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AN ANALYSIS OF THE LATITUDINAL DATA
OF ERATOSTHENES AND HIPPARCHUS

CHRISTIAN MARX

The extant data on latitudes ascribed to Eratosthenes and Hipparchus have been
compiled and tested for consistency using adjustment theory. For the detected
inconsistencies new explanations are given concerning the origin of the data.
Several inconsistent data can be ascribed to Strabo. Differences in Hipparchus’
data can often be explained by the different types and precision of the data. Gross
errors in Eratosthenes’ data are explained by their origin in lengths of sea routes.
From Eratosthenes’ data concerning Thule a numerical value for Eratosthenes’
obliquity of the ecliptic is deduced.

1. Introduction

A precise specification of positions on the earth surface became possible in ancient
geography by the introduction of reference systems and physical quantities for the
description of positions. Eratosthenes (ca. 276–194 BC), founder of mathematical
geography, introduced a grid of non-equidistant parallels and meridians for the
positions of selected places. In his Geography he described the inhabited world
using distance data and expressed his latitudinal data probably using meridian arc
lengths. The astronomer and mathematician Hipparchus (ca. 190–120 BC) proba-
bly introduced the division of the full circle into 360◦ into Greek astronomy and
geography (e.g., [Dicks 1960, p. 149]). He transferred the concept of ecliptical
longitude and latitude for the specification of star positions to the terrestrial sphere.
Hipparchus’ essential geographical work is his treatise Against the ‘Geography’
of Eratosthenes, wherein he discussed the works of Eratosthenes and gave a com-
pilation of latitudes and equivalent astronomical quantities for several locations.
Later Ptolemy (ca. 100–170 AD) used Hipparchus’ concept and introduced a geo-
graphical coordinate system for his position data in his Geography (Geographike
Hyphegesis, GH), which differs from today’s system only by its zero meridian.

Communicated by Lucio Russo.
MSC2010: 01A20.
Keywords: Eratosthenes, Hipparchus, Strabo, latitudes, obliquity of the ecliptic, length of the
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The mentioned works of Eratosthenes and Hipparchus have been handed down
only in fragments, mainly in Strabo’s (ca. 63 BC – 23 AD) Geography (G; see
[Jones 1917–1932; Radt 2002–2011]). The geographical fragments of Eratosthe-
nes were compiled and commented on in [Berger 1880; Roller 2010], and those
of Hipparchus in [Berger 1869; Dicks 1960]. In particular, the latitudinal data in
the fragments are given partly redundantly and with differing numerical values. It
is uncertain whether all the data originate with Eratosthenes or Hipparchus (see
also [Roller 2010, p. 36]). Therefore, an investigation of their consistency is in-
dicated. The aim of this contribution is to carry out such an investigation jointly
for all the data under consideration, to ensure that all relations between the data
are integrated. For this purpose, the data are grouped into systems of equations;
when solving these systems appropriately, the inconsistencies of the data become
evident (Sections 2 and 3). New explanations are given for the inconsistencies.
The actual accuracy of the investigated ancient data is not the subject of this con-
tribution. Some grossly erroneous data of Eratosthenes, however, are explained by
their origin in the lengths of sea routes (Section 2.3).

Among Eratosthenes’ latitudinal data there is a distance concerning Thule, the
place visited by the geographer and astronomer Pytheas during his expedition to
Great Britain in about 330 BC. From Eratosthenes’ and Pytheas’ information con-
cerning Thule a numerical value for Eratosthenes’ obliquity of the ecliptic is de-
duced (Section 2.4). A location for Thule based on new considerations of Pytheas’
sea route and of the lengths of the nights in Thule is to be found in the Appendix.

2. Eratosthenes’ latitudinal data

The latitudinal data of Eratosthenes considered in the following are based on the
fragments given in [Roller 2010] (the following translations are taken from there).
The investigations are limited to the locations in the western Oikoumene (the in-
habited world known to the Greeks and Romans), in particular those in connection
with Eratosthenes’ prime meridian through Rhodes, because only these data are
partly redundant. The data considered originate from Strabo’s Geography, Pliny’s
Natural History (NH; see [Bostock and Riley 1855]) and Cleomedes’ Caelestia
(C). Figure 1 shows some of the locations.

Strabo and possibly Eratosthenes expressed latitudes and latitudinal differences
by means of meridian arc lengths (b hereinafter and b0 if with respect to the equator)
in stadia (st). Eratosthenes introduced the value

C = 252,000 st (1)

for the circumference of the earth (e.g., G II.5.7), so that for an arc of meridian

1◦ =̂ C/360= 700 st. (2)
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Figure 1. Places located on or near Eratosthenes’ prime meridian
(italics) and possible sea routes underlying Eratosthenes’ data
(thick line).
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Figure 2. Graph of the latitude data of the western Oikoumene
ascribed to Eratosthenes; the vertical order of the locations gives
the meridian arc length b0 from the equator (not to scale).
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Information presumably originating from Eratosthenes and the corresponding
fragments (F) and sources are given in Table 1. The F-numbers correspond to
[Roller 2010]. Data occurring repeatedly within one fragment are listed and used
once only. In addition, consecutive numbers have been introduced, separated from
the F-number by a dot. If it follows from the textual source that two locations have
the same latitude, b is set to 0. Figure 2 on the previous page shows a graph for
Eratosthenes’ data: an edge appears between two locations if at least one b exists
for them.

F Source From To b [st]

30.1, 34.12 G II.5.6, II.5.9 Cinnamon country northern regions <30,000
30.2, 34.6 G II.5.6, II.5.7 equator Cinnamon country 8,800
34.1, 35.1 G II.5.7, I.4.2 Meroë Alexandria ≈

=
10,000

34.2 G II.5.7 Meroë Syene 5,000
34.3 G II.5.7 Cinnamon country Meroë ≈3,000
34.4 G II.5.7 Cinnamon country Syene 8,000
34.5∗, M6.1∗ G II.5.7, C I.7 equator Syene 16,800
34.7 G II.5.7 equator Alexandria 21,800
34.8 G II.5.8 Byzantium Borysthenes ≈3,800
34.9 G II.5.9 Borysthenes northern regions 4,000
34.10 G II.5.9 Rhodes northern regions 12,700
34.11 G II.5.9 Cinnamon country Rhodes 16,600
34.13 G II.5.8 Borysthenes northern regions 3,000
35.2 G I.4.2 Alexandria Hellespont ≈8,100
35.3, 36.3 G I.4.2, II.5.42 Hellespont Borysthenes 5,000
35.4 G I.4.2 Borysthenes Thule ≈11,500
35.5 G I.4.2 Cinnamon country, Meroë 3,400

Egyptian island,
Taprobane

35.6 G I.4.2 Cinnamon country Thule 38,000
36.1 G II.5.42 Meroë Borysthenes &23,000
36.2, 47.1 G II.5.42, G II.1.3 Meroë Hellespont 18,000
40+41∗ G II.1.20, Meroë country of the 0

NH II.185 Trogodytes
56.1 G II.1.33 Alexandria Rhodes .4,000
128.1 G II.5.24 Alexandria Rhodes 3,750

Table 1. Latitudinal data of the western Oikoumene derived from
the fragments (F; with the exception of F34.13 from [Roller 2010])
ascribed to Eratosthenes; ∗ = see note in Section 2.1. The symbols
. and & stand for “somewhat smaller” and “somewhat larger”.
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2.1. Notes on the data. At the southern limit of the inhabited world lies the Cin-
namon country (F34/G II.5.7). For the northern limit, Eratosthenes gives two
locations of differing latitudes: the “northern regions” (F34/G II.5.9) and Thule
(F35/G I.4.2).

The Cinnamon country corresponds to the southern coast of the Gulf of Aden
(cf. [Dicks 1960, p. 170]). The information in F30.1, F30.2 (G II.5.6) and F34.11
(G II.5.7) does not refer directly to the Cinnamon country but to the southern limit
of the inhabited world. Their identicalness results from G II.5.7.

The data on the Borysthenes, the Dnieper River,1 refer to its mouth into the
Black Sea.

The latitude of the Hellespont (Dardanelles) presumably corresponds to that
of Eratosthenes’ parallel through Lysimachia (near Bolayır, Gallipoli peninsula),
which is mentioned in G II.5.40 (likewise [Berger 1880, p. 155]).

F34 (G II.5.7): Strabo says that b0 of the tropic of Cancer corresponds to 4
60 of C

(i.e. C/15= 16,800 st), that the tropic goes through Syene and that b0 of Syene is
16,800 st. The latter is applied here (F34.5). Eratosthenes uses 1

15 of the full circle
for the obliquity of the ecliptic ε in this case, i.e.,

εr = 24◦ , (3)

which was a common value in early Greek geography (cf. [Neugebauer 1975,
pp. 733–734]).

F34.13 (G II.5.8): This fragment is introduced in addition to [Roller 2010] (see
Section 2.2) but not used in the following test of consistency.

F36.1, F36.2 (G II.5.42), F47.1 (G II.1.3): In G II.5.42 Strabo deals with Hip-
parchus’ data on the regions in the neighborhood of the Borysthenes and the south-
ern parts of Lake Maeotis (Sea of Azov) and he states: “Eratosthenes says that these
regions are a little more than 23,000 stadia [F36.1] from Meroë, since it is 18,000
stadia [F36.2] to the Hellespont and then 5,000 [F36.3] to Borysthenes.” Roller
[2010, p. 155] derives from this that the “. . . mouth of the Borysthenes is some-
what over 23,000 stadia from Meroë.” From the text, however, it follows that b for
Meroë – Borysthenes is (18,000+5,000) st= 23,000 st. Thus, the text suggests that
Eratosthenes differentiated between the latitude of the mouth of the Borysthenes
and the latitude of the mentioned regions, which are situated further north than the
mouth.2 Another interpretation results from F34.1/35.1 (Meroë – Alexandria) and
F35.2 (Alexandria – Hellespont), which yield b= 18,100 st for Meroë – Hellespont

1In antiquity, there was disagreement on the location of the Borysthenes; cf. Pliny, NH IV.83. For
instance, Ptolemy (GH III.5) probably confuses the Borysthenes with the Hypanis and locates the
Borysthenes at the Southern Bug (cf. [Marx and Kleineberg 2012, pp. 50, 53]).

2In fact, however, the southern parts of Lake Maeotis are further south than the Borysthenes.
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so that b of Meroë – Borysthenes is 23,100 st. Possibly, Eratosthenes specified
b = 23,100 st for the mouth of the Borysthenes and its neighboring regions and
Strabo described this value as “a little more than 23,000 st” and erroneously used
18,000 st instead of 18,100 st in his statement. Moreover, in G II.1.3 Strabo states:
“From Meroë to the Hellespont is no more than 18,000 stadia [F47.1] . . . ”.3 Since,
however, he compares this value with the distance from India to the Bactrians, it
is certainly only a rough value. Owing to the differences in the information, the
values 23,000 st and 18,000 st are not used in the subsequent calculational test of
consistency.

F40 (G II.1.20), F41 (NH II.185): According to F40, Eratosthenes agrees closely
with Philo (a Ptolemaic officer; see [Roller 2010, p. 157]) that in Meroë the sun is at
the zenith 45 days before the summer solstice. In order to test this, the dates of the
year have been determined for 350–250 BC when the sun’s altitude a was maximal
in Meroë (φ = 16◦56′).4 As a result, the sun reached its maximal a ≈ 90◦ either 45
or 46 days before and 46 or 45 days after the day of the summer solstice. Hence,
the information of F40 is probably based on an accurate observation. Eratosthenes’
b-data yield b0 = 11,800 st for Meroë (see Section 2.2), which corresponds to
φ = 16◦51′, in good agreement with the actual φ. According to F41, the shadows
fall to the south 45 days before and after the summer solstice in the country of the
Trogodytes. That corresponds to the information of F40 on Meroë. It is not known
whether Eratosthenes derived latitudes from the information in F40 and F41. At
least, however, it can be assumed that Eratosthenes believed the Trogodytes and
Meroë to be located on the same latitude. Thus, b= 0 is introduced here for Meroë
– Trogodytes only.

F128.1 (G II.5.24): The distance Alexandria – Rhodes is not explicitly indicated as
a difference in latitudes, but it was found by “. . . using the shadow of a gnomon . . . ”,
so it is considered to be a b value.

FM6 (C I.7): This fragment originates from Eratosthenes’ work On the measure-
ment of the Earth; see [Roller 2010, pp. 263–267]. According to this, Syene is
located on the tropic of Cancer; thus, following F34, b0 = 16800 st is applied here.

3I thank one of the referees for his reference to this text passage.
4The time of the summer solstice can be determined according to [Meeus 1991, pp. 165–167].

For a location of longitude λ and latitude φ and for a given time t , the sun’s altitude a can be deter-
mined by the following calculation steps (for formulas see [Meeus 1991, pp. 84, 88–89, 135, 151–3]):
obliquity of the ecliptic: ε(t); mean anomaly of the sun: M(t); mean ecliptic longitude of the sun:
L0(t); equation of center: C(t,M); true ecliptic longitude: 2(L0,C); right ascension of the sun:
α(2, ε); declination of the sun: δ(2, ε); GMST: θ0(t); hour angle: H(λ, α, θ0); a(φ, δ, H). (The
software-implemented calculation was tested by comparison with the results of the online calculator
of Cornwall et al. [2013].)
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2.2. Test of consistency. A consistency test is carried out simultaneously for all
the data attributed to Eratosthenes by forming a system of equations representing
the relations among them. For each given latitudinal datum b j,k

i , the equation
b j,k

i = bk
0−b j

0 is introduced, where b j,k
i is the i-th given meridian arc length between

the parallels of the j -th and k-th location and b j
0 and bk

0 are the meridian arc lengths
between these locations and the equator. The latter are the unknowns of the system;
they refer to the 11 locations in Figure 2. When j refers to the equator, b j

0 is not
an unknown but has the value 0. When a b j,k

i is specified by an inequality b > x
or b < x , it is replaced by b = x for the computation.

Since there are redundant and mutually inconsistent data, a numerical solution
of the system is not directly possible. In order to achieve a consistent system of
equations, an unknown correction vi (residual) is introduced for each datum b j,k

i :

b j,k
i + vi = bk

0 − b j
0 , i = 1 . . . n (4)

(where n is the number of data), as usual in adjustment theory. The system (4) can
be solved by minimizing an object function S of the corrections vi . In the present
case the object function

S =
n∑

i=1

|vi | →min (5)

of the L1-norm adjustment is appropriate because it is a resistant estimation method
and therefore able to reveal inconsistencies of the data (see, e.g., [Marx 2013];
data errors are manifested in large values of the vi ). For the b values which occur
multiple times in Table 1, multiple equations are introduced so their influence is
increased in the adjustment. The L1-norm adjustment is numerically solved here
by the simplex algorithm of [Barrodale and Roberts 1974] (BR-algorithm).

The imprecise data of F30.1, F34.12 and F56.1 expressed by inequalities are not
included in the adjustment but also obtain corrections vi based on the determined
unknowns. There remain n = 22 data for the adjustment. The solution of the
BR-algorithm yields 18 vi being 0; the associated b-data are therefore consistent
among each other. The remaining vi 6= 0 are considered in the following. The
analysis shows that the solutions for the b0 can be regarded as to be in accord
with Eratosthenes’ original data, with the exception of the “northern regions” (see
below). The b0 are given in Figure 2.

F30.1, F34.12; Cinnamon country – “northern regions”; b < 30,000 st; v = 100 st:
the bound b < 30,000 st is contradictory to v > 0. If this is Eratosthenes’ infor-
mation, probably not all b-data of F34.3, F34.1/35.1, F35.2, F35.3/36.3 and F34.9
(Cinnamon country – Meroë – Alexandria – Hellespont – Borysthenes – “northern
regions”) originate from Eratosthenes, because they yield 30,100 st. One explana-
tion is that b= 4,000 st for Borysthenes – “northern regions” (F34.9/G II.5.9) is not



316 CHRISTIAN MARX

from Eratosthenes but from Strabo. This b value is already given in the preceding
section, G II.5.8: “For, so far as science is concerned, it is sufficient to assume
that, just as it was appropriate in the case of the southern regions to fix a limit
of the habitable world by proceeding three thousand stadia south of Meroë [ . . . ],
so in this case too we must reckon not more than three thousand stadia [F34.13]
north of Britain [equivalently, Borysthenes: their latitudes are the same according
to G II.5.8], or only a little more, say, four thousand stadia” [Jones 1917–1932,
p. 445]. The text suggests that the value of 3,000 st (F34.13) may originate with
Eratosthenes and the 4,000 st may be an alteration by Strabo. The value of 3,000 st
yields an extent of the inhabited world of 29,000 st, which fulfills the condition
b< 30,000 st of F30.1 and F34.12, and the b0 of the “northern regions” is 37,900 st.

F34.10; Rhodes – “northern regions”; b = 12,700 st; v = 650 st: b is contradictory
to the value 13,350 st, which follows from F128.1 (Alexandria – Rhodes) and F35.2,
F35.3/36.3, F34.9 (Alexandria – Hellespont – Borysthenes – “northern regions”).
Possibly, b = 12,700 st originates from Strabo. 12,700 st minus 4,000 st for the
part Borysthenes – “northern regions” (F34.9) yields 8700 st for the part Rhodes –
Borysthenes, but F128.1, F35.2 and F35.3/36.3 yield 9,350 st. The value 8,700 st,
however, nearly corresponds to Hipparchus’ value 8,600 st (cf. G II.1.12, II.5.41)
so that Strabo possibly chose it following Hipparchus and used it for b of F34.10.

F34.11; Cinnamon country – Rhodes; b = 16,600 st; v = 150 st: b is contradictory
to the sum 16,750 st of F34.3, F34.1/35.1, F128.1 (Cinnamon country – Meroë –
Alexandria – Rhodes). Possibly, b = 16,600 st is Strabo’s sum, which is not based
on 3,750 st for the part Alexandria – Rhodes (F128.1) but on the 3,600 st given by
Hipparchus (cf. G II.5.39 and Section 3.2).

F35.5; Cinnamon country – Meroë; b= 3,400 st; v =−400 st: b is contradictory to
b= 3,000 st of F34.3, which equals Hipparchus’ b in G II.5.35. Strabo says in F35:
“. . . if we add 3,400 [F35.5] more beyond Meroë, so that we include the Egyptian is-
land, the Kinnamomophoroi [Cinnamon country], and Taprobane, we have 38,000
stadia [F35.6].” Hence, the reason for an alteration of b by Strabo could be the
extent of the Egyptian island and/or of Taprobane. In F53 (G II.5.14) Strabo states
that the Cinnamon country, Taprobane and the Island of the Egyptians are situated
on the same parallel, but in view of the spatial extent of these three locations this
can only be an approximate piece of information (e.g., Eratosthenes’ estimate of
the latitudinal extent of Taprobane is 7,000 st according to F76/NH VI.81). Strabo
possibly introduced 3,400 st in order to obtain the round value of 38,000 st (F35.6)
for the latitudinal extent of the inhabited world from its southern limit to Thule.

