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MATHEMATICAL MODELS OF DEFORMATION WAVES

IN ELASTIC MICROSTRUCTURED SOLIDS

JÜRI ENGELBRECHT AND ARKADI BEREZOVSKI

This paper describes the mathematical models derived for wave propagation in
solids with internal structure. The focus of the overview is on one-dimensional
models which enlarge the classical wave equation by higher-order terms. The
crucial parameter in models is the ratio of characteristic lengths of the excita-
tion and the internal structure. Novel approaches based on the concept of inter-
nal variables permit one to take the thermodynamical conditions into account
directly. Examples of generalisations include frequency-dependent multiscale
models, nonlinear models and thermoelasticity. The substructural complexity
within the framework of elasticity gives rise to dispersion of waves. Dispersion
analysis shows that acoustic and optical branches of dispersion curves together
describe properly wave phenomena in microstructured solids. In the case of non-
linear models, the governing equations are of the Boussinesq type. It is argued
that such models of waves in solids with microstructure display properties that
can be analysed as phenomena of complexity.

1. Introduction

Waves are not only carriers of energy; they are also carriers of information. This
means that waves generated by certain initial and boundary conditions carry the in-
formation not only from those conditions, but the information about the properties
of the media they meet in their course of propagation as well. This information
is reflected in changes of the wave profiles or, in other words, in changes of their
spectra. In the present overview we focus on the influence of microstructure of
solids on the macrobehaviour of deformation waves. Although deformation waves
in solids have been studied for over a century, new and intriguing applications con-
tinue to arise in contemporary engineering problems. Solids with unconventional
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properties resulting from their composition and internal architecture and their wave
propagation characteristics will be of interest along with the novel technologies
that they inspire. Of particular interest are multiscale wave processes in solids
characterised by hierarchical structures, with nested levels of geometric and/or ma-
terial complexity, as well as multiphysics phenomena due to coupled mechanical,
thermal and electromagnetic effects. Besides, deformation waves can be regarded
as attractive characterisation tools, due to their sensitivity to small-scale structural
features, such as discontinuities, interphases and defects.

Every material body has actually a microstructure at a smaller scale. Take for
example alloys, polycrystalline solids, ceramic composites, functionally graded
materials, granular materials, etc. From this viewpoint, there exists an intrinsic
space-scale which should be taken into account in deriving the governing equation
of motion. The natural question is: when is it needed? Clearly one should pay atten-
tion to two characteristic lengths: the characteristic length L0 of an external excita-
tion (the wavelength) and the internal characteristic length l. When L0/ l ≥ 1, the
conventional theories and corresponding mathematical models can be effectively
used because the microstructure acts collaboratively. When L0/ l ≈ 1, the influence
of a microstructure becomes important, which demonstrates the nonlocality of the
wave propagation [Engelbrecht and Braun 1998]. In terms of time-scale, the high-
frequency excitations (corresponding to short wavelengths) should also strongly be
influenced by the presence of the microstructure. All this calls for more sophisti-
cated and physically well-grounded modelling where the conventional assumptions
for constructing the theories might not work, and attention should be focussed on
catching effects caused by the internal structure of materials. Although there are
many theoretical studies in this field, the space-scale in real dimensions is not
always introduced. That is why some estimates should here be given. The internal
characteristic lengths certainly vary largely in scale [Gates et al. 2005]. If we
take a characteristic size of a structural element of 100 m, then in typical materials
the characteristic internal lengths are between 10−3 m and 10−6 m. However, in
concrete, for example, the internal lengths can be around 10−2 m. We leave aside
here smaller and larger internal lengths like in nanostructured materials (in nm) or
seismology (in km).

As mentioned by Eringen [1999], “the published work in microcontinuum me-
chanics is so large” that we do not aim to present an overwhelming review, but shall
concentrate our attention on the mathematical modelling of elastic deformation
waves. Even more, in order to explain the various models, we limit ourselves to
the analysis of one-dimensional longitudinal waves as a benchmark, although in
most cases the more general three-dimensional theories exist as a basis for deriving
them. This gives a possibility to compare the interaction effects between macro-
and microstructure in a simple and transparent manner and find unified patterns.
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In addition, it gives a possibility to analyse the changes which occur to one of
the three cornerstones of mathematical physics — to the classical wave equation —
which will turn into an equation with higher-order terms governing the dispersion
effects. Some basic concepts should be reviewed in order to explain descriptions
used in various studies:

– Microstructured solids display “material substructural complexity” [Mariano
and Stazi 2005] because of interaction between their constituents.

– Substructural complexity can be characterised as “complexity of particles”
[Kröner 1968], which leads to nonlocality and wave dispersion.

– In mathematical models for waves, higher-order spatial gradients should be
accompanied by higher-order time derivatives [Metrikine 2006] and be dy-
namically consistent [Askes and Aifantis 2006].

An overview is needed for summing up the previous research on models of
waves in microstructured solids and demonstrating their essential features. The
present overview is initiated by many others, which sometimes are selective, em-
phasising the author’s sympathies. We tried to pay due attention to all essential
results, to the best of our knowledge.

The paper is organised as follows. In Section 2, a brief description of basic
theories is presented, including discrete and continuum theories and links between
them. This is the basis for Section 3, where various one-dimensional mathematical
models are presented and compared. Section 4 is devoted to the generalisation
of models involving multiscale and multifield cases, and in Sections 5 to 7 the
analysis of physical effects observed in the macro- and microbehaviour of waves
in microstructured solids is presented. Finally, in Section 8 a summary of results
and further discussion are given.

2. Theoretical landscape of modelling

The idea of theories relies on the mathematical modelling of phenomena under
consideration. This was already known to Leonardo da Vinci: observe the phe-
nomenon, and list quantities having numerical magnitude that seem to influence it.
Although the great master recommended setting up linear relations among the pairs
of these quantities, it was a considerable step forward to contemporary physical
sciences. Nowadays we certainly know about the importance of being nonlinear,
but in many cases the basic concepts follow the advice of Leonardo da Vinci, as
will be explicitly seen from what follows.

In the case of microstructured solids, the deformation waves, as said in Section 1,
are influenced by the microstructure. In an ideal case, the behaviour of materials
should be simulated, with only the constitutive law describing interactions between
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atoms. However, explicit calculation of all of the atomic degrees of freedom will
never be feasible due to the scales of deformation that are important in realistic
problems. The only possibility is to selectively remove most of these degrees of
freedom to make the problem tractable [Curtin and Miller 2003]. Thus, the crucial
point in modelling wave phenomena is to choose the starting point: either to start
from a discrete (lattice structure) or from a continuous (continuum) model in order
to capture size effects of the microstructure. Here one should remember that “mass
point and continuum theories have equal rights in the classical mechanics of matter”
[Kröner 1968].

So, attention should be paid to (i) discrete models (bottom-up approach); (ii)
continuum models (top-down approach); and (iii) links between discrete and con-
tinuum models.

2.1. Discrete models. A discrete model takes into account all the constituents of
a solid by treating them as point-like masses. For example, the monocrystalline
solids have a regular arrangement of their constituents; in polycrystalline solids
the arrangements are more complicated [Maugin 1999]. We leave aside here amor-
phous materials and liquid crystals. The most intriguing question is how to estab-
lish (postulate) the interactive forces between the constituents which are included
into the equations of motion for every point-like mass (usually Newton’s law).

The well-known studies of Brillouin [1946] and Askar [1986] have analysed the
basic cases, including diatomic and polyatomic chains. Kunin [1975] has derived
the governing equations for a diatomic chain with an additional average relative
deformation (called microdeformation) of the elementary cell together with a deep
mathematical analysis of corresponding models. Maugin [1999] has presented a
contemporary description of waves in elastic crystals (lattice dynamics).

Probably, the best-known discrete model for waves in a one-dimensional lattice
is the Born–von Kármán model [1912], (see also [Maugin 1999]). This model and
its counterparts for more complicated cases form the basis for the derivation of
the higher-order dispersive wave equation by continualisation procedures; see for
example [Maugin 1999; Askes and Metrikine 2005; Askes et al. 2008; Andrianov
et al. 2010]. However, as remarked in [Seeger 2010], the explicit solution of the
Born–von Kármán model derived by Schrödinger [1914] predicts that very distant
particles start to move, even at arbitrarily small time after any localised perturbation.
This physically inconsistent situation can be avoided by taking inertia of particles
into account and using more complicated continualisation techniques. There are
several studies along this line [Metrikine and Askes 2002; Askes and Aifantis 2006;
Polyzos and Fotiadis 2012] resulting in strain-gradient models. This means actually
following the principle of dynamic consistency [Metrikine 2006].

