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COMPREHENSIVE DESCRIPTION OF DEFORMATION
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SANICHIRO YOSHIDA

Deformation and fracture of solids are discussed as comprehensive dynamics
based on a field theory. Applying the principle of local symmetry to the law of
elasticity and using the Lagrangian formalism, this theory derives field equations
that govern dynamics of all stages of deformation and fracture on the same
theoretical foundation. Formulaically, these field equations are analogous to
the Maxwell equations of electrodynamics, yielding wave solutions. Different
stages of deformation are characterized by differences in the restoring mech-
anisms responsible for the oscillatory nature of the wave dynamics. Elastic
deformation is characterized by normal restoring force generating longitudinal
waves; plastic deformation is characterized by shear restoring force and normal
energy-dissipative force generating transverse, decaying waves. Fracture is char-
acterized by the final stage of plastic deformation where the solid has lost both
restoring and energy-dissipative force mechanisms. In the transitional stage
from the elastic regime to the plastic regime where both restoring and energy-
dissipative normal force mechanisms are active, the wave can take the form of
a solitary wave. Experimental observations of transverse, decaying waves and
solitary waves are presented and discussed based on the field theory.

1. Introduction

Most conventional approaches classify deformation of solids into separate regimes
and discuss its mechanics based on the constitutive relation of each regime. The
elastic and plastic regimes are defined, respectively, as the regimes where the consti-
tutive relation is characterized by linear and nonlinear stress-strain relations, and
fracture is considered as an independent phenomenon where a preexisting crack
grows by itself. For each regime, a specific theory is used: continuum mechanics
[Spencer 1980; Landau and Lifshitz 1986] for the elastic regime, various theories of
plasticity [Hill 1998; Lubliner 2008] for the plastic regime and fracture mechanics
[Griffith 1921; Irwin 1948] for the fracturing regime. When an external load is
applied to a solid object and the resultant deformation is viewed as the response
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of the entire object, it is true that the deformation mechanics undergone in these
regimes exhibits the stress-strain characteristics of the respective regimes. If the
same object is analyzed in a local region, however, it is obvious that the deformation
status can be different from other local regions, and hence, on the global level, the
deformation should be characterized by multiple constitutive relations at the same
time. A metal specimen freshly taken out of an annealing oven has a number
of dislocations; as soon as an external load is applied to such a specimen, the
dislocations are activated causing local plastic deformation. These local nonlinear
behaviors are not observed in the stress-strain characteristic of the entire specimen
as most of the specimen undergoes purely elastic deformation at this stage. At the
other extreme, a metal specimen about to fail recovers from the deformed state
if the load is removed. It is unrealistic to rely on a regime-specific theory in any
stage of deformation. It is essential to use a theory that can describe all stages of
deformation comprehensively.

Comprehensive theory of deformation and fracture is not only useful to describe
the situation where elastic and plastic deformations coexist. It is also essential to
formulate the transitions from one regime to another. Generally, the life of solids
under external loads is a progression from elastic deformation to fracture through
plastic deformation. In the tensile or compression mode of deformation where the
stress increases with the passage of time, the deformation exhibits this pattern of
progression as a function of the increasing stress. Even in the fatigue mode of de-
formation where the magnitude of the external load remains the same, most solids
follow the same pattern of progression [Ichinose et al. 2006]. In engineering, often
analysis of the transitional stage from one regime to the next is more important
than analysis within a certain regime. If the remaining life of a machine part is
known, it becomes unnecessary to replace it at an earlier stage, contributing to the
conservation of natural resources. To analyze these transitional stages, the theory
must be regime-independent. Furthermore, these transitions involve multiple scale
levels. Fracture of solids is always initiated at the atomistic scale and evolves
to the microscopic scale and eventually to the macroscopic scale; defects of a
size comparable to several atoms grow to the microscopic level and eventually to
the macroscopic level when the entire specimen fails. A universal approach is
essential.

In this regard, a recent field theory of deformation and fracture has an advan-
tage [Yoshida 2015]. Requesting local symmetry [Aitchison and Hey 1989] in
Hooke’s law, this theory derives field equations that govern the displacement field
of solids under deformation. Formulaically, the field equations are very similar
to Maxwell’s equations of electrodynamics. From a dynamical point of view, the
field equations represent synergetic interaction between the translational and rota-
tional modes of displacement. This interaction can be interpreted as Lenz’s law
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analogous to Faraday’s law in electrodynamics. In the present context, Lenz’s
law represents solids’ response to reduce the disturbance caused by an external
load. The general solution to the field equations is a wave function where the
form of the wave characteristics depends on the regime. The elastic regime can
be characterized by a longitudinal wave known as the wave of compression and a
rotational wave known as the wave of deformation. In this regime, the elasticity
is a longitudinal effect where the solid material responds to the force due to an
external load elastically. The plastic regime is characterized by a transverse wave
that decays due to the irreversibility of plasticity. In this regime, the elasticity is a
transverse effect due to differential rotation; the solid material responds elastically
to the external torque and not to the force. The irreversibility is due to the energy
dissipation associated with irreversible motion of localized normal strain1 in the di-
rection of the local velocity. Thus, the longitudinal effect is energy-dissipative. The
solid material resists the external force energy-dissipatively and the external torque
elastically. Fracture is the stage of deformation where the solid material has lost
all the mechanisms to resist the external load, elastically or energy-dissipatively,
and the only reaction to the load is to create discontinuity. Under some conditions,
the energy-carrying wave takes the form of a solitary wave. In this situation, the
solid material does not exhibit resistive force, and the stress-strain curve plateaus.
A similar phenomenon occurs in the transitional stage from the plastic to fracture
regimes. The material dissipates energy from the external load via propagation of a
solitary wave. When the solitary wave stops moving, the material loses the energy-
dissipative mechanism completely, and it fractures. Thus, the transition from one
regime of deformation to another can be identified as a change in the way the solid
material responds to an external load and characterized as different forms in the
displacement wave.

The similarity between electrodynamics and the present field deformation theory
is not limited to the formulaic resemblance in the field equations. As mentioned
above, the energy dissipation in plastic deformation is caused by motion of lo-
calized normal strain due to the local velocity field. From the field-theoretical
viewpoint, the normal strain can be interpreted as the charge of symmetry associ-
ated with the local symmetry of Hooke’s law. From the viewpoint of Lagrangian
dynamics, the normal strain can be interpreted as representing the Noether current
associated with the invariance of the corresponding Lagrangian density. From this
standpoint, this quantity can be identified as corresponding to the electric charge
and called the deformation charge. Note that the electric charge is proportional to
divergence of the electric field and the normal strain is divergence of the displace-
ment field. With this interpretation, the energy dissipation in plastic deformation

1Strictly speaking, it is the rate of normal strain or the temporal derivative of normal strain. For
simplicity, it is called the normal strain.
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can be understood as a phenomenon analogous to Ohmic loss in electrodynamics
where the electromagnetic field loses energy when a free electric charge is moved
by the electric field. From the perspective of energy flow, the transverse displace-
ment wave carries elastic energy through the material and the charge flow dissipates
the energy. When the transverse wave decays completely and the charge stops mov-
ing, the material loses all mechanisms to transfer the work provided by the external
load from one side of the specimen to the other or dissipate it. This is when the
material fractures. The situation is analogous to electrical breakdown of dielectric
media [Yoshida 2000]. When the level of ionization is low and hence the density
of free charge is low, the propagation of electromagnetic waves is the dominant
mechanism of energy flow. When the conduction current density increases to a
certain level, the Ohmic loss becomes the dominant mechanism to dissipate the
energy provided by the external circuit. Eventually, the current density becomes
infinitely high, and that is when the medium is electrically broken.