F35.6; Cinnamon country – Thule; b = 38,000 st; v =−400 st: b equals the sum
of the other b-data of F35 but it is 400 st too large with regard to the sum based
on Eratosthenes’ presumable b = 3,000 st (F34.3) for Cinnamon country – Meroë;
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see F35.5. Thus, b = 38,000 st is probably only a round sum for the extent of the
inhabited world given by Strabo.

F36.1; Meroë – Borysthenes; b & 23,000 st; v = 100 st: Since the information on
b is consistent with v > 0 and the small v, F36.1 can be regarded as consistent.

F36.2, F47.1; Meroë – Hellespont; b = 18,000 st; v = 100 st: b is contradictory to
the sum b = 18,100 st of F34.1/35.1 and F35.2 (Meroë – Alexandria – Hellespont).
Strabo ascribes F35.1 and F35.2 explicitly to Eratosthenes. The value 18,000 st
possibly originates from Strabo; see Section 2.1.

F56.1; Alexandria – Rhodes; b . 4,000 st; v =−250 st: The information on b is
in accord with v < 0 and v is acceptable because 4,000 st is probably a roughly
rounded value; hence, F56.1 can be considered to be consistent.

2.3. Sea routes in Eratosthenes’ latitudinal data. The two southernmost b of
Cinnamon country – Meroë (F34.3/35.5) and of Meroë – Alexandria (F35.1) are
(almost) correct. The values b = 3,000 st of F34.3 and b = 3,400 st of F35.5
correspond via (2) to 4◦17′ and 4◦51′, respectively; the actually value is 4◦43′

(based on a central latitude of 12◦13′ for the Cinnamon country). The b value of
F35.1 agrees with the actual 14◦17′.

In contrast, the subsequent latitudinal differences Alexandria – Hellespont of
F35.2 and Hellespont – Borysthenes of F35.3/36.3 show large errors. The b =
8,100 st of F35.2 is 11◦34′ and actually 9◦23′; the error is 2◦11′ =̂ 1,528 st. The
b = 5,000 st of F35.3/36.3 is 7◦09′ and actually 6◦01′; the error is 1◦08′ =̂ 793 st.

Both erroneous latitudinal differences are explicable by Eratosthenes’ concep-
tion that the prime meridian through Rhodes also runs through Meroë, Alexandria,
Caria, Byzantium and (the mouth of) the Borysthenes (cf. G I.4.1, II.1.12, II.1.40).
Figure 1 shows the position of the locations concerned. Moreover, Strabo says that
it is generally agreed that the sea route Alexandria – Borysthenes is a straight line
(G II.5.7). Consequently, it is likely that the latitudinal differences Alexandria –
Hellespont and Hellespont – Borysthenes are based on the lengths of the sea routes,
which were supposed to take course along the meridian (also assumed by Bunbury
[1879, p. 640] and Roller [2010, p. 152]). This is considered in more detail below.
The lengths of the sea routes could have been derived from journey times and
estimates of the speed, which was a usual procedure according to GH I.9.4, I.17.6.

F35.2, Alexandria – Hellespont: At least for the Alexandria – Rhodes part it is
known that Eratosthenes had information on the length of the sea route from
navigators. For this part Eratosthenes gives his own b = 3,750 st (F128.1) and
additionally the two lengths 4,000 st and 5,000 st for the corresponding sea route
based on the assumptions of navigators (F128/G II.5.24). The large difference
between both lengths shows the large uncertainty of such information. If for the
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latitudinal difference Alexandria – Rhodes Eratosthenes’ 3,750 st are used, then
(8,100− 3,750) st= 4,350 st remain for the rest of distance F35.2, i.e. for Rhodes
– Hellespont. Figure 1 shows a possible sea route from Rhodes to Hellespont
(Lysimachia). It has a length of ca. 650 km. In order to convert this into stadia, use
is made not of (2), which only applies to b, but of a conventional stadium length.
The Egyptian stadium of 157.5 m (cf. [Dilke 1985, p. 33]) is chosen,5 which yields
650 km= 4,127 st, in good agreement with the ancient value of 4,350 st.

F35.3/36.3, Hellespont – Borysthenes: b of the part Byzantium – Borysthenes is
3,800 st according to F34.8 (G II.5.8; this value is ca. 100 st less than the actual
value). For the rest of distance F35.3, i.e. for Hellespont – Byzantium, 1,200 st
remain (5,000− 3,800). The assumed sea route Hellespont – Byzantium shown
in Figure 1 has a length of 195 km= 1,238 st, in good agreement with the ancient
value of 1,200 st.

2.4. Eratosthenes’ obliquity of the ecliptic. Strabo states (F34/G II.5.8) that, ac-
cording to Pytheas, in Thule the arctic circle coincidences with the tropic of Cancer.
The arctic circle delimits the region of the circumpolar stars in the sky, which do
not set (see, e.g., [Dicks 1960, p. 165]). Thus, its declination is

δa = 90◦−φ, (6)

where φ is the latitude of the observer. Strabo’s information means that δa equals
the obliquity of the ecliptic ε. Hence, for Thule φ = 90◦− ε; in other words, Thule
is on the northern polar circle. There the sun does not set at the summer solstice,
which corresponds to Pliny’s information (NH IV.30) that at the summer solstice
there are no nights in Thule. The value of ε was 23◦44′ at the time of Pytheas’
voyage,6 so the northern polar circle was at φ = 66◦16′. At Eratosthenes’ time ε
was 23◦43′, so φ = 66◦17′.

The computation of Section 2.2 yields b0 = 46,400 st for Thule. This result is
composed of the following b-data:

1. equator – Cinnamon Country: 8,800 st (F30.2, F34.6);
2. Cinnamon Country – Meroë: 3,000 st (F34.3, the value occurs twice in F34);
3. Meroë – Alexandria: 10,000 st (F34.1, F35.1);
4. Alexandria – Hellespont: 8,100 st (F35.2);
5. Hellespont – Borysthenes: 5,000 st (F35.3, F36.3);
6. Borysthenes – Thule: 11,500 st (F35.4).

The 2nd b value equals the difference between F34.4 (Cinnamon country – Syene)

5Some evidence for the Egyptian stadium is provided by the investigation of Ptolemy’s longitudes
in [Russo 2013] for example.

6Computed according to [Meeus 1991, p. 135].
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and F34.2 (Meroë – Syene). The sum of 13,000 st of the 2nd and 3rd b values
(Cinnamon country – Alexandria) equals the difference between F34.7 (Alexan-
dria) and the 1st b value. The sum of the 3rd, 4th and 5th b values (Meroë –
Borysthenes) amounts to 23,100 st and is confirmed by F36.1, where & 23,000 st
is given. Hence, considering the 3rd and 5th b value to be correct, also the 4th b
value is confirmed. The 6th b value was probably calculated from the b0 values of
Thule and the Borysthenes.

Eratosthenes’ b0 for Thule corresponds to

46,400 st ≈̂ 66◦17′,

which equals the actual position of the polar circle at Eratosthenes’ time. Appar-
ently, he had a good knowledge of the value of ε, which he used in conjunction
with Pytheas’ information for the location of Thule. Assuming for b0 = 46,400 st
a resolution of 100 st, the limits for ε are:

90◦− (46,450/700)◦ < ε < 90◦− (46,350/700)◦ (7)

23◦39′ ≤ ε ≤ 23◦47′ . (8)

Ptolemy states in his Mathematike Syntaxis (MS; see [Manitius 1912; Toomer
1984]) I.12 that the ratio t = 11

83 of the arc between the tropics to the full meridian
equals nearly Eratosthenes’ value, which was also used by Hipparchus. Ptolemy’s
t leads to

εm = 23◦51′20′′.7 (9)

Hipparchus presumably used
εh = 23◦40′ (10)

(cf. [Diller 1934]). Probably, this is Eratosthenes’ value. It corresponds to t ≈ 10.91
83 ,

which does not differ significantly from Ptolemy’s value. For the polar circle, i.e.
Thule, it yields φ = 66◦20′ and b0 = 46,433 st≈ 46,400 st, in agreement with the
value resulting from Eratosthenes’ b-data. Possibly Eratosthenes specified b of Bo-
rysthenes – Thule as “about” 11,500 st because it was calculated from b0 = 46,433
of Thule and b0 = 34,900 st of the Borysthenes so that 11,533 st was obtained. Or
he considered the derived b of Borysthenes – Thule to be unreliable because b0 of
the Borysthenes was based on the lengths of the sea routes reported by navigators
(see Section 2.3).

From F34 (G II.5.7) can be derived that Eratosthenes’ value for ε was 4
60 of C , or

24◦. This value is not contradictory to 23◦40′ because it is based on the division of
the full circle into 60 parts. It was a common value for ε in early Greek geography,

7Manitius [1912, vol. 1, p. 44, footnote b] wrongly infers from MS I.12 that εm was Eratosthenes’
value. According to the text, however, this applies only approximately (see also [Jones 2011, p. 459]).
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and Eratosthenes probably gave this rough value as well as a more precise value in
his works. Later ancient authors also mention or use this value, although a more
accurate value was known (e.g. Ptolemy in GH VII.6.7; see [Neugebauer 1975,
p. 734]). Strabo was probably not interested in Eratosthenes’ more precise value,
so he adopted the value 4

60C only. Similarly, in G II.5.43 Strabo refers the reader
to Hipparchus’ work concerning astronomical matters.

3. Hipparchus’ latitudinal data

The investigations of Hipparchus’ latitudinal data are mainly based on the frag-
ments (F) given by Dicks [1960] (the following translations are taken from it).
The data mainly originate from Hipparchus’ treatise Against the ‘Geography’ of
Eratosthenes, which consisted of three books (cf. [Dicks 1960, p. 37]). Latitudinal
data occurred in the second book (F12–34) and the third (F35–63), the majority in
the third book. The third book contained astronomical data for several latitudes.
Strabo gives extracts of this compilation; for instance he limits the data to the in-
habited world (cf. G II.5.34). The occurring types of latitudinal data are: meridian
arc length b or b0 between the parallels of two locations or from the equator (in
st); noon altitude a of the sun at the winter solstice given in astronomical cubits (c;
1 c= 2◦); ratio r = g : s of the length g of the gnomon to the length s of its shadow;
length M of the longest day (summer solstice) in (equinoctial) hours. Presumably,
the meridian arc lengths do not originate from Hipparchus but were calculated by
Strabo from latitudes by means of (2) (e.g., [Berger 1869, p. 37]). The M-data are
compared with their corresponding meridian arc lengths by Rawlins [2009]; for the
sake of completeness, however, they are included in the following investigation.

With the exception of F15 (G II.1.12), the latitudinal data in the fragments of Hip-
parchus’ second book (F19/G II.1.12, F22/G II.1.29, F24/G II.1.34, F26/G II.1.36)
do not have connections to the data in Hipparchus’ third book. The only data which
positions the concerned locations absolutely in latitude is the imprecise informa-
tion that b of Athens – Babylon “. . . is not greater than 2,400 stades . . . ” (F22).
Hipparchus gives this limit only in order to show that Eratosthenes’ positioning
of the Taurus is wrong. Furthermore, there are no connections among the data of
the second book which would cause redundant relations among each other. Thus,
these data are not included in the following investigations; for a discussion of the
data see [Dicks 1960].

In places Strabo gives one latitudinal data which applies to several locations.
Among these locations there may be additions by Strabo which do not originate
from Hipparchus (see [Berger 1869, p. 41]). Owing to uncertainties in this regard,
however, all locations are taken into account here. If within a fragment more than
two locations are related by one data, the derivable relations are kept as compact
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as possible8. Data which occur repeatedly within one fragment are listed and used
once only.

A further source is Hipparchus’ Commentary on the Phenomena of Aratus and
Eudoxus (CP; see [Manitius 1894]), which contains only a few latitudinal data. In
the Commentary altitudes of the pole ap are given, which equal the latitude φ, as
well as polar distances ζa of the ever visible circle (the arctic circle) or of the never
visible circle (which delimits the region of the stars which do not rise).

The data considered and their sources are compiled in Table 2.9 Fragment
numbers 15–61 correspond to [Dicks 1960] and are extended by a consecutive
number separated by a dot. F62–71 refer to the Commentary and are additionally
introduced here (only partly mentioned by [Dicks 1960], [Berger 1869, p. 54, F V
11], [Shcheglov 2007]). Figure 3 shows the data in form of a graph.

For a comparison and a joint analysis of the consistency of the data, data not
given as b were converted into b. The conversions of the given quantities into φ
are considered in the following; φ can be converted into b0 by means of (2). If fur-
ther parameters are included in a conversion, one must consider in choosing them
whether the quantities to be compared were originally independently determined
or not.

The conversion of a into φ is

φ = 90◦− a+ δ, (11)

where δ is the sun’s declination.10 If one denotes by as and aw the sun’s altitudes
on the summer and winter solstices, δ equals ε and −ε respectively (see Figure 4):

φ = 90◦− as+ ε, (12)

φ = 90◦− aw− ε. (13)

Since an ancient conversion from φ to a is assumed here, the value used for ε
is the εh of (10), which presumably underlies Hipparchus’ conversion from M to
φ (see [Diller 1934]) and differs only slightly from the actual value of 23◦43′ in
Hipparchus’ time.

8In the case of information such as “A, B, C are x st distant from D, E, F”, not all nine derivable
distances from A, B, C to D, E, F are introduced but only the following five distances: A – D: b= x st;
A – B, A – C, D – E, D – F: b = 0. This is advisable because the value x was surely not determined
for all nine distances.

9I thank one of the referees for the information that the value b = 12,500 st in G II.1.18, given in
[Neugebauer 1975, p. 1313] for Massalia – 19 h parallel, is not from Hipparchus but from Strabo.

10Neugebauer [1975, p. 304] states that the a-data form an arithmetic progression of the second
order. This is based, among others, on the value a = 3 c for M = 19 h. In F61 (G II.1.18), however,
Strabo says that the a belonging to M = 19 h is less than 3 c. An arithmetic progression is not
considered here.
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F Source From To b [st] Original

15.1 G II.1.12 Meroë Byzantium ≈18,000
43.1 G II.5.35 Cinnamon c. Meroë 3,000
43.2, 44.1 G II.5.35, II.1.13 equator Cinnamon c. =

≈
8,800

43.3 G II.5.35 Meroë Syene 5,000
46.1 G II.5.36 Meroë kl. Ptolemais 0
46.2 G II.5.36 equator Meroë kl. 11,600 M = 13 h
46.3 G II.5.36 equator Meroë kl. 11,600 see p. 325
47.1 G II.5.36 Syene Berenice 0
47.2 G II.5.36 Syene c. of Trogodytes 0
47.3 G II.5.36 equator Syene 16,602 see p. 326
47.4 G II.5.36 equator Syene 16,800 M = 13 1

2 h
48.1 G II.5.38 Alexandria kl. Alexandria ≈400
48.2 G II.5.38 Alexandria Cyrene 0
48.3 G II.5.38 equator Alexandria kl. 21,400 M = 14 h
48.4 G II.5.38 equator Alexandria kl. 21,400 see p. 326
48.5 G II.5.38 Alexandria kl. Carthage 1,300
48.6 G II.5.38 equator Carthage 22,730 re =

11
7

49.1 G II.5.35 PtolemaisPh Sidon/Tyre 0
49.2 G II.5.35 equator PtolemaisPh 23,400 M = 14 1

4 h
49.3 G II.5.35 Alexandria PtolemaisPh

≈1,600
49.4 G II.5.35 Carthage PtolemaisPh

≈700
50.1 G II.5.39 Rhodes Peloponnese 0
50.2 G II.5.39 Rhodes Xanthus 0
50.3 G II.5.39 Rhodes Syracuse 400
50.4 G II.5.39 equator Rhodes 25,400 M = 14 1

2 h
50.5 G II.5.39 Alexandria Rhodes 3,640
51.1 G II.5.40 AlexandriaTr Amphipolis 0
51.2 G II.5.40 AlexandriaTr Apollonia 0
51.3 G II.5.40 AlexandriaTr s. Rome, n. Naples 0
51.4 G II.5.40 equator AlexandriaTr 28,800 M = 15 h
51.5 G II.5.40 Alexandria AlexandriaTr 7,000
51.6 G II.5.40 equator AlexandriaTr >28,800
51.7 G II.5.40 Rhodes AlexandriaTr 3,400
51.8 G II.5.40 AlexandriaTr Byzantium 1,500
51.9 G II.5.40 Byzantium Nicaea 0
51.10, 53.2 G II.5.40, I.4.4 Byzantium Massalia 0

54.1, 55.1 II.5.8, II.1.12

Table 2. Latitudinal data derived from the fragments (F; with the ex-
ception of F62.1–71.1 from [Dicks 1960]) ascribed to Hipparchus; n.=
north of, s. = south of, c. = country, kl. = klima, Tr = in the Troad (i.e.
Dalyan), Ph = in Phoenicia (i.e. Acre).
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F Source From To b [st] Original

52.1 G II.5.41 equator Byzantium 30,300 M = 15 1
4 h

52.2 G II.5.41 equator Byzantium 30,243 rs = 120/41 4
5

52.3 G II.5.41 Rhodes Byzantium ≈4,900
52.4 G II.5.41 equator Byzantium ≈30,300
53.1 G I.4.4 Borysthenes Britain (?) 0
56.1 G II.5.41 Byzantium Mid-Pontus ≈1,400
56.2 G II.5.41 equator Mid-Pontus 31,700 M = 15 1

2 h
56.3 G II.5.41 equator Mid-Pontus 31,500 see p. 331
57.1 G II.5.42 Byzantium Lk. Maeotis ≈3,800
57.2 G II.5.42 equator Lk. Maeotis 34,100 M = 16 h
57.3 G II.5.42 equator Lk. Maeotis 34,100
57.4 G II.5.42 equator Lk. Maeotis 33,833 aw = 9 c
58.1, 59.3 G II.1.18, II.1.12 Borysthenes Celtica 0
58.2 G II.1.18 equator Borysthenes 33,833 aw = 9 c
59.1 G II.1.12 Byzantium Borysthenes 3,700
59.2 G II.1.12 Massalia Borysthenes 3,700
59.4 G II.1.13 equator Borysthenes 34,000
60.1 G II.5.42 Byzantium n. Lk. Maeotis 7,700 6,300 st
60.2 G II.5.42 equator n. Lk. Maeotis 38,033 aw = 6 c
60.3 G II.5.42 equator n. Lk. Maeotis 38,000 M = 17 h
61.1 G II.1.18 Massalia Celtica 7,700 6,300 st
61.2 G II.1.18 equator Celtica 38,033 aw = 6 c
61.3 G II.1.18 Massalia 18 h-region 10,500 9,100 st
61.4 G II.1.18 equator 18 h-region 40,833 aw = 4 c
61.5 G II.1.18 equator inhabited region >42,233 aw < 3 c
61.6 G II.1.18 equator inhabited region 42,800 M = 19 h
61.7 G II.1.18 equator 18 h-region 40,800 M = 18 h
62.1 CP 1.3.6 equator Greece 25,809 re =

4
3

62.2 CP 1.3.6 equator Greece 26,024 M = 14 3
5 h

62.3 CP 1.3.6 equator Greece ≈25,900 ap ≈ 37◦

63.1 CP 1.3.7 equator AlexandriaTr 28,753 M = 15 h
63.2 CP 1.3.7 equator AlexandriaTr

≈28,700 ap ≈ 41◦

64.1 CP I.3.12 equator Athens 26,024 M = 14 3
5 h

64.2 CP I.3.12 equator Athens ≈25,900 ap ≈ 37◦

65.1 CP I.4.8 equator Athens 25,809 re =
4
3

65.2, 70.1 CP I.4.8, I.11.8 equator Athens ≈25,900 ζa ≈ 37◦

66.1, 67.1, CP I.7.11, I.7.14, equator Greece 25,308 M = 14 1
2 h

71.1 II.4.2
68.1 CP I.7.21 equator Athens 25,900 ζa = 37◦

69.1 CP I.11.2 equator Greece 25,900 ζa = 37◦

70.2 CP I.11.8 equator Rhodes 25,200 ζa = 36◦

Table 2 (continued).
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Figure 3. Graph of the latitudinal data ascribed to Hipparchus;
the vertical order of the locations gives the meridian arc length b0

from the equator (not to scale); s. = south of, n. = north of.