Besides one-dimensional chains, also two-dimensional structures are analysed;
see [Maugin 1999; Pichugin et al. 2008; Andrianov et al. 2010]. The studies of
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granular media include also the modelling of granular lattices, i.e., chains of beads
under Hertz contact [Coste et al. 1997; Porter et al. 2009].

2.2. Continuum models. Looking back in history, the important generalisation to
account for the influence of a microstructure into the continuum theory was made
by E. Cosserat and F. Cosserat [1909], who elaborated a theory with microrotations
at each material point of a continuum. The degrees of freedom are then charac-
terised by three rigid directors and the corresponding theory is nowadays called
micropolar. If these directors are deformable, then the result is the micromorphic
theory [Eringen and Suhubi 1964a; Eringen and Suhubi 1964b; Mindlin 1964;
Eringen 1999]. When the directors are constrained in a special way (three micro-
rotations and one microstretch), then the result is the microstretch theory [Eringen
1969]. Detailed descriptions of these theories can be found in the monographs
[Eringen 1999; Capriz 1989; Maugin 2013]. In what follows we limit ourselves to
one-dimensional micromorphic theory and leave aside the Cosserat-type microro-
tation. Analysis of the latter theory in the contemporary framework can be found
in [Neff 2006; Neff and Jeong 2009].

Another avenue to generalisation is the inclusion of higher-order gradients of
strain into the free energy function, as compared with the classical Cauchy theory,
which accounts only for strains in constitutive equations; see [dell’Isola et al. 2009],
for example. Such a possibility was pointed out already by Kröner [1968], and
a detailed overview on gradient theories is given by Maugin [2013]. There are
several studies on waves using this idea [Metrikine and Askes 2002; Papargyri-
Beskou et al. 2009; Polyzos and Fotiadis 2012]. A comparison of gradient and
micromorphic theories is given by Kirchner and Steinmann [2004].

According to Kröner [1968], the complexity of particles in a solid plays a de-
cisive role in deriving the mathematical models. This concept is explicitly used
by Mindlin [1964], who has introduced a unit cell which “may also be interpreted
as a molecule of a polymer, a crystallite of a polycrystal or a grain of a granular
material”. Such an approach is used in many later studies for deriving the governing
equations of waves [Engelbrecht et al. 2005; Papargyri-Beskou et al. 2009; Porubov
et al. 2009; Polyzos and Fotiadis 2012; Berezovski et al. 2013]. Mariano [2002] has
used order parameters for describing, as he said, “the substructural configuration”.

As far as our knowledge on internal structure of solids is not always explicitly
described, one should think about replacing the physical structure by a certain field.
Then the concept of internal variables has proved to be useful. Proposed origi-
nally to describe dissipative processes, and traced back to [Duhem 1911a; Duhem
1911b], the modern understanding is presented by Maugin and Muschik [1994].
The generalisation of this concept by introducing dual internal variables has made
it possible to use for describing wave processes [Ván et al. 2008; Berezovski



48 JÜRI ENGELBRECHT AND ARKADI BEREZOVSKI

et al. 2011b]. This approach has a clear thermodynamic background, although
the microstructure itself becomes latent and its influence can be considered as an
additional field. Such a possibility is also mentioned by Capriz [1989] and Mariano
[2002]. Germain [1973] has noted a possibility to introduce “hidden parameters”
into the function of internal energy.

The separation of the macro- and microstructure in a continuum leads, in general
terms, to the formulation of separate balance laws for each [Eringen and Suhubi
1964a; Eringen and Suhubi 1964b; Mindlin 1964; Eringen 1999; Mariano 2002].
Maugin [1993; 2011a] has proposed using the material formulation to represent the
balance law of the macrostructure, which includes all the interaction forces within
the solid, accounting for microstructural effects. Such an approach becomes very
useful, when internal variables are introduced, for describing the effects due to
the presence of the microstructure. Namely, the evolution of internal variables
needed for determining the internal forces is then governed not by a balance law
but by satisfying thermodynamical considerations [Ván et al. 2008; Berezovski
et al. 2011b].

2.3. Links between lattice dynamics and continua. Calculation of values of con-
tinuum variables based on atomistic models has a long and rich history (see, for
example, reviews by Goddard [1986], Zimmerman et al. [2002] and Webb et al.
[2008]). Contemporary contributions include the thermomechanical equivalent
continuum [Zhou 2005], generalised mathematical homogenisation method [Fish
et al. 2005], and scale-dependent molecular averages [Murdoch 2010]. As concerns
wave propagation, Chen et al. [2003; 2004] have justified applicability of micro-
continuum theories from the atomistic viewpoint, and they stress the importance
of size effects and phonon dispersion relation; see also [Chen and Lee 2003].

From the physical viewpoint, an extremely important question is how to es-
tablish the material parameters from discrete (atomic) models at the microscale.
There are several studies in this direction based on experiments. Maranganti and
Sharma [2007] have established strain-gradient elastic constants for various metals,
semiconductors, silica and polymers by relating them to the atomic displacement
correlations in a molecular dynamics computational ensemble (see also a long list
of references on studies in this field). Zeng et al. [2006] have proposed to determine
the dispersive elastic constants by using phonon dispersion relations. Dispersive
phonon imaging is used by Jakata and Every [2008] for the cubic crystals Ge, Si,
GaAs, and InSb.

Remark 1. We do not go into details for describing the homogenisation meth-
ods, which basically deal with averaged physical parameters, and serve well for
static problems. But an important idea for describing waves in periodic structures
must be stressed. The studies by Achenbach et al. [1968] and Sun et al. [1968]
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analysed dynamic behaviour of laminated composites by introducing the effective
stiffness theory capable to describe dispersive effects. Later, a similar problem was
studied by Ziegler [1977], who explained the mechanism of emerging stopping
bands for harmonic waves as a result of combination of Floquet waves. Santosa
and Symes [1991] derived a governing equation for waves in periodic composites
which includes higher-order terms responsible for dispersion, like simple govern-
ing equations derived from lattice dynamics [Maugin 1999]. A similar problem
for bilaminates is studied by Fish et al. [2002]. Nowadays, the homogenisation
approach for such periodic composites is well developed; see for example [Craster
et al. 2010].

Remark 2. In modelling of waves in microstructured solids, the inertial effects
caused by the microstructure must be taken into account. This has been stressed
already by Eringen [1964], who introduced the law of conservation of microinertia.
This is characteristic to micromorphic models, strain gradient models, etc. In other
words, kinetic energy must be attributed also to the microstructure, as in [Mindlin
1964; Mariano 2002; Engelbrecht et al. 2005].

3. Models of waves in microstructured solids

The diversity of models presented in the previous section means that “ a unified
continuum-mechanical description of materials with inherent microstructure is to
date not available” [Kirchner and Steinmann 2004]. Nevertheless, there exists a
guiding tool for the selection of a proper model: optical modes should be taken
into account together with acoustic modes. As mentioned in [Chen et al. 2003],

The absence of optical branch is due to the neglecting of the atomic
structure of crystal. From this viewpoint, classical continuum theory, the
gradient theories, and the couple stress theories do not stem from the
considerations of microstructure or micromotion and as a consequence,
would break down if the micromotion and/or the microstructure become
too significant to be neglected.

This is why we consider mainly approaches that include optical modes, at least in
principle.

3.1. General frameworks. We start with most characteristic examples in the gen-
eral setting.

3.1.1. Micromorphic solids. Mindlin [1964] formulated the linear micromorphic
theory using two balance laws: one for macrostructure, another for microstructure.
In the case of centrosymmetric, isotropic materials, these laws are
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ρv̇ = div(σ + τ )+ f , (1)

Iψ̈ = divµ+ τ +8, (2)

where ρ is the density, v is the particle velocity, I is a microinertia tensor, ψ is
the microdeformation tensor, f is the body force, and 8 is the double force per
unit volume. The corresponding stress tensors, namely, the Cauchy stress σ , the
relative stress τ , and the double stress µ,

σ ≡
∂W
∂ε
, τ ≡

∂W
∂γ
, µ≡

∂W
∂~
, (3)

are defined, respectively, as derivatives of the free energy W with respect to the
classical strain tensor ε, the relative deformation tensor γ , and the microdeforma-
tion gradient ~ [Mindlin 1964],

ε ≡ 1
2(∇u+ (∇u)T ), γ ≡∇u−ψ, ~ ≡∇ψ . (4)

In terms of the macrodisplacement u, after choosing the quadratic free energy
function W , Mindlin’s model (1)–(2) results in

(λ+ 2µ)(1− l2
1∇

2)∇∇ · u−µ(1− l2
2∇

2)∇ ×∇ × u
= ρ(ü− h2

1∇∇ · ü+ h2
2∇ ×∇ × ü), (5)

where l2
1, l

2
2 describe the elastic microstructural parameters and h2

1, h2
2 the microin-

ertia, while λ and µ are the Lamé parameters as in the classical theory of elasticity.
This is known as Form I, in Mindlin’s notation. Papargyri-Beskou et al. [2009]
have followed [Mindlin 1964], and after certain simplifications get

(1− g2
∇

2)[(λ+µ)∇∇ · u+µ∇2u] = ρ(ü− h2
∇

2ü), (6)

where g2
= l2

1 = l2
2 and h2

= h1
2 = h2

2 govern the elastic microstructural and microin-
ertia terms.