A number of authors have formulated nonlinear behavior of deformation. Among
them, the following models have been proposed as useful tools for unified descrip-
tion of elastic and plastic deformations and are worth mentioning here. These
models are based on the framework established by Toupin [1964] and Mindlin
[1965] and known as Toupin–Mindlin strain-gradient theory. This theory postulates
that the strain energy depends both on the symmetric strain tensor and the second
gradient of displacement. By introducing a Lagrangian action both in the material
and the spatial description, Auffray et al. [2015] have formulated a material descrip-
tion for second-gradient continua. Javili et al. [2013] have generalized the work by
Mindlin [1965] and formulated a geometrically nonlinear theory of higher-gradient
elasticity accounting for boundary energies. By means of the least action principle,
Madeo et al. [2013] have derived a general set of equations of motion and dual-
ity conditions to be imposed at macroscopic surfaces of discontinuity in partially
saturated, solid second-gradient porous media. Fleck and Hutchinson [1997] have
applied the Toupin–Mindlin strain-gradient framework to plastic deformation and
proposed phenomenological theories of strain-gradient plasticity.

Connections between these formalisms based on the strain-gradient theory and
the present field theory are not straightforward and are not fully understood at
this point. Nevertheless, it is worth pointing out some similarities and a contrast
between these formalisms and the present theory. As will be discussed in the
next section, the present theory incorporates nonlinearity by allowing the trans-
formation matrix of linear elasticity, known as the displacement gradient tensor,
to be coordinate-dependent. The components of the displacement gradient tensor
are strain, which is essentially the first gradient of displacement. Thus, the fact
that we allow its coordinate dependence means that we automatically consider
the second gradient of displacement. Naively speaking, this corresponds to the
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approach taken by the strain-gradient theory where the second gradient of dis-
placement is included in the expression of the strain energy. Auffray et al. [2015]
and Madeo et al. [2013] apply the Lagrangian formalism to deduce the evolution
equations. This procedure seems analogous to the present theory whereby the field
equations are derived through the application of the Lagrangian formalism to the
gauge potential. Moreover, the use of both the material and spatial descriptions
in the Lagrangian action made by Auffray et al. indicates that the two descrip-
tions interact with each other in the same or similar fashion as the gauge field
and the linear elastic displacement field interact with each other in the present
theory.

As for the contrast, the following point should be noted. In the present field
theory, the nonlinearity is introduced in conjunction with the coordinate depen-
dence of the transformation matrix that describes the local linear elasticity (the
base theory). In other words, the nonlinearity is associated with the curvilinearity
of the coordinate axes and not intrinsic in the base theory. In the case of the
strain-gradient theory, on the other hand, the starting Lagrangian encompasses
nonlinearity as the strain energy expression has the term containing the second
gradient of displacement; thus, the formalism derived from the strain-gradient the-
ory is intrinsically able to describe the nonlinear nature of geometry such as the
inclusion of porosity and layered structures. It may be possible to incorporate these
geometrical nonlinear effects by the use of an appropriate compensation field, but
the possibility is not clear at this time. It is safe to assume, at least for now, that
the present theory is applicable to the cases where the local deformation can be
modeled to obey the law of linear elasticity.

The aim of this paper is to provide an overview of this field-theoretical approach
to dynamics of deformation and fracture. After briefly reviewing the concept of
local symmetry on which the present theory is based, the field equations will be
derived. Through physical interpretations of the field equations, deformation dy-
namics will be discussed from the viewpoint of force acting on a unit volume of
the solid material. It will be shown that the transverse (shear) force is restoring
regardless of the regime whereas the longitudinal (normal) force is restoring in the
elastic regime and energy-dissipative in the plastic regime. It will also be shown
that these restoring forces cause longitudinal and transverse wave nature of elastic
and plastic deformation and solitary wave nature in the transitional stage from
the elastic regime to the plastic regime. The wave equations for the respective
regimes will be derived from the field equations and will be solved analytically
under some conditions. The energy-dissipative nature of the dynamics will be
explained through the concept of deformation charge. Supporting experimental
results will be presented to discuss these wave characteristics and dynamics of the
deformation charge.
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2. Theory

Details of the present field theory can be found elsewhere [Yoshida 2015]. In short,
this field theory formulates deformation dynamics based on two postulates. The
first postulate is that a solid of any deformation status locally obeys the law of
linear elasticity (Hooke’s law). The local region that obeys Hooke’s law is referred
to as the deformation structural element. The second postulate is that, as long as
the solid remains a continuum, all the deformation structural elements of the object
are logically connected by a field known as the gauge field. The first postulate is
rationalized through the consideration that regardless of the stage of deformation it
is always possible to find a local region where the interatomic potential is approxi-
mated by a quadratic function of the displacement of the atom from its equilibrium
position or, equivalently speaking, the field force on the atom is elastic force whose
magnitude is proportional to the displacement. The above-mentioned claim that a
solid object about to fail recovers from the deformed state to a certain extent if the
load is removed is an example. This postulate indicates that each of these local
elastic deformations can be expressed by a transformation that represents Hooke’s
law with the local coordinate system (local frame). If the local frame is oriented to
the principal axis, the corresponding transformation matrix is diagonal as the shear
components of the stress and strain matrices are all zero. Here, it is important
to note that the principal axes of the deformation structural elements within the
same object do not necessarily have the same orientation. In fact, it is usually the
case that in the plastic regime they are oriented randomly, as will be discussed later.
This means that we cannot define a principal axis with the global coordinate system
(global frame) and that therefore we cannot express the local elastic deformations
inclusively. This is where the second postulate comes into the picture.

The second postulate can be argued in various ways based on the principle of
local symmetry. The most intuitive argument will be as follows. The situation
where multiple deformation structural elements undergo linear elastic deformation
with the respective principal axes raises a question: “are the local elastic deforma-
tions expressed in the respective local coordinates independent of one another?” or,
equivalently, “do the deformation structural elements know one another’s elastic
deformation?” The answer must be: “they are not independent of one another”
or “they should know one another’s behavior”. Otherwise, the situation becomes
the same as the same number of independent solid objects (not connected with
one another) as the deformation structural elements experience elastic deformation
independently. Then the next question will be: “how are they connected?” We
can find a short answer to this question by recalling that we try to express all
the local elastic deformations inclusively with the global coordinates under the
situation where the local elastic deformations have their own orientations of the
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Figure 1. Infinitesimal line element changes its length under deformation.

principal axis. In other words, each deformation structural element experiences
stretch and compression along mutually different orientations. In order to express
these behaviors inclusively in the global frame, it is necessary to align all these
axes in the same orientation. This argument indicates that the gauge field has
something to do with rotational dynamics. As will be discussed later in this paper,
indeed the present gauge field is associated with rotational dynamics. From the
field-theoretical viewpoint, the gauge field compensates for the fact that the elastic
deformation expressed in the global coordinate does not consider the nonlinearity
of the dynamics. From this standpoint, this field is referred to as the compensation
field. The portion of the dynamics that we overlook by artificially aligning the
deformation structural elements, which is responsible for the nonlinearity and the
irreversibility of plastic deformation, is crammed into the potential generated by
the gauge field. Naturally, this potential is rotation-like. We say that the gauge
field makes the law of linear elasticity locally symmetric. Mathematically, it can
be stated as follows. Under the situation where deformation structural elements
undergo respective elastic deformation, the transformation matrix is coordinate-
dependent. Consequently, the associated physics law cannot be written with the
global coordinates in the same form as the local coordinates. This is because the
expression of the physics law involves differentiation and the coordinate depen-
dence of the transformation matrix generates the extra term resulting from the
differentiation of the matrix. The gauge field regains the formality in the global
frame by adding an extra term (the gauge term) to the usual derivatives so that
this term cancels out the effect of the differentiation of the transformation matrix.
The derivative with the gauge term is referred to as the covariant derivative. It is
interesting to note that mathematicians call the gauge field the connection field. In
the present case, the gauge field literally connects deformation structural elements
so that they form a single continuum.

