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DERIVATION OF NONLINEAR SHELL MODELS
COMBINING SHEAR AND FLEXURE:

APPLICATION TO BIOLOGICAL MEMBRANES

OLIVIER PANTZ AND KARIM TRABELSI

Biological membranes are often idealized as incompressible elastic surfaces whose
strain energy only depends on their mean curvature and possibly on their shear.
We show that this type of model can be derived using a formal asymptotic
method by considering biological membranes to be thin, strongly anisotropic,
elastic, locally homogeneous bodies.

1. Introduction

Shells, plates and membranes are solid deformable bodies having one characteristic
dimension small by comparison with the other two dimensions. Their behavior
is fully described by standard three-dimensional laws of continuum mechanics.
Nevertheless, it is tempting, at least from the modeling viewpoint, to consider them
as two-dimensional structures and to replace the genuine mechanical laws by two-
dimensional reduced versions. This immediately raises two questions: (1) What
is the correct model? and (2) How can it be mathematically justified? To this
end, we consider the thickness ε of the plate/shell/membrane as a parameter and
identify the limit behavior of the structure as ε goes to zero. According to the
dependence of the elasticity moduli on the thickness of the shell, a full zoology of
models may be derived. Membrane, isometric bending and von Kármán theories
have been justified (amongst others), first formally (see Fox, Raoult and Simo [Fox
et al. 1993]), then by means of 0-convergence (see [Le Dret and Raoult 1995; 1996;
Pantz 2003], Müller, Friesecke and James [Friesecke et al. 2002], Friesecke, James
and Mora [Friesecke et al. 2003]; see also [Conti et al. 2006]). In those works,
elasticity coefficients are assumed to scale like a power of the thickness ε of the
plate or shell, that is, like ε−α. Membrane theory corresponds to the case α = 1,
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isometric bending to the case α = 3 and von Kármán to α = 4. Intermediate values
of α have also been considered, and an almost exhaustive hierarchy of models
has thus been produced (see Müller, Friesecke and James [Friesecke et al. 2006]).
Some cases remain to be treated; Conti and Maggi [2008], for instance, investigate
the scaling of the energy corresponding to folds. The initial motivation for this
article was the study of the mechanical behavior of red blood cells (RBCs), and
our aim was to determine whether the classical RBC model could be derived by
the above procedure.

Mature anucleate RBCs1 are made of two mechanical structures: the cytoskeleton
— a two-dimensional network of protein filaments that extends throughout the in-
terior of the cell — and a lipid bilayer. Both are bound together by proteins linking
the nodes of the mesh of the cytoskeleton to the lipid bilayer via transmembrane
proteins. Lipid bilayers are self-assembled structures of phospholipids, which are
small molecules containing a negatively charged phosphate group (called the head),
and two highly hydrophobic fatty acid chains (called the tails). In an aqueous en-
vironment, phospholipids spontaneously form a double layer whose configuration
isolates the hydrophobic tails from the surrounding water molecules. Modifying
the area of such a lipid bilayer is energy-costly because it exposes some of the tails
to the environment.

A bilayer that supports no other mechanical structure, is connected and has no
boundary is called a vesicle. Vesicles are massively studied because they are easy
to obtain experimentally. Moreover, they partially mimic the behavior of RBCs.
Roughly speaking, they are RBCs without cytoskeleton (even if the RBC bilayer
does embed a lot of different proteins responsible for different functions of the
cell). They similarly resist bending. However, vesicles show no resistance to shear
stress, while RBCs do, owing to their cytoskeletons.

A widely used model consists in considering that a lipid bilayer may be endowed
with an elastic energy depending solely on the mean curvature of the vesicle. This
energy is usually known as the Helfrich functional (named after Willmore in other
contexts). It was introduced independently, as far as we know, by Canham [1970]
and Helfrich [1973] some forty years ago. Evans [1974] has shown that the Helfrich
functional can be derived by assuming a vesicle to be made of two interconnected
elastic fluid membranes, each of them resistant to change of local area but not to
bending itself. Jenkins [1977a] has extended the analysis of Helfrich to general two-
dimensional liquid crystals [Singer and Nicolson 1972]. In particular, he derives
the Euler–Lagrange equations satisfied by the equilibrium states, and examines the
consequences of fluidity on the form of the strain energy (see also [Steigmann

1Every mention to RBCs in this article will implicitly refer to anucleate mature RBCs without
further notice.
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1999]). As a means to take into account the various vesicle shapes observed, it
is common to presume that the vesicle is endowed with a nonzero spontaneous
curvature. The origin of this spontaneous curvature is usually attributed to differ-
ent compositions of the outer and inner layers. Several refinements to this basic
model have since been proposed as the so-called bilayer-couple model [Svetina and
Žekš 1989], that consists in allowing the two lipid layers to slip on one another,
and imposing that the total area of each layer remains constant (see also [Seifert
et al. 1991] for a comparison between the two models). Miao, Seifert, Wortis
and Döbereiner [Miao et al. 1994] proposed an intermediate model, called the
area-difference elasticity model, where slight total area changes of each layer are
allowed but still penalized.

As previously mentioned, the mechanical structure of the RBC is not only im-
putable to its bilayers. Their cytoskeleton endows them with resistance to shear
stress. In most models, only the deformation of the RBC membrane is considered
(that is, of the bilayer). To take into account the presence of the cytoskeleton an
additional term is added to the total energy depending on the change of the metric
of the membrane. Krishnaswamy [1996] proposed another model for which the
deformations of the cytoskeleton and the fluid bilayer may differ.

The aforementioned models for vesicles and RBCs are backed up by numerous
numerical studies that reproduce various shapes observed experimentally. Amongst
others, Deuling and Helfrich [1976] (see also [Jenkins 1977b; Luke 1982; Luke
and Kaplan 1979]) have computed axisymmetric vesicle shapes of minimum en-
ergy with respect to the values of the reduced volume and spontaneous curvature.
Seifert, Berndl and Lipowsky [Seifert et al. 1991] have compared the axisymmetric
solutions obtained using the spontaneous curvature model and the bilayer-couple
model, whereas Agrawal and Steigmann [2009] have included contact conditions
between the vesicle and a substrate. Full three-dimensional simulations have been
performed by Feng and Klug [2006], Bonito, Nochetto and Pauletti [Bonito et al.
2010; 2011], Dziuk [2008] using a finite element method. Peng et al. [2013] use
a dissipative particle dynamic approach and focus on the interaction between the
lipid bilayer and the cytoskeleton. Du, Chun and Xiaoqiang perform numerical
computations based on a phase field method [Du et al. 2006; 2004; Du and Zhang
2008]. Boundary integral methods have been used by Veerapaneni, Gueyffier and
Zorin [Veerapaneni et al. 2009], Sohn, Tseng, Li, Voigt and Lowengrub [Sohn
et al. 2010]. Another approach based on the immersed boundary method has been
investigated by Kim and Lai [2010], Liu et al. [2004; 2006] and, together with a
lattice Boltzmann approach, by Crowl and Fogelson [2010]. Finally, level set meth-
ods have also been implemented in this context by Salac and Miksis [2011], and
Maitre, Milcent, Cottet, Raoult and Usson [Maitre et al. 2009] (see also [Doyeux
et al. 2013]).
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We prove in this article that the classical mechanical model of the RBCs can
be recovered by means of a formal asymptotic analysis assuming that the RBC’s
membrane is made of a locally homogeneous, albeit strongly anisotropic, nonlin-
early elastic material. The main difference with previous works on the justification
of thin structures is that we assume different scalings for the elastic moduli in the
tangential and normal directions to the midsection. Let us underline that our work
cannot be considered as a justification of the classical RBC mechanical model.
Indeed, the RBC is not a locally homogeneous elastic membrane, firstly because it
is made of two different structures: the lipid bilayer (responsible for the resistance
to bending) and a cytoskeleton (responsible for resistance to shear). Even the lipid
bilayer could hardly be considered as made of a homogeneous material, the scale
of the phospholipids it contains being of the same order as the thickness of the
membrane. The cytoskeleton, being a two-dimensional spectrin network, is no
more a homogeneous elastic body. Even if it is not overt at first glance, our work is
strongly related to the justification, already mentioned, proposed in [Evans 1974].

We have chosen to consider a rather general setting (presented in Section 2) for
which the modeling of the RBCs is obtained as a particular case (see Section 6).
The asymptotic analysis is performed in Section 3. Assuming that the minimiz-
ers of the energy admit an asymptotic expansion with respect to the thickness
(Section 3.2), they converge toward the solutions of a two-dimensional problem
(see Section 3.3). The limit energy, computed in Section 3, contains membrane
and flexural terms. In Section 4, we prove that, under invariance assumptions on
the stored energy of the material, the flexural term depends only upon the second
fundamental form, or even only upon the mean curvature of the shell. The isometric
bending shell, RBC and vesicle models are obtained as particular applications in
Section 6. The last section is devoted to some general remarks, in particular on the
relaxation of the formal energy limit.

Finally, let us specify some notation. If M is a differentiable manifold, we
denote by TM and T ∗M its tangent and cotangent bundles. Moreover, T ∗(M;R3)

will stand for the triple Whitney sum T ∗M ⊕ T ∗M ⊕ T ∗M . The tangent spaces of
a product of manifolds will be implicitly identified with the product of the tangent
spaces, so that if M1 and M2 are differentiable manifolds and M = M1×M2, the
bundle TM will be implicitly identified with TM1× TM2. If M is an open subset
of RN , TM will be identified with M ×RN . The corresponding identifications will
also be made for T ∗M and T ∗(M;R3). The set of reals R and its dual R′ will also
be often implicitly identified. Sets will always be displayed with capital letters (for
instance, the set of deformations ψε will be denoted 9ε). Sequences of terms of
an asymptotic expansion are denoted using bold letters (for instance, ψ = (ψk)k∈N

stands for the asymptotic expansion of ψε). Accordingly, the sets of asymptotic
expansions use both bold and capitalized letters (for instance, ψ ∈9). Moreover,
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calligraphic letters will be exclusively used for fiber spaces. Two different reference
configurations are used throughout our article; one is qualified to be abstract and
the other geometrical. The same notations are used for both configurations, the
only distinction being that a tilde is added over variables, sets and functionals
defined on the geometric configuration (for instance, ψ̃ε is the deformation defined
on the geometric configuration, whereas ψε stands for the deformation over the
abstract one). All of the notation introduced is recalled at the end of the article
for convenience.