A more general model than that of [Mindlin 1964] is described in [Mariano
2002], with the effects of microstructure embedded into order parameters as

Div T + bni
= ρ ẍ, (7)

Div S− z+βni
=

d
dt
∂χ

∂ϕ̇
−
∂χ

∂ϕ
, (8)

where x is the placement field, ϕ is the order parameter, T = ∂W/∂F is the first
Piola–Kirchhoff stress tensor, S = ∂W/∂∇ϕ is the microstress tensor, bni is the
noninertial bulk force, z = ∂W/∂ϕ is the internal self-force, βni is the noninertial
external bulk interaction force, χ is the substructural kinetic coenergy density (the
Legendre transform with respect to ϕ̇ of the substructural kinetic energy density),
and ρ is the density of the macrostructure. The model is presented here in its orig-
inal form [Mariano 2002], and all the notation can be found in the original paper.
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In the micromorphic theory of Mindlin, as well as in the multifield Mariano
model, the balances of linear momentum for macroscale and microscale are in-
troduced independently. This means that the introduced microdeformation or the
corresponding order parameter play the role of an additional degree of freedom,
causing obvious problems with boundary conditions.

3.1.2. Material formulation and internal variables. An alternative framework is
provided by the internal variable approach. This approach is based on the canonical
(or material) formulation of continuum mechanics. Following [Maugin 2006], we
represent the canonical (material) momentum balance in the form

∂P
∂t

∣∣∣
X
− divR b= f int

+ f ext
+ f inh, (9)

where P is material momentum, b the material Eshelby stress, and f int, f ext,
and f inh are the material internal force, material external (body) force and the
material inhomogeneity force, respectively. They are defined by

P =−ρ0ν · F, b=−(LIR + T · F), L= K −W, (10)

f inh
=

( 1
2v

2)
∇Rρ0−

∂W
∂X

∣∣∣
expl
, (11)

f ext
=− f0 · F, f int

= T : (∇R F)T −∇RW |impl, (12)

where F is the deformation gradient, ρ0 is the matter density in the reference
configuration, v is the velocity vector, K is the kinetic energy density, W is the
free energy per unit reference volume, T is again the first Piola–Kirchhoff stress
tensor, f0 is the body force in the reference configuration. The subscript expl
means taking the material gradient keeping the fields fixed (and thus extracting
the explicit dependence on X), while the subscript impl means taking the material
gradient only through fields present in the function. The “dot” notation is used for
the product of two tensors and colon denotes the tensor contraction. Equation (9)
is called the pseudomomentum balance [Maugin 1993].

The canonical form of the energy conservation at any regular material point X
in the body, for sufficiently smooth fields, has the form

∂(Sθ)
∂t

∣∣∣
X
+∇R · Q = hint, hint

= T : Ḟ− ∂W
∂t

∣∣∣
X
, (13)

where Q is the material heat flux, S is the entropy density per unit reference volume,
and θ is the absolute temperature. In addition, the Clausius–Duhem inequality is
to be satisfied as

−

(
∂W
∂t
+ S ∂θ

∂t

)
X
+ T : Ḟ+∇R(θ J)− S · ∇Rθ ≥ 0, (14)
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where S is the entropy flux and J is the “extra entropy flux”, which vanishes in
most cases. Berezovski et al. [2011b] have used the dual internal variable concept
[Ván et al. 2008] in addition to canonical equations (9) and (13). In this case,
for example, the governing equation for the internal variable α (identified as the
microdeformation tensor) is obtained by satisfying inequality (14) [Engelbrecht
and Berezovski 2012]:

Im α̈ =
(
−
∂W
∂α
+ divR

∂W
∂(∇α)

)
, (15)

where Im can be identified as the microinertia, calculated from geometry and state
variables (for details, see [ibid.]).

In order to go further, the free energy function W must be specified. The con-
straints for W require positive definiteness for uniqueness and stability; it should
be homogeneous and polyconvex in terms of the deformation gradient. In linear
theory W is a quadratic function; in the simplest version of nonlinear theory it is
a cubic function. The regularity of energy densities is analysed in [Mariano 2002].
The specific question is how microdeformations (or the order parameter or internal
variables) are described in the function W . This question must be answered with
a full confidence about the internal structure but at the same time offers several
opportunities for respective models (see below). For the description of deformation
waves in microstructured solids, the inertia of the microstructure should be taken
into account [Mindlin 1964; Mariano 2002].

Remark 3. Mindlin [1964] used Hamilton’s principle for deriving the equations
of motion combining total kinetic and potential energies and the work done by
external forces. It is possible also to directly use the Euler–Lagrange formulation
[Engelbrecht et al. 2005; Casasso and Pastrone 2010]. The two approaches yield
the same equations of motion and the same pseudomomentum balance [Engel-
brecht et al. 2006].

3.2. One-dimensional models. The classical one-dimensional wave equation pos-
sesses the well-known d’Alembert solution. It is of considerable interest to use
the one-dimensional setting also for describing microstructured solids in order to
understand possible effects in the most transparent way. Certainly, one notes the
price of simplifications compared with three-dimensional models: the oversimpli-
fied description of rotational effects, as in the Cosserats’ model, the emerging arte-
fact between scalar and covectorial character of energy equation and the balance
of momentum [Maugin 2011a] and simplification of geometry of solids. On the
other hand, the appearance of new terms in the wave equation can cast more light
on dispersive, nonlinear, and other effects. A typical example in this sense is the
Boussinesq-type equation [Christov et al. 2007; Engelbrecht et al. 2011].
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3.2.1. Structure of equations. The models briefly described in Section 3.1 result
in systems of partial differential equations. In the one-dimensional case with a
single microstructure, this means that one obtains a system of two equations. If we
now take displacement u = u1 and the microdeformation ϕ = ϕ11 according to the
Mindlin model [1964], then the kinetic energy density K and the potential energy
density W are

K = 1
2ρu2

t +
1
2 Iϕ2

t , W =W (ux , ϕ, ϕx), (16)

where ρ and I denote macroscopic density and microinertia, respectively, and in-
dices denote derivatives. The corresponding Euler–Lagrange equations have the
general form (

∂L

∂ut

)
t
+

(
∂L

∂ux

)
x
−
∂L

∂u
= 0, (17)(

∂L

∂ϕt

)
t
+

(
∂L

∂ϕx

)
x
−
∂L

∂ϕ
= 0, (18)

where the Lagrangian density is given by L = K −W . The simplest potential
energy function is a quadratic function

W = 1
2(λ+ 2µ)u2

x + Aϕux +
1
2 Bϕ2

+
1
2Cϕ2

x , (19)

where λ, µ are Lamé parameters (in order to keep notations from classical elastic-
ity) and A, B, C are other material constants.

The governing equations are now [Engelbrecht et al. 2005]

ρut t = (λ+ 2µ)uxx + Aϕx , (20)

Iϕt t = Cϕxx − Aux − Bϕ, (21)

which is the simplest Mindlin-type (micromorphic) model. A similar model is
used in [Porubov et al. 2009; Casasso and Pastrone 2010]. Huang and Sun [2008]
have derived the governing equations for waves along the layers of a bimaterial
layered medium. In terms of the displacement U and “kinematic variable” 8, the
governing system of equations in a micromorphic case is

k1Ut t = k2Uxx + k28x , (22)

k38t t = k48xx − k2Ux − k28, (23)

where k1, k2, k3, k4 reflect elastic and geometric characteristics of layers. The
system of equations (20)–(21) is very similar to the system (22)–(23).