2.1. Deformation as linear transformation. Consider in Figure 1 a solid object
under deformation. By this deformation, an infinitesimal line element vector η =
(dx, dy, dz) changes its length and direction by coordinate-dependent displace-
ment vector ξ(x, y, z). Expressing the resultant line element vector as η′, we can
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express the deformation with the linear transformation

η′ = (I +β)≡Uη, (1)

where I is the unit matrix and β is the displacement gradient tensor

β =

(
δi j +

∂ξi

∂x j

)
. (2)

Here, ξ is the displacement vector. In the theory of elasticity, the elastic force is pro-
portional to the stretch or the differential displacement dξ . Therefore, for the theory
to be invariant, the differential displacement vector must be transformed in the same
fashion as the displacement vector itself. Otherwise, after the transformation, the
elastic force law cannot be written in the same form as before the transformation.
This means that, after the transformation, the differential displacement must have
the same form as the transformation of the differential displacement. If we use
the usual differentiation, apparently this is not the case as the following expression
indicates:

d(Uξ)= dUξ +Udξ . (3)

The condition d(Uξ) = Udξ holds only when dU = 0 or the transformation is
coordinate-independent. Thus, it becomes necessary to replace the usual deriva-
tives with covariant derivatives or introduce a gauge term 0i :

Di =
∂

∂xi
−0i ≡ ∂i −0i . (4)

It is easily proved that, if the gauge term transforms as (5), the differential after the
transformation has the same form as the transformation of the differential, that is,
D′i (Uξ)=U (Diξ):

0′i =U0iU−1
+
∂U
∂x i U−1. (5)

Here the prime ′ indicates the quantity after the transformation.
Now consider the physical meaning of the gauge term:

Dξi =

(
∂ξi

∂x
−0xξi

)
dx +

(
∂ξi

∂y
−0yξi

)
dy+

(
∂ξi

∂z
−0zξi

)
dz ≡ dξi − Ai . (6)

In elastic deformation, the rotation matrix represents rigid body rotation of the ma-
terial, which does not involve length change. In (6), the actual change in the length
of the displacement vector is all in dξi . Thus, Ai can be interpreted as representing
a displacement vector that rotates the deformation structural element so that the
differential displacement vector contains only the change due to physically true
deformation and not to the geometrical effect. Figure 2 illustrates this situation
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Figure 2. Vector potential as displacement vector to align defor-
mation structural element.

schematically. Here ωy represents the rotation that must be removed to find out
the true deformation.

The above argument that the vector potential represents material rotation associ-
ated with the covariant derivatives can be justified from the following viewpoint. In
the theory of elasticity, differential displacement (deformation gradient tensor) can
be separated into the symmetric and asymmetric portions referred to as the strain
and rotation matrices, respectively. When the coordinate axes are chosen to be the
principal axes, the strain matrix is diagonal, or its shear components are all zero.
Now consider that different parts of a given solid object undergo their respective
elastic deformations. As an example, when an initially elastic object has a defect,
the four blocks will undergo different elastic deformation as Figure 3 illustrates
schematically. Under this condition, the four blocks have their own principal axes.
It becomes impossible to describe the four elastic deformations with a common
principal axis.

Based on the above interpretation, the explicit form of the spatial parts of vector
potential A can be identified as

A=

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

dx
dy
dz

=
−ωzdy+ωydz

ωzdx −ωx dz
−ωydx +ωx dy

 . (7)

The temporal component of vector potential A can be understood in conjunction
with the temporal differentiation as follows. Suppose deformation dynamics ψ

Figure 3. Local region containing a defect at the center.
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Figure 4. Gauge field strength for nonlinear deformation.

propagates as a wave. In general, the wave function can be put in the form

ψ = f (ω0t − k · r)= f (ω0t − k(αx +βy+ γ z)), (8)

where ω0 is the angular frequency, k is the propagation vector and α, β and γ are
directional cosines. Expressing the derivative of function f as f ′, we find

f ′ =
1
ω0

∂ψ

∂t
=−

1
k
(∇ψ) · k̂, (9)

where k̂ is the unit vector of k. Noting the ratio of the angular frequency to the
propagation vector is the phase velocity c, ω0/k = c, we can rewrite (9) as2

∂ψ

∂t
=−(∇ψ) · ck̂ =−(∇ψ) · c. (10)

The spatial and temporal components of vector potential A are to compensate the
spatial and temporal differentiations. Thus, they can be interpreted as being corre-
sponding to terms (∇ψ) and ∂ψ/∂t in (10). This interpretation leads to the vector
potential expression of A as follows. Intuitively, the temporal component of the
vector potential can be interpreted as representing the same effect as the spatial
component explained in Figure 2; it represents the effect of the compensating po-
tential in the time domain wherein the dynamics is a wave phenomenon traveling
at the phase velocity c:

Aµ = (A0, A1, A2, A3)=

(
φ0

c
, A1, A2, A3

)
. (11)

Now consider how vector potential A acts on the deformation dynamics. We
know that A represents the dynamics that local linear elastic dynamics cannot repre-
sent. In other words, it accounts for the compensation we need to pay as the penalty
for pretending that the dynamics is linear elastic. This effect can be formulated by

2If we repeat the same procedure to find the secondary derivatives, we will obtain the elastic wave
equation where the phase velocity is the square root of the ratio of the elastic modulus to the density.
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comparing clockwise and counterclockwise covariant derivatives. Figure 4 illus-
trates the clockwise and counterclockwise differentiation schematically. Dropping
the second-order differentials, the clockwise case is

Dµ(Dνξsdxν)dxµ = ∂µ∂νξsdxνdxµ− ∂µ(0νξsdν)dxµ+0µ0νξsdxνdxµ. (12)

Here from the definition, 0νξsdxν can be interpreted as Aν , and so

Dµ(Dνξsdxν)dxµ = ∂µ∂νξsdxνdxµ− ∂µAνdxµ+
1
ξs

AµAν . (13)

The counterclockwise case can be expressed with the vector potential in the same
fashion. Thus, the difference between the clockwise and counterclockwise cases is

Dµ(Dνξsdxν)dxµ− Dν(Dµξsdxµ)dxν

= (∂ν Aµdxν − ∂µAνdxµ)+
1
ξs
[Aµ, Aν]. (14)

In the infinitesimal limit, dxν = dxµ = ds, and division of the above equation
by ds leads to