The ratio r refers to the equinox or the summer solstice. In the case of the
equinox, φ is computed from the ratio re by

φ = arctan (1/re). (14)



ANALYSIS OF THE LATITUDE DATA OF ERATOSTHENES AND HIPPARCHUS 325

Such an equinoctial ratio is not expected to be the result of a measurement, because
at the equinox only unreliable gnomon measurements are possible, in contrast to
the solstices (cf. [Rawlins 2009]). In the case of a ratio rs, referring to the summer
solstice, a real measurement can be expected and it holds true that

φ = arctan (1/rs)+ ε. (15)

To compare rs with an independently determined meridian arc length, the actual
value for ε must be used. The value ε = 23◦43′ of Hipparchus’ time is used here.
Moreover, since the shadow is generated by the upper edge of the sun and not by
its center, φ(rs) must be enlarged by a systematic error of 16′, whereby the radius
of the sun disc is taken into account (cf., e.g., [Dicks 1960, p. 178]).

Ptolemy gives the calculation of φ from M and vice versa by means of spherical
trigonometry in MS II.3. The comparison of Hipparchus’ M-data with the associ-
ated b0-data by [Diller 1934] and [Rawlins 2009] suggests that Hipparchus used a
conversion φt(M, ε) based on spherical trigonometry too. The modern formulation
of Ptolemy’s computation of φ from M is

φt(M, ε)= arctan(−cos(M/2 · 15◦/h)/tan ε) (16)

(M in h), which is applied here. For ε the value εh is used, which probably underlies
Hipparchus’ conversion between M and φ (see [Diller 1934; Rawlins 2009]). Since
Hipparchus presumably converted M into φ and Strabo φ into b0, a conversion
according to [Rawlins 2009] is used here: φt(M) is rounded to the nearest twelfth
of a degree and b0(φt) to the nearest hundred stadia. The latter rounding is not
applied to the data in the Commentary.

For the conversion of ζa = 90◦− δa into φ, equation (6) applies so that φ = ζa.

3.1. Notes on the data. Data on the Borysthenes refer to its mouth, as in Section 2.1.
In F57 (G II.5.42), however, Strabo discusses “the regions in neighborhood of the
Borysthenes and the southern parts of Lake Maeotis”. These regions are distin-
guished from the Borysthenes and referred to as “Lake Maeotis” here.

F15 (G II.1.12): From this passage it follows that Meroë and the southern headlands
of India have the same latitude. According to G II.1.20, however, Hipparchus
objects to that in his second book (cf. [Berger 1869, pp. 42, 97]), so the information
is not considered here.

F43 (G II.5.35): According to this passage, the Cinnamon country is situated “. . .
very nearly half-way between the equator and the summer tropic . . . .” Following
[Berger 1869, p. 44], it is assumed here that this inaccurate localization is not from
Hipparchus.

F46.3 (G II.5.36): Diller [1934] indicates that b0 = 11,800 st of Meroë, which
results from F43 (G II.5.35), is contradictory to b0 ≈ 11,600 st resulting from the
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conversion of M = 13 h of the associated klima11 in F46 (G II.5.36). Rawlins
[2009] points out the difference between the city of Meroë and the Meroë klima
and gives b0 for the klima. According to that, for bMk

0 of the Meroë klima and
bAk

0 of the Alexandria klima follows from F46: bMk
0 + (b

Mk
0 − 1,800 st) = bAk

0 ,
bMk

0 = (b
Ak
0 +1,800 st)/2. By means of bAk

0 = 21,400 st (see Section 3.2) it follows
that bMk

0 = 11,600 st.

F47.3 (G II.5.36): “In Syene [ . . . ] the sun stands in the zenith at the summer
solstice . . . .” Thus, as = 90◦ can be derived. From (12) follows φ = ε, to which
the actual value 23◦43′ is applied, since a real observation is assumed at the root.
Hence, b0 = 16,602 st.

F48.4 (G II.5.38): Hipparchus distinguishes between Alexandria and the region
400 st south of it (the Alexandria klima; see F48.1), where M is 14 h (F48.3). The
re of Alexandria specified by Strabo (F48.4) is 5

7 (cf. [Neugebauer 1975, p. 336;
Rawlins 2009]), emended to 5

3 in [Jones 1917–1932, p. 511; Dicks 1960, p. 95]
because re =

5
7 yields a totally wrong φ; but following Neugebauer, 5

7 is assumed
to represent the ratio m/M of the length m of the shortest day to the length M of
the longest day, which was a common way to specify of the latitude. From m =
24 h−M follows M = 24 h/(m/M + 1)= 14 h, which is used here. Thus, contrary
to the text, this value does not refer to Alexandria proper but to the Alexandria
klima (likewise [Rawlins 2009]).

F48.6 (G II.5.38): Strabo gives re =
11
7 for Carthage, which yields the grossly

erroneous φ = 32◦28′ via (14) (actual φ = 36◦51′). Rawlins [1985; 2009] assumes
a similar error for Carthage as for the Alexandria klima (see F48.4). According to
this, the given re =

11
7 would be an M/m ratio, which corresponds to the common

klima of M = 14 2
3 h (cf. [Neugebauer 1975, p. 722]). This possible explanation

is not followed here. First, the ratio 5
7 for the Alexandria klima is assumed to

be an m/M ratio, but the ratio 11
7 for Carthage would be an M/m ratio, so a

further inconsistency in the text would have to be assumed. Second, Ptolemy gives
φ = 32◦40′ and M = 14 1

5 h for Carthage (GH IV.3.7, VIII.14.5). Since Ptolemy’s
data originate from Hipparchus’ data rather than from Strabo’s,12 Hipparchus’ φ
must be about 32◦40′, consistent with the value resulting from re.

F52.2 (G II.5.41): In F52 the ratio rs= 120/41 4
5 is given for Byzantium. According

to F53 (G I.4.4) Hipparchus found the same ratio in Byzantium as Pytheas in Mas-
salia. If rs is Hipparchus’ ratio for Byzantium, a real measurement by Hipparchus

11The term klima denoted a latitudinal strip or a latitude which was assigned to a specific M
value; in this regard see, e.g., [Honigmann 1929; Dicks 1960, pp. 154–164; Neugebauer 1975,
pp. 725–727].

12For example, Ptolemy states (GH I.4.2) that he had available certain altitudes of the pole due to
Hipparchus.
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is unlikely because the ratio yields an error of about 2◦ with respect to the actual φ.
Jones [2002], for example, assumes a calculative origin for rs and recalculates 1/rs

from M = 15 1
4 h (F52.1) by means of εh, εm and εr (cf. Sections 2.1 and 2.4), but

does not recover 120/41 4
5 .13 Following [Rawlins 2009], it is assumed here that rs

is the result of a real measurement which Pytheas performed in Massalia. Hence,
ε = 23◦44′ of Pytheas’ time is used for conversion (15).

F56 (G II.5.41): “If one sails into the Pontus [Black Sea] and proceeds about
1,400 stades [F56.1] northwards, the longest day becomes 15 1

2 equinoctial hours
[F56.2].” The distance refers to the parallel of Byzantium (cf. [Dicks 1960, p. 183]).
Furthermore, the mentioned region in the Pontus (Mid-Pontus) is “. . . equidistant
from the pole and the equator . . . ” so that b0 = C/8= 31,500 st (cf. (1)) is used
(F56.3). Moreover, there “. . . the arctic circle is in the zenith . . . ” (i.e. only one
point of the circle). Hence, its declination δa equals φ and (6) yields φ = 90◦/2=
45◦ or b0 = C/8, which is not introduced here once more.

F57 (G II.5.42): Strabo reports on the neighborhood of the Borysthenes and the
southern parts of Lake Maeotis: “The northern part of the horizon, throughout
almost the whole of the summer nights, is dimly illuminated by the sun [ . . . ]; for
the summer tropic is seven-twelfths of a zodiacal sign from the horizon [= at],
and therefore this is also the distance that the sun is below the horizon at midnight
[= α].” One zodiacal sign corresponds to 360◦/12= 30◦ and 7

12 of a sign is 17◦30′.
The text suggests that the angles at and α refer to the summer solstice, that at is
17◦30′ and that α equals at. Figure 4 shows the meridian m, equator e and positions
D and N of the observer at noon and midnight, respectively, at the summer (a) and
winter (b) solstices. Shifting the horizon hD in the center C of the earth to position
h′D, the circle m can be regarded as the celestial sphere. Then, the sun’s altitude as

at C in Figure 4(a) and the angle αw at C in (b) correspond to Strabo’s description
of at and αs at N in (a) and αw at N in (b) correspond to Strabo’s description of α.
Since αs 6= as, Strabo’s equation α = at holds true for the winter solstice only. For
the summer solstice, as = 90◦−φ+ ε ≈ 64◦57′ (equation (12) with b0 = 34,100 st
of Lake Maeotis; cf. Section 3.2) applies, which is inconsistent with the given
value 17◦30′ of at. The altitude aw = 90◦−φ− ε ≈ 17◦37′ (equation (13)) of the

13To test the possibility of an ancient conversion from M to rs, Jones’ conversion is redone here
with different calculation steps. The original conversion from M to φ was presumably based on εh
([Diller 1934]). Its result was probably rounded to the nearest twelfth of a degree: φt(M)= 43◦17′ ≈
43◦15′. The conversion from φ to rs is based on (15), the determination of tan (φ− ε) = tanα.
As can be expected from ancient calculations, the tangent function was determined by the ratio
crd(2α)/ crd(180◦− 2α) (following from 2 sinα = crd 2α; see [Neugebauer 1975, pp. 21–24]). The
chord crd() is determined here by a linear interpolation of Hipparchus’ presumed table of chords,
reconstructed in [Toomer 1974]. The results based on εh, εm and εr are ≈ 42.69/120, ≈ 42.25/120,
and ≈ 41.91/120. The numerator, however, should be within the interval [41.7, 41.9] if it is to be
expressed as 41 4

5 .



328 CHRISTIAN MARX

S
D

as

hD
t

e
h′D ‖ hD

ε
φ

as C σs

φ ε

ε

αs

σs

N

hN

m

(a)

N

hN

αw

σw

e

σw

ε
φ

C
αw

aw

ε

εφ
σw

D
aw

hD
t S

m

h′D ‖ hD

(b)

Figure 4. On Strabo’s information on Lake Maeotis in fragment
F57: (a) summer solstice; (b) winter solstice (e: equator, hD/N:
horizon at noon/midnight, m: meridian, S: sun, t: tropic).

winter solstice, however, is consistent with the value of at but inconsistent with
Strabo’s description of at. Figure 4(a) yields αs = 90◦ − σs = 90◦ − φ − ε = aw

via (13), while (b) gives αw = 90◦− σw = 90◦−φ+ ε = as via (12). In summary,
Strabo’s information can be corrected by the following two statements. First, at

is (about) 65◦ at the winter solstice and equals α at the winter solstice (= αw).
Second, aw is 17◦30′ and equals α at the summer solstice (= αs). Nonetheless,
Strabo’s information is not used further.

F60.1 (G II.5.42): Gosselin [1798, p. 28],14 Berger [1869, p. 70] and Diller [1934]
notice that b= 6,300 st for Byzantium – “north of Lake Maeotis” is 1,400 st (2◦) too
small in comparison to the M-data of these locations (F52.1: 15 1

4 h, F60.3: 17 h).
Diller [1934] assumes that Strabo inadvertently used Mid-Pontus (F56.2: M =
15 1

2 h) instead of Byzantium for the calculation of b. Accordingly, the corrected
b = 7,700 st is used here.

14I thank a referee for mentioning [Gosselin 1798] in the context of the errors of F60.1 and F61.3.
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F61.1 (G II.1.18): Dicks [1960, p. 185] shows that b = 6,300 st of Massalia –
Celtica (according to Hipparchus, but according to Strabo north of Celtica) has
also an error of 2◦ as b of F60.1. It is corrected to 7,700 st here.

F61.3 (G II.1.18): b = 9,100 st of Massalia – 18 h-region has the same error of
2◦ as b of F60.1 ([Gosselin 1798, p. 28; Berger 1869, p. 70; Diller 1934]). The
corrected b = 10,500 st is applied here.

F63 (CP I.3.7): Hipparchus refers to regions at the Hellespont. These regions
are equated here with Alexandria in the Troad. Hipparchus gives M/m = 5

3 and
M = 15 h. Since both are equivalent, only the latter is used here.

F65.1 (CP I.4.8): Hipparchus says that ζa is about 37◦ in the environment of Athens
and wherever re equals 4

3 . Although he does not explicitly assign this re to Athens,
it is used here for Athens.

F66.1, F67.1, F71.1 (CP I.7.11, I.7.14, II.4.2): Hipparchus gives the same data for
the culmination, rising and setting of constellations for Greece as for the regions
where M = 14 1

2 h. Thus, this M value is assigned to Greece here.

3.2. Test of consistency. The consistency of the data ascribed to Hipparchus is
tested according to Section 2.2. The n = 84 data bi given in Table 2 are com-
posed to the equation system (4). The imprecise aw of F61.5 is not involved in the
adjustment computation. Furthermore, the M-data of F66.1, F67.1 and F71.1 are
not used because probably they are imprecise values (see below). There remain
n = 80 data for the adjustment computation. The system (4) has 34 unknown b0

of the locations shown in Figure 3 (for Celtica only one b0 is used). The L1-norm
adjustment by means of the BR-algorithm yields 61 vi being 0; hence, the related
data are consistent among each other. The nonzero vi are considered below. It turns
out that the solution for the b0 can be regarded as being in accord with Hipparchus’
original data. The b0 are given in Figure 3.

F15.1; Meroë – Byzantium; b ≈ 18,000 st; v = 500 st: 18,000 st are contradictory
to b = 18,500 st, which follows from b0 of F43.2 (Cinnamon country), b0 of F52.3
(Byzantium) and b of F43.2/44.1 (Cinnamon country – Meroë). Since, however,
Strabo gives “about” 18,000 st, there is not a real contradiction.

F47.3; Syene; sun at zenith at summer solstice⇒ b0 = 16,602 st; v = 198 st: b0

was derived from φ = 23◦43′ = ε (Section 3.1); it is contradictory to b0 = 16,800 st
which follows from b0 of F43.2 (Cinnamon country), b of F43.1 (Cinnamon coun-
try – Meroë) and b of F43.3 (Meroë – Syene). The value 16,800 st corresponds
to φ = 24◦, in good agreement with the real φ = 24◦05′. Thereby, it equals the
common ancient value εr so that Syene was theoretically located on the tropic.
Nonetheless, the information of F47.3 may be based on a real observation. Owing
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to the closeness to the tropic, the sun’s altitude was about 90◦ at noon on the
summer solstice, so that for an observer the sun apparently stood at the zenith.15

F48.6; Carthage; re =
11
7 ⇒ b0 = 22,730 st; v =−30 st: b0 of F48.3 (Alexandria

klima) and b of F48.5 (Alexandria klima – Carthage) as well as M of F49.2 (Ptole-
mais in Phoenicia) and b of F49.4 (Carthage – Ptolemais) yield b0 = 22,700 st for
Carthage. If this value was calculated from φ and rounded to the nearest 100 st,
the original b0 should be within the interval [22,650 st, 22,750 st]. This is fulfilled
by the b0 derived from re. Hence, re could have been calculated from φ.

F50.5; Alexandria – Rhodes (center); b= 3,640 st; v=−40 st: b is contradictory to
the value 3,600 st, which follows from b = 7,000 st of F51.5 (Alexandria – Alexan-
dria in the Troad) and b = 3,400 st of F51.7 (Rhodes – Alexandria in the Troad).
Diller [1934] assumes an error of 40 st in b = 3,640 st originating from a faulty
reading. Berger [1869, p. 53] states that the value of 3,640 st is given with a higher
precision and that it refers to the city of Rhodes. Dicks [1960, p. 176] considers b
to be derived from a real measurement by Hipparchus in the center of Rhodes and
assumes that the text originally gave 3440 st. Shcheglov [2007] assumes that both
3,600 st and 3,640 st are authentic and that they refer to the center of Rhodes and
the city of Rhodes, respectively. The following explanation shall be added. In F50
Strabo refers not only to the center of Rhodes but to “. . . the regions round the center
of Rhodes . . . ” and states that there M is 14 1

2 h. Hipparchus assigned a φ value to
the 14 1

2 h klima, which probably was φ1 = φt(M)= 36◦15′. Strabo converted φ1

into b0 and rounded it to the nearest 100 st: b01(φ1)= 25,375 st≈ 25,400 st. Strabo
had a further value φ2 for the city of Rhodes in the north of the island (e.g., from
Hipparchus, who lived on the island of Rhodes); it corresponded to b02 = 25,440 st
(= 3640 st+ 21800 st of Alexandria), i.e. φ2 ≈ 36◦21′. (That value is somewhat
less than the real φ = 36◦26′ and therefore consistent with the ancient systematic
error of a gnomon measurement due to the generation of the shadow by the upper
edge of the sun; see Section 3.) Strabo knew that M ≈ 14 1

2 h is valid in a wide
area, that φ1 is a theoretical value derived from M and that his rounding up of b01

yielded a less accurate and more northerly position (as b02). Furthermore, b01 and
b02 only differ by 40 st. Thus, Strabo chose the more precise and trustable b02 for
his statement in F50 on the 14 1

2 h klima.