Maugin [1999] has derived a model of a chain of dumbbells (see also [Askar
1986]) which exhibits transverse displacements U and rotations ψ . After continu-
alisation, the governing equations are
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ρ0Ut t = (µ+χ)Uxx +χψx , (24)

jψxx = αψxx −χUx −χψ, (25)

where coefficients are related to the mass m, chain scale a and stiffness k. Note
that here j is the microinertia density and χ and α are micropolar coefficients.

Again, the structure of the equations is the same as above. In order to compare
these (and other) results within one framework, we shall focus now on models in
the form of single equation, derived directly from three-dimensional models (5)
or (6), or from systems of equations like (20)–(21) or (22)–(23). Let us introduce
a wave operator

Lw = ut t − c2
i uxx , (26)

where ci is a velocity, and the function

Fw = Fw(uxx , uxxxx , uxxtt , . . . ), (27)

leaving the coefficients of derivative aside. Then the models derived for describ-
ing the one-dimensional wave propagation in microstructured solids can be sum-
marised by either

Lw = Fw( · ) (28)

or, more explicitly,

Lw = (L jw)xx + (Lkw)t t +Fw( · ), (29)

where L jw, Lkw have velocities c j , ck , respectively (see Whitham [1974]). The
presentation (29) can be called hierarchical since it involves several wave operators,
and in general Liw = O(ε), where ε is a small parameter. In general terms, Fw is
also of accuracy O(ε).

3.2.2. Classification of models. Models of dispersive waves in terms of Lw and Fw

are collected in Table 1, and the corresponding models in terms of Lw and L jw

are presented in Table 2.
The models listed in Tables 1 and 2 are derived using various assumptions and

procedures, but they all include higher-order derivatives in space and/or in time, or
mixed space-time ones. All these derivatives are even, which shows that the models
are conservative and that they display dispersive effects (see Section 5). These
effects are reflected first in phase and group velocities, and second in wave profiles.

Table 2 demonstrates the structures of models using the wave operators (26).
The basic idea behind introducing such operators is the possibility to stress the
importance of scaling [Engelbrecht et al. 2006]. Namely, in this case the wave
hierarchies can be formulated [Whitham 1974]. The general structure of models
is then

L1w = δ(L1w)xx + δ
2(L2w)xxxx + · · · , (30)
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Fw( · ) Sources

0 Classical wave equation

uxxxx [Santosa and Symes 1991], [Maugin 1995],
[Erofeyev 2003], [Andrianov et al. 2010],
[dell’Isola et al. 2012], [Andrianov et al. 2013]

uxxxx , u6x [Pichugin et al. 2008], [Andrianov et al. 2011]

uxxtt [Love 1944], [Maugin 1995], [Wang and Sun 2002]

uxxxx , uxxtt [Askes and Metrikine 2002], [Pastrone et al. 2004],
[Metrikine 2006], [Papargyri-Beskou et al. 2009],
[Porubov et al. 2009], [Challamel et al. 2009],
[Polyzos and Fotiadis 2012]

uxxxx , uxxtt , uxx [Engelbrecht and Pastrone 2003],

uxxxx , uxxtt , ut t t t [Metrikine 2006], [Polyzos and Fotiadis 2012],
[Pichugin et al. 2008]

uxxtt , ut t t t [Pichugin et al. 2008]

uxxxx , uxxtt , u6x [Polyzos and Fotiadis 2012]

Table 1. Models of dispersive waves in the form Lw =Fw, Lw = ut t − c2
0uxx .

(L jw) (Lkw) Fw Source

(ut t − c2
j uxx)xx uxx [Engelbrecht et al. 2005]

[Engelbrecht and Salupere 2014]

(ut t − c2
i uxx)t t [Maugin 1995] (here ck = ci )

(ut t − c2
i uxx)xx (ut t − c2

i uxx)t t uxx [Engelbrecht et al. 2005]
[Berezovski et al. 2011b]

(ut t − c2
i uxx)xx uxxxx [Berezovski et al. 2011b]

(ut t − c2
i uxx)xx (ut t − c2

i uxx)t t uxx , uxxxx [Berezovski et al. 2011b]

(ut t − c2
i uxx)xx (ut t − c2

i uxx)t t uxxxx [Engelbrecht et al. 2005]

Table 2. Models of dispersive waves in the form Lw = (L jw)xx + (Lkw)t t +Fw.

where δ is related to the ratio L0/ l. Such a hierarchy explicitly demonstrates
the dependence of the macrobehaviour on microstructure. If δ is small then waves
“feel” more the properties of the macrostructure, and the influence of the microstruc-
ture is of a perturbative character. If, however, δ is large, then waves “feel” more
the properties of the microstructure. The wave hierarchies are analysed in several
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studies [Whitham 1974; Engelbrecht et al. 2006; Casasso and Pastrone 2010] and
an overview presented by Engelbrecht and Salupere [2014].

The most complicated case — model 5 of Table 2 — has been derived by Bere-
zovski et al. [2011a] by using the concept of dual internal variables ϕ1 and ϕ2 [Ván
et al. 2008]. Here, ϕ1 is identified as a microdeformation and ϕ2 as its rate. The
energy function has the quadratic form

W = 1
2ρc2u2

x + Auxϕ1+ A′uxϕ2+
1
2 Bϕ2

1 +
1
2C(ϕ2

1)x +
1
2 Dϕ2

2, (31)

where ρ is the density and c is the velocity in the macrostructure; the coefficients A
and A′ characterise coupling, and B, C , D the microstructure. The corresponding
dispersive wave equation has the form

ut t − c2uxx =
C
B
(ut t − c2uxx)xx −

I
B
(ut t − c2uxx)t t +

A′2

ρB
uxxxx −

A2

ρB
uxx . (32)

The right-hand side of (32) includes the space and time derivatives of the wave
operator Lw = ut t − c2uxx and additional terms with coupling coefficients. Note
that (32) can be rewritten in terms of different wave operators as

ut t − (c2
− c2

A)uxx =
C
B
(ut t − (c2

− c2
c)uxx)xx −

I
B
(uxx − c2uxx)t t , (33)

where c2
A = A2/ρB, c2

c = A
′2/ρC . If A′ = 0 then (32) yields, in a shorter form

obtained by asymptotic analysis [Engelbrecht et al. 2005],

ut t − (c2
− c2

A) uxx = p2c2
A(ut t − c2

1uxx)xx , (34)

where c2
1 = C/I B, p2

= I/B.

Remark 4. The models in Section 3.2 are one-dimensional with a clear three-
dimensional background. Similar models are known for rods [Samsonov 2001;
Porubov 2003], where the higher-order derivatives in governing equations in terms
of the displacement appear due to geometrical considerations (effects of the trans-
verse displacement). As far as dispersive effects are of a different character, the
governing equation is called the “double” dispersion equation [Samsonov 2001].
The combination of microstructural effects and geometrical characteristics of rods
is studied in [Porubov 2000].

4. Generalisation of models

The mathematical models described in Section 3 involved one microstructure be-
side the macrostructure; this microstructure is homogeneously distributed over the
space, the dissipative effects are not accounted for, and the governing equations
are linear. Clearly, these assumptions need more attention and, if needed, to be
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changed. In what follows, possible generalisations are described. Dissipative mod-
els will not be considered here; attention is paid to thermoelasticity, i.e., to coupled
fields with energy transfer.

4.1. Multiscale models. In reality, there are cases when a microstructure includes
another microstructure at a smaller scale [Engelbrecht et al. 2006], or there are two
microstructures in parallel with different properties [Berezovski et al. 2010]. The
first case (a scale within a scale) may be called hierarchical microstructures and
the second case concurrent microstructures.