[Dµ, D]sξsds = (∂ν Aµ− ∂µAν)+
1
ξsds
[Aµ, Aν] ≡ Fµν . (15)

Here Fµν is known as the field stress tensor. Each component of vector potential
equation (11) represents a displacement component. It is easily proved that they
are commutable; hence, the [Aµ, Aν] term of (15) is zero. With this, we obtain the
explicit form

Fµν =


0 −v1/c −v2/c −v3/c
v1/c 0 −ω3 ω2

v2/c ω3 0 −ω1

v3/c −ω2 ω1 0

 . (16)

Here vi , i = 1, 2, 3, is the time derivative of Ai and ωi , i = 1, 2, 3, is the rotation
associated with the corresponding components of the displacement due to vector
potential A:

ωk
=
∂A j

∂x i −
∂Ai

∂x j . (17)

2.2. Lagrangian and field equation. The field stress tensor is not invariant under
the transformation U . However, it is easily proved that the trace FµνFµν is invari-
ant [Yoshida 2011]. This indicates that we can construct the Lagrangian of free
particles (without the interaction with the gauge field or vector potential) in the
form proportional to FµνFµν . Knowing that the phase velocity cshear associated
with shear force has the form

cshear =
√

G/ρ, (18)
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where G is the shear modulus and ρ is the density, and that the Lagrangian is
kinetic energy minus potential energy, we can identify the Lagrangian density as

L =−
G
4

FµνFµν =
ρv2

2
−

Gω2

2
. (19)

Here the first term is the kinetic energy of the unit volume and the second term is
the rotational spring potential energy. The Lagrangian in the form of (19) indicates
the phase velocity c in (16) is in fact the shear wave velocity (18). By adding the
interaction term, we can identify the full Lagrangian in the form

L =−
G
4

FµνFµν +G jµAµ =
ρv2

2
−

Gω2

2
+

G
c

j0 A0+G j i Ai . (20)

Here j0 and j i are the temporal and spatial components of the quantity known as
the charge of symmetry, and they are connected with the phase velocity (18) as

jµ =
(

j0

c
, j1, j2, j3

)
. (21)

The four vector jµ describes how the material interacts with the gauge field and is
conserved under the governing transformation (in this case transformation U ).

With this Lagrangian, the Euler–Lagrangian equation of motion associated with
Aµ can be given as

∂ν
∂L

∂(∂ν Aµ)
−
∂L
∂Aµ
= 0. (22)

This leads to the following field equations:

∇ · v =− j0, (23)

∇ × v =
∂ω

∂t
, (24)

∇ ×ω =−
1
c2

∂v

∂t
− j , (25)

∇ ·ω = 0. (26)

Here c appearing on the right-hand side of (25) is the phase velocity (18)

2.3. Deformation charge and comprehensive description. Rearranging the terms,
we can put the field equation (25) in the form [Yoshida 2011; 2008]

1
c2

∂v

∂t
=−∇ ×ω− j . (27)

The spatial component of the charge jµ appearing on the right-hand side of the
third field equation (25) represents the longitudinal effect of the gauge field on the
material and is very important to describe the dynamics. The c appearing in the first
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Figure 5. Shear force due to differential rotational displacement.

term on the right-hand side of the same equation represents the phase velocity (18),
the velocity that the spatial pattern of the displacement field propagates. Using the
phase velocity expression (18) and multiplying both sides of this equation by ρ,
we can put (27) in the form

ρ
∂v

∂t
=−G∇ ×ω−G j . (28)

The left-hand side of (28) is found to have the form of the product of the mass
and acceleration of the unit volume. Thus, according to Newton’s second law, the
right-hand side of (27) is the external force acting on the unit volume. Here the first
term G∇ ×ω represents the shear force exerted by the neighboring blocks of the
material due to their differential rotations, and the second term G j can be identified
as the longitudinal force density. Figure 5 illustrates the shear force schematically.
The form of this second term differentiates different regimes of deformation, as
will be discussed below.

Elastic regime. Take the divergence of both sides of (25) and substitute the resul-
tant ∇ · v with (23). This provides us with an equation of continuity associated
with the conservation of charge j0 =−∇ · v:

ρ
∂(∇ · v)

∂t
=−∇ · (G j). (29)

Using ∂ξ/∂t = v, rewrite the left-hand side of (29) as

ρ
∂2(∇ · ξ)

∂t2 =−∇ · (G j). (30)

The quantity ∇ · ξ appearing on the left-hand side of (30) is known as the volume
expansion in continuum mechanics. With the interpretation that G j represents
the longitudinal force, (30) can be interpreted as the equation of motion of a unit
volume experiencing volume expansion due to differential longitudinal (normal)
force. We can identify the explicit form of G j for an isotropic elastic medium
based on continuum mechanics.
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Recall that the constitutive relation can be written in the following form based
on Cauchy’s formalism:

σxx

σyy

σzz

σxy

σyz

σzx


=



λ+ 2G λ λ 0 0 0
λ λ+ 2G λ 0 0 0
λ λ λ+ 2G 0 0 0
0 0 0 2G 0 0
0 0 0 0 2G 0
0 0 0 0 0 2G





εxx

εyy

εzz

εxy

εyz

εzx


, (31)

where σi j denotes the j-th component of the stress acting on plane i , λ is the first
Lamé coefficient and εi j is the strain defined as

εi j =
1
2

(
∂ξ j

∂xi
+
∂ξi

∂x j

)
. (32)

Considering the x component of the net external force acting on a cube of unit
volume, we obtain the equation of motion

ρ
∂2ξx

∂t2 =
∂σxx

∂x
+
∂σyx

∂y
+
∂σzx

∂z
. (33)

Substituting the corresponding stress tensor components of the constitutive equa-
tion (31) into the right-hand side and using (32), we can rewrite

ρ
∂2ξx

∂t2 = G∇2ξx +
∂

∂x
(λ+G)∇ · ξ . (34)

View G∇2ξx as the x component of G∇2ξ , and use the mathematical identity
∇ ×∇ × = ∇(∇ · )−∇2 to rewrite G∇2ξ as

G∇2ξ =−G∇ ×∇ × ξ +G∇(∇ · ξ). (35)

On the right-hand side of (35), the longitudinal effect is represented by the second
term. Taking only this term and noting that the x component of ∇(∇ · ξ) can be
put as (∇(∇ · ξ))x = ∂(∇ · ξ)/∂x , we can rewrite (34) as

ρ
∂2ξx

∂t2 = G(∇(∇ · ξ))x +
∂

∂x
(λ+G)(∇ · ξ)=

∂

∂x
(λ+ 2G)(∇ · ξ). (36)

Including the y and z components, we can express the longitudinal force vector
appearing on the right-hand side of (28) in the form

G j =−∇(λ+ 2G)(∇ · ξ). (37)

We can identify this form of G j as the longitudinal force in the elastic case. Here
(λ + 2G)(∇ · ξ) is the longitudinal force at a surface of the unit-volume cube
proportional to the strain at that point, and the entire right-hand side represents
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Figure 6. Elastic force proportional to volume expansion.

the differential longitudinal force, the difference of (λ+ 2G)(∇ · ξ) between the
leading and tailing surfaces of the unit-volume cube. Figure 6 illustrates the force
schematically.

Note that the first term on the right-hand side of (35) represents the shear force
and can be written as ∇×∇×ξ =∇×ω. This terms appears as the shear force term
in (28). In the elastic limit, (35), hence field equation (25), reduces to Cauchy’s
constitutive equation.

