε2),

D = ε1/2 D1/2+ O(ε3/2),
(40)
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where A0 and A1 are defined in (35)1 and (35)2, and D1/2 coincides with D1 in
(35)5.

The following perturbation equations are found:

ε0
: A0w0 = 0,

ε1/2
: A0w1/2 = 0,

ε1
: A0w1 =−(A1+ λ

2
1/2 I + λ1/2 D1/2)w0.

(41)

The solution to the ε0-equation is still expressed by w0 = U a, in which U =
(u1, u2) collects the real eigenvectors associated with the zero-eigenvalue. Then,
the ε1/2-order equation admits a similar solution w1/2 = U b, with b as arbitrary
constants, which, however, are inessential to our (truncated) analysis. Finally, the
ε1-order equation calls for the following compatibility condition to be satisfied:

( Â1+ λ1/2 D̂1/2+ λ
2
1/2 I)a = 0, (42)

where

Â1 := U T A1U, D̂1/2 := U T D1/2U . (43)

Like in the subcritical analysis the matrix Â1 does not depend on the pretwist,
which therefore does not influence the stability, even close to the Eulerian load.
Equation (42) is an eigenvalue problem in nonstandard form, whose characteristic
equation reads

λ4
1/2+ J1λ

3
1/2+ J2λ

2
1/2+ J3λ1/2+ J4 = 0, (44)

the invariants of which are real and assume the following expressions:

J1 := tr D̂1/2, J2 := tr Â1+ det D̂1/2,

J3 := det( Â1+ D̂1/2)− det Â1− det D̂1/2, J4 := det Â1.
(45)

The fourth-degree equation (44) generally admits four roots λ(i)1/2, i = 1, . . . , 4.
They describe the bifurcation of the quadruple zero-eigenvalue in four distinct roots
λ(i) = ε1/2λ

(i)
1/2+ O(ε). To each of them, a distinct eigenvector a(i) is associated,

so that four distinct eigenvectors w(i) = U a(i)+ O(ε1/2) are found.
When damping vanishes ( D̂1/2 = 0), then J1 = J3 = 0, and (44) reduces to

λ4
1/2+ (tr Â1)λ

2
1/2+ det Â1 = 0, (46)

which is identical to (28), once µ1 =−λ
2
1/2 is accounted for, as discussed before.

Therefore, the present algorithm, tailored to damped systems, also works for un-
damped systems.
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Stability domains. In evaluating the stability domains, we have to distinguish bi-
furcations of the lower zero-eigenvalue, governed by (28) or (44) (holding in the
undamped and damped cases, respectively), and bifurcations of the higher nonzero
eigenvalues, governed by (28) or (24). We will focus our attention on the zero-
eigenvalue, and then check the behavior of higher eigenvalues.

Undamped system. Stability requires that µ be real and positive. Since µ= µ0+

εµ±1 + · · · , when µ0 = 0, µ±1 itself must be real and positive (unlike the P < PE

case, in which it only was required to be real). This occurrence is satisfied when

tr2 Â1− 4 det Â1 > 0, tr Â1 > 0, det Â1 > 0. (47)

When these inequalities are written out in terms of bifurcation parameters, they
assume the form

cαα2
+ cL L2 > 0,

bαα+ bδδP > 0,

dL L2
+ dαα2

+ dαδαδP + dδδP2 > 0,

(48)

where the b, c, and d are numerical coefficients. For the elliptical cross-section,
with N = 5, these assume the values shown in Table 2. When the inequalities
are replaced by equalities, we obtain the equations of, in order: a pair of planes
parallel to the δP-axis (and containing the origin), a plane parallel to the L-axis
(ditto); and a cone (with vertex at the origin). The four surfaces bound the three-
dimensional domain shown in Figure 3 from different views, where contour plots
P = const. are drawn to facilitate the reading of the image. The equilibrium is stable
in the volume subtended by the portion of conical surface represented in the picture.
This figure also contains a sketch of the four nearly zero λ-eigenvalues involved
in the bifurcation, represented on an α = const. plane. On the vertical planes
two complex conjugate eigenvalues cross the imaginary axes, so that a dynamic
bifurcation occurs; on the cone surface, a zero eigenvalue crosses the axis, so
that a static bifurcation takes place; at the two straight lines, intersections of the
vertical planes and the cone, the four eigenvalues are coincident at the origin, so
that the lines select a codimension-2 family of degenerate systems around which
static and dynamic bifurcations are expected to exist. The origin of parameter
space is therefore a codimension-3 bifurcation point. The figure also illustrates the
mechanisms of bifurcations along three different paths. Along path I (L increasing),