F52.2; Byzantium; rs = 120/41 4
5 ⇒ b0 = 30,243 st; v = 57 st: rs is assumed to be

the result of an independent measurement (cf. Section 3.1); nevertheless, the small
v shows that rs is in accord with the other data.

15For 220–120 BC, the maximal altitude of the sun at the summer solstice was determined based
on the calculation method given in Fn. 4; the result is 89◦37′ ≈ 90◦.
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F56.3; Mid-Pontus; b0 = C/8⇒ b0 = 31,500 st; v = 200 st: b is contradictory
to b0 = 31700 st, which follows, for instance, from M of Mid-Pontus (F56.2).
However, v is acceptable because b0 of F56.3 is derived from rough information
(cf. Section 3.1).

F57.4; Lake Maeotis; aw = 9 c ⇒ b0 = 33,833 st; v = 267 st: Since aw is a
rounded value, it can be regarded as consistent with the other data if v is < 0.5 c=
1◦ =̂ 700 st. That is fulfilled.

F58.2; Borysthenes; aw = 9 c⇒ b0 = 33,833 st; v = 167 st: Cf. F57.4.

F60.2; “north of Lake Maeotis”; aw = 6 c⇒ b0 = 38,033 st; v =−33 st: Cf. F57.4.
aw is consistent with b0 = 38,000 st, which follows from b0 of F52.4 (Byzantium)
and the corrected b = 7,700 st of F60.1 (Byzantium – “north of Lake Maeotis”).

F61.1; Massalia – Celtica; b = 7,700 st; v =−4,000 st: b is contradictory to the
value 3,700 st, which follows from b of F59.2 (Massalia – Borysthenes) and b = 0
of F58.1/59.3 (Borysthenes – Celtica). From F61.1 and b0 = 30,300 st of Massalia
follows b0 = 38,000 st for Celtica in contrast to b0 = 34,000 st, which follows
from F59.2 and F58.1/59.3. This is not a real contradiction because Celtica is a
region with a large latitudinal extent and Hipparchus did not distinguish between
the Celtic and the Germanic coasts (see [Dicks 1960, pp. 185, 188]), so he gave
a southern (F58.1, F59.3) and a northern (F61.1, F61.2) latitude for Celtica. This
becomes evident from Strabo’s statement (F61/G II.1.18) that Hipparchus takes the
inhabitants of the region concerning F61.1 “. . . to be still Celts . . . ” and that Strabo
himself considers them as “. . . Britons who live 2,500 stades north of Celtica . . . ”
(“Celtica” refers to Hipparchus’ southern latitude). Strabo’s b = 2,500 st must
be corrected by +2◦ =̂ 1,400 st as b of F61.1 (see Section 3.1). Then, b0 for the
northern latitude of Celtica is (34,000+2,500+1,400) st= 37,900 st, in accordance
with 38,000 st derived from F61.1.

F61.2; Celtica; aw = 6 c⇒ b0 = 38,033 st; v = −4,033 st: As F61.1 (Massalia –
Celtica), aw refers to the northern latitude of Celtica at b0 = 38,000 st. The v in
this regard is only −33 st, which is acceptable; cf. F57.4.

F61.4; 18 h-region; aw = 4 c⇒ b0 = 40,833 st; v =−33 st: Cf. F57.4.

F61.5; “inhabited region”; aw < 3 c⇒ b0 > 42,198 st; v = 567 st: The information
b0 > 42,198 st is in accord with v > 0 and v is acceptable because of the imprecise
data; therefore, F61.5 is consistent.

F62.1, F65.1; Greece, Athens; re =
4
3 ⇒ b0 = 25,809 st; v = 91 st: From re and

(14) follows φ = 36◦52′. Thus, re is consistent because it is in accord with the
latitude of 37◦, which follows from F62.3, F69.1 (Greece) as well as from F64.2,
F65.2, F68.1, F70.1 (Athens).
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F62.2, F64.1; Greece, Athens; M = 14 3
5 h⇒ b0 = 26,024 st; v = −124 st: The

latitude φt(M, εh) is 37◦18′. The difference to 37◦ of F62.3, F69.1 (Greece) as well
as of F64.2, F65.2/70.1, F68.1 (Athens) is 18′. Shcheglov [2007] considers 37◦ as
inconsistent with εh. φt(M, ε = 23◦51′)= 37◦03′ is in better agreement, so Dicks
[1960, p. 167] assumes 23◦51′ (MS I.12) to be Hipparchus’ value for ε. However,
εh need not be refused. First, Hipparchus only gives “about 37◦” in F62.3 (Greece)
as well as in F64.2, F65.2, F70.1 (Athens). Second, Hipparchus usually uses a
step width of 1

4 h or a multiple of it for his klimata; the nearest M values 14 1
2 h and

14 3
4 h yield 36◦15′ and 38◦47′ so that 14 3

5 h represents a good fit with 37◦ and can
be regarded as consistent. Moreover, Hipparchus assigns 14 3

4 h (F62.2) as well as
14 1

2 h (e.g., F66.1) to Greece, which illustrates Hipparchus’ low demand for the
accuracy of the M-data.

F63.1; Alexandria in the Troad; M = 15 h ⇒ b0 = 28,753 st; v = 47 st: M is
consistent; it is in agreement with F51.4.

F63.2; Alexandria in the Troad; φ = ap ≈ 41◦⇒ b0 ≈ 28,700 st; v = 100 st: v is
acceptable because of the approximate ap so that F63.2 is consistent.

F66.1, F67.1, F71.1; Greece; M = 14 1
2 h ⇒ b0 = 25,308 st; v = 592 st: M is

contradictory to M = 14 3
5 h of F62.2. The smaller M = 14 1

2 h leads to a region south
of Athens because Hipparchus assigns M = 14 3

5 h to Athens (F64.1). Hipparchus
probably only gives a less accurate M value with a resolution of 1

2 h in F66.1, F67.1,
F71.1.

F70.2; Rhodes; ζa = 36◦⇒ b0 = 25,200 st; v = 200 st: From M = 14 1
2 h of F50.4

follows φt(M)= 36◦15′. Hence, ζa of F70.2 is probably only a rough value as ap

of Athens of F64.2.
Since the aw-data of F60.2, F61.2 and F61.4 are inconsistent with the uncor-

rected textual b values of F60.1, F61.1 and F61.3 (see Section 3.1), they confirm
that the error of 1400 st of these b values is caused by Strabo.

In F51 Strabo assigns Alexandria in the Troad to the parallel which has M = 15 h
(F51.4) and is “over 28,800 st” from the equator (F51.6). From M follows φt(M)≈
40 1

6
◦
=̂ 28,817 st≈ 28,800 st (which corresponds to the result of the adjustment).

In his statement Strabo possibly refers to the value of 28,817 st, which resulted
from his conversion of φ into b0.

According to F53 the parallel through the mouth of the Borysthenes runs through
Britain too (F53.1). It is likely that Hipparchus referred to Celtica and Strabo
replaced it by Britain (likewise [Berger 1869, p. 66, footnote 1]) for the following
reasons. First, according to F58.1/59.3 (G II.1.18/12) Hipparchus locates Celtica
and the Borysthenes at the same latitude. Second, according to F61 (G II.1.18)
Hipparchus locates Britain north of the “inhabited region”/19 h parallel, and so
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much further north than the Borysthenes. Finally, according to F61 Strabo believes
the Celts mentioned by Hipparchus to be Britons.

Dicks [1960, p. 184] assumes that Strabo’s data on the Borysthenes including
F57 always refer to its mouth. There is, however, evidence that Hipparchus located
the mouth of the Borysthenes further south than the regions assigned to the 16 h
klima (F57). Strabo explicitly states that Hipparchus locates the mouth 3,700 st
north of Massalia and Byzantium (F59.1, F59.2) and 34,000 st north of the equator
(F59.4); from the former value also follows b0 = 34,000 st. Furthermore Strabo
says that M is 16 h in the regions in the neighborhood of the Borysthenes and the
southern parts of Lake Maeotis (F57.2), which are 3,800 st north of Byzantium
(F57.1) and 34,100 st north of the equator (F57.3); from the former b value also
follows b0 = 34,100 st. The b-data are confirmed by φt(M)≈ 48 9

12
◦
=̂ 34125 st≈

34,100 st. Hence, Hipparchus distinguished between the mouth of the Borysthenes
and the 16 h klima, which is 100 st further north.

4. Summary

The latitudinal data attributed to Eratosthenes and Hipparchus were each compiled
and formulated as systems of equations, whose solution revealed the differences
and inconsistencies of the data. As a result, the presumably original data of Erato-
sthenes and Hipparchus were deduced.

The analysis of the data ascribed to Eratosthenes showed several disagreements,
which suggests that the data concerned originate from Strabo and not from Erato-
sthenes; this applies to F34.9, F34.10, F34.11, F35.5, F35.6, F36.2 and F47.1. In
particular, Eratosthenes’ latitudinal extent of the inhabited world up to the “north-
ern regions” (F30.1, F34.12) is in contradiction with the corresponding sum of the
given meridian arc lengths ascribed to Eratosthenes so far. Therefore, Eratosthenes’
meridian arc length of the part Borysthenes – “northern regions” is probably not
4,000 st (F34.9) but 3,000 st, which is given by Strabo in G II.5.8 (F34.13).

Eratosthenes’ latitudinal distances Alexandria – Hellespont – Borysthenes (F35.2,
F35.3/36.3) are grossly erroneous. According to Strabo it was generally agreed
that the sea route Alexandria – Borysthenes is a straight line. Hence, Eratosthenes
presumably based his latitudinal distances Rhodes – Hellespont – Byzantium on
the lengths of sea routes, which is affirmed by a good agreement of his distances
with the actual distances alongside the Turkish coast.

From Pytheas’ information on the position of the arctic circle relating to Thule it
was known that Thule is situated at a latitude of (90◦− ε), where ε is the obliquity
of the ecliptic. In conjunction with Eratosthenes’ latitudinal data for Thule, 23◦40′

can be derived for Eratosthenes’ value of ε. This value corresponds to Hipparchus’
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presumable value (see [Diller 1934]) and was possibly referred to by Ptolemy in
MS I.12.

The fragments ascribed to Hipparchus contain latitudinal quantities of different
types. Occurring differences of the data were explained by the different types of
information and their different precision and origination. The real inconsistencies
can be ascribed to Strabo in most cases; this applies to F48.4 (e.g., [Neugebauer
1975]), F60.1 and F61.3 ([Diller 1934]), F61.1 ([Dicks 1960]), F15.1, F51.6, F53.1
and F57. Strabo’s statement on the distances of the summer tropic and the sun with
respect to the horizon at Lake Maeotis in F57 has not been interpreted so far; his
error in this regard was illustrated. Hipparchus distinguished between the 14 h
klima and the city Alexandria as well as between the 13 h klima and the city of
Meroë ([Rawlins 2009]). The present investigation revealed that Hipparchus prob-
ably also distinguished between the 16 h klima and the mouth of the Borysthenes
100 st south of the parallel of the klima.

Appendix: On the location of Thule

Pytheas’ voyage to Thule took place in ca. 330 BC.16 His treatise On the Ocean on
his voyages is not preserved, but later ancient authors provided extractions thereof.
The handed down information on Thule is given in [Hennig 1944, pp. 155–159]
and [Whitaker 1982], for example. The main sources are Strabo’s Geography and
Pliny’s Natural History. The only quotation from Pytheas’ treatise is to be found in
Geminus’ Eisagoge (E; see [Manitius 1898]). Ptolemy also describes the position
and form of the island of Thule by means of longitudes and latitudes in GH II.3.

The two common localizations for Pytheas’ Thule are Iceland (e.g., [Burton
1875; Roller 2010, p. 127]) and Norway. Iceland is neglected here because Pytheas
met inhabitants in Thule according to E VI.9, but so far a settlement of Iceland
cannot be assumed for his time. Nansen [1911, p. 62] and Hennig [1944, p. 166]
locate Thule in the region of Trondheim in Norway.

Ptolemy does not refer to Pytheas’ Thule; his island of Thule is usually identi-
fied as Shetland (e.g., [Rivet and Smith 1979, p. 146]). Detailed reasons for this
are given in [Marx 2014] in an investigation of Ptolemy’s coordinates of Scot-
land. It should be added that Ptolemy’s length of 20 h for the longest day in Thule
(GH VIII.3.3, MS II.6) contradicts Pytheas’ information on the length of the nights
in Thule (see below).

For a localization of Pytheas’ Thule, the following information comes into con-
sideration:

1. Thule is a six-day seafaring from Britain in a northern direction (G I.4.2,
NH II.77).

16[Nansen 1911, p. 48]: 330–325 BC; [Hennig 1944, p. 162]: 350–310 BC.
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2. In the region of Thule the tropic of Cancer coincides with the arctic circle
(G II.5.8). At the summer solstice there are no nights (NH IV.30).
3. The meridian arc length b of Borysthenes – Thule is 11,500 st (G I.4.2).
4. Pytheas said that in Thule the length n of the nights was 2 h and 3 h (E VI.9).
5. A day’s journey away from Thule is the frozen/clotted sea (NH IV.30).

The frozen/clotted sea suggests a larger appearance of sea ice. That disagrees
with the location of Thule in Norway because in the Norwegian Sea there is no
drift ice (cf. [Vinje and Kvambekk 1991]) and at Pytheas’ time, at the beginning
of the Subatlantic, the climate was similar to today’s climate so that drift ice can
be excluded. According to [Hennig 1944, pp. 105, 156, footnote 1] the clotted sea
is a fiction, which can be found similarly in ancient and medieval literature. Thus,
information 5 does not play a role here.

Information 2 and 3 are treated in Section 2.4; information 1 and 4 are dealt
with in the following.

Casson [1971, pp. 281–96] determines the speeds of reported ancient seafarings;
the speeds under favorable winds were about 3.5 to 6 kn and under unfavorable
winds about 1.5 to 3 kn. Assuming favorable conditions but a moderate average
speed of about 3.5 kn = 156 km/d for Pytheas’ voyage, the time of six days (i.e.
days and nights) corresponds to about 940 km, which is used here. According to
Pliny (NH IV.30) one traveled from the island called Berrice (also named Nerigos
in the manuscripts) to Thule. Berrice is possibly the island Mainland of Shetland;
cf. [Nansen 1911, p. 61] and [Hennig 1944, p. 156]. The starting point of the six-
day journey to Thule, however, was rather located at Great Britain, since Thule
“. . . is six days’ sail from the north of Britain . . . ” ([Bostock and Riley 1855])
according to NH II.77 ([1985, p. 136], for example, chooses Cape Wrath for the
starting point). NH IV.30 suggests that Berrice/Mainland of Shetland was on Pyth-
eas’ way to Thule, which is taken into account here. For the starting point of
the time measurement of the six-days journey Duncansby Head is assumed here.
Figure 5 shows two possible sea routes with a length of 940 km from Great Britain
to Thule. Both routes bypass Orkney and Mainland. From there, route A takes
course directly to the West Cape of Norway and continues alongside the Norwegian
coast up into the Trondheimsfjord. Route B takes course eastwards along a constant
latitude to the Norwegian coast at Bergen and continues alongside the coast up to
the island Smøla. This route assumes latitude sailing was used, which was an easy
and common method for navigation (it was used, e.g., by the Vikings later on; cf.
[Johnson 1994]). Hennig [1944, p. 167] rejects the similar route Orkney – Bergen
because in his opinion the eastern course contradicts the position of Thule north
of Britain. If, however, Pytheas visited a northern region of Norway and only
referred the name Thule to this region, there is no contradiction. Owing to the
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Figure 5. Pytheas’ possible sea route from Great Britain to Thule;
solid line = route A, dashed line = portions where route B departs
from route A.

uncertainty of the assumed speed and way, Pytheas’ landing point cannot be given
precisely. The Trondheimsfjord and the coastal region of the same latitude come
into consideration.

Before Geminus quotes Pytheas in E VI.9 he discusses M-data of different lati-
tudes. Thus, [Nansen 1911, p. 57] assumes that Pytheas’ information on the length
of the nights refers to the shortest nights of the year. This, however, does not result
directly from the text. For Pytheas’ time the lengths of the nights were determined;
the year 330 BC was used, other supposable times do not yield significant differ-
ences. The shortest nights (at summer solstice) with lengths N = 2 h, 3 h occurred
at φ = 64◦40′ and φ = 63◦40′, respectively.17 These latitudes are significantly less
than φ = 66◦16′ of the polar circle and thus inconsistent with the information on
the arctic circle (see Section 2.4); see also Figure 5. In Geminus’ quotation it is
only said that the night was very short so that the given lengths of nights may refer

17For a location of latitude φ and for a given time t , the length n of the night can be determined
by the following calculation steps (according to [Strous 2012]; applied formulas see [Meeus 1991,
pp. 98, 135, 151–153]; cf. also footnote 4): ε= ε(t); M(t); L0= L0(t); C =C(t,M);2=2(L0,C);
δ = δ(2, ε); hour angle at sunset: H = H(φ, δ, a0); n = 24 h− 2H . By means of the altitude
a0 = −50′ the atmospheric refraction and the size of the sun disc are taken into account. For the
determination of φ, it was varied till n equaled the given value.
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Figure 6. Isolines of the length n of the night subject to the lat-
itude φ and time t expressed by the number of days since the
summer solstice in 330 BC.

to a date near the summer solstice. In order to locate the associated region, the
length n of the night was determined for different latitudes φ and times t . Figure 6
shows the result in form of isolines of n. At φ = 63◦20′ n, n = 3.3 h ≈ 3 h five
days before/after the summer solstice. Thus, the southern limit for Pytheas’ Thule
can be located at this latitude, which corresponds to the latitude of the southern
end of the Trondheimsfjord. At the polar circle, at φ = 66◦16′, n ≈ 2 h twenty-two
days before/after the summer solstice. Possibly, Pytheas traveled to this region at
that time, where he heard about the midnight sun.