From the viewpoint of the equation of continuity, (29) indicates that compression
or rarefaction of en elastic material does not appear or disappear by itself but is only
generated by longitudinal force exerted by the neighboring volume. It is interesting
to note that compression and rarefaction occur alternatively.

Plastic regime. Viewing (29) as an equation of continuity, G j can be interpreted
as a flow of charge ρ∇ · v. Thus, we can put

G j =Wdρ∇ · v. (38)

Here Wd is the drift velocity of the charge ρ∇ · v of the unit volume. As will
be discussed below, if the charge is positive, it flows in the same direction as the
local velocity of the material to dissipate the kinetic energy carried by the material
particles. If it is negative, the charge flows in the direction opposite to the local
velocity. Thus, we can put

Wd = σ0v. (39)

Here σ0 is a dimensionless parameter that represents the degree of energy dissipa-
tion; the greater σ0 is, the more energy is dissipated. With (38) and (39), (28) can
be put in the form

ρ
∂v

∂t
=−G∇ ×ω− σ0ρ(∇ · v)v

=−G∇ ×ω− σcv. (40)
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vs effective force
(resistive) G j

Wd

∂vs

∂x
> 0

xs

Figure 7. Positive charge flowing in the direction of local particle velocity.

The first term on the right-hand side of (40) represents recovery force due to shear
deformation. Being proportional to the velocity, the second term can be interpreted
as representing a velocity damping force, where

σc = σ0ρ(∇ · v) (41)

is the damping coefficient. This effect is interpreted as the energy-dissipative nature
of plastic deformation.

Consider the physical meaning of the damping coefficient σc and the dimen-
sionless parameter that represents the degree of energy dissipation σ0. To this end,
rewrite the ∇ · v that appears on the right-hand side of (41) as

∇ · v =
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

=
∂vs

∂x
α+

∂vs

∂y
β +

∂vs

∂z
γ

=
∂vs

∂x
dx
dxs
+
∂vs

∂y
dy
dxs
+
∂vs

∂z
dz
dxs
=

dvs

dxs
. (42)

Here α, β and γ are direction cosines and vs is the local velocity vector of the
particle. With (39) and (42), we can put the plastic longitudinal force density (38)
in the form

G j = σ0ρ
dvs

dxs
vs v̂s . (43)

Consider the right-hand side of (43) for the case σ0 = 1. Since vs = dxs/dt , it can
be put as

G j = σ0ρ
dvs

dxs
vs v̂s = ρ

dvs

dxs

dxs

dt
v̂s = ρ

dvs

dt
v̂s =

d
dt
(ρvs)v̂s . (44)

The rightmost side of (44) represents the temporal change of momentum density
(the momentum change of the unit volume). Thus, (43) can be interpreted as indi-
cating the effect that the external longitudinal force has to cause the unit volume
to gain momentum. In other words, when σ0 = 1, the external force exerted by
the neighboring volume contributes to the momentum increase of this unit volume
without energy dissipation. From (38), we know that the charge drifts in the same
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ωz > 0 ωz < 0

ωz < 0 ωz > 0

Figure 8. Schematic illustration of shear strain. Four blocks of the
specimen under tensile load experience rotation-like behaviors due
to differential vertical displacement indicated with narrow arrows
at corners of blocks. Thicker arrows indicate resulting displace-
ment along boundaries of the four blocks. The blocks’ rotations
generate tensile strain near the center of the specimen. Left: the
elastic situation where the volumes neighboring this central vol-
ume at the top and bottom resist the tensile strain by exerting elas-
tic force that can be viewed as the shear force represented by ∇×ω.
Right: the plastic situation where the material yields to the shear
force and consequently the central volume drifts upward. This
can be viewed as a positive charge drifts upward causing energy
dissipation due to the friction exerted by surrounding materials.

direction as the longitudinal force at the drift velocity Wd . From (43) when σ0 = 1,
Wd is equal to the particle velocity v. So in this case, the charge dvs/dxs drifts in
the direction of the longitudinal force at the particle velocity vs .

When σ0 > 1, the situation is slightly different. In this case, as Figure 7 schemat-
ically illustrates, the drift velocity Wd defined above can be interpreted as repre-
senting the motion of the pattern of dvs/dxs . Here the example shown in Figure 7
is a case where the particle velocity vs has positive gradient with respect to the
coordinate axis xs . Notice that, if Wd > vs , the particles behind the leading edge
of the pattern dvs/dxs loses their momentum as the pattern passes because their
velocity decreases. Here the rate of the momentum loss is Wdρdvs/dxs . From the
viewpoint of the energy of the total system, this decrease in the momentum can be
viewed as the reduction in the mechanical energy. The faster the motion of the pat-
tern, the more energy the system loses; in the form of Wd = σ0vs , σ0> 0, the greater
the value of σc, the greater the energy loss. For simplicity, the xs dependence of vs

is assumed linear in Figure 7, but the same argument holds for any xs dependence
as far as the pattern dvs/dxs drifts in the direction of the longitudinal force G j .
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The physical meaning of the dimensionless parameter σ0 can be argued based
on microscopic deformation dynamics. According to dislocation theory, plastic
deformation occurs when dislocations propagate in the direction of shear stress.
Here the driving force of the propagation is the local shear force, and these mobile
dislocations are subject to intensive frictional force exerted by the surrounding
atoms [Suzuki et al. 1991]. Based on the present field theory, this process can be
explained with (28) and (40). In this context, the density on the left-hand side of
these equations represents the mass of the unit volume experiencing shear strain.
The first term on the right-hand side, ∇ ×ω, represents the shear force that drives
mobile dislocations. The second term represents the longitudinal force exerted
on the unit volume. When the material responds to the shear force elastically,
as Figure 8, left, illustrates schematically, this longitudinal force is elastic force
exerted by the volume behind and in front of the unit volume along the line of
shear. In this situation, the longitudinal force term G j on the right-hand side
of (28) represents this elastic force. When the local material yields to the shear
force and starts to be deformed plastically, defects (dislocations) are generated
behind or in front of the unit volume and they propagate as the shear force ∇ ×ω
is still effective. Figure 8, right, illustrates the situation schematically. In this case,
the longitudinal force term G j takes the form of (40). As the defects are generated,
the unit volume starts to drift and the dimensionless parameter σ0 indicates how
easily it drifts. The momentum loss discussed in Figure 7 can be interpreted as
representing the energy-dissipative dynamics associated with the frictional force
that the dislocations experience as they propagate. The rate of propagation of
dislocations is a unique quantity of a given solid. Thus, it is natural to assume
that the dimensionless parameter σ0 is a material constant. It should be noted
that the damping coefficient σc depends on ∇ · v according to (41) and varies as
the deformation status changes. As will be discussed later, an increase in ∇ · v
represents strain concentration and that increases the degree of energy dissipation.