2. Elastic shells — three-dimensional modeling

We consider a thin nonlinearly elastic shell of midsurface S′ and constant half-
thickness ε > 0, and choose Sε = S′ × (−ε, ε) to be the reference configuration
of this elastic body. We assume S′ to be a regular two-dimensional orientable
submanifold of R3 with or without boundary. In the following, S′ is implicitly
endowed with the metric induced by the Euclidean metric in R3. Let ψε be the
deformation of the shell, that is, a map from Sε into R3. The differential Dψε(xε)
of ψε at xε is a linear map from Txε Sε into Tψε(xε)R3. Since Tψε(xε)R3 is canon-
ically isomorphic to R3, Dψε(xε) is identified with an element of the Whitney
sum T ∗Sε⊕ T ∗Sε⊕ T ∗Sε denoted by T ∗(Sε;R3). We denote by Jε(ψε) the elastic
energy of the shell under the deformation ψε. We assume that the elastic energy is
local and depends only on the first derivatives of the deformation. In other words,
there exists a map W ε from T ∗(Sε;R3) into R+ such that

Jε(ψε) :=
∫

Sε
W ε(Dψε) dxε,

where dxε = dx ′∧dxε3 and dx ′ is the two-dimensional Hausdorff measure restricted
to S′, whereas Dψε(xε) stands for the differential of ψε at xε ∈ Sε. Note that this
representation enables us to consider inhomogeneous shells. The shell is assumed
to be subjected to volumic dead-body loads fε ∈ L2(Sε)3, and we set

Lε(ψε) :=
∫

Sε
fε ·ψε dxε.

The total energy of the system is accordingly given by

Iε(ψε) := Jε(ψε)− Lε(ψε).

Finally, boundary conditions may also be added. We set 0ε = γ × (−ε, ε), where
γ ⊂ ∂S′ is the — possibly empty — part of the boundary where the shell is clamped,
and we denote by φε the imposed deformation on this set. Our aim is to determine
the behavior of the minimizers ϕε of Iε over

9ε
:= {ψε ∈W 1,∞(Sε)3 : ψε(xε)= φε(xε) for every xε ∈ 0ε}
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as ε goes to zero. Note that the minimization problem of Iε over 9ε without any
growth and polyconvex or quasiconvex assumptions on the stored energy function
is generally not well posed. Here, we implicitly assume this problem to have a
regular solution. Various assumptions have to be made regarding the dependence
of the energy on the thickness for the needs of our analysis. These mainly concern
the stored energy W ε (see Section 2.1), but also the applied loads (see Section 2.2).

2.1. Dependence of the stored energy functions with respect to the thickness.
We set S = S1, and assume the stored energy W ε to be of the form

W ε(F)= ε−1(ε−2W2(F)+W0(F)) (1)

for every F ∈ T ∗(Sε;R3) and ε ≤ 1, where W0 and W2 are continuous nonnegative
maps from T ∗(S;R3) into R+. Note that we implicitly use the injection of

T ∗(Sε;R3)= T ∗(S′× (−ε, ε);R3)= T ∗(S′;R3)× T ∗((−ε, ε);R3)

into

T ∗(S;R3)= T ∗(S′× (−1, 1);R3)= T ∗(S′;R3)× T ∗((−1, 1);R3)

in the definition (1) of W ε. Standard analysis focuses on the case where only
one element of this expansion is not zero. For instance, if W2 = 0, we recover a
nonlinear membrane model [Le Dret and Raoult 1996], and if W0 = 0 we obtain
the isometric bending one [Friesecke et al. 2003].

Behavior of strongly extended fibers. We assume that the stored energy W2 is
bounded from below by a positive constant for strongly extended fibers, namely,
there exist δ, c > 0 such that

W2(F ′, F3)≥ c

for all F ′ ∈ T ∗(S′;R3), F3 ∈ T ∗((−1, 1);R3) such that |F3| ≥ δ. (2)

Note that for every element F of a vector bundle endowed with a Riemann metric,
the notation |F | should be understood as the norm of the vectorial part of F . In
particular, in (2), |F3| = |v| if F3 = (x3, v) ∈ (−1, 1)×R3

= T ∗((−1, 1);R3).

Regularity and zero set of W2. We assume that W2 is a nonnegative C2 function
and denote by M the restriction of its zero set to the midsection, that is,

M := {F ∈ T ∗(S′;R3)× T ∗0 ((−1, 1);R3) :W2(F)= 0}.

Let M′ be the projection of M onto T ∗(S′;R3), that is,

M′ := {F ′ ∈ T ∗(S′;R3) : there exists n0 ∈ T ∗0 ((−1, 1);R3) with (F ′, n0) ∈M}.
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We assume that the projection of M onto M′ is one-to-one. We denote by n0 :M
′
→

T ∗0 ((−1, 1);R3) the function that maps every element F ′ of M′ to the correspond-
ing element F3 of T ∗0 ((−1, 1);R3), so that

M= {(F ′, n0(F ′)) ∈ T ∗(S;R3) : F ′ ∈M′}. (3)

We recall that S = S′× (−1, 1) and that T ∗(S;R3) is identified with T ∗(S′;R3)×

T ∗((−1, 1);R3). The vectorial part of n0(F ′) ∈ T ∗0 ((−1, 1);R3)= {0}×R′3 will
be denoted n(F ′), so that n0(F ′)= (0, n(F ′)).

Local interpenetration. To avoid local interpenetration of matter, it is geometric
to expect Dψε to be invertible. To this end, we require that W0(F)=∞ for every
F ∈M such that det F < 0, and that

W0(F)→∞ if F ∈M and det(F)→ 0. (4)

2.2. Dependence of the applied loads on the thickness. The volumic loads are
assumed to scale as the inverse of the thickness of the shell; more precisely, we
assume that there exists f : S→ R3 such that, for every ε ≤ 1,

fε(x)= ε−1 f (x) for every x ∈ Sε. (5)

3. From 3D to 2D: a formal asymptotic analysis

3.1. Rescaling. We set ψ(ε)(x ′, x3)= ψ
ε(x ′, εx3), and define rescaled energies

J (ε)(ψ(ε)) := Jε(ψε) and I (ε)(ψ(ε)) := Iε(ψε).

The minimization problem of Iε over 9ε is then equivalent to the minimization
problem of I (ε) over

9(ε) := {ψ(ε) ∈W 1,∞(S)3 : ψ(ε)(x)= φ(ε)(x) for every x ∈ 0},

where φ(ε)(x)= φε(x ′, εx3).
For every map ψε : Sε→ R3, we denote by (D′ψε, D3ψ

ε) the decomposition
of the differential ψε along the sections of the cylinder Sε and along its fibers,
respectively. In other words, for every xε = (x ′, x3) ∈ Sε, D′ψε(xε) and D3ψ

ε(xε)
stand for the elements of T ∗x ′(S

′
;R3) and T ∗x3

((−1, 1);R3) such that Dψε(xε) =
(D′ψε(xε), D3ψ

ε(xε)).
For every deformation ψ(ε) of S, we define its partial derivative ∂3ψ(ε) with

respect to the normal direction as

∂3ψ(ε)(x ′, x3)= lim
t→0

ψ(ε)(x ′, x3+ t)−ψ(ε)(x ′, x3)

t
.
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Performing a simple change of variable, we get

J (ε)(ψ(ε))= ε−1
∫

Sε
(ε−2W2+W0)

(
D′ψε(xε), D3ψ

ε(xε)
)

dxε

= ε−1
∫

Sε
(ε−2W2+W0)

(
D′ψε(xε), (xε3, ∂3ψ

ε(xε))
)

dxε

=

∫
S
(ε−2W2+W0)

(
D′ψ(ε)(x), (εx3, ε

−1∂3ψ(ε)(x))
)

dx .

3.2. Ansatz. In order to perform our formal analysis, we assume that the minimiz-
ers ϕ(ε)(x ′, x3)= ϕ

ε(x ′, εx3) of the energy admit an asymptotic expansion

ϕ(ε)(x)=
∑
k≥0

εkϕk(x) for every x ∈ S, (6)

with (ϕk) ∈ `
1(W 1,∞(S)3). Obviously, the same assumption has to be made on

the applied Dirichlet boundary condition, and we let φ = (φk) ∈ `
1(W 1,∞(S)3) be

the terms of the asymptotic expansion of the deformation φ(ε)(x) = φε(x ′, εx3)

imposed on 0 := γ × (−1, 1), that is

φ(ε)(x)=
∑
k≥0

εkφk(x) for every x ∈ S. (7)

The condition ϕε ∈9ε reads as ϕk(x)= φk(x) for every x ∈ 0. Consequently, we
introduce the admissible set

9 := {ψ = (ψk) ∈ `
1(W 1,∞(S)3) : ψk = φk for every x ∈ 0},

and the rescaled energies J(ε) and I(ε) from 9 into R defined by

J(ε)(ψ) := J (ε)
(∑

k≥0

εkψk

)
and I(ε)(ψ) := I (ε)

(∑
k≥0

εkψk

)
. (8)

3.3. Limit of the total energy. The first step of our analysis consists in computing
the limit of J(ε)(ψ) as ε goes to zero for ψ ∈9. As we shall see in Proposition 1,
the limit of J(ε) contains two terms. Roughly speaking, one term measures the
elastic energy due to the change of the metric of the midsection of the shell. It
depends only on W0. The second term measures the elastic energy due to the
variations of the orientation of its fibers. It depends on the second derivative of the
stored energy function W2 through a quadratic form Q D′ψ0 .

In order to enhance the readability of the sequel, we introduce a practical nota-
tion. We recall that a section F of a vector bundle F is a map from its base into F

such that πB(F) is the identity, where πB stands for the projection of F onto its
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base B. Given such a section, we define the bundle map

F→ T F, G 7→ G F =
d
dt
(F(πB(G))+ tG)|t=0. (9)

Roughly speaking, G F is the element G of TF(πB(G))F. Similarly, for every (x, v)∈
RN
×RN , we will sometimes denote (x, v) ∈ Tx RN by vx . For a section F ′ of M′,

for every (G ′, s, v) ∈ T ∗(S′;R3)×R× (R′)3 we set

QF ′(G ′, s, v) := D2W2[G ′F ′, s0, vn(F ′)]
2, (10)

where (G ′F ′, s0, vn(F ′)) is the element of T(F ′, n0(F ′))(T
∗(S;R3)) defined in (9) based

on the decomposition of T ∗(S;R3)= T ∗(S′;R3)× (−1, 1)× (R′)3, while D2W2

stands for the Hessian of W2. Namely, we have

(G ′F ′, s0, vn(F ′))=
dγ
dt
(0), where γ (t)= (F ′πS′ (G ′)

+ tG ′, ts, n(F ′)+ tv). (11)

At first glance, the meaning of D2W2[γ̇ (0)]2 is unclear, considering that the Hes-
sian of a map defined on a manifold is not, in general, intrinsically defined. Nev-
ertheless, it is well known that this is consistent on the set of critical points, which
is precisely what is considered here. Indeed, γ (0) is equal to the value of the sec-
tion (F ′, n0(F ′)) at πS′(G). Yet F ′ is a section of M′, hence W2(F ′, n0(F)) = 0,
W2(γ (0)) = 0 and DW2(γ (0)) = 0. As a result, D2W2[γ̇ (0)]2 is well defined,
and, accordingly,

D2W2[γ̇ (0)]2 = 2 lim
t→0

t−2W2(γ (t)). (12)

Note that the right-hand side of (12) only depends on γ̇ (0), so that the particular
choice of the representative γ (t) of γ̇ (0) is irrelevant, as already mentioned.