Pytheas’ information on the arctic circle and Eratosthenes latitudinal data lead
to the northern polar circle at φ = 66◦16′ at Pytheas’ time. Pytheas’ information
on the journey length suggests the region at the latitude of the southern end of
the Trondheimsfjord. His information on the length of the nights leads to both
of these regions. This is not contradictory because the name Thule may refer to
a region of larger extent. Hence, Pytheas’ Thule can be equated with the region
of Norway west of the Scandinavian Mountains between about 63◦20′ and 66◦16′

latitude. This result is in accordance with Pytheas’ contact with inhabitants and his
report on the cultivation of grain in Thule (G IV.5.5). In the said region there are
spacious low-lying areas and a warm and humid climate influenced by the North
Atlantic Current. Apart from the southern regions at the Skagerrak, in Norway
there are only low-lying areas with fertile clayey soils at the Trondheimsfjord (see
[Sporrong 2008, p. 26, fig. 6]). According to [Helle 2008, pp. 7–8] there were stable
settlements and farming in Norway as far north as Trøndelag at the beginning of the
Iron Age (500 BC – 800 AD). Furthermore, in regions at the polar circle agriculture
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was introduced in the 7th and 4th century BC as revealed by radiocarbon dating
based on pollen (see [Johansen and Vorren 1986]).
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SPATIAL AND MATERIAL STRESS TENSORS IN CONTINUUM
MECHANICS OF GROWING SOLID BODIES

JEAN-FRANÇOIS GANGHOFFER

We presently derive generalized expressions of the stress tensor for continuum
bodies with varying mass, considering both the Lagrangian and Eulerian view-
points in continuum mechanics. We base our analysis and derivation of the ex-
pressions of both Cauchy and Eshelby stress tensors on an extension of the virial
theorem for both discrete and continuous systems of material points with vari-
able mass. The proposed framework is applicable to describe physical systems
at very different scales, from the evolution of a population of biological cells
accounting for growth to mass ejection phenomena occurring within a collection
of gravitating objects at the very large astrophysical scales. As a starting basis,
the field equations in continuum mechanics are written to account for a mass
source and a mass flux, leading to a formulation of the virial theorem accounting
for a varying mass within the considered system. The scalar and tensorial forms
of the virial theorem are written successively in both Lagrangian and Eulerian
formats, incorporating the mass flux. This delivers generalized formal expres-
sions of Cauchy and Eshelby stress tensors versus the average tensor spatial and
material virials respectively, incorporating the mass flux contribution.

1. Introduction

There are many problems in physics which involve masses changing with time,
as exemplified by situation of growing bodies, solids and fluids exhibiting phase
transitions [Ericksen 1984] related to solidification, evaporation, sedimentation. In
particular, the mass balance (mass absorbency) influence phase transitions condi-
tions, see for instance [dell’Isola and Iannece 1989; Eremeyev and Pietraszkiewicz
2009; 2011]. To mention but a few, two specific situations illustrate the very wide
range of scales at which such phenomena may occur: growth or resorption in bio-
logical systems is a typical situation where the overall mass of a continuous body
or a collection of particles varies, due to mass production within the system, or to
a flux of mass through the system boundary. Growth at cellular level (individual
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cells can then be regarded as punctual masses) is typical of discrete growth, while
the continuous aspect is of relevance for large collections of cells, organized within
tissues for which the framework of continuous mechanics is adequate.

At a much larger scale, the dynamics of galaxies with mass loss due to either
mass accretion or mass ablation has deserved a lot of attention in the literature for
many years, usually relying on an extension of Newton’s law of motion [Gommer-
stadt 2001], as originally stated by Sommerfeld in 1952.

In 1870, Rudolf Clausius [1870] stated that the mean vis viva of the system is
equal to its virial, or that the average kinetic energy is equal to half the average
potential energy. The virial theorem which was there born is a way to analyze
the dynamics of a collection of interacting particles; it allows the average total
kinetic energy to be calculated from the potential energy of a stable system. This
holds even for very complicated systems that defy an exact solution, such as those
considered in statistical mechanics or in astrophysics when considering large scales.
Lord Rayleigh published a generalization of the virial theorem in 1903. Henri
Poincaré applied a form of the virial theorem to the problem of determining the
cosmological stability in 1911. A tensor form of the virial theorem was set up in
[Chandrasekhar and Fermi 1953; Chandrasekhar and Lebovitz 1962; Parker 1954],
both in the context of astrophysics.

The virial theorem has a rather broad physical significance; it has been extended
to include electric and magnetic fields. The virial has both a discrete and a con-
tinuum facet, the first facet being well adapted to the physical situation of a finite
collection of particles, while the continuum virial obtained by some kind of av-
eraging process brings a simplification by introducing fields in place of discrete
quantities. In the context of continuum mechanics, the virial theorem proves an
alternative efficient manner to derive the pressure for particles without internal
structure (fluids), avoiding thereby the — sometimes complex — derivation of a
thermodynamic potential (the free energy).

The virial theorem has raised a renewed interest in the contemporary litera-
ture in relation to the construction of the Cauchy stress for structured media, de-
rived from the tensorial virial theorem in [Jouanna and Brocas 2001; Jouanna and
Pèdesseau 2004], borrowing arguments from statistical mechanics. The general
idea at the root of the molecular definition of the average stress is the identification
of molecules or atoms as interacting point masses. This reminds to the similar
pioneering work of Irving and Kirkwood [1950], in which stress is defined as a
pointwise statistical averaging performed in time instead of space, relying on the
ergodicity hypothesis. This viewpoint applies for a number of molecules which is
large enough for averaging operations to make sense — instead of using quantum
mechanics — so that a classical description can be adopted. Works in the literature
since this pioneering contribution witness a diversity of definitions and derivations
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of the stress tensor using a molecular viewpoint, see the recent critical overview
[Murdoch 2007] and references therein. Especially, when micro-macro identifica-
tions processes are considered, higher gradient theories naturally arise in which
to Cauchy stress tensor one needs to add a family of hyper stresses, as already
remarked by Gabrio Piola in his pioneering works [dell’Isola and Iannece 1989;
dell’Isola et al. 2012; 2014].

As a main outcome and novelty of the present contribution, one shall derive
expressions of the material Eshelby stress and spatial Cauchy stress tensors for
continuum bodies witnessing a local change of their mass. We base our analysis
and derivation of the expressions of both Cauchy and Eshelby stress tensors on
an extension of the virial theorem for both discrete and continuous systems of
material points with variable mass, thereby generalizing developments exposed
in [Ganghoffer 2010b]. Eshelby stress appears as a driving force for the growth
of continuum solid bodies, possibly incorporating multiphysical phenomena, see
[Ganghoffer 2010a; 2012].

The present contribution is organized as follows. In order to set the stage, the
virial theorem is first recalled in both scalar and tensorial formats (Section 2). We
next extend in Section 3 the virial theorem for systems with variable mass, a sit-
uation which occurs for growing biological systems and for a set of gravitational
masses with mass loss at the other extreme of the length spectrum. The virial
theorem for systems with variable mass is derived in sections 2 and 3 in Eulerian
format, and the material counterpart is written in sections 4 and 5, highlighting the
variation of the average virial in relation to the divergence of Eshelby stress. A
summary of the main developments is given in Section 6.

A few words regarding notation are in order. Vectors and higher-order tensors
are denoted with boldface symbols. Likewise, tensorial quantities built from their
scalar counterparts are denoted as boldface characters with a superposed hat; e.g.,
Êk denotes the tensorial kinetic energy, such that its trace is the scalar kinetic
energy: Tr(Êk)= Ek . The summation convention on repeated indices is in force,
unless otherwise explicitly stated.

The bracket 〈 · 〉 denotes the ensemble average of any quantity. The partial de-
rivative of a scalar function f (x) is denoted ∂x f = ∂ f/∂x ; the time derivative of
a function a(t) is represented by a superposed dot: ȧ(t)= da(t)/dt . The material
and spatial gradients are denoted Grad≡∇R and grad≡∇ respectively; similarly,
the material and spatial divergence are denoted Div( · )≡∇R( · ) and div( · )=∇·( · )
respectively. The transpose of the linear mapping A is the linear mapping denoted
AT . The notation sym( · ) stands for the symmetrized part of a dyadic product. The
second-order identity tensor is denoted I .
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Nomenclature of the principal symbols

R, Ri (r, ri ) material (resp. spatial) position vectors
J inertia tensor
pi := mi ṙi momentum of a single particle
V̂ , V̂ scalar and tensorial virials ; V̂int, V̂ext internal

and external scalar virials
〈 · 〉 ensemble averaging (equivalent to time averaging

according to ergodicity)
〈V̂0〉 (resp. 〈V̂0〉) average scalar (resp. tensorial) material virial
〈V̂ 〉 (resp. 〈V̂ 〉) average scalar (resp. tensorial) spatial virial
Ek, E p kinetic and potential energy respectively
Êk, Êp tensorial kinetic and potential energy respectively
F := Grad r first-order transformation gradient
J := det(F)
ψ kinematically admissible position field
f0, f referential and spatial body forces

3G := ∇X F second-order transformation gradient
W0(F) strain energy density
T := ∂W0(F)/∂F first Piola–Kirchhoff stress
σ Cauchy stress tensor
6 :=W0 I − Ft

· T second-order Eshelby stress
˜̃6 :=W0 I4

−Ft
⊗T fourth-order Eshelby stress

2. Scalar and tensorial virial theorems for systems with constant mass

In order to set the stage, a reminder of the statement of the virial theorems in
both scalar and tensorial format for systems of particles with constant mass are
conveniently recalled.

The Lagrangian of a set of N point particles with mass mi and position vector
ri , moving in a potential E p({ri }), is the difference between the kinetic energy

Ek({ṙi }) :=

N∑
i=1

p2
i

2mi
, (2-1)

where pi := mi ṙi is the momentum of the i-th particle, and the potential energy:

L({ri , ṙi }) := Ek({ṙi })− E p({ri }). (2-2)

In the hamiltonian formulation, the independent variables are the spatial positions
and the momenta, namely the set of variables {ri , pi }. The Lagrangian is related
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to the Hamiltonian
H({ri , pi }) := Ek + E p, (2-3)

defined as the sum of the kinetic and potential energies of the individual particles,
by the equation

L(r, ṙ; t)= p · d r
dt
− H(r, p; t). (2-4)

Each material point is submitted to a force given by the gradient of the potential
energy vs. the corresponding spatial position, hence

fi =−∂ri E p. (2-5)

The scalar virial theorem states that the virial, viz the scalar valued quantity

V̂ :=
N∑

i=1

ri · fi (2-6)

is related to the kinetic energy of the set of particles by (the arguments of the
functionals are omitted for the sake of simplicity)

d
dt

( N∑
i=1

pi · ri

)
= 2Ek + V̂ . (2-7)

In the asymptotic limit of infinite times, the time average — indicated by the bracket
operator — of the left side of the previous identity vanishes, hence the ensemble
average of the right side vanishes:

2〈Ek〉+ 〈V̂ 〉 = 0. (2-8)

This identity constitutes the scalar version of the virial theorem. The assumption
of ergodicity at the macroscopic equilibrium implies that time averages at fixed
coordinate (following a single particle) are interchangeable with ensemble averages
(averages over a sufficiently large set of particles) at fixed time.

The virial can be decomposed into the sum of the internal virial V̂int and the
external virial V̂ext, as

V̂ = ( fi j · ri j ) j 6=i + fi,ext · ri ≡ V̂int+ V̂ext (2-9)

highlighting the contribution of internal forces fi j (first term on the right due to
interparticle interactions) and external forces (body forces due to gravity and con-
tact), denoted fi,ext, adopting the notation ri j := ri − r j for the relative position of
particles i and j .

The generalized virial theorem established in [Jouanna and Brocas 2001], viz
the tensorial generalization of the identities (2-6), (2-7), (2-8), can be obtained as
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follows: let differentiate twice the (symmetrical) inertia tensor (the summation of
repeated indices in the dyadic products is done over the set of N particles)

I := mi ri ⊗ ri (2-10)

hence giving
d I
dt
:= mi (ṙi ⊗ ri + ri ⊗ ṙi )

and so
d2 I
dt2 = 2mi ṙi ⊗ ṙi +mi (r̈i ⊗ ri + ri ⊗ r̈i )= 2Êk + V̂ , (2-11)

with
V̂ := 2 sym(ri ⊗ fi )=−2 sym(ri ⊗ ∂ri E p) (2-12)

defined as the tensorial virial, and the tensorial kinetic energy elaborated as

Êk := 2mi ṙi ⊗ ṙi ≡
pi ⊗ pi

2mi
. (2-13)

Remark. The trace of V̂ gives the scalar virial, Tr(V̂ )= V̂ ; similarly, the scalar
kinetic energy is recovered as the trace of its tensorial generalization.

Considering the asymptotic limit of infinite times, the identity (2-11) further
gives the generalized (tensorial) virial theorem, as the tensorial extension of the
scalar virial theorem

2〈Êk〉+ 〈V̂ 〉 = 0. (2-14)

The virial can be decomposed into the sum of the internal virial V̂int and the
external virial V̂ext, as

V̂ = ( fi j · ri j ) j 6=i + fi,ext · ri ≡ V̂int+ V̂ext (2-15)

highlighting the contribution of internal forces fi j (first term on the right due to
interparticle interactions) and external forces (body forces due to gravity and con-
tact), denoted fi,ext, adopting the notation ri j := ri − r j for the relative position of
particles i and j .

3. Scalar and tensorial viral theorems for systems with varying mass

Variable mass problems have been treated in the literature in the context of the virial
theorem [Gommerstadt 2001], especially considering applications in astronomy.
The authors especially mention that when a body is losing mass isotropically, no
additional force should appear, thus the motion of the body will overall not be
altered by mass losses.
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The mass balance writes in integral form as

D
Dt

∫
�

ρ dx =
∫
�

ρ(π − div J) dx (3-1)

in presence of a source term π and a mass flux vector J , which can be identified
for an open system including different chemical species as

π =
∑
k
ρk ṅk, J =

∑
k

Jk . (3-2)

In continuum mechanics, the balance of linear momentum is written in integral
form as

D
Dt

∫
�

ρv dx =
∫
�

f dx +
∫
∂�

n · σ ds+
∫
�

πv dx −
∫
∂�

n · (J ⊗ v) ds

=

∫
�

f dx +
∫
∂�

n · σ ds+
∫
�

πv dx −
∫
�

div(v⊗ J) dx

≡

∫
�

f dx +
∫
�

πv dx +
∫
�

div(σ − v⊗ J) dx .

(3-3)

The last equality highlights that the effective stress is in fact the second order tensor

σ̃ := σ − v⊗ J .

Note that we have used the fact the divergence is presently elaborated as the right
divergence operator. For a continuum body, the strong form of the mass and mo-
mentum balance laws in presence of mass changes are successively obtained as

dρ
dt
≡ ρ̇ = π −∇ · J − ρ∇v (3-4)

and

ρ
dv
dt
= f +∇ · σ − (J .∇)v ≡ f +∇ · σ −∇v · J,

that is to say

ρ
dvi

dt
= fi + σi p,p −

∂vi

∂x p
Jp

= fi + σi p,p − Jpvi,p = fi + (σi p − vi Jp),p + vi div J .

This entails the balance of linear momentum equality

ρ
dv
dt
= ( f + v div J)+∇ · σ̃ . (3-5)

We can see that the additional contribution v div J acts in fact as a source term
in the balance of linear momentum (3-5), and can be incorporated into the overall
effective body force, quantity ( f + v div J).
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3.1. Cauchy stress from the discrete form of the virial theorem. The discrete
scalar virial in eulerian form is built as the dyadic product of the spatial positions
of the material points with the forces acting on them [Jouanna and Brocas 2001]:

V̂ =
N∑

i=1

ri · fi =

N∑
i, j=1

( fi j · ri j ) j 6=i +

Next∑
i=1

fi,ext · ri ≡ V̂int+ V̂ext,

yielding

〈V̂ 〉 = 〈V̂int〉+ 〈V̂ext〉 ∼=

〈 Ncon∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
=

∫
∂�

r · σ · n dσt +

∫
�

r · f dx

=

∫
�

(r · div σ + σ t
: grad r) dx +

∫
�

r · f dσt

=

∫
�

(r · div σ + σ t
: I) dx +

∫
�

r · f dx (3-6)

which we view as the ensemble average of the discrete (scalar) eulerian virial,
denoted by 〈V 〉. Since contact and external (body) forces do not act on the same
material points, we have indicated in (3-6) the range of these respective material
points by Ncont and Next, respectively; this notation will be retained throughout.

The contribution
∫
∂�

r ·σ ·n dσt in previous equality represents the exterior virial
due to contact forces, considering that interactions between particles have a very
short range, hence the particles contributing to the exernal virial are those located
near the boundaries of the considered volume element. These forces are in fact
contact forces (reflected in the existence of Cauchy stress at the continuum level),
and thus are considered as internal forces corresponding to the internal virial V̂int.
The contribution

∫
�

r · f dσt represents the contribution to the scalar virial due to
external forces, and is accordingly coined the external virial, denoted V̂ext in (3-6).

In the sequence of equalities in (3-6), we have used the analogy between the
discrete and continuous counterpart of the scalar virial of external and contact (in-
ternal) forces. The second row of equalities in (3-6) is the continuous counterpart
of the discrete elaboration of the scalar virial in (2-6), as previously explained: in-
ternal forces in a continuum mechanical description are identified to contact forces,
while external forces are typically body forces or any force at distance.

Introducing therein the previous balance of momentum, rewritten here for the
sake of clarity as

ρ
dv
dt
= f +∇ · σ − (J .∇)v
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leads further to〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
=

∫
V

r ·(ργ+(J .∇)v) dV+
∫

V
σ T
: I dV . (3-7)

Introducing the acceleration γ := dv/dt therein. One can thus express the trace of
Cauchy stress as

|V |I1(σ ) := |V |Tr(σ )

=

〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
−

∫
V

r · (ργ + (J · ∇)v) dV

∼=

〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
−

∫
V

r · (J · ∇)v dV . (3-8)

It is customary to neglect the inertia forces, so that the pressure now involves an
additional contribution given by the last integral in previous equality, involving the
mass flux. The last equality is the extended scalar virial theorem in Eulerian format
accounting for mass changes within a body of a set of particles.

The tensor form of the virial theorem is obtained as follows:

Vext,tot = Vext,con+ Vext,vol ∼=

〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
=

∫
∂V

r ⊗ σ · n ds+
∫

V
r ⊗ fvol dx

=

∫
V
(r ⊗ div σ + I · σ T ) dx +

∫
V

r ⊗ fvol dx . (3-9)

Inserting the previous balance of linear momentum delivers the equality〈 Ncont∑
i=1

ri · fi,con

〉
+

〈 Next∑
i=1

ri · fi,vol

〉
=

∫
V
(r ⊗ (ργ − f + (J · ∇)v)+ σ T ) dx +

∫
V

r ⊗ fvol dx . (3-10)

Neglecting body forces on both sides and inertia forces we can then obtain the
average of the Cauchy stress tensor:∫

V
σ T dx ≈ |V |σ T

=

〈 N∑
i=1

ri ⊗ fi,con

〉
−

∫
V
(r ⊗ (ργ − f + (J · ∇)v)) dx,
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leading to

σ T
=

1
|V |

〈 Ncont∑
i=1

ri ⊗ fi,con

〉
−

1
|V |

∫
V

r ⊗ (J · ∇)v dx . (3-11)

We have considered a small enough volume so that the stress tensor can be con-
sidered as homogeneous inside. Thereby, Cauchy stress tensor is expressed versus
the average virial of contact forces and the additional contribution of mass flux, in
identified as the last integral in previous equality.

The average Cauchy stress can alternatively be derived from the continuum ver-
sion of the virial theorem, as exposed in the next subsection. We shall in addition
and as a matter of completeness incorporate the inertia forces, which have been
neglected in previous derivations.