Optical interferometric experiments performed on tensile-loaded metal-plate spec-
imens [Yoshida et al. 1996; 1998] indicate that from time to time the interferometric
fringe pattern shows a band structure as shown at the top of Figure 9. In this

x x +1x
1x

x

vl vh

x +1x

vl vh

Figure 9. Developed, one-dimensional charge.
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type of optical interferometry, an interferometric image of the specimen is taken
continuously with a constant interval. Here the interferometric image is formed by
illuminating the specimen with a pair of laser beams so that they interfere with each
other on the specimen surface in such a way that the relative optical phase differ-
ence is proportional to the displacement of interest. In the case of Figure 9, the inter-
ferometer is arranged to be sensitive to in-plane displacement parallel to the tensile
axis. The image taken at each time step is subtracted from the image taken at a cer-
tain time step later. The result of the subtraction yields a fringe pattern that displays
a whole-field map of the differential displacement that occurs between the two time
steps. Since this differential displacement is proportional to the average velocity of
the duration between the two time steps, this type of fringe pattern can be viewed as
representing the velocity field. Thus, hereafter, the differential displacement field
derived from the fringe pattern is referred to as the velocity field. Figure 9 is a
sample fringe pattern. The dark stripes seen in Figure 9 are called the interferomet-
ric fringes that represent the contours of the velocity field. Each contour indicates
that the velocity along the dark fringe corresponds to a relative phase change of an
integer multiple of 2π . Often a band-structured concentrated fringe pattern appears
and drifts along the length of the specimen as the bottom illustrations of Figure 9
indicate schematically. In specimens free of initial stress concentration, the banded
structure typically starts to appear near the yield point. In specimens with initial
stress concentration, the band structure can appear at any point before the specimen
yields. The higher the degree of stress concentration, the earlier it appears. It is
apparent that this band structure represents plastic deformation.

Based on the observation that it represents plastic deformation, this banded struc-
ture can be interpreted as a special case of the charge ∇ · v = dvs/dxs discussed
above where the velocity field depends only on the xs axis for the entire width
of the specimen at the band-structured region. Figure 10 illustrates the situation
schematically where a tensile load applied to a rectangular specimen generates a
field of velocity vectors to the right and forms a pattern of dvs/dxs > 0. The
three parallel lines represent the pattern of dvs/dxs where each line is a contour of
constant velocity. The xs axis is perpendicular to the contours, and in accordance
with the above argument, as the pattern drifts in the direction of xs , the mechanical
energy of the system is dissipated. The x p axis is set parallel to the velocity contour.
As the velocity field does not depend on the x p axis (dvp/dx p = 0), we call this

vp

vsz

Figure 10. Developed, one-dimensional charge.
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type of pattern the one-dimensional charge. As the contours cross over the width of
the specimen, we call it a developed charge. Thus, the pattern shown in Figure 10
is classified as a developed, one-dimensional charge.

A developed, one-dimensional charge is often observed in tensile experiments
on a low-carbon steel at the beginning of the plastic regime where the stress-
strain curve shows a plateau (the yield plateau). From the temporal behavior and
other features, the one-dimensional charge observed in the yield plateau has been
identified as representing the phenomenon known as the Lüders band [1860]. In
aluminum-alloy specimens, similar band-like interferometric fringe patterns that
can also be interpreted as a one-dimensional charge are often observed in a late
stage of plastic deformation. Previous studies [Yoshida et al. 1996; 1998; Yoshida
and Toyooka 2001] indicate that this type of pattern represent the shear band known
as the Portevin–Le Chatelier (PLC) band. A number of optical interferometric
experiments indicate that, if a one-dimensional charge appears in an early or a
middle stage of plastic deformation, it moves around the specimen continuously;
if it appears in a late stage of plastic deformation, it tends to appear intermittently
and converge its movement to a certain place of the specimen where the specimen
eventually fails. We call the former type the Lüders-band-like charge and the latter
the PLC-band-like charge.

From experimental observation of a developed, one-dimensional charge, we can
estimate the actual value of σ0 as follows. A previous series of tensile experiments
(personal communication with T. Sasaki, 2014) on an aluminum alloy indicate that
the drift velocity of the Lüders-band-like charge is proportional to the cross-head
speed. In this series of experiments, the cross-head speed was set at a constant rate
for each test in a range of 0.1 mm/min to 3.0 mm/min. Since only one Lüders-
band-like charge appeared at a time and the number of fringes inside the charge
was much greater than on the outside, we can say that the particle velocity inside the
charge is approximately equal to the cross-head speed. Thus, we can approximate
the magnitude of v appearing on the right-hand side of (39) (Wd = σ0v) by the cross-
head speed; in other words, σ0 is approximately equal to the constant of proportion-
ality between the observed velocity of the Lüders-band-like charge (Wd) and the
cross-head speed (≈ v). Based on this argument, the dimensionless parameter σ0

can be estimated as σ0 ≈ 3000.

Fracture regime. Fracture can be viewed as the final stage of plastic deformation.
The transition from a late stage of plastic deformation to fracture can be conve-
niently discussed based on the longitudinal force G j . With the use of the dimen-
sionless parameter σ0, the plastic longitudinal force expression (38) can be put in
the form

G j =Wdρ∇ · v = σ0ρ(∇ · v)v. (45)
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A number of experiments indicate that, toward the end of plastic deformation, the
one-dimensional charge decelerates and eventually becomes stationary at the loca-
tion where the specimen fails [Yoshida et al. 1996; 1998]. The deceleration of the
charge, or the corresponding decrease of the drift velocity Wd , can be understood
as follows. Toward the end of the plastic regime, the material loses its capability of
increasing the number of defects. In other words, the atomic arrangement does not
have further room to create new dislocations. This situation eventually develops to
the point where the value of σ0 becomes zero.3 If the external force is still active,
the material needs to dissipate the energy so that the total energy is conserved.
In terms of the energy-dissipative force (45), G j 6= 0 and Wd = 0. The only
possibility to make this situation to happen is ∇ · v→∞. This condition can be
interpreted as representing that particles flow out of the unit volume at an infinitely
high rate. Obviously such a condition causes the unit volume to be empty, or
the material becomes discontinuous at this location. From the viewpoint of the
gauge field, the system loses the charge of symmetry that connects (the charge of
the connecting field) the material to be a continuum. This is the field-theoretical
definition of fracture. The above-mentioned experimental observation that a one-
dimensional charge stops moving in a late stage of tensile experiment where the
specimen eventually fails can be interpreted as experimental evidence of this idea
about the fracture.

3. Wave dynamics of deformation and supporting experiments

3.1. Elastic compression wave. Substitution of (37) into (30) yields

ρ
∂2(∇ · ξ)

∂t2 =∇ ·∇(λ+ 2G)(∇ · ξ)= (λ+ 2G)∇2(∇ · ξ)). (46)

This is the equation of an elastic compression wave traveling with phase velocity

ccomp =

√
λ+ 2G
ρ

. (47)

Next, replace v with ξ , substitute (37) for G j in (28), and take the curl of the
resultant equation:

ρ
∂2(∇ × ξ)

∂t2 =−G∇ ×∇ ×ω+∇ ×∇(λ+ 2G)(∇ · ξ). (48)

With the mathematical identities ∇ × ∇ f = 0 where f = (λ+ 2G)(∇ · ξ) and

3As discussed above, σ0 is a material constant. The fact that it becomes zero means that at this
point the material is no longer the same as before.
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∇ ×∇ ×ω =∇(∇ ·ω)−∇2ω, this leads to

ρ
∂2ω

∂t2 = G∇2ω. (49)

Here ∇ ·ω= 0 (see (26)) is used to find ∇(∇ ·ω)= 0. Equation (49) is the equation
of an elastic rotational wave traveling with the phase velocity cshear (see (18)).
These arguments show that the field equations (23)–(26) reduce to the elastic wave
equations discussed in continuum mechanics. It is interesting to note that, when
the force is proportional to the differential displacement in the form of ∇(∇ · ξ)
(see (37)), the longitudinal term G j vanishes when we consider the rotational
effect by taking the curl of the equation because of the mathematical identity
∇ ×∇ f = 0. This reflects the fact that the elastic force law is essentially longitu-
dinal or orientation-preserving; longitudinal force does not contribute to rotational
dynamics under the elastic force law.