We are now in a position to state the main result of this section.

Proposition 1. Let 8 be the subset of the admissible set 9 defined by

8 := {ψ ∈9 : ∂3ψ0 = 0, D′ψ0(x) ∈M′, and ∂3ψ1(x)= n(D′ψ0(x))

for every x ∈ S}. (13)

Let ψ ∈9. Then

lim
ε→0

I(ε)(ψ)=
{

I0
(
ψ0,

1
2

∫ 1
−1 ψ1 dx3, ∂3ψ2

)
if ψ ∈8,

+∞ if ψ /∈8,

where

I0(ψ0, u, v) := J0(ψ0, u, v)− 2
∫

S′
f0 ·ψ0 dx,

J0(ψ0, u, v) := 1
2

∫
S

Q D′ψ0(D
′u+ x3 D′n, x3, v) dx + 2

∫
S′

W0(D′ψ0, n0) dx ′,
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where n and n0 stand for n(D′ψ0) and n0(D′ψ0), Q D′ψ0 is defined by (10), and
f0(x ′)= f (x ′, 0).

Proof. We proceed in two steps. First, we prove that every sequence of deforma-
tions ψ ∈9 of finite elastic energy, that is, those that satisfy

lim inf
ε→0

J(ε)(ψ) <+∞,

belongs to 8. In particular, this implies that J(ε)(ψ) converges to infinity as ε
goes to zero, for every ψ that is not in 8. In a second step, we compute the limit
of J(ε)(ψ) for every ψ in 8.

Let ψ ∈9 be the asymptotic expansion of a deformation of finite elastic energy.
From Fatou’s lemma, we deduce∫

S
lim inf
ε→0

(ε−2W2)

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

)
dx

≤ lim inf
ε→0

∫
S
(ε−2W2+W0)

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

)
dx

= lim inf
ε→0

J(ε)(ψ) <∞.

Hence, we have

lim inf
ε→0

W2

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

)
= 0 a.e.

From the assumption (2) made on the behavior of strongly extended fibers, it
follows that, for almost every x ∈ S,

∑
k≥0 ε

k−1∂3ψk remains bounded (up to a
subsequence), that is, ∂3ψ0 = 0. Now, since∑

k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

L∞
−−→
ε→0

(D′ψ0, (0, ∂3ψ1)), (14)

and W2 is assumed to be continuous, we have W2(D′ψ0, (0, ∂3ψ1)) = 0 almost
everywhere. From the hypothesis (3), we get D′ψ0 ∈M′ and ∂3ψ1 = n(D′ψ0). As
a conclusion, every sequence of deformations of finite elastic energy belongs to 8,
as announced.

For the next step, let us consider an element ψ ∈8 and its associated energy

lim
ε→0

J(ε)(ψ)= lim
ε→0

ε−2
∫

S
W2

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk))

)
dx

+

∫
S

W0(D′ψ0, (0, ∂3ψ1)) dx .
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Since W2 is a C2 function and W2(D′ψ0, (0, ∂3ψ1)) = 0, using (12) with γ (t) =
(D′ψ0+ t D′ψ1, t x3, ∂3ψ1+ t∂3ψ2), Lebesgue’s theorem implies

lim
ε→0

ε−2
∫

S
W2

(∑
k≥0

εk(D′ψk, (εx3, ε
−1∂3ψk)

))
dx

=
1
2

∫
S

D2W2
[
(D′ψ1 D′ψ0(x), x30, ∂3ψ2∂3ψ1

)
]2 dx

=
1
2

∫
S

D2W2
[
(D′ψ1 D′ψ0(x), x30, ∂3ψ2n(D′ψ0)

)
]2 dx

=
1
2

∫
S

Q D′ψ0(D
′ψ1, x3, ∂3ψ2) dx .

The limit of the elastic energy J(ε) falls out from the fact that ψ1 may be written as

ψ1 =
1
2

∫ 1

−1
ψ1 dx3+ x3n(D′ψ0).

Finally, according to the definition (5) of f , we have

I(ε)(ψ)= J(ε)(ψ)−
∫

S
f (x ′, εx3) ·

(∑
k≥0

εkψk

)
dx .

The second term on the right-hand side converges to 2
∫

S′ f ·ψ0 dx as ε→ 0. �

Since the limit energy is finite only for elements ψ in 8, φ has to be equal
to an element of 8 on the subset 0 of the boundary where clamping conditions
are imposed.

Corollary 2. If the minimizers ϕ(ε) of the total rescaled energy I (ε) over 9(ε)
admit an asymptotic expansion as in (6), and if their total energy I (ε)(ϕ(ε)) re-
mains bounded, then φ0(x ′, x3) depends only on x ′ ∈ 0. In addition, there exist
uγ , nγ ∈W 1,∞(γ )3 such that

φ1(x ′, x3)= uγ (x ′)+ x3nγ (x ′) for x ∈ 0.

Note: since φ0 depends only on x ′, we shall write φ0(x ′) instead of φ0(x ′, x3)

henceforth.

3.4. Convergence of the minimizers.

Lemma 3. If the minimizers ϕ(ε) of the total rescaled energy I (ε) over9(ε) admit
an asymptotic expansion as in (6), and if their total energy I (ε)(ϕ(ε)) remains
bounded, then

I0

(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3, ∂3ϕ2

)
≤ inf
(ψ0,u,v)∈80

I0(ψ0, u, v),
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where 80 is the set of all

(ψ0, u, v) ∈W 1,∞(S′)3×W 1,∞(S′)3×W 1,∞(S′; L∞(−1, 1)3)

such that D′ψ0 ∈M′ a.e., n(D′ψ0) ∈W 1,∞(S′)3, ψ0(x ′)= φ0(x ′), u(x ′)= uγ (x ′),
n(D′ψ0(x ′))= nγ (x ′) for every x ′ ∈ γ , and v(x)= ∂3φ2(x) for x ∈ 0.

Proof. Let (ϕk) be the asymptotic expansion of a minimizer ϕ(ε) of the total
energy I (ε). For every (ψ0, u, v) ∈80, we set

ψ1 = u+ x3n(D′ψ0),

ψ2(x)= φ2(x ′, 0)+
∫ x3

0
v(x ′, s) ds,

ψk = φk for all k ≥ 3.

Using the Leibniz integral rule, we get that D′ψ2 = D′φ2+
∫ x3

0 D′v(x ′, s) ds and
∂3ψ2 = v. It follows that ψ2 belongs to W 1,∞(S)3. As u and n(D′ψ0) are assumed
to be Lipschitzian, so is ψ1, and ψ ∈ `1(W 1,∞(S)3). From Corollary 2, φ0 depends
only on x ′ and φ1(x ′, x3)= uγ (x ′)+ x3nγ (x ′) on 0. As (ψ0, u, v) ∈80, we infer
that ψ0 = φ0 and ψ1 = φ1 on 0. Similarly, ψ2 = φ2 on 0. Thus, ψ belongs to 8
and I(ε)(ϕ)≤ I(ε)(ψ). Letting ε goes to zero, we get from Proposition 1 that

I0

(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3, ∂3ϕ2

)
≤ I0(ψ0, u, v). (15)

This completes the proof. �

Lemma 4. If the minimizers ϕ(ε) of the total rescaled energy I (ε) over9(ε) admit
an asymptotic expansion as in (6), and if their total energy I (ε)(ϕ(ε)) remains
bounded, then (

ϕ0,
1
2

∫ 1

−1
ϕ1 dx3

)
= arg min

(ψ0,u)∈81
I1(ψ0, u),

where81 is the set of all (ψ0, u) in W 1,∞(S′)3×W 1,∞(S′)3 such that D′ψ0∈M′ a.e.,
n(D′ψ0)∈W 1,∞(S′)3, ψ0(x ′)=φ0(x ′), u(x ′)= uγ (x ′), and n(D′ψ0(x ′))= nγ (x ′)
for x ′ ∈ γ , I1 is given by

I1(ψ0, u) :=
∫

S′
Q0

D′ψ0
(D′u, 0) dx ′+ 1

3

∫
S′

Q0
D′ψ0

(D′n, 1) dx ′

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′,

f0(x ′)= f (x ′, 0) for every x ′ ∈ S′, and

Q0
F ′(G

′, x3)= inf
v∈R3

QF ′(G ′, x3, v). (16)
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Proof. From Lemma 3, we have

I0

(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3, ∂3ϕ2

)
≤ inf
(ψ0,u,v)∈80

I0(ψ0, u, v).

Moreover, from Proposition 1, we have ϕ ∈8, which implies that(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3

)
∈81.

Since 80 =81× V with

V := {v ∈W 1,∞(S′; L∞(−1, 1)3) : v(x)= ∂3φ2(x) for x ∈ 0},

it follows that

I1

(
ϕ0,

1
2

∫ 1

−1
ϕ1 dx3

)
= inf
(ψ0,u)∈81

inf
v∈V

I0(ψ0, u, v).

To complete the proof, we need to show that, for every (ψ0, u) ∈81, we have

inf
v∈V

I0(ψ0, u, v)= I1(ψ0, u). (17)

We recall that for every (ψ0, u) ∈81 and every v ∈ V , we have

I0(ψ0, u, v)= 1
2

∫
S

Q D′ψ0(D
′u+ x3 D′n, x3, v) dx

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′.

Next, the definition of Q0
D′ψ0

entails that

I0(ψ0, u, v)≥ 1
2

∫
S

Q0
D′ψ0

((D′u, 0)+ x3(D′n, 1)) dx

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′.

Furthermore, for every x ′ ∈ S′ and every F ∈ T ∗(x ′,0)(S;R
3), the quadratic form Q0

F ′

derives from a bilinear form. Hence,∫ 1

−1
Q0

D′ψ0

(
(D′u, 0)+ x3(D′n, 1)

)
dx3

=

∫ 1

−1

(
Q0

D′ψ0
(D′u, 0)+ x2

3 Q0
D′ψ0

(D′n, 1)
)

dx3

= 2Q0
D′ψ0

(D′u, 0)+ 2
3 Q0

D′ψ0
(D′n, 1).
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Accordingly, we obtain that I0(ψ0, u, v)≥ I1(ψ0, u), so that infv∈V I0(ψ0, u, v)≥
I1(ψ0, u). It remains to prove the reverse inequality to establish (17). For every
δ ≥ 0, we have

I0(ψ0, u, v)≤ I0(ψ0, u, v)+
∫

S
δ|v|2 dx .