3.2. Continuum form of the virial theorem and average Cauchy stress. The full
derivation of the virial theorem in scalar format and from a purely continuum
viewpoint (that is without resorting to the discrete mechanics of a set of interacting
particles) delivers the average of Cauchy stress as an extension of the virial theorem
with constant mass (see for example identity (3) in [Gommerstadt 2001]) as

1
|V |

∫
V
σ dx =

1
|V |

Ec−
1

2|V |
d2 I
dt2 +

1
2|V |

∫
∂V

x⊗ σ · n ds. (3-12)

The tensor of kinetic energy therein is defined as

Ec :=
1
2

∫
V
ρv⊗ v dx . (3-13)

The inertia tensor and its second material derivative are computed successively as
follows:

I =
∫

V
ρx⊗ x dx

d I
dt
=

∫
V
ρ(x⊗ v+ v⊗ x) dx +

∫
V

dρ
dt

x⊗ x dx +
∫

V
ρ(x⊗ x)∇ · v dx

d2 I
dt
=

∫
V
ρ(γ ⊗ x+ x⊗ γ + 2v⊗ v) dx + 2

∫
V
(ρ̇+ ρ∇ · v)

D
Dt
(x⊗ x) dx

+

∫
V

(
ρ̈+ 2ρ̇∇ · v+ ρ

D
Dt
(∇ · v)+ ρ(∇ · v)2

)
(x⊗ x) dx . (3-14)

In the particular case of incompressible media, the condition ∇ · v = 0 entails the
simplified expression of the second-order material derivative of the inertia tensor

d2 I
dt
=

∫
V
ρ(γ ⊗ x+ x⊗γ +2v⊗v) dx+2

∫
V
ρ̇

D
Dt
(x⊗ x) dx+

∫
V
ρ̈(x⊗ x) dx

(3-15)
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in which the second-order time derivative of the mass density results from balance
law (3-4) incorporating mass source and mass flux contributions.

Inserting expression (3-14) into (3-12) then delivers the following expression
for the average Cauchy stress tensor:

σ :=
1
|V |

∫
V
σ dx

=
1
|V |

Ec+
1

2|V |

∫
∂V

x⊗σ ·n ds

−
1

2|V |

{∫
V
ρ(γ⊗x+x⊗γ+2v⊗v) dx+2

∫
V
(ρ̇+ρ∇·v)

D
Dt
(x⊗x) dx

+

∫
V

(
ρ̈+2ρ̇∇·v+ρ

D
Dt
(∇·v)+ρ(∇·v)2

)
(x⊗x) dx

}
. (3-16)

Based on (3-15), this expression simplifies for incompressible media to deliver the
full Cauchy stress tensor in averaged form:

σ :=
1
|V |

∫
V
σ dx

=
1
|V |

Ec+
1

2|V |

∫
∂V

x⊗ σ · n ds

−
1

2|V |

{∫
V
ρ(γ ⊗ x+ x⊗ γ + 2v⊗ v) dx

+ 2
∫

V
ρ̇

D
Dt
(x⊗ x) dx +

∫
V
ρ̈(x⊗ x) dx

}
. (3-17)

4. Material version of the scalar virial theorem for systems
with varying mass

Since Cauchy stress represents a spatial measure of the contact forces in condensed
matter, one expects a similar interpretation of the Eshelby stress, from the tensorial
virial and extensions thereof, viewed as the material counterpart of Cauchy stress.
Microscopic interpretations of the notion of Eshelby stress are of high interest,
since this tensor leads to the so called material forces accounting for the presence of
defects (inhomogeneities, such as inclusions or cracks) in material space [Maugin
1993]. Hence, discrete simulations in the configuration of the defects based on the
virial can be conceived as a mean to evaluate those material forces at the very scale
of the defect themselves.

Pursuing further along this line of thoughts, the construction of Eshelby stress
from considerations tied to a system of discrete interacting punctual masses proves
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also relevant in the context of the so-called continuum-atomistic modeling strate-
gies in multiscale simulation methods, see [Alibert et al. 2003; Sunyk and Stein-
mann 2003; Tadmor et al. 1996] and references therein. Such an interpretation of
the stress tensor has been done in the continuum modeling of granular materials
such as sands, cements, clays, concrete, rocks and certain polymers [Misra and
Singh 2015; Misra and Poorsolhjouy 2015b; 2015a].

We establish the material version of the scalar virial theorem; we adopt as for
the eulerian situation a quasi-static framework, and define the scalar material virial
V̂0 with ensemble average 〈V̂0〉 as [Ganghoffer 2010b]

〈V̂0〉 := −

∫
∂�0

R ·6 · N dσ0+

∫
�0

R · fR d X

≡ −

∫
�0

I :6t d X ∼=−Tr(6)|�0| (4-1)

considering a small enough volume element �0, so that the fields can be considered
as nearly homogeneous (equilibrium in terms of Eshelby stress has been used);
vector R is the material position. Previous identity has been obtained by a pull-back
of the eulerian form of the balance of linear momentum on the material manifold.

An elaboration of the scalar material virial can be done alternatively starting
from a construction similar to that of the eulerian scalar virial in (2-6) for its discrete
version or in (3-6) for the continuum counterpart: we define the scalar material
virial as the dot product of the spatial positions of material points with the forces
acting on them (with a change of sign for the internal virial of contact forces);
developments presented in [Ganghoffer 2010b] lead to

V̂R =

N∑
i=1

Ri · fRi ,

which is equivalent to

〈V̂R〉 := −

∫
∂�R

R ·6 · N dσR +

∫
�

R · fR d X

= −

∫
�

(R · ∇R ·6+6
t
: ∇R R) dx +

∫
�

R · fR dσt

= −

∫
�

(R · ∇R ·6+6
t
: I) dx +

∫
�

R · fR dx . (4-2)

In previous set of equalities, the index R refers to the referential configuration; thus
one has the identity V̂R = V̂0.

Inserting the material divergence of the Eshelby tensor 6, previously obtained
as

∇R ·6 =∇R · 6̃+ JR · ∇R F · v+∇R · (FT
· (JR ⊗ v)), (4-3)
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delivers the trace of Eshelby stress as

−|�|Tr(6T )=

∫
�

(R ·∇R ·6) dx+
∫
�

R · fR dx−〈V̂R〉

=

∫
�

(R ·∇R ·6̃) dx+
∫
�

R · {JR ·∇R F ·v+∇R ·(FT
·(JR⊗v))} dx

+

∫
�

R · fR dx−〈V̂R〉.

Inserting therein the balance of momentum with the effective Eshelby stress finally
delivers the trace of Eshelby stress versus the source of mass terms, the referential
scalar virial, and the heat and chemical contributions:

−|�|Tr(6t)=−

∫
�

(
R · {5FT

· v+∇R · [FT
· T̃ ]+ s∇Rθ +µk∇Rnk}

)
dx

+

∫
�

R · {∇R · (FT
· (JR ⊗ v))} dx −〈V̂R〉. (4-4)

Microscopic interpretations of the notion of Eshelby stress are of high interest,
since this tensor leads to the so-called material forces accounting for the presence of
defects (inhomogeneities, such as inclusions or cracks) in material space [Maugin
1993]. Hence, discrete simulations in the configuration of the defects based on
the virial can be conceived as a mean to evaluate those material forces at the very
scale of the defect themselves. Since the virial relies on the consideration of a
discrete set of interacting particles, one may further evoke the mixed continuum-
atomistic approaches that prove adequate in nanomechanics, which combine the
usual framework of continuum mechanics with a full atomic scale description
based on interatomic potentials. The full Eshelby stress shall be derived in the
next section from the virial theorem.

5. Eshelby stress for continua with variable mass

Recall that the tensorial virial states [Jouanna and Brocas 2001] that the transpose
of the Cauchy stress may be expressed as the average external virial tensor divided
by the volume occupied by the set of considered particles. The external tensorial
virial is defined as the contribution of the tensorial virial due exclusively to the
external forces fi,ext:

V̂ext := ri ⊗ fi,ext. (5-1)

It is the principal aim of this section to give a similar microscopic interpretation
of the purely material Eshelby stress in terms of the material counterpart of the
tensorial virial, to be elaborated in the sequel.
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Starting from the tensorial eulerian virial as the following integral [Jouanna and
Brocas 2001], adopting the continuum limit, viz

〈V̂ 〉 ≡
∫
∂�

r ⊗ σ · n dσt +

∫
�

r ⊗ f dx . (5-2)

And accounting for the relation between the spatial and material tensorial virials

〈V̂ 〉 = 〈V̂0〉+

∫
�0

W0 I d X (5-3)

one obtains after length developments presented in the Appendix B the average of
the Eshelby stress versus the eulerian tensorial virial:

〈V̂ 〉 =
∫
�0

(
−tr( ˜̃6t)+W0 I

)
d X +

∫
�0

R ·
{

FT
⊗ ρ J

dv
dt
+ FT

⊗ J (J · ∇)v
}

d X,

leading to∫
�0

tr( ˜̃6t) d X ≡
∫
�0

6 d X

=−〈V̂0〉+

∫
�0

R ·
{

FT
⊗ ρ J

dv
dt
+ FT

⊗ J (J · ∇)v
}

d X. (5-4)

The averaged material virial therein satisfies the material version of the tensorial
virial theorem (for asymptotic times), which is the equality

〈V̂0〉 = 〈V̂0 ext,tot〉+ 〈V̂0 int〉, 〈V̂0 ext,tot〉+ 〈V̂0 int〉+ 2〈Êk〉 = 0. (5-5)

This writing leads to the following expression of the average Eshelby stress

6̄ :=
1
|�0|

∫
�0

6 d X

= −
1
|�0|
〈V̂0〉+

1
|�0|

∫
�0

R ·
{

FT
⊗ρ J dv

dt
+ FT

⊗ J (J ·∇)v
}

d X

=
1
|�0|

{
〈V̂0 int〉+2〈Ek〉

}
+

1
|�0|

∫
�0

R ·
{

FT
⊗ρ J dv

dt
+ FT

⊗ J (J ·∇)v
}

d X,

(5-6)

the right-hand side being evaluated using the discrete expression of the internal
virial and kinetic energy (averaged over long times); the internal virial results from
the additive decomposition of the total tensor virial into the internal and external
virials,

V̂ = (ri j ⊗ fi j ) j 6=i + ri ⊗ fi,ext ≡ V̂int+ V̂ext, (5-7)

which leads to
V̂0 int ≡ (ri j ⊗ FT

· fi j ) j 6=i ,
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adopting the following definition for the total discrete tensorial virial:

V̂0 =

N∑
i=1

Ri ⊗ Ft
· f0i .

Expression (5-6) involves the pull-back to the material manifold of the referential
internal (traducing interactions between particles within the considered domain)
forces FT

· fi j , accounting for both contact and volumetric forces.
Observe that the introduced fourth-order Eshelby tensor ˜̃6 involved in previ-

ous derivations is an intermediate object originating from the mathematical devel-
opments initiated from the tensorial eulerian virial, which finally reduces to the
classical (second order) Eshelby tensor by taking the trace of ˜̃6.

The balance of momentum satisfied by the effective Eshelby stress

6̃ :=W I − FT
· T̃

, built from T̃ , is derived in Appendix A, leading to equality (A-12), which is
recalled for completeness:

ρR FT
·
∂v

∂t
= fR +5FT

· v+∇R F : (JR ⊗ v)−∇R.6̃+ (∂Xψ)exp l . (5-8)

In (5-8), the quantity 5FT
· v + JR · ∇R F · v +∇R F : (JR ⊗ v) reflecting mass

production and mass flux would vanish for closed systems with constant mass,
in addition to modified Eshelby stress 6̃ coinciding with the classical Eshelby
stress 6.

6. Conclusion

We have derived formal expressions of the Cauchy and Eshelby stress tensors for
continuum bodies with varying mass, a situation of interest for growing solid bodies
or for gravitational masses subjected to accretion phenomena. The adopted method-
ology relies on an extension of the virial theorem to situations of non constant
mass, traduced by a mass flux through the system boundaries and a mass produc-
tion term. These two additional contributions entail modifications of the balance
of momentum, when considering either a spatial formulation involving Cauchy
stress or a material formulation relying on Eshelby stress. The stress measures in
both material and physical format have been expressed versus the tensorial virial,
highlighting an additional contribution from the mass flux.

The present study shed some new light on the microscopic interpretation of
Cauchy and Eshelby stress for systems with variable mass, bridging the gap between
the microscopic (particle level) and the macroscopic continuum scales. Interpre-
tation of those results from the microscopic or molecular point of view highlights
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that stresses may identified as the average of the virial tensor with additional contri-
butions arising from the mass flux of particles entering the system, their evaluation
resulting from the solution of the (dynamical in general) equations of motion at the
microscopic or atomic level. This strategy may prove a convenient way to evaluate
Eshelby and Cauchy stresses from discrete quantities, such as in finite element
calculations (numerical approximation of a continuum model) or in simulations in-
volving a two scale approach, like mixed atomistic continuum formulations. This
approach appears of great interest in nanoscale systems with varying number of
atoms due, for instance, to epitaxial growth, based on the extensive use of molecular
dynamical simulations to explore the behavior of systems of atoms and molecules.

Appendix A. Balance of momentum satisfied by the effective Eshelby stress

The material form of the mass balance equation writes [Epstein and Maugin 2000],

∂ρR

∂t
=5−Div JR (A-1)

with the Lagrangian source and mass fluxes, respectively quantities 5 and JR ,
given versus their spatial counterparts as

5= Jπ, J = J−1 F · JR (A-2)

with the Jacobian J := det(F). The Lagrangian balance of momentum expresses
in terms of the nominal stress T , the first Piola–Kirchoff stress tensor, as

ρR
∂v

∂t
= f +∇R · T − (JR · ∇R)v (A-3)

which rewrites accounting for the mass balance equation (A-1) as the dynamical
equilibrium

ρR
∂v

∂t
= f +5v+∇R · (T − JR ⊗ v). (A-4)

The balance of angular momentum expresses as the symmetry condition for the
second-order tensor T̃ := T − JR ⊗ v, called the effective first Piola–Kirchhoff
stress.

The material version of the balance of momentum is obtained by a pull-back of
the eulerian version, using the relations [Milstein 1982]

Div(J F−T )= 0 ⇒ ∇R · T = J∇ · σ, (A-5)

leading to

ρR FT
·
∂v

∂t
= FT

· f +5FT
· v+ FT

· ∇R · T̃

= FT
· f +5FT

· v+ FT
· ∇R · T − FT

· ∇R · (JR ⊗ v). (A-6)
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For a hyperelastic medium with strain energy density W =W (F; X), consideration
of the following identity for the total spatial material derivative of W [Maugin
1993]

dX A W =
∂W
∂F i

I
F i

I,A+

(
∂W
∂X A

)
exp l
≡ T I

i F i
I,A+

(
∂W
∂X A

)
exp l

(A-7)

leads to
FT
·∇R · T =∇R · [FT

· T −W I] + (∂ X W )exp l . (A-8)

Due further to the equality

FT
· ∇R · (JR ⊗ v)= FT

· {JR · (∇R · v)+∇R JR · v}

= (∇R · v)FT
· JR + FT

· ∇R JR · v (A-9)

one easily obtains

∇R · [FT
· T̃ −W I] =∇R · [FT

· T − FT
· JR ⊗ v−W I], (A-10)

with

(FT
· T̃ )i j, j = (Fki T̃k j ), j = Fki, j T̃k j + Fki T̃k j, j

= (Fki, j Tk j + Fki Tk j, j )− JRk Fki, jv j + Fki (∇R · (JR ⊗ v))k j ,

and hence the equality

−∇R · 6̃ =−∇R ·6− JR ·∇R F · v−∇R · (FT
· (JR ⊗ v))

involving the Eshelby stress and modified Eshelby stress built from the hyperelastic
potential W :

6 :=W I − FT
· T , 6̃ :=W I − FT

· T̃ . (A-11)

More general similar derivations including chemical and thermal effects have been
obtained in [Ganghoffer 2010b].

We further elaborate the dynamical equilibrium as

ρR FT
·
∂v

∂t
= FT

· f +5FT
· v+ FT

· ∇R · T̃

≡ FT
· f +5FT

· v+ FT
· ∇R · T − FT

· ∇R · (JR ⊗ v),

ρR FT
·
∂v

∂t
= fR +5FT

· v−∇R ·6+ (∂Xψ)exp l − FT
· ∇R · (JR ⊗ v),

which is equivalent to

ρR FT
·
∂v

∂t
= fR+5FT

·v−∇R ·6̃+(∂Xψ)exp l+∇R · {FT
·(JR⊗v)}− FT

·∇R ·(JR⊗v),
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or again to the equality

ρR FT
·
∂v

∂t
= fR +5FT

· v−∇R · 6̃+∇R F : (JR ⊗ v)+ (∂Xψ)exp l, (A-12)

involving the referential body forces fR := FT
· f . The modified effective Eshelby

stress in (A-12) is the purely material stress incorporating the mass flux contribu-
tion.

Appendix B. Derivation of the average Eshelby stress from the virial theorem

The starting point is the relation (5-2), which is rewritten for the sake of clarity as

〈V̂ 〉 ≡
∫
∂�

r ⊗ σ · n dσt +

∫
�

r ⊗ f dx . (B-1)

We then analyse the dyadic moment of physical forces — in the vocabulary of
[Steinmann 2000] — therein:∫
∂�

r ⊗ σ · n dσt ≡

∫
∂�

riσ jknk dσt =

∫
�

(riσ jk)′k dx =
∫
�

(ri ′kσ jk + riσ jk,k) dx

≡

∫
�

(grad r · σ T
+ r ⊗ div σ ) dx

=

∫
�

I · σ T dx +
∫
�

r ⊗ div σ dx . (B-2)

Hence, assembling both contributions in 〈V̂ 〉 gives

〈V̂ 〉 ≡
∫
�

I · Jσ T d X +
∫
�0

R · {FT
⊗ J div σ + FT

⊗ f0} d X (B-3)

recalling that f0 := J f .
A material form of static equilibrium shall next be expressed, obtained by trans-

forming the integrand in (B-3) in a Lagrangian format. As a first step, the identity

FT
⊗Div T = Div(FT

⊗ T )−Grad(W0 I) (B-4)

is easily obtained, with

Grad(W0 I)= Grad FT
· T ≡ (F t)Ai,B T j B,

the contraction being done on the material subscript B; observe that this relation
is the tensorial generalization of the identity

Div(W0 I)= Div FT
· T .