cα cL bα bδ dL dα dαδ dδ
6.24 −1 4.94 −1 0.053 1 −0.54 0.055

Table 2. Numerical coefficients in (48).
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Figure 3. Stability domain in (α, L , δP)-space for the undamped
system critically loaded: (a)–(c) different views, and (d) sketches
of the four nearly zero eigenvalues on the α = 0.1 plane.

the eigenvalue behavior is identical to that previously illustrated for the subcritical
regime. Along path II (δP increasing), when the conical surface is crossed, two
zero eigenvalues occur, splitting in opposite real eigenvalues, while the remaining
two eigenvalues are purely imaginary; a successive static bifurcation occurs at
the upper branch. Path III illustrates how the velocities of the quadruple zero
eigenvalue depend on the region entered by the variation of the parameters.

As a general comment on the effect of the axial load on stability, we observe
that, when α > 0 (that is, when the beam is stiffened by asymmetries), overcritical
states P > PE can be visited, except for L = 0, for which the static bifurcation
always occurs at P = PE in the plane of minimum stiffness. When α < 0 (that
is, when the beam is weakened by asymmetries) instead, the static bifurcation
occurs at a subcritical value P > PE . As a main result, the axial load is ineffective
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on the critical torque, which only depends on the asymmetry α, thus confirming
the weak dependence we found in the subcritical field (recall Figure 1b). The
reverse, however, is not true! Indeed, for a given α, a moderately small torque
has a beneficial effect on the stability, since it increases the maximum axial load
bearable by the beam.

When higher eigenvalues were studied, it was found that the relevant stability
domains include that relevant to the first zero-eigenvalue. Therefore stability is
only governed by this latter.

Damped system. The damped system is asymptotically stable when its eigenvalues
have negative real parts. Since the zero eigenvalue bifurcates into four eigenvalues
λ = ε1/2λ

(i)
1/2 + · · · , we have to require that all of them move to the left part of

the complex plane. This is ensured by the conditions stated by the Routh–Hurwitz
criterion, when applied to the real-coefficient fourth-degree equation (44), namely

Ji > 0, i = 1, . . . , 4,

J1 J2− J3 > 0, J1 J2 J3− J 2
3 − J 2

1 J4 > 0.
(49)

Since the damping coefficients are positive, only three out of six conditions are
meaningful, and they turn out to be of the following form:

cαα+ cδδP > 0,

bL L2
+ bαα2

+ bαδαδP + bδδP2 > 0,

dL L2
+ dαα(dξξ + dηη)2+ dααα2

+ dδδP(dξξ + dηη)2 > 0,

(50)

where the b, c, and d’s are numerical coefficients. Their values are reported in
Table 3 for an elliptical cross-section and N = 5. The relevant stability domain
is shown in Figure 4 from different views. By comparing these with Figure 3, it
is seen that damping has a smoothing effect close to the vertical axis, as already
noticed in the subcritical regime (see Figure 2); moreover, the cone is unaffected
by damping. Figure 4 also shows the eigenvalues at the boundaries of the domain,
and the different mechanisms of bifurcation. Dynamic and static bifurcations still
occur at the lateral surface of the domain and at the cone, respectively, as for
the undamped case; however, the coalescence on the imaginary axis, peculiar to
circulatory systems, is now destroyed. Similarly, the two intersection lines for the
origin are loci of double (no longer quadruple) zero eigenvalues. Analysis of higher
eigenvalues confirms that they are not relevant in determining stability.

cα cδ bL bα bαδ bδ dL dα dαα dδ dξ dη
4.94 −1 0.053 1 −0.54 0.055 −1 0.93 6.24 −0.19 1 13.42

Table 3. Numerical coefficients in (50).
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Figure 4. Stability domain in (α, L , δP)-space for a damped sys-
tem critically loaded (ξ = 0.01, η= 0.005): (a)–(c) different views,
and (d) sketches of the four nearly zero eigenvalues on the α= 0.01
plane.