As a consequence,

inf
v∈V

I0(ψ0, u, v)≤ inf
v∈V

(
I0(ψ0, u, v)+

∫
S
δ|v|2 dx

)
.

From the assumptions made on W2, it follows that the quadratic form Q D′ψ0 is
positive semidefinite almost everywhere. As a consequence, the map

v 7→ Q D′ψ0(D
′u+ x3 D′n, x3, v)+ δ|v|

2

admits a unique minimizer for almost every x ∈ S. Let vδ : S→ R3 be the map
such that vδ = arg minv Q D′ψ0(D

′u+ x3 D′n, x3, v)+ δ|v|
2.

Since W2 is assumed to be of class C2 and D′ψ0 is bounded, the norm of the
quadratic form Q D′ψ0 is uniformly bounded. As a result, vδ is measurable and
belongs to L∞(S)3. Also, there exists a sequence vk

δ in V converging to vδ in
L2(S)3 as k goes to infinity, due to the density of V in L2(S)3. For every k, we have

inf
v∈V

I0(ψ0, u, v)≤ 1
2

∫
S

(
Q D′ψ0(D

′u+ x3 D′n, x3, v
k
δ )+ δ|v

k
δ |

2) dx

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′.

Taking the limit with respect to k, we infer that

inf
v∈V

I0(ψ0, u, v)≤ 1
2

∫
S

(
Q D′ψ0(D

′u+ x3 D′n, x3, vδ)+ δ|vδ|
2) dx

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′.

Note that Q D′ψ0(D
′u+ x3 D′n, x3, vδ)+ δ|vδ|

2 is a decreasing sequence (as δ goes
to zero) of nonnegative functions. Therefore, its integral over S converges to its
pointwise limit Q0

D′ψ0
(D′u+ x3 D′n, x3), and the intended inequality follows:

inf
v∈V

I0(ψ0, u, v)≤ 1
2

∫
S

Q0
D′ψ0

(D′u+ x3 D′n, x3) dx

+ 2
∫

S′
W0(D′ψ0, n) dx ′− 2

∫
S′

f0 ·ψ0 dx ′ = I1(ψ0, u). �
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3.5. Boundary conditions. An interesting feature of the limit energy is that it de-
pends on both ψ0 and u = 1

2

∫
ψ1 dx3. For general boundary conditions, it im-

plies a coupling between both quantities through the term
∫

S′ Q0
D′ψ0

(D′u, 0) dx ′

of I1(ψ0, u). Hence, small perturbations scaling as the thickness of the shell may
have an influence on the deformation ψ0 of the midsection. In the literature, the
boundary conditions are usually chosen to satisfy uγ = 0, that is,

φ0(x)= φ0(x ′) and φ1(x)= x3nγ (x ′) for every (x ′, x3) ∈ 0
ε, (18)

where nγ is a unit vector. In this case, the minimization of I1(ψ0, u) with respect
to u is trivial and the limit energy can be expressed solely in terms of ψ0.

Proposition 5. If the minimizers ϕ(ε) of the total rescaled energy I (ε) over 9(ε)
admit an asymptotic expansion as in (6), and if their total energy I (ε)(ϕ(ε)) re-
mains bounded with uγ = 0 on γ , then

ϕ0 = arg min
ψ0∈90

I0(ψ0),

where

I0(ψ0) :=
1
3

∫
S′

Q0
D′ψ0

(D′n, 1) dx ′

+ 2
∫

S′
W0(D′ψ0, n0(D′ψ0)) dx ′− 2

∫
S′

f0 ·ψ0 dx ′, (19)

f0(x ′)= f (x ′, 0) for every x ′ ∈ S′, and

90 := {ψ0 ∈W 1,∞(S′)3 : n = n(D′ψ0) ∈W 1,∞(S′)3, D′ψ0 ∈M′,

ψ0(x ′)= φ0(x ′), and n = nγ (x ′) for every x ′ ∈ γ }.

4. Invariance and flexural energy

Under several assumptions on the stored energy function W2, the expression of the
flexural part

Iflex(ψ0) :=
1
3

∫
S′

Q0
D′ψ0

(D′n, 1) dx (20)

of the total limit energy I0(ψ0) may be reduced. More precisely, we shall consider
the implications of homogeneity along the fibers, frame-indifference (left invari-
ance under SO(3)), planar isotropy (right invariance under in-plane rotations), and
finally right invariance of the stored energy under the special linear group of TS′.

4.1. Homogeneity along the fibers. We say that the shell is homogeneous along
the fibers if, for every

(F ′, x3, v) ∈ T ∗(S;R3)= T ∗(S′;R3)× (−1, 1)× (R′)3,
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we have W2(F ′, x3, v)=W2(F ′, 0, v). In this case, for every

(G ′, s, v) ∈ T ∗(S′;R3)×R× (R′)3

and every section F ′ of M′, we have D2W2[G ′F ′,s0,vn(F ′)]
2
=D2W2[G ′F ′,0,vn(F ′)]

2.
It follows that Q0

F ′(G
′, s) is independent of s, and hence we denote it by Q0

F ′(G
′),

so that

Iflex(ψ0)=
1
3

∫
S′

Q0
D′ψ0

(D′n) dx .

4.2. Frame-indifference. The principle of frame-indifference states that the space
is invariant under rotation, which translates in our case to the following condition
on the stored energy function W ε:

W ε(F)=W ε(RF) for every rotation R ∈ SO(3).

This is assumed in the sequel. Accordingly, W2 satisfies the same property, i.e.,
W2(F)=W2(RF) for every R ∈ SO(3).

In the following, we denote by ES′ the set of symmetric bilinear forms on TS′,
that is, the fiber bundle with base space S′ whose fiber (ES′)x ′ at x ′ ∈ S′ is the set of
symmetric bilinear forms on Tx ′S′. The fiber bundle ES is defined in a similar way,
and E′S stands for its restriction to S′. Moreover, if F ∈ T ∗x (S;R

3), FT F stands
for the element of (ES′)x that maps every element (u, v) of (Tx S)2 to the scalar
product between Fu and Fv. A similar notation is used to define (F ′)T F ′ ∈ ES′

for every F ′ ∈ T ∗(S′;R3).

Lemma 6. If the stored energy W2 is frame-indifferent, then for every F ′ ∈M′ of
maximum rank and every R ∈ SO(3), we have

RF ′ ∈M′ and n(RF ′)= Rn(F ′).

Moreover, there exists a bundle map τ ′ :M′→ TS′ and a map τ3 :M
′
→ R such

that, for every F ′ ∈M′ of maximal rank,

n(F ′)= F ′τ ′(F ′)+ nF ′τ3(F ′),

where both τ ′(F ′) and τ3(F ′) depend only on C ′ = (F ′)T F ′, and nF ′ ∈ R3 is
defined by

nF ′ ·w = det(F ′, w) for every w ∈ R3. (21)

Lastly, C = (F ′, n0(F ′))T (F ′, n0(F ′)) depends only on C ′.

Proof. The first part of the proposition is obvious. Next, since F ′ is of maximum
rank, (F ′, nF ′) is invertible, so we can set (τ ′(F ′), τ3(F ′)) = (F ′, nF ′)

−1n(F ′).
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Moreover, we can check that

(τ ′(RF ′), τ3(RF ′))= (RF ′, nRF ′)
−1n(RF)

= (RF ′, R(nF ′))
−1 Rn(F)= (R(F ′, nF ′))

−1 Rn(F)

= (F ′, nF ′)
−1n(F ′)= (τ ′(F ′), τ3(F ′)),

whence both τ ′ and τ3 only depend on (F ′)T F ′. Finally, it is readily verified that
both n(F ′)T n(F ′) and n(F ′)T F ′ are invariant under rotations of F ′. As a result,
C = (F ′, n0(F ′))T (F ′, n0(F ′)) depends only on (F ′)T F ′ as well. �

Since T(x ′,x3)S= Tx ′S′×Tx3(−1, 1)= Tx ′S′×R, every element C ∈ (ES)x can be
decomposed uniquely into (C ′,C3,C33) ∈ (ES′)x ′ × T ∗x ′S

′
×R such that, for every

(u′, u3) and every (v′, v3) in Tx ′S′×R= Tx S,

C((u′, u3), (v
′, v3))= C ′(u′, v′)+ u3C3(v

′)+ v3C3(u′)+C33u3v3.

In addition, we write this decomposition as

C =
(

C ′ CT
3

C3 C33

)
.

Let us introduce the fiber bundle P with base space S′ whose fiber at x ′ ∈ S′ is
the set of polynomials of degree less than or equal to two on (ES′)x ′ .

Proposition 7. If the stored energy function W2 is frame-indifferent, then there
exists a bundle map P : C ′ 7→ PC ′ over S′ from ES′ into P such that, for every
deformation ψ0 of finite limit energy I0(ψ0) and every G ′ ∈ T ∗(S′;R3), we have

Q0
D′ψ0

(G ′, 1)= PC ′(D′ψ0
T G ′+G ′T D′ψ0),

where C ′ = D′ψ0
T D′ψ0 for short. Moreover, if W2 is homogeneous along the

fibers, then PC ′ is homogeneous of degree two.