For a hierarchical microstructure, the free energy function is taken in the form
[Engelbrecht et al. 2006; Berezovski et al. 2010]

W = 1
2(λ+ 2µ)u2

x + A1ϕ1ux +
1
2 B1ϕ

2
1 +

1
2C1(ϕ1)

2
x

+
1
2 A12(ϕ1)xϕ2+

1
2 B2ϕ

2
2 +

1
2C2(ϕ2)

2
x , (35)

where ϕ1 and ϕ2 are microdeformations (ϕ2 within ϕ1) and A1, B1, B2, C1, C2, A12

are coefficients. Then the governing equations are (see also [Casasso and Pastrone
2010])

ρut t = (λ+ 2µ)uxx + A1(ϕ1)x , (36)

I1(ϕ1)t t = C1(ϕ1)xx − A1ux − B1ϕ1+ A12(ϕ2)x , (37)

I2(ϕ2)t t = C2(ϕ2)xx − A12(ϕ1)x − B2ϕ2, (38)

where I1 and I2 are the corresponding microinertias.
For a concurrent microstructure, the free energy is [Berezovski et al. 2010]

W = 1
2(λ+ 2µ)u2

x + A1ϕ1ux +
1
2 B1ϕ

2
1 +

1
2C1(ϕ1)

2
x

+ A12(ϕ1)xϕ2+
1
2 B2ϕ

2
2 +

1
2C2(ϕ2)

2
x + A2ϕ2ux , (39)

where now ϕ1 and ϕ2 are parallel microstructure (the same scale). The governing
equations become

ρut t = (λ+ 2µ)uxx + A1(ϕ1)x + A2(ϕ2)x , (40)

I1(ϕ1)t t = C1(ϕ1)xx + A12(ϕ2)x − A1ux − B1ϕ1, (41)

I2(ϕ2)t t = C2(ϕ2)xx − A12(ϕ1)x − A2ux − B2ϕ2. (42)

If A12 6= 0 then the microstructures are coupled; if, however, A12 = 0, then both
microstructures are coupled with the macrostructure but not coupled with each
other [Berezovski et al. 2010]. In the latter case, after reformulating the system of
equations (36)–(38) in the form of a single equation and using asymptotic analysis,
the analogue to (33) can be obtained as [Engelbrecht et al. 2006]
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ut t − (c2
0− a2

A1)uxx

= p2
1c2

A1[ut t − (c2
1− c2

A2)uxx ]xx − p2
1c2

A1c2
A2(ut t − c2

2uxx)xxxx , (43)

where c2
A1 = A2

1/ρB1, c2
A2 = A2

2/ρB2, c2
1 = C1/I1, p2

1 = I1/B1, p2
2 = I2/B2. One

should note the appearance of the sixth-order derivatives in (43), as in the model
derived from lattice dynamics in the continuum limit [Maugin 1999]. However,
here ut t xxxx is also involved because of the inertia of the second microstructure.

There are many studies concerning multiscales in terms of building of atomistic-
continuum models (see, for example, [Liu et al. 2010] and the references therein).
Such an approach is needed because, in design of structural elements, some areas
like crack tips, plastic zones, thin layers, etc., need smaller spatial scales com-
pared with the whole. That is why mixed atomistic-continuum models are derived.
Here, however, multiscale is understood as excitation-dependent (i.e., frequency-
dependent). The governing parameter is L0/ l, which gives the weight to different
terms in models, and consequently is the reason for the appearance of different
physical effects.

4.2. Nonlinear models. Contemporary technology is often characterised by inten-
sive and high-speed impacts. That is why nonlinearities should be accounted for in
mathematical models. This means that the full deformation tensor involves nonlin-
ear terms and the stress-strain should also be nonlinear [Eringen 1962]. As shown
by Engelbrecht [1997], the physical nonlinearities (stress-strain relations) for most
materials are stronger than geometrical (deformation tensor), and, therefore, we
limit ourselves here to physical nonlinearities only. This is easily formulated
in terms of the free energy function W . Note, however, that we deal with one-
dimensional problems, and for three-dimensional problems such an assumption
needs careful analysis. Following the model (20)–(21), instead of the free energy
function (18), we can postulate [Engelbrecht et al. 2005]

W = 1
2(λ+ 2µ)u2

x + Aϕux +
1
2 Bϕ2

+
1
2Cϕ2

x +
1
6 Nu3

x +
1
6 Mϕ3

x , (44)

where now N and M are nonlinear parameters for macro- and microstructure, re-
spectively. In this case, the governing equations are

ρut t = (λ+ 2µ)uxx + Nux uxx + Aϕx , (45)

Iϕt t = Cϕxx +Mϕxϕxx − Aux − Bϕ. (46)

Porubov et al. [2009] have derived the same model, linking N and M to Mur-
naghan’s moduli. From (45) and (46) we get

ut t − (c2
− c2

A)uxx − k1(u2
x)x = p2c2

A(ut t − c2
1uxx)xx + k2(u2

xx)xx , (47)

where k1 and k2 are coefficients (compare with (33)). Equation (47) in terms of
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the deformation v = ux reads

vt t − (c2
− c2

A)vxx − k1(v
2)xx = p2c2

A(vt t − c2
1vxx)xx + k2(v

2
x)xxx . (48)

This equation will be analysed later.
Several modifications of (47) are derived under various assumptions. Maugin

[1999] has described the continualisation of discrete lattices and obtained

ut t − c2uxx + c2βaux uxx −
c2a2

12
uxxxx = 0, (49)

where a is lattice spacing and β is related to the potential. Andrianov et al. [2013]
have derived a similar model for a layered composite and Erofeyev [2003] for a
medium with coupled stresses. In these models, nonlinear terms stem from the
macrostructure. It is certainly possible to assume that nonlinearity is essential only
at the level of the microstructure. Then the corresponding governing equation reads
[Engelbrecht and Pastrone 2003]

ut t − (c2
− c2

A)uxx = p2c2
A(ut t − c2

1uxx)xx + k2(u2
xx)xx . (50)

All models (47)–(50) are of the Boussinesq-type. Christov et al. [1996; 2007] have
stated that the Boussinesq paradigm grasps the following effects: (a) bidirection-
ality of waves; (b) nonlinearity (of any order); (c) dispersion (of any order, mod-
elled by space and time derivatives of the fourth order at least). The recent results
of studies are summarised by Christov et al. [2007], and with a special attention to
microstructured solids by Engelbrecht et al. [2011].

Remark 5. The nonlinear governing equation for rods derived by Samsonov [2001]
and Porubov [2003] belong also to the family of Boussinesq equations. In this
case the nonlinearity is quadratic, like the nonlinearity of the macrostructure (equa-
tions (47) and (48)) in microstructured materials, but it may also be cubic [Porubov
and Maugin 2005].

4.3. Thermoelastic models. The classical thermoelastic theory combines the elas-
tic behaviour of homogeneous media with heat conduction, which is usually gov-
erned by Fourier’s law (see, for example, [Nowacki 1972]). The difference between
elastic deformation of a solid and heat conduction consists in that the former is a
conservative process without dissipation, whereas the latter is a dissipative one.
Bearing in mind microstructured materials, it is possible to use the concept of
internal variables to construct mathematical models for governing the wave motion.
This is achieved by the dual internal variable theory [Ván et al. 2008], which per-
mits modelling of the dissipation effects due to the microstructure in thermoelastic
solids [Berezovski et al. 2011b; Engelbrecht and Berezovski 2012]. The dissipation
is associated with microtemperature, i.e., fluctuations of temperature due to the
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difference of thermal characteristics of the macro- and microstructure in a solid.
Here we present two models: the first one dealing with microtemperature only,
and the second one with microdeformation and microtemperature simultaneously.

First, following [Berezovski et al. 2011b] and [Berezovski and Engelbrecht
2013], we postulate the free energy function W as

W = 1
2(λ+2µ)u2

x−
ρcp

2θ0
(θ−θ0)

2
+m(θ−θ0)ux+Qϕx ux+

1
2 Pϕ2

x+
1
2 Dψ2, (51)

where cp is the heat capacity, m = −α(3λ+ 2µ), α is the dilatation coefficient,
θ is the temperature, θ0 is the reference temperature. The first internal variable ϕ
is the microtemperature and the second internal variable ψ is the rate of the first
one; Q, P , D2 are, as before, the material parameters. Leaving aside the details
(see references above), the governing equations are

ρut t = (λ+ 2µ)uxx +mθx + Qϕxx , (52)

Lϕt t + Rϕt = Pϕxx + Quxx , (53)

ρcpθt − (kθx)x = mθ0uxt + Rϕ2
t , (54)

where k is the thermal conductivity and R, L are the material parameters related to
conductance, which are obtained from satisfying the dissipation inequality. Note
that the heat conduction is governed by the parabolic equation (54), while the
microtemperature is governed by the hyperbolic equation (53).