Comparison between asymptotic and numerical results for the algebraic eigen-
value problem is performed in Figure 5 for some L = const. cross-sections of the
three-dimensional solid domains in Figures 3 and 4. Excellent agreement is found
in the regions considered.

5. Conclusions

The Nicolai problem of the stability of a quasisymmetric cantilever beam in three
dimensions, loaded by a compressive dead load and a follower torque, has been
considered. Attention has been focused on the effects of damping, of both external
and internal types, and on the axial load, both lower than or close to the Eulerian
critical value. The problem has first been formulated in a strong form, by account-
ing for the pretwist produced by the torque when the beam is rectilinear, and then
recast in a weak form via the Galerkin method, by using the planar eigenmodes of
the stress-free beam as trial functions.
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Figure 5. Comparison between asymptotic (thick lines) and nu-
merical (thin lines) stability regions for a critically loaded system:
(a) undamped system, L = 0; (b) undamped system, L = 0.03;
(c) damped system (ξ = 0.01, η = 0.005), L = 0; (d) damped
system (ξ = 0.01, η = 0.005), L = 0.03.

The eigenvalue problem, governing the motion around the rectilinear configu-
ration, has been derived, both in nonstandard form (for damped systems) and in
standard form (for undamped systems). Perturbation methods have been used to
solve it, and are able to analytically describe the dependence of the eigenvalues on
the bifurcation parameters. An ideally undamped symmetric system, consisting of
a beam with equal geometrical characteristics in the two principal planes of inertia,
axially loaded but free of torque, has been considered as the generator system
for the perturbation process. The unperturbed eigenvalues, due to the symmetry,
are double semisimple purely imaginary eigenvalues associated with two indepen-
dent eigenvectors, each describing an oscillation mode in a different inertial plane.
An exception, however occurs at the Eulerian load, where two semisimple eigen-
values coalesce at zero, thus giving rise to a quadruple non-semisimple root, at
which only two eigenvectors are associated (the buckling modes in the two planes).
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Accordingly, while semisimple eigenvalues can be tackled by standard perturbation
methods, entailing the use of Taylor series, the nonsemisimple zero eigenvalue calls
for the use of Puiseux series. In undamped systems, however, the overdegeneracy
of the quadruple eigenvalue does not entail any drawbacks, if the eigenvalue prob-
lem is stated in standard form, since here it still appears as semisimple.

Stability domains have been built up both for subcritically loaded beams, in
the two-dimensional (asymmetry and torque) parameter plane, and for critically
loaded beams in the three-dimensional (asymmetry-torque-load) parameter space.
The following main results have been drawn.

The stability domains are governed mostly by bifurcations of the lowest eigenvalue
of the ideal system, purely imaginary or zero. Therefore, although higher eigenval-
ues can bifurcate into unstable eigenvalues, this happens in regions of parameters
which are already unstable, due to bifurcation of the lowest eigenvalue. However,
special systems have been detected in a narrow region of the damping parameters
plane in which the second mode is leading.

In the subcritical range, the stability domain of the undamped system is a portion
of the plane bounded by two straight lines passing through the origin and including
the asymmetry axis. Therefore, if the system is symmetric, an evanescent torque
causes instability (the Nicolai paradox); however, finite small asymmetries entail
a finite (but small) threshold of the torque, which increases with the asymmetry.
The straight lines are loci of systems admitting a double semisimple eigenvalue.
When they are crossed from the inside, a dynamic bifurcation takes place. When
damping is added, the lines change in smooth curves external to the origin, so that
a finite critical torque exists even for symmetric systems, that is, damping has a
stabilizing effect, which destroys the paradox of Nicolai. The effect of the axial
load on the torque is weak.

In the critical range, the stability domain is a portion of the space which is bounded
by three planes and a conical surface. Both static and dynamic bifurcations can
occur through these surfaces. Axial loads have no effect on the critical torque,
which only depends on the asymmetry magnitude. In contrast, a small torque
has a beneficial effect on the static instability triggered by the axial force. When
damping is introduced, the sharp edges of the stability domain are smoothed, and
a stabilizing effect on the dynamic instability is produced.

In a remarkable result, the stability of the Nicolai beam has been found not to
depend on the pretwist, to a first-order approximation, neither in the subcritical
nor in the critical range.