Proof. Let M+ = {F ∈M : det F > 0}. Since W2 is assumed to be frame-indifferent,
there exists a map WS : ES→ R such that, for every F in a neighborhood of M+,

W2(F)=WS ◦m(F), (22)

where m : T ∗(S;R3)→ ES is the bundle map defined by m(G)= GT G. Let F ′ be
a section of M′, s ∈ R and G ′ ∈ T ∗(S′;R3) such that (F ′, n0(F ′)) ∈M+ a.e. Then
definition (10) combined with (22) gives

Q0
F ′(G

′, s)= inf
v∈R3

D2W2[G ′F ′, s0, vn(F ′)]
2
= inf
v∈R3

D2WS[Dm(G ′F ′, s0, vn(F ′))]
2.
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Since ES = (−1, 1)× E′S , we can identify TES with T(−1, 1)× TE′S . Doing so,
we obtain that

Dm(G ′F ′, s0, vn(F ′))=
d
dt
(ts,C + t E)(t = 0)= (s0, EC),

where

E =
(
(F ′)T G ′+ (G ′)T F ′ (F ′)T v+ (G ′)T n
vT F ′+ nT G ′ nT v+ vT n

)
,

n(F ′) is denoted by n for short, and C = m(F). Since (F ′, n(F ′))(x ′) is assumed
to be invertible for every x ′ ∈ S′, setting w′ = F ′T v+G ′T n and w3 = nT v+ vT n,
we get

Q0
F ′(G

′, 1)= PC ′((F ′)T G ′+ (G ′)T F ′), (23)

where PC ′ is the section of P defined by

PC ′(M)= inf
w∈R3

D2WS

[
10,

(
M w′

(w′)T w3

)
C

]2

(24)

for every M ∈ ES′ , and C = (F ′, n0(F ′))T (F ′, n0(F ′)), which depends only on C ′,
according to Lemma 6. Finally, if ψ0 is a deformation satisfying I0(ψ0) < ∞,
owing to the noninterpenetration assumptions made, we know that Dψ0 ∈M+ a.e.
As a result, Q0

D′ψ0
(D′n, 1)= PC ′(M) a.e. on S′, with M = FT D′n+ D′nT F ′, as

claimed. Moreover, if the shell is homogeneous along its fibers, (24) reduces to

PC ′(M)= inf
w∈R3

D2WS

[
0,
(

M w′

(w′)T w3

)
C

]2

, (25)

which is homogeneous of degree two with respect to M . �

Remark. Note that D′ψ0
T D′n+ D′nT D′ψ0 is not, in general, the second funda-

mental form of the deformation, except in the case where n(D′ψ0) is the normal
vector to D′ψ0.

4.3. Planar isotropy. We say that the material is isotropic along the midsection
of the shell if, for every planar rotation R in the set SO(Tx ′S′) of rotations of Tx ′S′

and every F = (F ′, F3) ∈ T ∗x ′(S
ε
;R3), we have

W ε(F ′, F3)=W ε(F ′R, F3). (26)

As a consequence, for deformations of finite energy, the fibers of the shell remain
normal to its section.

Lemma 8. Assume that the shell is isotropic along its midsection. Then there exists
a map τ3 :M

′
→ R such that

n(F ′)= nF ′τ3(F ′)
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for every F ′ ∈M′ of maximal rank, where nF ′ is defined by (21). Moreover, τ3(F ′)
depends only on the metric C ′ = F ′T F ′.

Proof. Let F ′ be an element of M′ of maximal rank. By definition, we have

n0(F ′)= arg min
F3∈T ∗0 ((−1,1);R3)

W2(F ′, F3).

For every rotation R ∈ SO(TS′), the isotropy property yields

n0(F ′R)= arg min
F3∈T ∗0 ((−1,1);R3)

W2(F ′R, F3)

= arg min
F3∈T ∗0 ((−1,1);R3)

W2(F ′, F3)= n0(F ′).

In particular, this entails that n(−F ′)= n(F ′). What is more, by frame-indifference,
we have from Lemma 6 that

n(F ′)= F ′τ ′(F ′)+ nF ′τ3(F ′),

where τ ′ is a bundle map from M′ into TS′ and τ3 is a map from M′ into R, both
of them depending only on the metric C ′ = F ′T F ′. Thus,

F ′τ ′(F ′)+ nF ′τ3(F ′)= n(F ′)= n(−F ′)=−F ′τ ′(−F ′)+ n−F ′τ3(−F ′)

=−F ′τ ′(F ′)+ nF ′τ3(F ′).

Consequently, F ′τ ′(F ′)= 0 and n(F ′)= nF ′τ3(F ′), as claimed. �

Proposition 9. Assume that the shell is isotropic along its midsection. Then the
flexural energy Iflex(ψ0) depends only on the metric and the second fundamental
form of the deformed surface. Namely, we have

Iflex(ψ0)=
1
3

∫
S′

PC ′(|n(D′ψ0)|bD′ψ0) dx ′,

where bD′ψ0 is the second fundamental form of ψ0, i.e.,

bF ′ = D′N T F ′+ F ′T D′N , (27)

where N = nF ′/|nF ′ |, and PC ′ is defined by Proposition 7.

Proof. Since n(D′ψ0) (denoted n for short) is normal collinear to nD′ψ0 and thus
to the normal N to the deformed surface, we get

D′nT D′ψ0+ D′ψ0
T D′n = (n · N )(D′N T D′ψ0+ D′ψ0

T D′N ). �
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4.4. Right invariance under the special linear group. We denote by SL(TS′) the
special linear group over TS′, that is the fiber bundle over S′ whose fiber at x ′ is
the linear diffeomorphisms of Tx ′S′ with determinant equal to one. In this section,
we consider the case where the energy W2 is right invariant under the special linear
group, that is, W2(F ′, F3) = W2(F ′U, F3) for every x ′ ∈ S′, U ∈ SL(Tx ′S′) and
(F ′, F3) ∈ T ∗x ′(S

′
;R3)× T ∗((−1, 1);R3).

Proposition 10. Assume that W2 is right invariant under SL(TS′). Then the flexu-
ral energy Iflex(ψ0) depends only on the metric and on the mean curvature

H = Tr(C ′−1/2bD′ψC ′−1/2
)

of the deformation. More precisely, we have

Iflex(ψ0)=
1
3

∫
S′

Kx ′,det(C ′)(H) dx ′, (28)

where K : S′×R→52; here 52 is the set of polynomials of degree at most two.
Moreover, if the shell is homogeneous along its fibers, then

Iflex(ψ0)=
1
3

∫
S′
κx ′,det(C ′)|H |2 dx ′, (29)

where κ is a map from S′×R+ into R+.

Proof. Let O be the fiber bundle over S′ whose fibers are the maps from Tx ′S′ into
itself of zero trace. For every O ∈ O and x ′ = πS′(O), there exists a regular map
U : (0, 1)→ SL(Tx ′S′) such that U̇ (0)= O and U (0)= Id. Let F be a section of
M, (G ′, s, v) ∈ T ∗x ′(S

′
;R3)×R× (R′)3, and let γ (t)= (γ ′(t), γ3(t)) be a curve in

T ∗(S;R3) such that γ̇ (0)= (G ′F ′, s0, vn(F ′)), as in (11). From the right invariance
under the special linear group, for every U0 ∈ SL(Tx ′S′), we have

W2(γ (t))=W2(γ
′(t)U0U (t), γ3(t)).

As a consequence,

D2W2[γ̇ (0)]2 = D2W2

[
d
dt
(γ ′U0U, γ3)|t=0

]2

. (30)

Then a simple computation yields

d
dt
(γ ′U0U, γ3)|t=0 = ((G ′U0+ F ′U0O)F ′U0, s0, vn(F ′)),
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which, owing to (30) and (10), leads to Q0
F ′(G

′, s) = Q0
F ′U0

(G ′U0 + F ′U0O, s).
From (23), recalling that C ′ = F ′T F ′, we get

PC ′(F ′T G ′+G ′T F ′)= Q0
F ′(G

′, 1)= Q0
F ′U0

(G ′U0+ F ′U0O, 1)

= PU T
0 F ′T F ′U0

((F ′U0)
T (G ′U0+ F ′U0O)+ (G ′U0+ F ′U0O)T (F ′U0))

= PU T
0 C ′U0

(U T
0 (F

′T G ′+G ′T F ′)U0+U T
0 C ′U0O + OT U T

0 C ′U0)

= PC ′0

(
(C ′0)

1/2
[C ′−1/2

0 U T
0 (F

′T G ′+G ′T F ′)U0C ′−1/2
0

+C ′1/20 OC ′−1/2
0 +C ′−1/2

0 OT C ′1/20 ]C
′1/2
0

)
,

where C ′ = F ′T F ′ and C ′0 =U T
0 C ′U0. Since the map

O 7→ C ′1/20 OC ′−1/2
0 +C ′−1/2

0 OT C ′1/20

is a diffeomorphism over the set of symmetric trace-free matrices, the above ex-
pression leads to

PC ′(F ′T G ′+G ′T F ′)= PC ′0

( 1
2 Tr

(
C ′−1/2

0 U T
0 (F

′T G ′+G ′T F ′)U0C ′−1/2
0

)
C ′0
)
.

In addition,

Tr
(
C ′−1/2

0 U T
0 (F

′T G ′+G ′T F ′)U0C ′−1/2
0

)
= Tr

(
C ′−1/2(F ′T G ′+G ′T F ′)C ′−1/2),

so that we may write

PC ′(F ′T G ′+G ′T F ′)= PC ′0

(1
2 Tr

(
C ′−1/2(F ′T G ′+G ′T F ′)C ′−1/2)C ′0).

Since C ′ is symmetric and nonnegative, there exists a rotation R ∈ SO(Tx ′S′) and
nonnegative reals λ1, λ2 such that

C ′ = RT
(
λ1 0
0 λ2

)
R.

Let us choose U0 ∈ SL(Tx ′S′) such that

U0 = (det C ′)1/4 RT
(
λ−1/2

1 0
0 λ−1/2

2

)
.

Hence, C ′0 =U T
0 C ′U0 = (det C ′)1/2 Id, so that

PC ′(F ′T G ′+G ′T F ′)=

P(det C ′)1/2 Id
( 1

2 Tr
(
C ′−1/2(F ′T G ′+G ′T F ′)C ′−1/2)(det C ′)1/2 Id

)
. (31)
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Using the definition of Iflex and D′ψ0
T D′n + D′nT D′ψ0 = |n(D′ψ0)|bD′ψ0 , we

infer that

Iflex(ψ0)=
1
2

∫
S′

P(det C ′)1/2 Id
( 1

2 |n(D
′ψ0)|Tr(C ′−1/2bD′ψC−1/2)(det C ′)1/2 Id

)
dx ′

=
1
2

∫
S′

P(det C ′)1/2 Id
( 1

2 |n(D
′ψ0)|H(det C ′)1/2Id

)
dx ′.

Finally, the right invariance of W2 with respect to SL(TS′) implies that |n(F ′)|
depends only on det C ′. Setting

Kx ′,det C ′(H)= P(det C ′)1/2 Id
( 1

2 |n(F
′)|H(det C ′)1/2 Id

)
,

we get (28). Moreover, if the shell is homogeneous along its fibers, then P(det C ′)1/2 Id
is homogeneous of degree two and, accordingly, Kx ′,det C ′(H) is a monomial. �

5. Geometric configuration

Classically, the energy of an elastic body is not written in terms of the deforma-
tion ψε of Sε, but in terms of the deformation ψ̃ε of the geometric configuration
S̃ε := gε(Sε), where

gε : S′× (−ε, ε)→ R3

(x ′, x3) 7→ x ′+ x3n′(x ′),

n′ : S′→R3 being the normal to S′. We set S̃ := S̃ε0 , for a small enough ε0 such that
gε0 is one-to-one. In the following, we will always assume that ε≤ ε0. We intend to
recast our results in this geometric configuration. This is easily achieved by a mere
change of variables. To begin with, we have to recast our initial three-dimensional
problem in the geometric configuration.