Second, following Berezovski et al. [2011b], we use the dual internal variables;
the first pair, ϕ1 and ϕ2, are related to microdeformation, and the second pair,
ψ1 and ψ2, to microstructure. Then the free energy function W is

W = 1
2(λ+ 2µ)u2

x −
ρcp

2θ0
(θ − θ0)

2
+m(θ − θ0)ux + Aϕ1ux +

1
2 Bϕ2

1

+
1
2C(ϕ2

1)x +
1
2 D1ϕ

2
2 + Q(ψ1)x ux +

1
2 P(ψ2

1 )x +
1
2 D2ψ

2
2 , (55)

where A, B, C , D1, Q, P , D2 are, as before, the material parameters. Now the
governing equations are

ρut t = (λ+ 2µ)uxx +mθx + A(ϕ1)x + Q(ϕ2)xx , (56)

I (ϕ1)t t = C(ϕ1)xx − Aux − Bϕ1, (57)

L(ϕ2)t t + R(ϕ2)t = P(ϕ2)xx + Quxx , (58)

ρcpθt − (kθx)x = mθ0uxt + R(ϕ2
2)t . (59)

For details of the derivation, see [Berezovski et al. 2014]. This model contains
two hyperbolic equations for microeffects: Equation (57), for microinertia, and
Equation (58), for microtemperature. These equations are not coupled, but both of
them are coupled with the balance of momentum (56). The fourth equation, (59),
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which models the heat conduction at the macrolevel, is parabolic and related only
to the microtemperature, while microdeformation is nondissipative.

4.4. Models for inhomogeneous microstructure. Previous models were derived
using the assumption of the homogeneity of the microstructure. In many practical
application, this assumption must be refined. This is the case, for example, of
functionally graded materials (FGMs) which are made up of two or more materials
(constituent phases) combined in solid states [Birman and Byrd 2007; Mahamood
et al. 2012]. The specimens made of FGMs can have a thin coating of a parent
material or a special distribution within a bulk material [Yin et al. 2004]. Such inho-
mogeneities should be taken into account also in deriving the governing equations.

The simplest way to do that is to modify the well-known Mindlin model. In this
case, starting from the conventional free energy function

W = 1
2(λ+ 2µ)u2

x + Aϕux +
1
2 Bϕ2

+
1
2Cϕ2

x , (60)

we assume that A= A(x), B = B(x), and C =C(x). Then the governing equations
yield (compare with equations (20) and (21))

ρut t = (λ+ 2µ)uxx + Aϕx + Axϕ, (61)

Iϕt t = Cϕxx − Aux − Bϕ+Cxϕx . (62)

Here, as before, ϕ denotes the microdeformation, the elements of the microstruc-
ture are of the same size (I = const), but the variation of the microstructure is
emphasised by Ax and Cx .

5. Wave dispersion

The main aim of applying various theories to derive mathematical models is to get
closer to reality. It has been shown in Sections 3 and 4 that inertia of microstruc-
ture(s) leads to higher-order time derivatives, the elasticity of microstructure(s) to
higher-order space derivatives, and the coupling of macro- and microstructures
results in the changes of velocities. The latter phenomenon is demonstrated also
by numerical simulation of waves in metal-ceramic composites by using the finite
volume method [Engelbrecht et al. 2005]. In this case, the physical parameters
were assigned to every volume element in a material. The changes in the volume
fraction f = Vc/V are directly reflected in changes of velocities, where Vc is the
volume of ceramic particles and V is the total volume.

In what follows, we explain how introduced microstructure models affect the
macrobehaviour of waves: dispersion, wave profiles, frequencies, velocities, spec-
tra, etc. As we have seen, the classical nondispersive wave equation is modified
for processes in microstructured solids. The included even-order higher derivatives
(fourth-order, sixth-order, etc.) lead to dispersion of waves. In discrete systems
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the dispersion analysis is carried out by Brillouin [1946] and Askar [1986]. For
diatomic chains they noticed the existence of acoustical and optical branches of
the dispersion relation. Mindlin [1964] and Eringen [1972] have described the
behaviour of the dispersion curves in microstructured materials, including also
acoustical and optical branches. There are many studies to be noted [Huang and
Sun 2008; Metrikine 2006; Andrianov et al. 2013] in dispersion analysis, but the
most detailed studies are presented by Papargyri-Beskou et al. [2009] and Bere-
zovski et al. [2013].

These studies demonstrate that the typical dispersion curves are convex. How-
ever, given the structural characteristics of solids, the periodic character of disper-
sion curves, as shown by Brillouin [1946] for a discrete chain, is not observed
except in some limit cases [Pichugin et al. 2008]. In most models where the
assumptions about length scales involve long waves (small wave numbers), the
dispersion curves in a short-wave limit tend to some asymptotes corresponding to
certain velocities [Engelbrecht et al. 2005; Metrikine and Askes 2002; Berezovski
et al. 2011a]. This is explicitly seen from the analysis of group and phase velocities
[Papargyri-Beskou et al. 2009; Berezovski et al. 2013]. If short waves are close to
nanoscale in the length, then phonon-like dispersion curves are closer to the results
of Brillouin [Maranganti and Sharma 2007].

5.1. Dispersion relations. Papargyri-Beskou et al. [2009] derived the following
dispersion relation, following [Mindlin 1964] (see (6) in the one-dimensional set-
ting):

ω2
= c2k2(1+ g2k2)(1+ h2k2)−1, c2

= (λ+ 2µ)/ρ, (63)

where ω, k are the frequency and the wave number, respectively, and g2, h2 are the
microstructural elasticity and microinertia coefficients. The corresponding disper-
sion curves are shown in Figure 1. It is concluded that the dispersion is physically
acceptable only if h2 > g2. This conclusion stresses the importance of the microin-
ertia. The main deficiency of the strain-gradient model is the absence of the optical
branch of the dispersion curve.

A more realistic dispersion relation follows from (33), with A′ = 0 for the sake
of simplicity (see [Berezovski et al. 2013]):

ω2
= (c2

− c2
A) k2

+ p2(ω2
− c2k2)(ω2

− c2
1k2). (64)

The corresponding dispersion curves are shown in Figure 2 [Berezovski et al. 2013].
In this figure, the dispersion curve computed from the relation

ω2
= (c2

− c2
A)k

2
− p2c2

A(w
2
− c2

1k2)2 (65)
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Figure 1. Dispersion curves of the ω/C p,s versus wavenum-
ber kp,s type for elastic medium with microstructure obeying
Equation (63). Adapted from [Papargyri-Beskou et al. 2009].
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Figure 2. Dispersion curves in case of cgr < cph (cA = 0.8c, c1 = 0.2c).

following from (34) is also shown. The asymptotes in Figure 2 reflect the dimen-
sionless velocities: ω = k, ω = c1k/c, ω = cRk/c, where c2

1 = C/I , c2
R = c2

− c2
A.

These velocities play a role in the case of shorter waves.
Dispersion relation (64), which reflects the behaviour of waves modelled by (33),

leads to two dispersion curves — one branch is acoustic (lower branch), another one
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Figure 3. Comparison of the longitudinal dispersive curves with and
without the correction factors. Adapted from [Huang and Sun 2008].

is optical (upper branch). Such a situation is noticed in many studies [Erofeyev
2003; Engelbrecht et al. 2005; Huang and Sun 2008; Berezovski et al. 2011a]. (As
an example, the dispersion curves from the paper by Huang and Sun [2008] are
shown in Figure 3.)

Direct calculations by the finite element method also display the changes in
velocities due to dispersive effects [Gonella et al. 2011; Greene et al. 2012].

No band gaps are observed in the dispersion curves shown in Figures 2, 3. How-
ever, the existence of such band gaps has been demonstrated by Madeo et al. [2013]
for unidirectional wave propagation in relaxed micromorphic media [Neff et al.
2014].

5.2. Phase and group velocities. The phase (cph=ω/k) and group (cgr= ∂ω/∂k)
speeds corresponding to relation (64) are depicted in Figure 4. It must be noted
that the asymptotic value of the acoustic phase speed approaches the value c1/c
monotonically, while the group speed changes faster and nonmonotonically. It is
possible to determine the dimensionless parameters which govern the process as
[Engelbrecht et al. 2013]

γ 2
A = c2

A/ c2, γ 2
1 = c2

1/ c2, 0 = 1− γ 2
A− γ

2
1 . (66)

The parameter 0 is crucial for distinction between dispersion types. If 0 ≥ 0 then
the dispersion is normal (cgr < cph) and if 0 < 0 then the dispersion is anomalous
(cgr > cph). In the dispersionless case 0 = 0. Following Papargyri-Beskou et al.
[2009] (Figure 5), these conditions are related to the ratio h/g: if h/g > 1 then the
dispersion is normal, and if h/g < 1 then the dispersion is anomalous.



MODELS OF DEFORMATION WAVES IN ELASTIC MICROSTRUCTURED SOLIDS 65

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

Optical branch

Acoustic branch

Dimensionless wave number

D
im

en
si

on
le

ss
sp

ee
d

Figure 4. Group (solid line) and phase (dashed line) speed curves
against the wave number, cA = 0.3c, c1 = 0.2c.