Asymptotic analysis gives results in excellent agreement with numerical solutions
of the algebraic eigenvalue problem relevant to the discretized beam.
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Appendix A: Geometrical characteristics of perturbed cross-sections

Let us consider a cross-section having identical elastogeometrical characteristics
with respect to the principal axes x and y. When one of the two major dimensions is
perturbed by a small nondimensional parameter ‖α‖� 1, its characteristics modify
into

A = A0+αA1, Ix = I0+α Ix1,

Iy = I0+α Iy1 + O(α2), J = J0+α J1+ O(α2).
(A.1)

Since the mass per unit length is proportional to the area, it is

m = m0+αm1, (A.2)

where m0 = m1 = A0%, % being the density. The magnitudes m0 and I0 have been
used in (3) to define nondimensional quantities. Two examples are given here.

Elliptical cross-section. A slightly eccentric ellipse is considered, with half-axes
a= R(1+α) and b= R, along x and y, respectively. When α= 0, the cross-section
becomes circular with radius R. The (dimensional) geometric characteristics read
as in (A.1), where

A0 := πR2, I0 :=
πR4

4
, J0 :=

πR4

2
,

A1 := πR2, Ix1 :=
πR4

4
, Iy1 :=

3πR4

4
, J1 := πR4.

(A.3)

Consequently, the nondimensional geometrical characteristics and mass per unit
length reads

Ĩx = 1+α, Ĩy = 1+ 3α+ O(α2),

β = β0+ O(α2), γ = γ0(1− 2α)+ O(α2), m̃ = 1+α,
(A.4)

where β0 := 2E/G and γ0 := E/G.

Rectangular cross-section. We consider a rectangle of sides a = h(1+ α) and
b = h, along x and y, respectively. When α = 0, the cross-section becomes a
square, of side h. The (dimensional) geometric characteristics are given by (A.1),
where

A0 := h2, I0 :=
h4

12
, J0 := 0.141h4,

A1 := h2, Ix1 :=
h4

12
, Iy1 :=

h4

4
, J1 := 0.141h4,

(A.5)
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and the corresponding nondimensional quantities become

Ĩx = 1+α, Ĩy = 1+ 3α+ O(α2),

β = β0+ O(α), γ = γ0+ O(α), m̃ = 1+α,
(A.6)

where β0 := 2.364E/G and γ0 := 1.182E/G.

Appendix B: Trial functions used in the Galerkin projection

The trial functions used in (6) are taken as the modes of the free oscillations of a
planar unprestressed cantilever. The relevant boundary value problem is

φ I V
−ω2φ = 0, φ(0)= φ′(0)= φ′′(1)= φ′′′(1)= 0, (B.1)

where ω is a nondimensional natural frequency. The solution reads

φ(z)= c
{

sin(γ z)− sinh(γ z)−
[sin(γ )+ sinh(γ )][cos(γ z)− cosh(γ z)]

cos(γ )+ cosh(γ )

}
, (B.2)

where γ :=
√
ω is a root of the characteristic equation

cos(γ ) cosh(γ )+ 1= 0. (B.3)

Moreover c is an arbitrary constant, to be determined via the normalization condi-
tion ∫ 1

0
φ2(z) dz = 1. (B.4)

Table 4 reports the values of γ and c for the first five modes. The eigenfunctions
satisfy the orthogonality conditions:∫ 1

0
φiφ j dz = δi j ,

∫ 1

0
φ′′i φ

′′

j dz = δi jω
2
i , (B.5)

where δi j is the Kronecker symbol.

1 2 3 4 5

γ 1.8751 4.6941 7.8548 10.9955 14.1372
c 0.734098 1.018460 0.999220 1.000040 0.999996

Table 4. Values of γ and c in (B.2) for the first five modes.
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Appendix C: Equations of motion

The motion of the beam, taking into account inertial effects, is governed by the
following equations, derived in [Bolotin 1963]:

T ′x − κ̃zTy − κy P + fx = 0,

T ′y + κ̃zTx + κx P + fy = 0,

M ′x − κ̃z My + κy L − Ty = 0,

M ′y + κ̃z Mx − κx L + Tx = 0,

(C.1)

where Tx and Ty are the shear forces, Mx and My are the bending moments, fx =

−mü and fy =−mv̈ are the inertial forces, κx and κy are the curvatures of the beam
in the two principal inertial planes, and κ̃z = L/(G J ) is the pretwisting angle. All
other symbols and notations appearing in the previous and subsequent equations
are the same as those specified in Section 1.