3.2. Plastic transverse decaying wave. Elimination of ω from (40) with the use of
field equation (25) leads to the following wave equation that governs the velocity
field v:

ρ
∂2v

∂t2 −G∇2v+ σc
∂v

∂t
=−G∇(∇ · v). (50)

In the pure plastic regime where the longitudinal force G j is completely energy-
dissipative (see (38) and (39)) and therefore the longitudinal restoring force mecha-
nism is absent, (50) yields decaying transverse wave solutions. The right-hand side
of (50) indicates that the spatial distribution of the deformation charge is the source
term of this differential equation. When the charge is uniformly distributed over the
entire specimen, ∇(∇ · v)= 0 and this differential equation becomes homogeneous.
In this case, we can solve it analytically and express the solution in the form

v(t, r)= v0e−(σc/2ρ)t cos
(√

G
ρ

k2
−
σ 2

c

4ρ2 t − k · r
)
. (51)

Here k is the propagation vector.
Consider the physical meaning of the condition ∇(∇ · v)= 0. In an xyz coordi-

nate system, the condition can be put as

∂

∂x

(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
=
∂2vx

∂x2 +
∂2vy

∂x∂y
+
∂2vz

∂z∂x
= 0, (52)

∂

∂y

(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
=
∂2vx

∂x∂y
+
∂2vy

∂y2 +
∂2vz

∂y∂z
= 0, (53)

∂

∂z

(
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z

)
=
∂2vx

∂z∂x
+
∂2vy

∂y∂z
+
∂2vz

∂z2 = 0. (54)
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Equations (52)–(54) indicate that under this condition the velocity field is transverse-
wave-like. Here is the explanation. As a sufficient condition for (52)–(54), we
can set each of the nine terms appearing after the first equals sign of the three
equations to zero. Under such a condition, the first column of this part indicates
that the secondary derivative of vx is zero if the differentiation involves ∂/∂x . This
leads to the following generalized statements: the secondary derivative of vi is
zero if the differentiation involves ∂/∂xi and the only surviving nonzero secondary
derivative takes the form of ∂2vi/∂x2

j , i 6= j . Note that these surviving secondary
derivative terms come from the ∇2v term of the wave equation (50) and not from
the source term. The transverse oscillatory dynamics is due to the shear mecha-
nism represented by ∇ ×ω. This argument indicates that the velocity wave in the
pure plastic regime is essentially transverse. From this standpoint, we can put the
solution (51) in the following form to express the transverse wave characteristic
in a two-dimensional case. This will be compared to an experimental observation
shortly below. Here ky is the y component of k, the interferometer has sensitivity
in y, and the constant phase is omitted:

vx(t, r)= vx0e−(σc/2ρ)t cos
(√

G
ρ

k2
−
σ 2

c

4ρ2 t − ky y
)
. (55)

The wave solution (55) indicates that, if σc is constant, the velocity field decays
exponentially with the decay constant

τc =
2ρ
σc
=

2
σ0(∇ · v)

. (56)

Based on the above argument that the dimensionless parameter σ0 is a material-
dependent constant until the solid material fractures, we can estimate the charge
density (∇ · v) from (56) if σ0 and the decay constant τc are known. As mentioned
earlier in this paper, the damping coefficient σc is proportional to the charge density
(see (41)), and the higher the charge density, the more energy-dissipative the solid
material is. Apparently, the one-dimensional, developed charge is a concentrated
charge. In the context of tensile-loading, the differential velocity between the
dynamic and static grips of the tensile machine is concentrated into the banded
region that represents a developed charge. This situation is contrastive to an early
stage of plastic deformation where the mechanical energy provided by the tensile
machine is obviously dissipated via irreversible deformation but a developed charge
is not present. It is interesting to estimate the charge density for both cases and
compare them.

Figure 11 shows the decay characteristics of the velocity (differential displace-
ment) field under a tensile experiment on an aluminum-alloy, thin-plate specimen.
The tensile load was applied at a constant cross-head speed of 5.8× 10−6 m/s, and
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Figure 11. Decaying oscillation observed in a transverse plastic
deformation wave.

the material was the same type as the above case where the dimensionless param-
eter σ0 was estimated to be 3000 based on the proportionality between the drift
velocity of the developed charge and the cross-head speed. The graph in Figure 11
plots the velocity vector component perpendicular to the tensile axis (the trans-
verse velocity) evaluated at the reference point P2 shown in the left margin of the
figure. Also plotted are the load recorded by the tensile machine and the location
of PLC-like charge that started to appear toward the end of the plastic regime. The
horizontal axis is the time elapsed from the beginning of the tensile-loading. The os-
cillatory behavior of the transverse velocity starts near the yield point. In fact, obser-
vation of the transverse velocity at the other reference points (P1 and P3) indicates
that the oscillatory behavior propagates as a transverse wave [Yoshida et al. 1999].
Thus, it is reasonable to interpret the plot in Figure 11 as the decay characteristic of
the transverse velocity wave in the plastic regime. Since the developed charge does
not appear until the oscillatory behavior fades out, it is expected that the charge den-
sity is lower than that typically observed under the existence of a PLC-like charge.

From the trend of the oscillation peaks seen in Figure 11, the decay time constant
of this case can be estimated as 6.7 min = 400 s. Substituting this value into the
left-hand side of (56) and using σ0 = 3000 for the aluminum-alloy case, we can
estimate the charge density during this decay process as (∇ ·v)= 2/(400×3000)=
1.7× 10−6 1/s. On the other hand, the charge density when the PLC-like charge
appears can be estimated as follows. Using the same logic as above that the
velocity of the leading edge (the edge closer to the dynamic grip) of the charge
is approximately equal to that of the dynamic grip and the velocity of the tail-
ing edge is zero, and using the band width of 5.2 mm along the tensile axis, we
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can evaluate the charge density dvy/dy = 5.8 × 10−6 m/s /5.2 × 10−3 mm =
1.1×10−3 1/s. As expected, this charge density is three orders of magnitude higher
than (∇ · v)= 2/(400× 3000)= 1.7× 10−6 1/s evaluated at the beginning of the
oscillatory behavior of the transverse velocity.

3.3. Solitary wave in plastic regime. In the transitional stage from the elastic
regime to the plastic regime, optical interferometric experiments often show a
band-structured, interferometric fringe pattern that can be interpreted as the one-
dimensional charge expressed by (42) and illustrated by Figures 9 and 10. From the
similarity in various behaviors, as mentioned above, this type of one-dimensional
charge can be interpreted as representing the same phenomenon as the Lüders band
[Yoshida et al. 2005]. Among these behaviors, the following two are interesting
from the viewpoint of dynamics: (a) their drift velocity is proportional to the tensile
rate and (b) the stress remains practically the same while they drift. Mertens et al.
[1997] have made detailed analyses on dynamic behaviors of the Lüders band.
They explain the mechanism of the phenomenon as the propagation of mobile
dislocations at the plastic deformation front weakens the neighboring areas and the
resultant deformation creates new dislocations. They also explain that the deforma-
tion at the front creates a strain jump that is roughly constant during the drift of the
band and therefore its drift velocity is proportional to the pulling rate. Here an at-
tempt is made to explain the behaviors (a) and (b) based on the present field theory.