6

4

2

0
0 20 40 60 80

V
   

/C
p,

s
p,

s

g  = 0, h  = 02 2

g  = 0.001, h  = 02 2

g  = 0, h  = 0.012 2

g  = 0.001, h  = 0.00012 2

g  = 0.001, h  = 0.012 2

kp,s

Figure 5. Dispersion curves of the Vp,s/C p,s versus kp,s type
for elastic medium with microstructure obeying Equation (63).
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The parameter γA is related to coupling effects, and it defines the dimensionless
speed of long waves. The greater the value of γA, the smaller the speed of long
waves. The parameter γ1 is actually the ratio of speeds in macro- and microstruc-
tures. The greater the value of γ1, the greater the speeds of short waves. The
parameters γA and γ1 can be used for determining the differences between the full
equation (33) and its asymptotic presentation (34); see [Peets et al. 2008]. In ad-
dition, a dimensionless parameter γAB might be useful for asymptotic estimations,
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Figure 6. Comparison of dispersion curves of hierarchical mi-
crostructure model. Solid lines: Equation (43). Dashed lines: con-
current coupled microstructure model. Dotted lines: concurrent
uncoupled microstructure model. Here cA1 = cA2 = cA12 = 0.4c,
c1 = 0.5c, c1 = 0.3c.

given by
γ 2

AB = c2
A/ c2

B = D2 I/ρB2L2
0 = δ I ∗D2/B2, (67)

where it is assumed that I = ρl2 I ∗, δ= l2/L2
0. As follows from (67), it involves the

scale parameter δ, which also gives weight to higher-order terms in the governing
equations.

In the case of a hierarchical microstructure modelled by the system (36)–(38) or
by (43), the dispersion relation reads as

(c2k2
−ω2)(c1k2

−ω2
+ω2

1)(c
2
2k2
−ω2

+ω2
2)

− c2
A12ω

2
2k2(c2k2

−ω2)− c2
A1ω

2
1k2(c2

2−ω
2
+ω2

2)= 0. (68)

Here, in addition to the notation of (43), we define c2
A12 = A2

12/I1 B2, ω2
1 = 1/p2

1,
and ω2

2 = 1/p2
2 . The typical dispersion curves are shown in Figure 6.

This model may involve an interesting physical phenomenon: negative group
velocity (NGV), analysed by Peets et al. [2013]. Indeed, such a case is shown in
Figure 7. The physical explanation for this phenomenon may be the following.
It is known that the optical branches are related to nonpropagating oscillations
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Figure 7. Group (solid line) and phase (dashed line) speed curves
against the wave number, cA = 0.3c, c1 = 0.2c.

[Brillouin 1946]. In the case shown in Figure 6, two optical branches can be very
close to each other at certain frequencies. This can be considered as a preresonant
situation: these nonpropagating oscillations are coupled, resulting in the NGV. This
is also the reason for the multivalued phase velocity (Figure 7). Note that in optics
the NGV is usually space-dependent, [Dogariu et al. 2001] but here, as seen from
Figure 7, the NGV is dependent on the wave number. Consequently, for an arbitrary
excitation with a wide spectrum, only some spectral components are affected.

5.3. Wave profiles. Dispersion effects are certainly reflected in wave profiles. A
typical profile is shown in Figure 8 [Berezovski et al. 2013], where the influence
of optical and acoustic branches of dispersion curves is seen. It is noted that high
frequency oscillations due to the optical dispersion branch appear. A detailed anal-
ysis of such effects is presented by Tamm and Peets [2013]. Clearly, these effects
must be taken into account not only in solving the direct problems but especially in
nondestructive testing with acoustic waves. Several numerical results are presented
for an impact-type excitation in [Askes and Metrikine 2002; Fish et al. 2002; Peets
and Tamm 2010], for a triangular pulse in [Wang and Sun 2002], for a harmonic
pulse in [Peets and Tamm 2010], for a burst-type pulse in [Greene et al. 2012].

5.4. Influence of nonlinearity. The nonlinear models described in Section 4 lead
to Boussinesq-type equations. The possible balance of dispersion and nonlinearity
may lead to soliton-type solutions. There are three essential problems related to
solitons: (i) existence of solitons, (ii) emergence of solitons, and (iii) interaction
of solitons. Contrary to the celebrated KdV-solitons governed by an equation with
first-order time derivative in a leading term, here the governing equations possess
a second-order time derivative in leading terms. This means that, as in the clas-
sical wave equation, the waves propagate to the left and to the right (d’Alembert
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curves. Bottom: wave profile at 60 time steps. Here cA = 0.6c,
c1 = 0.5c, dimensionless frequency for the boundary condition is 0.8.

solution), not in one direction, as results from the KdV equation. Most studies
concerning solitons and the KdV equation focus on fluids. However, a historical
review on solitons in elastic solids is presented in [Maugin 2011b]. Here we focus
on models of nonlinear microstructured solids based on equations described in
Section 4.

5.4.1. Existence of solitons. We take (48) as the basic equation. In its dimension-
less form, it yields

VT T − bVX X −
1
2µ(V

2)X X = δ
(
βVT T − γ VX X + δ

1/2 1
2κ(V

2
X )X

)
X X , (69)

where V = UX , U = u/U0, X = x/ l, T = ct/ l and, as before δ = l2/λ2. The
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coefficients of (69) are related to the free energy function (44) by

b = 1−
D2

(λ+ 2µ)B
, µ=

NU0

(λ+ 2µ)L0
, β =

I D2

ρl2 B2 ,

γ =
C D2

(λ+ 2µ)B2l2 , κ =
D3 MU0

(λ+ 2µ)B3l3L0
.

(70)

The existence of a single solitary wave solution to (69) should satisfy the conditions
[Janno and Engelbrecht 2005b]

c2
s − b

βc2
s − γ

> 0,
(βc2

s − γ

c2
s − b

)3
>

4κ
µ2 , (71)

µ 6= 0, βc2
s − γ 6= 0, c2

s − b 6= 0, (72)

where cs is a characteristic speed of solitary waves. For other types of govern-
ing equations, the solitary waves are described in [Maugin 1999; Erofeyev 2003;
Porubov et al. 2009].

5.4.2. Emergence of solitons. In the classical example of the KdV equation, a har-
monic initial condition leads to a train of solitons [Zabusky and Kruskal 1965].
Here the results should be two trains of solitons, propagating to the left and to the
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Figure 9. Formation of train of solitons for B0 = 0.02, K = 5500.
Profiles plotted every 1500 time steps.
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right. Indeed, it has been shown by numerical simulations [Engelbrecht et al. 2006;
2011] that solving (69) with an initial condition in the form of a single bell-type
pulse results in two trains of solitons. Figure 9 shows the emergence process in
the course of time. If dispersion is controlled by other higher-order derivatives,
then the emergence process is somewhat different. Several examples are presented
in [Maugin 1999]. Emergence of solitons is described also in laminates where
the stress-strain law of layers is nonlinear and dispersion is caused by layering
[Engelbrecht et al. 2007].

5.4.3. Interaction of solitary waves. This is a crucial problem when determining
whether solitary waves behave like solitons or not. A soliton should interact with
another soliton, keeping its amplitude (velocity), and only a phase change is al-
lowed. This process has been intensively studied by many authors [Soerensen
et al. 1984; Maugin and Christov 1997; Bogdan and Kosevich 1997; Maugin 1999;
Christov et al. 2007; Salupere et al. 2008; Porubov 2009]. An intriguing question
is the shape of solitary waves. Bearing in mind the microstructured solids, two
nonlinearities are presented in (68): nonlinearity of the macrostructure and non-
linearity of the microstructure. It has been shown [Janno and Engelbrecht 2005b]
that the existence of two nonlinearities leads to the asymmetry of a solitary wave.
Note that, with κ = 0 (no nonlinearity at the microstructure), (68) has the solitary
wave solution [Porubov 2003; Janno and Engelbrecht 2005b]

V (X − cs T )= As sech2 [ 1
2κ1(X − cs T )

]
,

AS = 3(c2
s − b)/µ, κ2

1 = (c
2
s − b)/δ(βc2

s − γ ).
(73)

This symmetric solution turns asymmetric if κ 6= 0 in (69). The evolution equation
(one-wave equation) derived from (69) is a modified KdV-type equation, and for
this an exact solution is found by Randrüüt and Braun [2010], which displays
asymmetry due to the existence of the nonlinearity at the microstructure.