Let us further express the gradient Grad(W I) above as the material divergence of
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a fourth-order tensor: due to the equality

I4 : A= Tr(A)I

there follows the identity [Ganghoffer 2010b]

Div(W0 I4)= Grad(W0 I). (B-5)

Let Div denote the material divergence, not to be confused with the spatial diver-
gence operator, ∇. From the classical Piola identity [Maugin 1993]

div(J F−T )= 0

there follows further the relation )

J∇ · σ̃ T
= Div T̃ T

, with
T̃ = J σ̃ · F−T

≡ T − J (J ⊗ v) · F−T (B-6)

the effective first Piola–Kirchhoff stress tensor. Combining the last identities with
the Eulerian balance of linear momentum (3-5) yields

ρ J
dv
dt
= (J f + v J div J)+ J∇ · σ̃ T ,

which is to say

ρ J
dv
dt
= f̃0+Div T̃ T , (B-7)

with f̃0 := ( f0+ v J div J) the effective body forces, and recalling the expression
σ̃ := σ − v⊗ J of the effective Cauchy stress.

The balance of linear momentum, (B-7), is further elaborated as

FT
⊗ ρ J

dv
dt
= FT

⊗ f̃0+ FT
⊗Div T̃ T .

Due further to the relation satisfied by the (classical) first Piola–Kirchhoff stress
tensor,

FT
⊗Div T = Div(FT

⊗ T )−Grad(W0 I)≡ Div(FT
⊗ T −W0 I4),

there follows the dynamical tensorial equilibrium equation

FT
⊗ ρ J

dv
dt
= FT

⊗ f̃0−Div ˜̃6− FT
⊗Div{J (J ⊗ v) · F−T

} (B-8)

involving the fourth-order material Eshelby tensor (denoted by a double tilde)

˜̃6 :=W0 I4
− FT

⊗ T .



360 JEAN-FRANÇOIS GANGHOFFER

Adopting

tr(A⊗ B) := A · B, ∀A, B

as the definition of the trace of a fourth-order tensor built as the dyadic product of
two second-order tensors, the trace of the fourth-order Eshelby tensor yields the
second-order Eshelby tensor

6 :=W0 I − FT
· T .

It is easy to show that 6 satisfies the following dynamical balance of linear mo-
mentum incorporating the mass flux:

ρ J FT
·

dv
dt
= FT

· f̃0−Div6− FT
·Div{J (J ⊗ v) · F−T

}. (B-9)

The previous implications also show the identities

Ft
⊗ J div σ + Ft

⊗ f0 ≡ Ft Div T + Ft
⊗ f0 =−Div ˜̃6+ Ft

⊗ f0. (B-10)

Inserting this back into the tensorial eulerian virial further delivers

〈V̂ 〉 ≡
∫
�0

I · Jσ T d X +
∫
�0

R · {FT
⊗ J div σ + FT

⊗ f0} d X

≡

∫
�0

I · Jσ T d X +
∫
�0

R · {−Div ˜̃6+ FT
⊗ f0} d X.

Taking into account the eulerian form of the dynamical equilibrium, expressed as

∇ · σ = ρ
dv
dt
− f + (J · ∇)v,

one obtains

〈V̂ 〉 ≡
∫
�0

I · Jσ T d X+
∫
�0

R ·
{

FT
⊗ J

{
ρ

dv
dt
− f +(J ·∇)v

}
+ FT

⊗ f0

}
d X

≡

∫
�0

I · Jσ T d X

+

∫
�0

R ·
{
−Div ˜̃6− FT

⊗Div{J (J⊗v) · F−T
}+(J ·∇)v+ FT

⊗ f0
}

d X.

Further, the elaboration of Eshelby stress in terms of Cauchy stress is expressed by

6 =W0 I − J FT
· σ · F−T ,

or equivalently

σ =− j F−T
·6 · FT

+Wt I,
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observing that the product jW0 represents the density of strain energy in the current
configuration:

Wt := jW0.

This leads to a rewriting of the averaged Cauchy stress in terms of the Eshelby
stress: ∫

�

(σ T
· I) dx =

∫
�0

Jσ T
· I d X =

∫
�0

(−F−T
·6 · FT

+W0 I) d X.

Hence, the previous form of the tensorial eulerian virial becomes, after lengthy
developments,

〈V̂ 〉 ≡
∫
�0

(−F−t
·6 · Ft

+W0 I) d X +
∫
�0

R · {−Div ˜̃6+ Ft
⊗ f0} d X

≡

∫
�0

(−F−t
·6 · Ft

+W0 I) d X,

〈V̂ 〉 ≡
∫
�0

I · Jσ T d X +
∫
�0

R ·
{

FT
⊗ J

{
ρ

dv
dt
− f + (J · ∇)v

}
+ FT

⊗ f0

}
d X

≡

∫
�0

(−F−T
·6 · FT

+W0 I) d X

+

∫
�0

R ·
{
−Div ˜̃6+ FT

⊗ f0+ FT
⊗ Jρ dv

dt

− FT
⊗Div{J (J ⊗ v) · F−T

}+ (J .∇)v
}

d X

=

∫
�0

(−tr( ˜̃6t)+W0 I) d X

+

∫
�0

R ·
{
−Div ˜̃6+ FT

⊗ f0

− FT
⊗Div{J (J ⊗ v) · F−T

}+ FT
⊗ J (J · ∇)v

}
d X

≡

∫
�0

(−tr( ˜̃6t)+W0 I) d X +
∫
�0

R ·
{

FT
⊗ ρ J dv

dt
+ FT

⊗ J (J · ∇)v
}

d X.

Here we have taken into account the static equilibrium and the identity∫
�0

(−F−t
·6 · Ft

+W0 I) d X ≡
∫
�0

(−6t
+W0 I) d X

=

∫
�0

(−tr( ˜̃6t)+W0 I) d X, (B-11)

itself resulting from the equality

(A⊗ B)T = B⊗ A, ∀A, B,
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the coaxiality of T with Ft [Ciarlet 1993], and the following definition of the trace
of a fourth-order tensor built as the dyadic product of two second-order tensors:

tr(A⊗ B) := A · B, ∀A, B.

According to this definition, the trace of the fourth-order Eshelby tensor in delivers
the second-order Eshelby tensor.
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A CRACK WITH SURFACE ELASTICITY
IN FINITE PLANE ELASTOSTATICS

XU WANG AND PETER SCHIAVONE

We consider the effect of surface elasticity on a finite crack in a particular class
of compressible hyperelastic materials of harmonic type subjected to uniform
remote Piola stresses. The surface mechanics is incorporated into the model of fi-
nite deformation by employing a version of the continuum-based surface/interface
theory of Gurtin and Murdoch. A complete solution valid throughout the entire
domain of interest is obtained by reducing the problem to two series of coupled
Cauchy singular integrodifferential equations that are solved numerically using
a collocation method. Our model predicts that, in general, the size-dependent Pi-
ola stresses exhibit a weak logarithmic singularity at the crack tips. For a crack in
a special class of materials subjected to mode II loading, the stresses are bounded
whereas the deformation gradients exhibit a logarithmic-type singularity at the
crack tips.

1. Introduction

Analysis of the finite deformation of cracked hyperelastic materials is a challenging
topic that, because of its importance, continues to attract the attention of theo-
reticians and practitioners alike. Knowles and Sternberg [1973; 1974] used as-
ymptotic analysis to study the influence of a crack in compressible hyperelastic
homogeneous materials and bimaterials under plane-strain conditions. Knowles
[1977] investigated the antiplane shear deformations of a generalized neo-Hookean
incompressible material containing a crack. In this investigation, he observed that,
in a special class of these materials, the shear stresses at the crack tip are bounded
whereas the displacement gradients remain unbounded. Knowles [1981] again used
asymptotic analysis to study the influence of a crack in a solid subjected to mode II
loading in finite elastostatics. He observed that an antisymmetric solution is impos-
sible and that crack opening at the crack tip still exists under mode II conditions.
Also of great interest was the analysis of Knowles and Sternberg [1983], who
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studied the crack-tip field of an interface crack in a neo-Hookean bimaterial and
found that the classical oscillatory singularities disappear. The asymptotic analysis
of a crack in incompressible hyperelastic homogeneous materials and bimaterials
was examined further by Geubelle and Knauss [1994a; 1994b; 1994c]. In contrast
to the aforementioned asymptotic analyses, Ru [2002] obtained a complete solution
for an interface crack in a bimaterial composed of a particular class of compressible
harmonic materials by utilizing a concise version of the complex-variable formu-
lation. Ru’s solution indicates that, when the asymptotic behavior of the harmonic
materials satisfies the constitutive restriction proposed by Knowles and Sternberg
[1975], the oscillatory singularity again disappears.

Most recently, various authors (see, for example, [Kim et al. 2010b; 2010a;
2011a; 2011b; 2011c; Antipov and Schiavone 2011; Wang 2015]) have incorpo-
rated the continuum-based surface/interface theory of Gurtin and Murdoch [1975;
1978; Gurtin et al. 1998] into the fracture analysis of linearly elastic solids. It was
shown that the incorporation of the Gurtin–Murdoch surface model can suppress
the classical strong square-root stress/strain singularity at the crack tip predicted
in linear elastic fracture mechanics (LEFM) to the weaker logarithmic singularity
[Walton 2012; Kim et al. 2013].

The objective of the present study is to incorporate a version of the Gurtin–
Murdoch surface model into the analysis of the finite plane-strain deformations of
a compressible hyperelastic material of harmonic type containing a central crack.
The complex-variable method [Ru 2002] is used to reduce the original boundary-
value problem to two sets of coupled first-order Cauchy singular integrodifferential
equations that are solved numerically using Chebyshev polynomials and a colloca-
tion method. Furthermore, an elementary closed-form analytic solution is derived
for a special material under mode II loading. It is seen from this closed-form
solution that all stress components are bounded whereas the deformation gradients
exhibit a logarithmic singularity at the crack tips.

2. Bulk and surface elasticity

In this study, the bulk material is taken from a particular class of compressible hy-
perelastic solids of harmonic type whereas the elasticity of the surface is restricted
to the class of isotropic linearly elastic materials. This simplifying assumption in
the mathematical model is a first step/starting point in the investigation of the con-
tribution of surface elasticity to fracture in this class of nonlinearly elastic materials.
In fact, as we detail later, the assumptions of isotropy and linearity in the surface
model result in singular integrodifferential equations that are accommodated by
existing methods in the literature allowing for relatively easy analysis and solution.
In contrast, if the surface-elasticity model is assumed also to be hyperelastic, the
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resulting singular integrodifferential equations become highly nonlinear and are
not accommodated by any existing theories of analysis.

Bulk elasticity. In this section, we review the equations governing finite plane-
strain deformations of a particular class of compressible hyperelastic materials of
harmonic type first advanced by John [1960] and later studied by various authors
[Ru 2002; Knowles and Sternberg 1975; Varley and Cumberbatch 1980; Li and
Steigmann 1993; Wang et al. 2005; Wang and Schiavone 2015]. Let the complex
variable z = x1+ i x2 represent the initial coordinates of a material particle in the
undeformed configuration and w(z) = y1(z)+ iy2(z) the corresponding spatial
coordinates in the deformed configuration. Thus, the displacements u1 and u2 of
a material particle labeled (x1, x2) are given by u1 = y1 − x1 and u2 = y2 − x2.
Define the deformation gradient tensor by the components (i, j = 1, 2)

Fi j =
∂yi

∂x j
. (1)

For a particular class of harmonic materials, the strain energy density W defined
with respect to the undeformed unit area can be expressed by [Ru 2002; Varley and
Cumberbatch 1980; Li and Steigmann 1993; Abeyaratne 1984]

W = 2µ[F(I )− J ], F ′(I )=
1

4α

[
I +

√
I 2− 16αβ

]
. (2)

Here I and J are the scalar invariants of the tensor F FT given by

I = λ1+ λ2 =
√

Fi j Fi j + 2J , J = λ1λ2 = det[Fi j ], (3)

where λ1 and λ2 are the principal stretches, µ is the shear modulus, and 1
2 ≤ α < 1

and β > 0 are two material constants. A full discussion of the physical implications
of both this class of materials and the associated material constants can be found
in [Ru 2002]. We note, in particular, one of the well-known limitations of this
harmonic material model in that it exhibits unphysical behavior in states of se-
vere compression. Consequently, in what follows, we concern ourselves only with
physical problems exhibiting states of strain that are appropriate for this model.

According to the formulation developed by Ru [2002], the deformation w can
be written in terms of two analytic functions ϕ(z) and ψ(z) as

iw(z, z)= αϕ(z)+ iψ(z)+
βz

ϕ′(z)
, (4)

and the complex Piola stress function χ is given by

χ(z, z)= 2iµ
[
(α− 1)ϕ(z)+ iψ(z)+

βz

ϕ′(z)

]
. (5)
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In addition, the Piola stress components can be written in terms of the Piola
stress function χ as

−σ21+ iσ11 = χ,2, σ22− iσ12 = χ,1. (6)

Surface elasticity. The equilibrium conditions on the surface incorporating inter-
face/surface elasticity can be expressed as [Gurtin and Murdoch 1975; Gurtin et al.
1998; Ru 2010]

[σα j n j eα] + σ s
αβ,βeα = 0 (tangential direction),

[σi j ni n j ] = σ
s
αβκαβ (normal direction),

(7)

where α, β = 1, 3, ni is the unit normal vector to the surface before deformation,
[ · ] denotes the jump of the quantities across the surface, σ s

αβ is the surface Piola–
Kirchhoff stress tensor of the first kind, and καβ is the curvature tensor of the
surface. In addition, the constitutive equations on the isotropic linearly elastic
surface are given by

σ s
αβ = σ0δαβ + 2(µs

− σ0)ε
s
αβ + (λ

s
+ σ0)ε

s
γ γ δαβ, (8)

where εs
αβ is the surface infinitesimal strain tensor, δαβ is the Kronecker delta for

the surface, σ0 is the surface tension, and λs and µs are the two surface Lamé
parameters. A justification of (7) and (8) can be found in the Appendix.

3. A crack with surface effects

We consider the finite plane-strain deformations of a harmonic material weakened
by a crack subjected to remote uniform Piola stresses (σ∞11 , σ

∞

22 , σ
∞

12 , σ
∞

21 ). The
cross section of the crack occupies the segment [−a, a] of the x1 axis, and the faces
of the crack are assumed to be traction-free, i.e., σ12 = σ22 = 0 on −a < x1 < a
and x2 =±0. Let the upper and lower half-planes be designated the “+” and “−”
sides of the crack, respectively.

It follows from (7) that the boundary conditions on the crack faces can be specif-
ically written as

σ s
11,1+ (σ12)

+
− (σ12)

−
= 0,

(σ22)
+
− (σ22)

−
=−σ0 y+2,11

on the upper crack face, (9a)

σ s
11,1+ (σ12)

+
− (σ12)

−
= 0,

(σ22)
+
− (σ22)

−
=−σ0 y−2,11

on the lower crack face, (9b)

where (σ12)
− and (σ22)

− in (9a) and (σ12)
+ and (σ22)

+ in (9b) are zero.
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By assuming a coherent interface, the following relationship can then be ob-
tained from (8):

σ s
11,1 = (λ

s
+ 2µs

− σ0)y1,11. (10)

As a result, it follows from (9) and (10) that

(σ12)
+
=−(λs

+ 2µs
− σ0)y+1,11,

(σ22)
+
=−σ0 y+2,11

on the upper crack face, (11)

(σ12)
−
= (λs

+ 2µs
− σ0)y−1,11,

(σ22)
−
= σ0 y−2,11

on the lower crack face, (12)

which is equivalent to

(σ12)
+
+ (σ12)

−
=−(λs

+ 2µs
− σ0)(y+1,11− y−1,11),

(σ12)
+
− (σ12)

−
=−(λs

+ 2µs
− σ0)(y+1,11+ y−1,11),

(σ22)
+
+ (σ22)

−
=−σ0(y+2,11− y−2,11),

(σ22)
+
− (σ22)

−
=−σ0(y+2,11+ y−2,11).

(13)

We now define a new analytic function

θ(z)=−iψ(z)+
βz
ϕ′(z)

. (14)

The deformation w and the complex Piola stress function χ along the real axis
can then be concisely expressed in terms of ϕ(z) and θ(z) as

iw = αϕ(x1)+ θ(x1), χ = 2iµ
[
(α− 1)ϕ(x1)+ θ(x1)

]
,

x2 = 0, −∞< x1 <+∞, . (15)

In view of the above expression, ϕ(z) and θ(z) can be written in the form

ϕ(z)=
1

4πµ

∫ a

−a

{
2µ[b1(ξ)+ ib2(ξ)] + f2(ξ)− i f1(ξ)

}
ln(z− ξ) dξ + i Az, (16a)

θ(z)=
1

4πµ

∫ a

−a

{
2µ(α− 1)[b1(ξ)− ib2(ξ)] +α[ f2(ξ)+ i f1(ξ)]

}
ln(z− ξ) dξ

− i
(

B+
β

A

)
z, (16b)

where b1(x1), b2(x1), f1(x1), and f2(x1) with −a < x1 < a are four unknown real
functions to be determined and the two complex constants A and B are related to
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the remote uniform Piola stresses through

(1−α)A−
β

A
=
σ∞11 + σ

∞

22 + i(σ∞21 − σ
∞

12 )

4µ
,

B =
σ∞11 − σ

∞

22 − i(σ∞12 + σ
∞

21 )

4µ
.

(17)

It is clear that ϕ(z) and θ(z) given in (16) satisfy the uniform loading condition
at infinity. Our task below is to determine the four real functions b1(x1), b2(x1),
f1(x1), and f2(x1) in (16) from the remaining boundary conditions on the crack
surfaces. The following limiting values can then be obtained from (16):

ϕ′
+
(x1)=

2µ[b2(x1)− ib1(x1)] − f1(x1)− i f2(x1)

4µ

+
1

4πµ

∫ a

−a

2µ[b1(ξ)+ ib2(ξ)] + f2(ξ)− i f1(ξ)

x1− ξ
dξ + i A,

ϕ′
−
(x1)=

2µ[−b2(x1)+ ib1(x1)] + f1(x1)+ i f2(x1)

4µ

+
1

4πµ

∫ a

−a

2µ[b1(ξ)+ ib2(ξ)] + f2(ξ)− i f1(ξ)

x1− ξ
dξ + i A,

(18)

θ ′
+
(x1)=

2µ(α− 1)[−b2(x1)− ib1(x1)] +α[ f1(x1)− i f2(x1)]

4µ

+
1

4πµ

∫ a

−a

2µ(α− 1)[b1(ξ)− ib2(ξ)] +α[ f2(ξ)+ i f1(ξ)]

x1− ξ
dξ

− i
(

B+
β

A

)
,

θ ′
−
(x1)=

2µ(α− 1)[b2(x1)+ ib1(x1)] −α[ f1(x1)− i f2(x1)]

4µ

+
1

4πµ

∫ a

−a

2µ(α− 1)[b1(ξ)− ib2(ξ)] +α[ f2(ξ)+ i f1(ξ)]

x1− ξ
dξ

− i
(

B+
β

A

)
,

(19)

where −a < x1 < a; the subscript “+” means the limiting value by approaching the
crack from the upper half-plane, and the subscript “−” means the limiting value
by approaching the crack from the lower half-plane.
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By imposing the boundary conditions in (13), and making use of (18) and (19) in
conjunction with (4)–(6), we obtain the hypersingular integrodifferential equations

−
4µ(1−α)

π

∫ a

−a

b1(ξ)

ξ − x1
dξ +

2α− 1
π

∫ a

−a

f2(ξ)

ξ − x1
dξ + 2σ∞12

= (λs
+ 2µs

− σ0)b′1(x1),

f2(x1)=
σ0(2α− 1)

π

∫ a

−a

b1(ξ)

(ξ − x1)2
dξ +

σ0α

πµ

∫ a

−a

f2(ξ)

(ξ − x1)2
dξ,

(20)

−
4µ(1−α)

π

∫ a

−a

b2(ξ)

ξ − x1
dξ −

2α− 1
π

∫ a

−a

f1(ξ)

ξ − x1
dξ + 2σ∞22 = σ0b′2(x1),

f1(x1)=−
(2α− 1)(λs

+ 2µs
− σ0)

π

∫ a

−a

b2(ξ)

(ξ − x1)2
dξ

+
α(λs
+ 2µs

− σ0)

πµ

∫ a

−a

f1(ξ)

(ξ − x1)2
dξ,

(21)

where −a < x1 < a.
In addition, the following conditions can be obtained from (18), (19) and (4)–(6):

1y1 = y+1 − y−1 =−
∫ x1

−a
b1(ξ) dξ,

1y2 = y+2 − y−2 =−
∫ x1

−a
b2(ξ) dξ,

σ+12− σ
−

12 =− f1(x1),

σ+22− σ
−

22 =− f2(x1),
−a < x1 < a.