Figure 10 illustrates schematically that one can characterize the velocity con-
tours inside a one-deformation charge of this type as

∂

∂xs
6= 0, (57)

∂

∂x p
= 0. (58)

In this two-dimensional picture, the one-dimensional, developed charge is expressed
as

∇ · v =
∂vp

∂x p
+
∂vs

∂xs
=

dvs

dxs
. (59)

Similarly, the volume expansion appearing in the elastic longitudinal force expres-
sion (37) is

∇ · ξ =
∂ξp

∂x p
+
∂ξs

∂xs
=

dξs

dxs
. (60)

The rotation vector has only the z component:

ω = ωz ẑ =
(
∂ξs

∂x p
−
∂ξp

∂xs

)
ẑ. (61)
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Thereby, its rotation can be expressed as

∇ ×ω =
∂ωz

∂xs
x̂ p −

∂ωz

∂x p
x̂s =

∂ωz

∂xs
x̂ p, (62)

where the z axis is perpendicular to the xs-x p plane and condition (58) is used in
going through the last equal sign.

Equations (59), (60) and (62) respectively indicate that inside the one-dimensional
charge along the xs axis both the longitudinal plastic force proportional to ∇ · v
and elastic force proportional to ∇ · ξ are potentially nonzero, and the shear force
component (G∇ × ω)s is zero. From the fact that the entire specimen is being
pulled by the tensile machine, it is apparent that this elastic longitudinal force is
tensile. The fact that the stress recorded by the tensile machine does not increase
indicates that, as this tensile force stretches the banded region, stress drops occur
presumably associated with the creation of new mobile dislocations. Thus, it is
reasonable to assume that the elastic behavior is confined within the banded region.
This argument leads to the following physical model. An elastic medium isolated to
the location of the band moves in the entire specimen due to the longitudinal elastic
force. The elastic dynamics is not transferred to outside of the banded region due
to the plastic deformation associated with the creation of dislocations at the front.
As the charge represented by the band region moves, the plastic longitudinal force
causes energy dissipation. The coexistence of the elastic and plastic deformation
makes total sense as this phenomenon takes place in the transitional stage from the
elastic regime to the plastic regime.

Based on the above explanation, we can start a quantitative argument from the
equation of motion of the elastic block (called the block) confined in the banded
region. The net elastic force acting on the block is the differential force between
the front and back surfaces of the block. At each surface, the elastic force is
proportional to the local stretch, as Figure 12 illustrates schematically:

η(xs)=
∂ξs(xs)

∂xs
δxs . (63)

Here η(xs) is the stretch at xs , ξ(xs) is the displacement at the same point, and δxs

is the infinitesimal width of the plane at xs . The displacement of the block from its
equilibrium position X is the differential displacement of its front and back ends:

X =
∂η

∂xs
1xs =

∂

∂xs

(
∂ξs

∂xs
δxs

)
1xs =

∂2ξs

∂x2
s
(δxs1xs), (64)

where 1xs is the width of the block. The corresponding elastic energy is

U = 1
2 k X2

=
1
2 k
(
∂2ξs

∂x2
s

)2

(δxs1xs)
2
=

SE
2

(
∂2ξs

∂x2
s

)2

δxs(1xs)
2, (65)
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δx 1x δx

xs ≡ x

X = ∂η
∂x
1x

X : band’s displacement from equilibrium

η(x +1x)= (∂ξ/∂x)
∣∣
x+1xδxη(x)= (∂ξ/∂x)

∣∣
xδx

η(xs): displacement from equilibrium due to elasticity

Figure 12. Elastic force acting on the isolated region that can be
identified as a one-dimensional charge.

where E is the elastic modulus associated with the longitudinal dynamics (corre-
sponding to the stiffness or the Young’s modulus in the elastic regime),4 S is the
cross-sectional area and kδxs = SE . This leads to the Lagrangian density of

Lcharge =
U

S1xs
=

E
2

(
∂2ξs

∂x2
s

)2

(δxs1xs)=
E
2
(∂2

xs
ξs)

2(δxs1xs). (66)

Thus, the corresponding term of the Euler–Lagrangian equation of motion is

∂2
xs

(
∂Lcharge

∂(∂2
xs
ξs)

)
= E∂2

xs
(∂2

xs
ξs)(δxs1xs)= E∂4

xs
ξs(δxs1xs). (67)

Writing the traveling band in the form ξ(xs, t)= ξ(xs − cwt), we can replace one
of the spatial derivatives with a temporal derivative by ∂xs =−∂tξs/cw =−vs/cw
(see (10)). With this, (67) becomes

∂2
xs

(
∂Lcharge

∂∂2
xs
ξ

)
=−

E
cw
∂3

xs
(∂tξs)(δxs1xs). (68)

When a developed charge appears, the material loses the elastic restoring force as-
sociated with (∇×ω)s , and the longitudinal energy-dissipative force σ0ρ(∇ · v)v=

σ0ρ∂vs/∂xsvs is active at the front where plastic deformation causes the stress drop.
So (40) can be written in the form

ρ
∂vs

∂t
=−σ0vsρ

∂vs

∂xs
−

Eδxs1xs

cw
∂3

xs
(∂tξs), (69)

4 E is the stiffness associated with the normal stress or the longitudinal effect. In the plastic
regime, or when the defect density is substantial, this value becomes lower than in the elastic regime.
In the present context, it should be differentiated from the Young’s modulus of the elastic regime.
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which can further be rewritten in a form more familiar as the Korteweg–de Vries
equation [Maugin 2011]:

∂tv+ σ0v∂xv+
Eδxs1xs

ρcw
∂3

x v = 0. (70)

Here, for clarity, the subscript s has been omitted from the variables. As is well
known, (70) yields the form of solution

v(x, t)= a sech2(b(x − cwt)), (71)

where

cw =
σ0a
3
, (72)

b2
=

(σ0a
3

)2 ρ

4Eδxs1xs
. (73)

In condition (72), a is the amplitude of the velocity wave v(x, t). It is reasonable
to consider that this amplitude is proportional to the pulling rate of the specimen.
This explains why the one-dimensional charge, and hence the Lüders band, drifts at
a velocity proportional to the pulling rate. Condition (73) indicates that the width of
the banded region is proportional to the square root of the elastic modulus E . This
indicates that, as the material loses its elasticity with the development of plastic
deformation, the one-dimensional charge tends to be narrower. This is consistent
with experimental observations [Yoshida et al. 1996; 1998] and can be interpreted
as the degree of stress concentration increasing with the development of plastic
deformation.

4. Conclusions

Based on the field-theoretical approach associated with the local symmetry of linear
elastic law, the dynamics of deformation and fracture has been discussed. Various
conventionally known phenomena of deformation have been explained from the
field-theoretical viewpoint. The concept of deformation charge has been introduced
based on the analogy to electrodynamics and used to explain the energy-dissipative
nature of plastic deformation. Decaying transverse wave characteristics of plastic
deformation and solitary wave characteristics of the transitional stage from the
elastic regime to the plastic regime have been discussed and compared to experi-
mental results.
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