It is concluded by many authors that the interaction of solitary waves in such
systems is usually accompanied by radiation [Christov et al. 2007; Salupere et al.
2008; Engelbrecht et al. 2011]. This means that the interaction can be considered
elastic only in the course of several interactions, although the waves retain their
individuality [Christov et al. 2007]. The governing equation may include more
complicated nonlinearities, as in the case of chains of beads [Coste et al. 1997].

Remark 6. Turning again to waves in rods, the problems of emergence and inter-
action of solitary waves are studied in detail in [Porubov 2009].

6. Thermal effects

In Section 4, the governing equations were presented for microstructured thermoe-
lastic solids. Definitely, the internal structure of thermoelastic solids displays not
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Figure 10. Distribution of temperature, stress, and microtemperature
in a microstructured half-space at 350 time steps after thermal impact.

only differences in elastic properties but also in thermal characteristics. The in-
ternal temperature fluctuations which might be called microtemperature display a
specific behaviour [Berezovski and Berezovski 2013; Berezovski and Engelbrecht
2013]. As an example, the propagation of a thermal pulse described by (52)–(54)
is illustrated in Figure 10. Besides the usual diffusion of the macrotemperature θ in
course of time close to boundary, wave-type behaviour of the total temperature is
observed following the deformation wave. This is possible because of coupling ef-
fects between microtemperature (governed by a hyperbolic operator in (53)), stress,
and macrotemperature.

7. Material identification

Physical effects due to the microstructure of solids serve as signatures about the
structure. Changes in velocities and wave profiles and/or their spectra can be used
to solve the inverse problems; that means determining material constants from the
analysis of changes. As said before, waves are carriers of information. The prob-
lem, however, is complicated because the number of material constants is high. For
example, Equation (33), which is a basic model in our discussion, involves, beside
the properties of the macrostructure (density and the elastic constants), the proper-
ties of the microstructure (constants B, C , D, I ) and of coupling (constants A, A′).
In terms of the wave equation, these constants are grouped for coefficients. The
situation is even more complicated in multiscale models or thermoelastic models
(Section 4).

One possible approach to determine the material constants is to start from ho-
mogenisation methods [Santosa and Symes 1991; Forest 1998; 1999; Fish et al.
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2002; Wang and Sun 2002]. Some constants are presented in [Erofeyev 2003].
More contemporary homogenisation methods are described in [Jänicke and Steeb
2012; Fish and Kuznetsov 2012]. On other hand, numerical methods can be com-
bined with material characterisation [Gonella et al. 2011; Greene et al. 2012]. The
latter approach is also supported by theoretical results [Neff 2005; Neff and Forest
2007].

Another approach is to solve an inverse problem: given the structure of a model
and an initial excitation and results of measurements, one has to determine the
coefficients of the model. This approach is widely used in nondestructive eval-
uation (NDE) of material properties. There are many methods of NDE [Hellier
2001]; here we limit ourselves only to the possibilities of ultrasound NDE, based
on the usage of acoustic waves as carriers of information. A detailed description of
solving the inverse problem for the Mindlin-type micromorphic model is given in
[Janno and Engelbrecht 2011]. The basic model is either the linear equation (34)
or its nonlinear modification (48), together with their basic systems of two equa-
tions, like the system (20)–(21). The conditions for the existence of the solution
together with its uniqueness and stability guarantee a well-posed problem. Har-
monic waves and wave packets are used in the case of linear problems, and solitons
in the case of nonlinear problems. The main ideas are to use changes in phase
velocities [Janno and Engelbrecht 2005c] and properties of solitary waves [Janno
and Engelbrecht 2005a] for determining material constants. Harmonic waves and
Gaussian wave packets are used in the linear case. In the nonlinear case, a novel
method is proposed based on measuring the asymmetry of a solitary wave [Janno
and Engelbrecht 2005a]. The crucial point is to establish a number of possible
coefficients which can be determined from solving a corresponding well-posed
inverse problem.

8. Discussion and final remarks

Technological demands for microstructured materials are high, and there is a grow-
ing need to predict the behaviour of such structures under high-intensity and high-
frequency excitations. As shown above, there exists a general framework for build-
ing appropriate mathematical models in order to grasp microscopic-to-macroscopic
relations in materials. One might say that the unifying goal of this framework is to
understand better the bulk behaviour of matter which depends on microscopic con-
stituents and their properties. In this context, there are several avenues of research.

The first avenue leads towards developing the theory of microstructured con-
tinua. It is reflected in many monographs [Eringen 1999; Capriz 1989; Maugin
1999; 2013] and overviews [Mariano 2002] together with a lot of research papers.
Several subfields are important: modelling of elastic microstructures, modelling
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of coupled fields (thermo-, electro-, magnetoelasticity), modelling of dislocations
and phase transitions, etc. In this context, multiscale problems which depend on
the character of excitations (the ratio L0/ l) become more and more important,
resulting in hierarchical models.

The second avenue could be described as casting the theory of microstructured
continua into concrete mathematical models, i.e., into systems of equations or sin-
gle equations. In wave dynamics, this means deriving the modified systems of wave
equations with leading terms of the second-order partial derivatives together with
higher-order terms. These equations may be built in the form of certain hierarchies
[Whitham 1974]. In this overview we moved along this avenue, presenting the
mathematical models and analysing the corresponding physical effects.

The third avenue is related to numerical simulations. Due to complicated mathe-
matical models and several scales, numerical schemes need to be modified in order
to describe multiscales or coupling effects (see, for example, [Mariano and Stazi
2005; Vernerey et al. 2007; Berezovski et al. 2008]). Here we also use numerical
simulations to demonstrate the changes in wave profiles.

The fourth avenue should lead to experimental verification. There are not very
many results in this important direction. The early experiments of Potapov and
Rodyushkin [2001] demonstrated the existence of solitary waves. The studies
[Coste et al. 1997; Porter et al. 2009] described experiments with solitary waves in
chains of beads, which give a possibility to build tunable one-dimensional phononic
materials [Daraio et al. 2006]. Clearly, much is expected in moving along this
avenue — not only phononic materials, but the general applications in the NDE
should be further developed for more precise materials characterisation.

As said before, in this overview, attention was focussed on models of waves
in their simplest one-dimensional setting. The concept of internal variables per-
mits easy derivation of the mathematical models accounting for various physical
effects. It is demonstrated that, beside the classical wave equation, the modified
wave equations with higher-order terms form an interesting and challenging chapter
in mathematical physics. These equations can be derived by satisfying thermody-
namical constraints, and naturally involve both acoustic and optical branches in
dispersion relations. This is extremely important in order to model the physical
situation correctly (see, e.g., Figure 8).

The dispersion analysis reflects rich physical phenomena due to microstruc-
ture(s), and accounts for the multiscale problems, resulting in hierarchical equa-
tions. If nonlinear effects are included then the governing equations are of the
Boussinesq type. The coupling of the macro- and microstructure leads to changes
in velocities and wave profiles. The main conclusion from the analysis above is
the following. The influence of the microstructure on wave propagation in solids
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is modelled best if (i) microinertia is taken into account, and (ii) the correspond-
ing dispersion relation includes both acoustic (in-phase) and optical (out-of-phase)
branches. If, however, some asymptotic procedures are applied in order to simplify
the full model, then the simplified model should in some sense grasp the influence
of the optical branch.

The classical wave equation is a cornerstone in mechanics and mathematical
physics. It describes the propagation of an excitation in homogeneous elastic media.
What is discussed above is how to modify this beautiful mathematical model in
order to come closer to reality. As a result, the mathematical models involve higher-
order derivatives and nonlinear terms which stem from the properties of materials.
Such models gain more and more attention in contemporary engineering problems
of dynamical response of materials and constructions.

It must be noted that the existence of a microstructure in a bulk material means
that the constituents interact with each other and influence the macrobehaviour.
This is a typical problem of complexity, where the behaviour of constituents leads
to changes in the global behaviour [Nicolis and Nicolis 2007]. There are also
attempts to cast the analysis into this pattern in multiscale materials [Engelbrecht
2009; Liu et al. 2010; Engelbrecht and Pastrone 2011]. However, such an approach
is not used for describing solids only, it is also noted in fluids (see [Engelbrecht
et al. 2010]).

Finally, the ideas worked out theoretically during the last century [Maugin 2013]
have matured now to reach practical applications. The search certainly goes on, as
said by Mariano [2012]:

. . . effective developments in applied sciences rely on a deep compre-
hension and command of the inner nature of the models involved and
techniques utilised.
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