5.1. Recast of the problem. We denote by J̃ε(ψ̃ε) the elastic energy of a deforma-
tion ψ̃ε of S̃ε, and assume that it has the form

J̃ε(ψ̃ε) :=
∫

S̃ε
W̃ ε(x̃,∇ψ̃ε(x̃)) dx̃,

where W̃ ε stands for the stored energy function of the solid. Furthermore, we
assume the shell to be subjected to dead-body loads f̃ε, so that the total energy of
the system is given by

Ĩε(ψ̃ε) := J̃ε(ψ̃ε)−
∫

S̃ε
f̃ε · ψ̃ε dx̃ . (32)

Finally, clamping boundary conditions are added on a part of the boundary: gε(0ε)=
gε(γ × (−ε, ε)), where γ ⊂ ∂S′.
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Our aim is to determine the behavior of the minimizers ϕ̃ε of Ĩε over

9̃ε
:= {ψ̃ε ∈W 1,∞(S̃ε)3 : ψ̃ε ◦ gε(xε)= φε(xε), xε ∈ 0ε}

as ε goes to zero, under the assumptions on the stored energy and the applied loads
made hereunder.

In order to apply our results, several assumptions, similar to the ones we made
on W ε and ϕε, have to be imposed on W̃ ε and on the minimization sequences ϕ̃ε.

Dependence of the stored energy on the thickness. We assume that there exist con-
tinuous nonnegative maps W̃2 and W̃0 such that, for every (x̃, F) ∈ S̃ × R3×3,
we have

W̃ ε(x̃, F)= ε−1(ε−2W̃2(x̃, F)+ W̃0(x̃, F)
)
.

Behavior of strongly extended fibers. We assume that the stored energy W̃2 is
bounded from below by a positive constant for strongly extended fibers, that is,
there exist δ, c > 0 such that

W̃2
(
x̃, F ′ ◦π ′x ′ + F3⊗ n′(x ′)

)
≥ c

for all x̃ ∈ S̃, F ′ ∈ T ∗x ′(S
′
;R3), F3 ∈ R3 such that |F3| ≥ δ, (33)

where x ′ is the projection of x̃ onto S′ and π ′x ′ is the projection of R3 onto Tx ′(S′;R3).

Regularity and zero set of W̃2. We assume that W̃2 is a nonnegative C2 function,
and denote by M̃ the restriction of its zero set to S′×R3×3, that is,

M̃ := {(x ′, F) ∈ S′×R3×3
: W̃2(x ′, F)= 0}.

Let M′ be the projection of M̃ onto T ∗(S′;R3), that is,

M′ :=
⋃

x ′∈S′
{F ′∈T ∗x ′(S

′
;R3) : there exists n∈R3 with (x ′, F ′◦π ′x ′+n⊗n′(x ′))∈ M̃}.

Once again, we assume that the projection of M̃ onto M′ is one-to-one, that is, there
exists a map n :M′→ R3 such that

M̃= {(x ′, F ′ ◦π ′x ′ + n(F ′)⊗ n′(x ′)) ∈ S′×R3×3
: F ′ ∈M′}. (34)

Interpenetration. To avoid interpenetration of matter, it is geometric to expect
Dψ̃ε to be invertible. To this end, we require that W̃0(x ′, F) = ∞ for every
(x ′, F) ∈ M̃ such that det F < 0, and that

W̃0(x ′, F)→∞ if (x ′, F) ∈ M̃ and det F→ 0.

Applied loads. The volumic loads are assumed to scale as the inverse of the thick-
ness of the shell; more precisely, we assume that there exists f̃ : S̃→ R3 such that

f̃ε(x̃)= ε−1 f̃ (x̃) for every x̃ ∈ S̃.
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Ansatz. We assume that the minimizers of the energy admit an asymptotic expan-
sion in the form

ϕ̃ε(x ′+ εx3n′)=
∑
k≥0

εkϕk(x ′, x3). (35)

5.2. Change of variable. In order to apply our result, we first have to rewrite the
energy in terms of the associated deformation ψε = ψ̃ε ◦ gε of Sε. We have

J̃ (ψ̃ε)= J (ψε)=
∫

Sε
W ε(Dψε) dx, (36)

with W ε
= ε−1(ε−2W2+W0), and for every F ∈ T ∗x (S;R

3),

Wk(F)= W̃k(F ◦ (Dgε(x))−1) det(Dgε(x)), k = 0, 2. (37)

Note that W2 and W0 are independent of ε since Dgε = (Id′, n′) + x3(D′n′, 0)
(which is denoted by Dg hereafter). In addition, these energies satisfy the as-
sumptions made in Section 2.1. Finally, the minimizers ϕε = ϕ̃ε ◦ gε admit the
same asymptotic expansion as ϕ̃ε. Thus, all of the results of Sections 3 and 4
apply and may be expressed in terms of W̃0 and W̃2 up to a change of variable.
Moreover, the definitions of M′ and of the map n :M′→ R3 are independent of the
chosen approach.

Lemma 11. If the function W2 is defined by (37), and F ′ is a section of M′, then,
for every G ′ ∈ T ∗x ′(S

′
;R3) and s ∈ R, we have

Q0
F ′(G

′, s)= Q̃0
F ′(G

′
− s F ′D′n′, s),

where
Q̃0

F ′(G
′, s) := inf

v∈R3
D2W̃2(x ′, F)[sn′,G ′π ′x ′ + v⊗ n′]2,

where π ′x ′ is the projection of R3 onto Tx ′S′ and F= F ′(x ′)◦π ′x ′+n(F ′(x ′))⊗n′(x ′).

Proof. Let F ′ be a section of M′, x ′ be an element of S′ and G ′ ∈ T ∗x ′(S
′
;R3). From

the definition of Q0
F ′ , we have

Q0
F ′(G

′, s)= inf
v∈R3

D2W2[G ′F ′, s0, vn(F ′)]
2,

where (G ′F ′, s0, vn(F ′))= γ̇ (0), and

γ (t)= (F ′(x ′)+ tG ′, ts, n(F ′(x ′))+ vt)

is an element of

T ∗(S′;R3)× (−1, 1)× (R′)3 = T ∗(S′;R3)× T ∗((−1, 1);R3)= T ∗(S;R3).
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From (37), we deduce

Q0
F ′(G

′, s)= det(Dg(x ′, 0)) inf
v∈R3

D2W̃2[ ˙̃γ (0)]2 = inf
v∈R3

D2W̃2[ ˙̃γ (0)]2, (38)

where γ̃ (t)= γ (t)◦ Dg(x ′, ts)−1. On the other hand, Dg = (Id′, n′)+ x3(D′n′, 0),
and hence

(Dg)−1
= ((Id′, n′)+ x3(D′n′, 0))−1

=
(
(Id′, n′)(Id+x3(Id′, n′)−1(D′n′, 0))

)−1

=
(
Id−x3(Id′, n′)−1(D′n′, 0)

)
(Id′, n′)−1

+ o(x3).

Since (Id′+n′⊗ e3)
−1
=

(
π ′

n′T
)

, the above identity reads

(Dg)−1
=

(
π ′

n′T
)
− x3

(
π ′

n′T
)
(D′n′, 0)

(
π ′

n′T
)
+ o(x3)

=

(
π ′

n′T
)
− x3

(
π ′D′n′π ′

0

)
+ o(x3).

It follows that γ̃ (t) = (x(t), F(t))+ o(t) with x(t) = x ′ + tsn′, and, using the
notation F ′ for F ′(x ′) for short,

F(t)= ((F ′, n(F ′))+ t (G ′, v))
((
π ′

n′T
)
− ts

(
π ′D′n′π ′

0

))
= (F ′, n(F ′))

(
π ′

n′T
)
+ t (G ′π ′+ v⊗ n′)− ts F ′D′n′π ′.

Consequently,

˙̃γ (0)=
[(

x ′, (F ′, n(F ′))
(
π ′

n′T
))
, (sn′,G ′π ′+ v⊗ n′− s(F ′D′n′π ′))

]
=
[
(x ′, F ′π ′+ n(F ′)⊗ n′), (sn′, (G ′− s F ′D′n′)π ′+ v⊗ n′)

]
=
[
(x ′, F), (sn′, (G ′− s F ′D′n′)π ′+ v⊗ n′)

]
The conclusion follows from (38). �

From now on, we limit our analysis to the case where standard boundary condi-
tions (18) are applied. From Proposition 5, we immediately infer the next result.

Proposition 12. Assume that the standard boundary conditions (18) apply to the
shell. Let ϕ̃ε be the minimizer of the total energy Ĩε(ϕ̃ε) over the space of admissi-
ble deformations. If ϕ̃ε admits an asymptotic expansion as in (35), and if the total
energy Ĩε(ϕ̃ε) remains bounded, then

ϕ0 = arg min
ψ0∈90

Ĩ0(ψ0),
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where

Ĩ0(ψ0)=
1
3

∫
S′

Q̃0
D′ψ0

(D′n− D′ψ0 D′n′, 1) dx ′

+ 2
∫

S′
W̃0(x ′, (D′ψ0, n)) dx ′− 2

∫
S′

f̃0 ·ψ0 dx ′,

f̃0(x ′)= f̃ (x ′, 0) for every x ′ ∈ S′, n = n(D′ψ0), and

90 := {ψ0 ∈W 1,∞(S′)3 : D′ψ0 ∈M′, n = n(D′ψ0) ∈W 1,∞(S′)3

such that ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for every x ′ ∈ γ }.

Note that more general Dirichlet conditions could have been considered in the same
fashion as in Lemma 4.

5.3. Homogeneity along the fibers. We say that the shell is homogeneous along
its fibers in the geometric configuration if, for every x ′ ∈ S′, s ∈ (−1, 1) and
F ∈ R3×3, we have W̃2(x ′+ sn′, F)= W̃2(x ′, F).

Proposition 13. If the shell is homogeneous along its fibers in the geometric con-
figuration, then Q̃0

F ′(G
′, s) is independent of s, and is denoted by Q̃0

F ′(G
′).

5.4. Frame-indifference. In the following, we assume the stored energy to be
frame-indifferent, that is, W̃ ε(x̃, RF) = W̃ ε(x̃, F) for every (x̃, F) ∈ S̃ε ×R3×3

(with ε> 0 small enough), and every rotation R ∈SO(3). Note that this is equivalent
to the frame-indifference of W ε.