The kinematic relations are [Bolotin 1963]

ϕ =−v′− κ̃zu, ψ = u′− κ̃zv, κx = ϕ
′
− κ̃zψ, κy = ψ

′
+ κ̃zϕ, (C.2)

where ϕ and ψ are the rotations. From these, the curvatures are expressed in terms
of displacements:

κx =−v
′′
− 2κ̃zu′+ κ̃2

z v,

κy = u′′− 2κ̃zv
′
− κ̃2

z u.
(C.3)

To account for internal damping, the longitudinal unit strain is written as ε =
κx y−κy x . By using the Kelvin–Voigt constitutive law, that is, σ = Eε+ηε̇, where
σ is the normal stress, ε the longitudinal unit strain, and η the viscosity coefficient,
and integrating over the area A of the cross-section, we find

Mx =

∫
A
σ y d A = E Ixκx + ηIx κ̇x ,

My =−

∫
A
σ x d A = E Iyκy + ηIy κ̇y .

(C.4)

Then, differentiating the last two equations of (C.1) with respect to the space vari-
able and using (C.4) and (C.1) (solved with respect to T ′x , T ′y , Tx , and Ty), we
obtain

E Ixκ
′′

x + (L − 2κ̃z E Iy)κ
′

y + (P − κ̃
2
z E Ix + κ̃z L)κx

+ ηE Ix κ̇
′′

x − 2κ̃zηIy κ̇
′

y − κ̃
2
z ηIx κ̇x + fy = 0,

E Iyκ
′′

y − (L − 2κ̃z E Ix)κ
′

x + (P − κ̃
2
z E Iy + κ̃z L)κy

+ ηE Ix κ̇
′′

y + 2κ̃zηIx κ̇
′

x − κ̃
2
z ηIy κ̇y − fx = 0.

(C.5)
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These equations are further simplified by assuming (see [Seyranian et al. 2014])
that the displacements, curvatures, pretwisting κ̃z , torque, and viscosity coefficient
are small quantities of the first order, while third- and higher-order terms are ne-
glected. By adding an external damping ξ , which accounts for the interaction of
the beam with the surrounding air, the field equations (1) follow.

The boundary conditions at the clamped end of the beam require that the dis-
placements u and v and rotations ϕ and ψ vanish (by (2)2). The boundary condi-
tions at the free end require that the bending moments vanish:

Mx = 0, My = 0, (C.6)

and that the shear forces equate the projection of the gravitational force onto the
principal inertial axes in the current configuration:

Tx = Pψ, Ty =−Pϕ. (C.7)

By using (C.4) and (C.3) in (C.6) and linearizing, (2)2 are obtained; then, by using
(C.1)3, (C.1)4, (C.3), (C.4), and (C.6) and linearizing, (2)3 follow.

Appendix D: Independence of stability of the pretwist

We prove that, to the first asymptotic order, the stability of the Nicolai beam does
not depend on the pretwist. To this end, it will be sufficient to prove that the
contribution of the pretwist to the matrix Â1 that appears in (23) and (43) vanishes.

Remembering that A1 = A1u + A1t , (see (16)2 and (35)2), we obtain

Â1 = U T A1u U +U T A1t U .

Since, moreover,

U =
[
w 0
0 w

]
,

the contribution of the pretwist to Â1 is

U T A1t U

= L
[

0 wT ((β0h1+PEγ0h2+γ0h3))w

−wT ((β0h1+PEγ0h2+γ0h3))w 0

]
. (D.1)

By using definition (10)5 for the h2 matrix, integrating by parts, and using the
geometric boundary conditions, it is easy to check that h2i j = −h2 j i , that is, that
h2 is antisymmetric. Analogously, by considering the matrix β0h1+ γ0h3, with h1

and h3 given by (10)4 and (10)6, accounting for β0 = 2γ0, integrating by parts and
using the mechanical boundary conditions satisfied by the trial functions adopted,
it follows that 2h1i j + h3i j =−2h1 j i − h3 j i , that is, β0h1+ γ0h3 is antisymmetric.
Therefore, the off-diagonal blocks in (D.1), and therefore the matrix itself, vanish.
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