Proposition 14. If the stored energy function W̃2 is frame-indifferent, then there
exists a bundle map P̃ : C ′ 7→ P̃C ′ over S′ from ES′ into P such that, for every
deformation ψ0 of finite energy Ĩ0(ψ0) and for every G ′ ∈ T ∗(S′;R3), we have

Q̃0
D′ψ0

(G ′, 1)= P̃C ′(D′ψ0
T G ′+G ′T D′ψ0),

with C ′ = D′ψ0
T D′ψ0 and n = n(D′ψ0). Moreover, if the shell is homogeneous

along its fibers in the geometric configuration, then P̃C ′ is homogeneous of de-
gree two.

Proof. The proof is similar to the one devised for the abstract configuration. Once
again, there exists a map W̃S such that, at least in a neighborhood of M̃

+
= {F ∈

M̃ : det F > 0}, we may write W̃2(x, F)= W̃S(x, FT F). After some computations,
we derive the claimed result with

P̃C ′(M)=

inf
w′∈Tx ′ S

′

w3∈R

D2W̃S(x ′, C̃)
[
n′, π ′T Mπ ′+ n′w′Tπ ′+π ′Tw′n′T + n′w3n′T

]2
, (39)
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where C̃ = (D′ψ0π
′
+ n(F) ⊗ n′)T (D′ψ0π

′
+ n(F) ⊗ n′). Moreover, frame-

indifference implies also that C̃ depends only on C ′. Finally, if the shell is ho-
mogeneous along its fibers in the geometric configuration, we have

P̃C ′(M)=

inf
w′∈Tx ′ S

′

w3∈R

∂2W̃S

∂C̃2
(x ′, C̃)

[
π ′T Mπ ′+ n′w′Tπ ′+π ′Tw′n′T + n′w3n′T

]2
. (40)

This completes the proof. �

5.5. Planar isotropy. We say the shell is isotropic along its midsection if, for every
x ′ ∈ S′ and (F ′, F3) ∈ T ∗x ′(S

′
;R3)×R3, we have

W̃ ε(x ′, F ′Rπ ′x ′ + F3⊗ n′)= W̃ ε(x ′, F ′π ′x ′ + F3⊗ n′)

for every R ∈ SO(Tx ′S′). This is equivalent to the definition used in the abstract
configuration. We investigate the consequences of planar isotropy on the flexural
part of the energy

Ĩflex(ψ0) :=
1
3

∫
S′

Q̃0
D′ψ0

(D′n− D′ψ0 D′n′, 1) dx ′.

Proposition 15. If the shell is isotropic along its midsection, then

Ĩflex(ψ0)=
1
3

∫
S′

P̃C ′
(
|n(D′ψ0)|bD′ψ0 − (C

′D′n′+ (D′n′)T C ′)
)

dx ′,

where bD′ψ0 is the second fundamental form of the deformed surface, given by (27).

Proof. The proof is similar to Proposition 9. �

5.6. Right invariance under the special linear group. We say that the stored en-
ergy W̃2 is invariant under the special linear group if, for every x̃ = x ′+ x3n′ and
(F ′, F3) ∈ T ∗x ′(S

′
;R3)×R3, we have

W̃2(x̃, F ′Uπ ′x ′ + F3⊗ n′)= W̃2(x̃, F ′π ′x ′ + F3⊗ n′)

for every U ∈ SL(Tx ′S′). Note that this definition is equivalent to the one given in
the abstract configuration.

Proposition 16. If W̃2 is right invariant under the special linear group, then

Ĩflex(ψ0)=
1
3

∫
S′

K̃x ′,det(C ′)
(
|n(D′ψ0)|H − H0

)
dx ′, (41)

where H and H0 are the mean curvatures of the deformed shell ψ0(S′) and unde-
formed shell S′, respectively. Moreover, if the shell is homogeneous along its fibers,



128 OLIVIER PANTZ AND KARIM TRABELSI

then

Ĩflex(ψ)=
1
3

∫
S′
κ̃x ′,det(C ′)(|n(D′ψ0)|H − H0)

2 dx ′.

Proof. For all sections F ′ of T ∗(S′;R3) and G ′ ∈ T ∗x ′(S
′
;R3), we have

P̃C ′(F ′T (G ′− F ′D′n′)+ (G ′− F ′D′n′)T F ′)= PC ′(F ′T G ′+G ′T F ′).

From Proposition 10 and (31), we deduce that

P̃C ′(F ′T (G ′− F ′D′n′)+ (G ′− F ′D′n′)T F ′)= P̃(det C ′)1/2 Id
( 1

2α(det C ′)1/2 Id
)
,

with

α = Tr
(
C ′−1/2(F ′T (G ′− F ′D′n′)+ (G ′− F ′D′n′)T F ′)C ′−1/2).

We thus obtain (41) with

K̃x ′,det(C ′)(H)= P̃det(C ′) Id
( 1

2 H(det C ′)1/2 Id
)
. (42)

If the shell is homogeneous along its fibers, then the P̃(det C ′) Id is homogeneous of
degree two, whence the conclusion in this case. �

6. Examples

We are now in position to apply our formal convergence result to derive different
models for isometric bending shells, vesicles and RBCs. Note that, in our setting,
we do not derive the nonlinear membrane shell model (see [Le Dret and Raoult
1996]) since W2 cannot be chosen to be equal to zero. Throughout this section, we
assume that W ε and W̃ ε satisfy the assumptions (2), (3) and (33), (34), respectively,
that the Dirichlet boundary conditions on 0ε are given by (7) and (18) and that the
minimizers ϕε and ϕ̃ε of the total energy admit asymptotic expansions as in (6)
and (35), respectively, while their total energies Iε(ϕε) and Ĩε(ϕ̃ε) remain bounded.
Moreover, the stored energies are assumed to be frame-indifferent.

6.1. Isometric bending shells. In this section, we recover the isometric bending
shell model by choosing W̃0 = 0 and the set M̃ of the zeros of W̃2 restricted to the
midsection to be equal to

M̃iso := S′×SO(3). (43)

The sequence of minimizers of the energy converges toward the minimizer of an
energy whose elastic part depends only on the difference between the second fun-
damental form of the deformed shell and that of its reference configuration.

Proposition 17. If W̃ ε
= ε−3W̃2 and if W̃2 is such that M̃= M̃iso, given by (43), then

ϕ0 = arg min
ψ0∈90

Ĩ0(ψ0),
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where

Ĩ0(ψ0)=
1
3

∫
S′

P̃x ′,Id
(
(D′ψ0)

T D′n+ D′nT D′ψ0− (D′n′+ D′n′T )
)

dx ′

− 2
∫

S′
f0 ·ψ0 dx ′, (44)

f0(x ′)= f (x ′, 0) for every x ′ ∈ S′, n = n(D′ψ0), P̃x ′,Id is a polynomial of degree
at most two given by (39), and

90 = {ψ0 ∈W 1,∞(S′)3 : (D′ψ0)
T D′ψ0 = Id, n = n(D′ψ0) ∈W 1,∞(S′)3,

ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for every x ′ ∈ γ }.

Moreover, if the shell is homogeneous along its fibers, then P̃x ′,Id is homogeneous
of degree two.

Proof. It is a straightforward application of Proposition 12 and Proposition 14. �

Example. Let us give a practical example. For instance, one can choose the Saint
Venant–Kirchhoff nonlinearly elastic stored energy function

W̃2(F)= µTr((FT F − Id)2)+ λ
2

Tr(FT F − Id)2.

A simple computation leads to the energy

Ĩ0(ψ0)=
1
3

∫
S′

2µTr((b− bref)
2)+

λµ

2µ+ λ
Tr(b− bref)

2
− f0 ·ψ0 dx ′,

where b = (D′ψ0)
T D′n + (D′n)T D′ψ0 is the second fundamental form of the

deformed shell and bref = (D′n′)T + D′n′ is the second fundamental form of the
undeformed shell.

6.2. Vesicles. In this section we derive Helfrich functionals, with or without spon-
taneous curvature, from three-dimensional elasticity. The main difference with the
isometric case lies in the fact that we assume the energy to be right invariant under
the special linear group SL(TS′). Note that this readily implies that it may not be
chosen to be isotropic. The Helfrich functional without spontaneous curvature is
derived using the abstract configuration S, while the one with spontaneous curva-
ture is obtained using the geometric configuration S̃ of the shell.

6.2.1. Without spontaneous curvature. In this section we consider the case where
the zero set of W2 restricted to the midsection is given by

MH := {(F ′, F3) ∈ T ∗(S′;R3)× T ∗0 ((−1, 1);R3) :

det(F)= 1, F3 · v = det(F ′, v) for every v ∈ T ∗0 ((−1, 1);R3)}. (45)
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From Propositions 5 and 10, we obtain that the minimizers of the energy formally
converge to the Helfrich functional with no spontaneous curvature.

Proposition 18. Suppose that W ε
= ε−3W2, W2 is right invariant under SL(TS′),

and that M=MH as given by (45). If the shell is homogeneous along its fibers in
the abstract configuration, then

ϕ0 = arg min
ψ0∈90

I0(ψ0),

where

I0(ψ0)=
1
3

∫
S′
κ|H |2 dx ′− 2

∫
S′

f0 ·ψ0 dx ′, (46)

f0(x ′)= f (x ′, 0) for every x ′ ∈ S′, H is the mean curvature of the deformed shell
ψ0(S′), κ(x ′)= PId

( 1
2 Id

)
, where PId is given by (25), and

90 = {ψ0 ∈W 1,∞(S′)3 : n ∈W 1,∞(S′)3 and det((D′ψ0)
T D′ψ0)= 1,

ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for x ′ ∈ γ },

where n is the normal to the deformed surface ψ0(S′).

Example. Proposition 18 can be applied with

W2(F)=WS(C)= α(det(C)− 1)2+β|Ce3− e3|
2, (47)

where C = FT F and α and β are positive real constants. A simple computation
leads to

D2WS

[
0,
(1

2 Id w′

w′ w3

)
Id

]2

= 2α(1+w3)
2
+ 2β|(w′, w3)|

2.

Then, from the expression (25) of PId, we get

κ = PId(
1
2 Id

)
= inf

w
2α(1+w3)

2
+ 2β|(w′, w3)|

2
= 2(α−1

+β−1)−1.

Hence, the limit energy in this case is

I0(ψ0)=
2
3

∫
S′
(α−1
+β−1)−1

|H |2 dx ′− 2
∫

S′
f0 ·ψ0 dx ′.

6.2.2. With spontaneous curvature. Here we derive from three-dimensional elas-
ticity a model of shells whose limit energy is the Helfrich functional with nonzero
spontaneous curvature. Basically, such a model is obtained by using the same
assumptions as in the previous case but cast in the geometric configuration, with a
set of zeros restricted to the midsection for W̃2 given by

M̃H := {(x ′, F) ∈ S′×R3×3
: det(F)= 1 and (Cof F − F)n′ = 0}. (48)

The following proposition is a direct application of Propositions 12 and 16.



NONLINEAR SHELL MODELS COMBINING SHEAR AND FLEXURE 131

Proposition 19. Suppose that W̃ ε
= ε−3W̃2, W̃2 is right invariant under SL(TS′),

and such that M̃= M̃H as given by (48). If the shell is homogeneous along its fibers
in the geometric configuration, then

ϕ0 = arg min
ψ0∈90

Ĩ0(ψ0),

where

Ĩ0(ψ0)=
1
3

∫
S′
κ̃|H − H0|

2 dx ′− 2
∫

S′
f0 ·ψ0 dx ′, (49)

f0(x ′)= f̃ (x ′, 0) for every x ′ ∈ S′, where H is the mean curvature of the deformed
shell ψ0(S′) and H0 is the mean curvature of S′, with

κ̃(x ′)= P̃Id
( 1

2 Id
)
,

where P̃Id is given by (40) and

90 = {ψ0 ∈W 1,∞(S′)3 : n ∈W 1,∞(S′)3 and det(D′ψ0
T D′ψ0)= 1,

ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for every x ′ ∈ γ }, (50)

where n is the normal to the deformed surface ψ0(S′).

Example. The stored energy function

W̃2(x ′, F)= W̃Sx ′C̃ = α(det(FT F)− 1)2+β|FT Fn′− n′|2

satisfies the assumptions of Proposition 19, and we have

κ̃ = inf
w′∈Tx ′ S

′

w3∈R

∂W̃S

∂C̃2
(x ′, Id)

[1
2π
′Tπ ′+ n′w′Tπ ′+π ′Tw′n′T + n′w3n′T

]2
.

Furthermore, we have

∂W̃S

∂C̃2
(x ′, Id)[δC]2 = 2(α Tr(δC)2+β|δCn′|2),

so that

κ̃ = inf
w′∈Tx ′ S

′

w3∈R

2
(
α(1+w3)

2
+β(|w′|2+w2

3)
)
= 2(α−1

+β−1)−1.

For such a choice of W̃2, and under the assumptions made in Proposition 19, the
sequence of minimizers ϕ̃ε formally converges toward a minimizer of

Ĩ0(ψ0)=
2
3

∫
S′
(α−1
+β−1)−1

|H − H0|
2 dx ′− 2

∫
S′

f̃0 ·ψ0 dx ′
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over 90 given by (50). Note that this is the set of deformations that preserve
the local area of the shell supplemented with boundary conditions on a subset of
the boundary.

6.3. Red blood cells. The mechanical behavior of a red blood cell (RBC) is driven
by the nature of its membrane, which is mainly made of a lipid bilayer. Note that in
addition to the lipid bilayer, RBCs are also composed of a protein skeleton. This
skeleton ensures a small resistance of the RBCs to shear stress. Such a model
may be obtained as the limit of the three-dimensional elasticity. In this section,
we derive a model of the mechanical behavior of RBCs as the limit of genuine
three-dimensional elasticity. To this end, we consider a stored energy W ε whose
asymptotic assumption reads as

W ε
= ε−1(ε−2W2+W0),

where W2 satisfies the same assumption as in the study of vesicles without sponta-
neous curvature (see Section 6.2.1), namely, its zero set restricted to the midsection
is given by (45). We get that the sequence ϕε of minimizers formally converges to

ϕ0 = arg min
ψ0∈90

I0(ψ0),

where

I0(ψ0)=
1
3

∫
S′

k|H |2 dx ′+ 2
∫

S′
W0(D′ψ0, n) dx ′− 2

∫
S′

f0 ·ψ0 dx ′,

f0(x ′)= f (x ′, 0), n is the normal to the deformed shell ψ0(S′) and 90 is the set
of deformations that preserve the local area of the shell and satisfy the boundary
conditions

ψ0(x ′)= φ0(x ′) and n(x ′)= nγ (x ′) for every x ′ ∈ γ.

Example. As an example, we can choose the nonlinearly elastic Saint Venant–
Kirchhoff stored energy function

W0(F)= µTr((C − Id)2)+ λ
2

Tr(C − Id)2 with C = FT F,

and W2(F) as in (47). This leads to a limit energy

I0(ψ0)=
2
3

∫
S′
(α−1
+β−1)−1

|H |2 dx ′+ 2
∫

S′

(
µTr((D′ψ0

T D′ψ0− Id′)2)

+
λ

2
Tr(D′ψ0

T D′ψ0− Id′)2
)

dx ′− 2
∫

S′
f0 ·ψ0 dx ′.
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7. Conclusion

In this article we prove, using a formal approach, that new nonlinearly elastic shell
models may be derived assuming the shell to be highly anisotropic. Notably, it
enables us to derive some models used in the study of vesicles and RBCs. Part
of the results presented in this article have since been proved by a 0-convergence
approach in an Eulerian setting for the justification of the modeling of vesicles
by Merlet [2013a; 2013b]. Finally, let us recall and emphasize the fact that the
computation of the limit energy should include a relaxation step that is not taken
into account in our formal framework. The only interesting case being the one
where the flexural term Q0

F ′(G, s) is not fully degenerate, that is not independent
of G. In such a case, a relaxation of the membrane term of the limit energy is
expected to take place. The correct limit energy in Proposition 5 should read

I0
′(ψ0)=

1
3

∫
S′

Q0
D′ψ0

(D′n, 1) dx ′+ 2
∫

S′
Q′W0(D′ψ0, n) dx ′− 2

∫
S′

f0 ·ψ0 dx ′,

where Q′W0 is the in-plane quasiconvexification of W0, defined for every element F ′

of T ∗(S′;R3) by

Q′W0(F ′, n)= inf
ϕ∈C∞0 (ω;Tx ′ S′)

|ω|−1
∫
ω

W0(F ′(Id′+D′ϕ), n) dy′,

where x ′ = πS′(F ′) and ω is a bounded regular open set of Tx ′S′.

Notation

• R, set of reals

• R′, dual set of reals

• N, set of nonnegative integers

• S′, midsurface of the shell in the reference configuration

• ε, thickness of the shell

• Sε := S′× (−ε, ε), abstract reference configuration of the shell

• S := S1, rescaled abstract reference configuration of the shell

• S̃ε, geometric reference configuration

• S̃, geometric reference configuration of maximum thickness

• xε, element of Sε

• x̃ , element of S̃

• x ′, element of S′

• TM , tangent space to M
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• Tx M , tangent fiber to M at x

• T ∗M , cotangent space to M

• T ∗x M , cotangent space to M at x

• T (M;R3) := TM ⊕ TM ⊕ TM , Whitney triple sum of TM

• Tx(M;R3) := Tx M ⊕ Tx M ⊕ Tx M , Whitney triple sum of Tx M

• T ∗(M;R3) := T ∗M ⊕ T ∗M ⊕ T ∗M , Whitney triple sum of T ∗M

• T ∗x (M;R
3) := T ∗x M ⊕ T ∗x M ⊕ T ∗x M , Whitney triple sum of T ∗x M

• πB : F→ B, projection of a fiber bundle F onto its base B

• π ′x ′ : R
3
→ Tx ′S′, projection onto Tx ′S′

• ψε, deformation of Sε

• ψ(ε) : S→ R3, rescaled map of the deformation ψε

• ψ = (ψk), expansion of the deformation ψ(ε)=
∑

k ε
kψk with respect to the

thickness

• ϕ = (ϕk), expansion of the minimizers ϕ(ε) =
∑

k ε
kϕk with respect to the

thickness

• Dψε, differential of ψε : Sε→ R3

• Dψε(xε), differential of ψε : Sε→ R3 at xε

• (D′ψε, D3ψ
ε), decomposition of Dψε ∈ T ∗(Sε;R3) with respect to the prod-

uct T ∗(S′;R3)× T ∗((−ε, ε);R3), where ψε : Sε→ R3

• (D′ψε(x), D3ψ
ε(x)), decomposition of Dψε(x) ∈ T ∗x (S

ε
;R3) with respect

to the product T ∗x ′(S
′
;R3)× T ∗x3

((−ε, ε);R3), where ψε : Sε→ R3

• ∂3, partial differentiation along the fibers

• Jε(ψε), elastic energy of a deformation ψε : Sε→ R3

• Iε(ψε), total energy of a deformation ψε : Sε→ R3

• Lε(ψε), work of the external loads

• J (ε)(ψ(ε)), rescaled elastic energy of the deformation ψε

• I (ε)(ψ(ε)), rescaled total energy of the deformation ψε

• J(ε)(ψ), elastic energy of the deformation of asymptotic expansion ψ

• I(ε)(ψ), total energy of the deformation of asymptotic expansion ψ

• I0(ψ0), limit of the total energy (for standard boundary conditions)

• fε, external loads

• W ε
: T ∗(Sε;R3)→ R+, stored energy

• 9ε, set of admissible deformations of Sε
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• 9, set of admissible asymptotic expansions for the deformations of Sε

• Wk : T ∗(S;R3)→ R+, k-th term of the asymptotic expansion of the stored
energy

• M⊂ T ∗(S;R3), the restriction of the zero set of W2 to the midsection S′

• M′ ⊂ T ∗(S′;R3), projection of M on T ∗(S′;R3)

• n0 : M
′
→ T ∗0 ((−1, 1);R3), orientation of the normal fiber in the deformed

configuration

• n : M′→ R3, orientation of the normal fiber in the deformed configuration
(only the vectorial part)

• n′, normal to the midsection S′ of the reference configuration

• D2W2, second derivative of W2 on M

• a[ · ]2 = a( · , · ), where a is a bilinear form

• QF : T ∗(S′;R3)× R3
→ R, quadratic form associated to the flexural limit

energy, where F is a section of M′

• Q0
F := infv QF ( · , v) : T ∗(S′;R3)→ R

• Iflex(ψ), flexural limit energy of a deformation ψ

• dx ′, 2-dimensional Hausdorff measure restricted to S′

• Tr(A), the trace of the matrix A

• ψ̃ε, W̃ ε, W̃k, M̃, L̃ε, f̃ε, . . . , variables with tildes are defined on the geometric
configuration

• SO(TM), rotations of TM , that is, the fiber bundle made of all rotations of
Tx M (with x ∈ M), where M is a Riemannian manifold

• SO(n), rotations of Rn

• SL(TM), special group of TM , that is, the fiber bundle made of all linear
diffeomorphisms of Tx M with determinant one (with x ∈ M), where M is a
Riemannian manifold

• EM , set of symmetric bilinear forms on the tangent space of M

• O, fiber bundle over S′ whose fibers are the traceless maps from Tx ′S′ into itself

• P, set of polynomials of degree at most two on ES′
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