(22)

Consequently, the single-valuedness of the displacements and balance of force
for a contour surrounding the crack surface require that∫ a

−a
b1(ξ) dξ = 0,

∫ a

−a
b2(ξ) dξ = 0,∫ a

−a
f1(ξ) dξ = 0,

∫ a

−a
f2(ξ) dξ = 0.

(23)

If the end conditions

µ(2α− 1)b1(±a)+α f2(±a)= 0 when σ0 6= 0, σ∞12 6= 0, and σ∞22 = 0,

µ(2α− 1)b2(±a)−α f1(±a)= 0 when σ0 6= 0, σ∞22 6= 0, and σ∞12 = 0
(24)
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are met, then (20) and (21) can be written as first-order Cauchy singular integro-
differential equations

−
4µ(1−α)

π

∫ a

−a

b1(ξ)

ξ − x1
dξ +

2α− 1
π

∫ a

−a

f2(ξ)

ξ − x1
dξ + 2σ∞12

= (λs
+ 2µs

− σ0)b′1(x1),

f2(x1)=
σ0(2α− 1)

π

∫ a

−a

b′1(ξ)
ξ − x1

dξ +
σ0α

πµ

∫ a

−a

f ′2(ξ)
ξ − x1

dξ,

(25)

−
4µ(1−α)

π

∫ a

−a

b2(ξ)

ξ − x1
dξ −

2α− 1
π

∫ a

−a

f1(ξ)

ξ − x1
dξ + 2σ∞22 = σ0b′2(x1),

f1(x1)=−
(2α− 1)(λs

+ 2µs
− σ0)

π

∫ a

−a

b′2(ξ)
ξ − x1

dξ

+
α(λs
+ 2µs

− σ0)

πµ

∫ a

−a

f ′1(ξ)
ξ − x1

dξ,

(26)

where −a < x1 < a.
It should be pointed out that the resulting singular integrodifferential equations

are linear in nature due to the introduction of the new analytic function θ(z) in (14)
and that the end conditions in (24) are consistent with the discussions in [Kim et al.
2013] in which the idea is fully explained.

In what follows, we address three special cases:

Case 1. If we choose α = 1
2 for the case in which F ′(I )/I approaches unity as

I tends to infinity [Knowles and Sternberg 1975] (whose proposed constitutive
equation is satisfied by the asymptotic behavior of the harmonic material in this
case), (20) and (21) simplify to

−
2µ
π

∫ a

−a

b1(ξ)

ξ − x1
dξ + 2σ∞12 = (λ

s
+ 2µs

− σ0)b′1(x1),

−
2µ
π

∫ a

−a

b2(ξ)

ξ − x1
dξ + 2σ∞22 = σ0b′2(x1),

f1(x1)= f2(x1)= 0,

− a < x1 < a. (27)

Case 2. If σ0 = 0 (i.e., the residual surface tension is ignored as in [Kim et al.
2011c] since its contribution is usually negligible), (20) and (21) simplify to

−
4µ(1−α)

π

∫ a

−a

b1(ξ)

ξ − x1
dξ + 2σ∞12 = (λ

s
+ 2µs)b′1(x1),

b2(x1)=
σ∞22

2µ(1−α)
x1√

a2− x2
1

,

f1(x1)= f2(x1)= 0,

−a< x1<a. (28)
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Case 3. If λs, µs
→∞, (20) and (21) simplify to

−
µ

πα

∫ a

−a

b2(ξ)

ξ − x1
dξ + 2σ∞22 = σ0b′2(x1),

f1(x1)=
µ(2α− 1)

α
b2(x1),

b1(x1)= f2(x1)= 0,

− a < x1 < a. (29)

We remark that the resulting Cauchy singular integrodifferential equations in
(27)1,2, (28)1, and (29)1 are similar in structure.

4. Solution to the Cauchy singular integrodifferential equations

Set x = x1/a and t = ξ/a in (23)–(26). For convenience, and without loss of
generality, we write bi (x)= bi (ax)= bi (x1) and fi (x)= fi (ax)= fi (x1), i = 1, 2.
Consequently, (23)–(26) can be written in the normalized form∫ 1

−1

−4(1−α)b̂1(t)+ (2α− 1) f̂2(t)
t − x

dt = π S1b̂′1(x)− 2π,∫ 1

−1

S2(2α− 1)b̂′1(t)+ S2α f̂ ′2(t)
t − x

dt = π f̂2(x), −1< x < 1,∫ 1

−1
b̂1(t) dt =

∫ 1

−1
f̂2(t) dt = 0, (2α− 1)b̂1(±1)+α f̂2(±1)= 0,

(30)

∫ 1

−1

−4(1−α)b̂2(t)+ (2α− 1) f̂1(t)
t − x

dt = π S2b̂′2(x)− 2π,∫ 1

−1

S1(2α− 1)b̂′2(t)+ S1α f̂ ′1(t)
t − x

dt = π f̂1(x), −1< x < 1,∫ 1

−1
b̂2(t) dt =

∫ 1

−1
f̂1(t) dt = 0, (2α− 1)b̂2(±1)+α f̂1(±1)= 0,

(31)

where

b̂1(x)=
µb1(x)
σ∞12

, f̂1(x)=−
f1(x)
σ∞22

, S1 =
λs
+ 2µ− σ0

αµ
,

b̂2(x)=
µb2(x)
σ∞22

, f̂2(x)=
f2(x)
σ∞12

, S2 =
σ0

αµ
.

(32)

Equations (30) and (31) are identical in structure in the sense that (31) can be
obtained by replacing the subscripts 1 and 2 in (30) by 2 and 1, respectively. In
the following, we focus on the solution of (30).
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By utilizing the first and second inverse operators [Chakrabarti and George 1994;
Chakrabarti and Hamsapriye 1999]

T−1
firstψ(x)=

√
1− x2

π

∫ 1

−1
ψ(t) dt −

√
1− x2

π2

∫ 1

−1

ψ(t)

(t − x)
√

1− t2
dt, (33)

T−1
secondψ(x)=

1

π
√

1− x2

∫ 1

−1
ψ(t) dt −

1

π2
√

1− x2

∫ 1

−1

√
1− t2ψ(t)

t − x
dt, (34)

where−1< x < 1, in (30)2 and (30)1, respectively, and making use of the conditions
in (30)3, we arrive at

√
1−x2

[
−4(1−α)b̂1(x)+(2α−1) f̂2(x)

]
=−

1
π

∫ 1

−1

√
1−t2[S1b̂′1(t)−2]

t−x
dt,

S2(2α−1)b̂′1(x)+S2α f̂ ′2(x)=−

√
1−x2

π

∫ 1

−1

f̂ ′2(t)

(t−x)
√

1−t2
dt,

(35)

where −1< x < 1.
The two unknown functions b̂1(x) and f̂2(x) are approximated as

b̂1(x)=
N+1∑
m=0

cm Tm(x), f̂2 =

N+1∑
m=0

dm Tm(x), (36)

where Tm(x) represents the m-th Chebyshev polynomial of the first kind and cm

and dm , m = 0, 1, 2, . . . , N + 1 are 2N + 4 unknown coefficients to be determined
using the collocation method.

Substituting (36) into (35), and using the identities

dTm(x)
dx

= mUm−1(x),∫ 1

−1

Um(t)
√

1− t2

t − x
dt =−πTm+1(x),∫ 1

−1

Tm(t)

(t − x)
√

1− t2
dt = πUm−1(x)

(37)

with Um(x) being the m-th Chebyshev polynomial of the second kind, we arrive at

N+1∑
m=0

Tm(x)
{√

1− x2[4(1−α)cm − (2α− 1)dm] +mS1cm
}
= 2x,

N+1∑
m=0

Um−1(x)
{
m[S2(2α− 1)cm + S2αdm] +

√
1− x2dm

}
= 0.

(38)
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If we select the collocation points given by x =− cos(iπ/N ) for i = 1, 2, . . . , N ,
(38) becomes

N+1∑
m=0

(−1)m cos
(miπ

N

){[
4(1−α) sin

( iπ
N

)
+mS1

]
cm − (2α− 1) sin

( iπ
N

)
dm

}
=−2 cos

( iπ
N

)
, i = 1, 2, . . . , N ,

N+1∑
m=0

(−1)m sin
(miπ

N

){
mS2(2α− 1)cm +

[
mS2α+ sin

( iπ
N

)]
dm

}
= 0, i = 1, 2, . . . , N − 1,

N+1∑
m=0

[
m2(2α− 1)cm +m2αdm

]
= 0.

(39)

In addition, the conditions in (30)3 become

N+1∑
m=0,m 6=1

1+ (−1)m

1−m2 cm = 0,
N+1∑

m=0,m 6=1

1+ (−1)m

1−m2 dm = 0,

N+1∑
m=0

[
(2α− 1)cm +αdm

]
= 0,

N+1∑
m=0

(−1)m
[
(2α− 1)cm +αdm

]
= 0.

(40)

The 2N + 4 unknowns cm and dm , m = 0, 1, 2, . . . , N + 1, can be uniquely
determined by solving the 2N + 4 independent linear algebraic equations in (39)
and (40).

5. The stress field

The four real functions b1(x1), b2(x1), f1(x1), and f2(x1) have been determined
in the previous section by solving the ensuing Cauchy singular integrodifferential
equations (30) and (31) numerically. This means that the two analytic functions ϕ(z)
and θ(z) are known. In view of (14), the other original analytic function ψ(z) can
be given by

ψ(z)= iθ(z)−
iβz
ϕ′(z)

. (41)

The Piola stresses can then be determined by using (5) and (6). Since b1(±a),
b2(±a), f1(±a), and f2(±a) are all finite when σ0 6= 0, the Piola stresses exhibit
a weak logarithmic singularity at the crack tips when σ0 6= 0. In particular, the two
stress components σ12 and σ22 are singularly distributed along the real axis outside
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the crack as

σ12

σ∞12
=−

2(1−α)
π

∫ 1

−1

b̂1(t)
t − x

dt +
2α− 1

2π

∫ 1

−1

f̂2(t)
t − x

dt + 1,

σ22

σ∞22
=−

2(1−α)
π

∫ 1

−1

b̂2(t)
t − x

dt +
2α− 1

2π

∫ 1

−1

f̂1(t)
t − x

dt + 1,

x /∈ [−1, 1], (42)

from which we arrive at the following asymptotic behavior near the crack tips:

σ12

σ∞12
=−

b̂1(1)
2πα

ln(x − 1)+ O(1),

σ22

σ∞22
=−

b̂2(1)
2πα

ln(x − 1)+ O(1),

x − 1→ 0+,

σ12

σ∞12
=

b̂1(−1)
2πα

ln|x + 1| + O(1),

σ22

σ∞22
=

b̂2(−1)
2πα

ln|x − 1| + O(1),

x − 1→ 0−.

(43)

In the above derivation, we have used the last of the conditions in (30) and (31).
Thus, the incorporation of the surface elasticity suppresses the classical strong
square-root singularity [Knowles and Sternberg 1983; Abeyaratne 1984; Ru 2002]
to the weaker logarithmic one. In addition, σ12 and σ22 are regular and distributed
on the crack faces as

(σ12)
+
=
σ∞12 S1b̂′1(x)+ σ

∞

22 f̂1(x)
2

, (σ12)
−
=
σ∞12 S1b̂′1(x)− σ

∞

22 f̂1(x)
2

,

(σ22)
+
=
σ∞22 S2b̂′2(x)− σ

∞

12 f̂2(x)
2

, (σ22)
−
=
σ∞22 S2b̂′2(x)+ σ

∞

12 f̂2(x)
2

,

(44)

where −1< x < 1.
It is seen from (30) that the functions b̂1(x), b̂2(x), f̂1(x), and f̂2(x) are de-

pendent on the two parameters S1 and S2, which are controlled by the crack size.
Consequently, our model also predicts that the induced Piola stresses depend on
the crack size. In fact, this is evident from (42) and (44). It is deduced from (28)
that, if σ0 = 0, the stresses exhibit both weak logarithmic and strong square-root
singularities at the crack tips.

6. Results and discussions

We first show in Figure 1 the two functions b̂1(x) and f̂2(x) obtained for the case
S1 = 2, S2 = 1, and α = 0.8. It is observed that both b̂1(x) and f̂2(x) are finite
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Figure 1. The two functions b̂1(x) and f̂2(x) for S1 = 2, S2 = 1,
and α = 0.8.

at x = ±1 (more precisely, b̂1(±1) = ±1.1607 and f̂2(±1) = ∓0.7736) and that
the end conditions (2α− 1)b̂1(±1)+α f̂2(±1)= 0 are indeed satisfied.

We illustrate in Figure 2 the variations of 1ŷ1 =µ1y1/(aσ∞12 )=−
∫ x
−1 b̂1(t) dt

for different values of α with S1 = 1 and S2 = 0.1. We note that, in the presence
of surface elasticity, the crack-tip opening angles lie strictly between 0 and π/2
and that 1ŷ1 is an increasing function of α. We illustrate in Figure 3 max{1ŷ1}

as functions of S2 and α with S1 = 1. From Figure 3, it is clear that max{1ŷ1}

lies between the constant value of 0.4958 for α = 1
2 and the value of 1 for S2 = 0
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Figure 2. Variations of 1ŷ1 for different values of α with S1 = 1
and S2 = 0.1.
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Figure 3. max{1ŷ1} as functions of S2 and α with S1 = 1.

and α = 1, that max{1ŷ1} ≈ 0.76 when α = 0.84 for any value of S2 (0.1< S2 <

1000), and that max{1ŷ1} is an increasing function of α but varies in a complicated
manner as S2 increases. Our numerical results also indicate that max{1ŷ1} ≤

1/S1 with equality established when S2 = 0 and α = 1. It is interesting to note
that, when S2 = 0 and α = 1, we have the exact result: 1ŷ1 = (1− x2)/S1 and
b̂1(x) = 2x/S1. This fact can be deduced quite easily from (28). In this case,
closed-form expressions of the two original analytic functions resulting from the
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2 , and S1 = 0.05.
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mode II loading σ∞11 6= 0, σ∞22 = 0, and σ∞12 = σ
∞

12 6= 0 can be explicitly given as

ϕ′(z)=
σ∞12

πµS1

(
−2−

z
a

ln
z− a
z+ a

)
+ i A,

ψ(z)=
(

B+
β

A

)
z−

iβz
σ∞12
πµS1

(
−2− z

a ln z−a
z+a

)
+ i A

,

(45)

where

A =−
4µβ
σ∞11

, B =
σ∞11 − 2iσ∞12

4µ
. (46)

Evidently, the assumption ensures that the real constant A is finite.
It is further deduced from (14), (15), and (45) that along the x1-axis

σ12 = σ
∞

12 , σ22 = 0, −∞< x1 <+∞,

σ+11+ iσ+21 =
σ∞11

1+ iσ∞12 σ
∞

11
4πβS1µ2

(
2+ x1

a ln
∣∣ x1−a

x1+a

∣∣− iπx1
a

) + iσ∞12 , |x1|< a,

σ−11+ iσ−21 =
σ∞11

1+ iσ∞12 σ
∞

11
4πβS1µ2

(
2+ x1

a ln
∣∣ x1−a

x1+a

∣∣+ iπx1
a

) + iσ∞12 , |x1|< a,

σ+11+ iσ+21 = σ
−

11+ iσ−21

=
σ∞11

1+ iσ∞12 σ
∞

11
4πβS1µ2

(
2+ x1

a ln
∣∣ x1−a

x1+a

∣∣) + iσ∞12 , |x1|> a,

(47)

y+2,1 = f −2,1 =
σ∞12

πµS1

(
2+

x1

a
ln
∣∣∣∣ x1− 1
x1+ a

∣∣∣∣)+ σ∞12

2µ
, −∞< x1 <+∞,

y+1,1 =−
σ∞12

aµS1
x1−

4µβ
σ∞11

, y−1,1 =
σ∞12

aµS1
x1−

4µβ
σ∞11

, |x1|< a,

y+1,1 = y−1,1 =−
4µβ
σ∞11

, |x1|> a,

(48)

which clearly indicates that y2,1 exhibits a logarithmic singularity at the crack tips
whereas y1,1 remains finite at the crack tips.

Figures 4 and 5 show the distributions of σ11 and σ21 along the real axis obtained
from (47) with σ∞11 = σ

∞

12 = σ
∞

21 = 0.2µ, β = 1
2 , and S1 = 0.05. It is seen from

Figure 4 that σ11 is finite and varies continuously along the whole real axis with
max{σ+11} = max{σ−11} = 1.5368σ∞11 and σ+11 = σ

−

11 = 0 at the crack tips and that
σ11 ≈ σ

∞

11 when |x |> 1.5. Also, from Figure 5, we see that σ21 is also finite and
again varies continuously along the whole real axis with max{σ+21} =max{σ−21} =

1.8320σ∞21 , min{σ+21}=min{σ−21}= 0.7180σ∞21 , and σ+21=σ
−

21=σ
∞

21 at the crack tips
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Figure 5. Distribution of the stress component σ21 along the real
axis with σ∞11 = σ

∞
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and at x =±0.8336 and that σ21 outside the crack decays to its remote value much
slower than σ11. It should be stressed that the result σ+21= σ

−

21= σ
∞

21 at x =±0.8336
is independent of all the loading and material parameters since x =±0.8336 are
simply the roots of the transcendental equation 2+ x(ln|x − 1| − ln|x + 1|) = 0.
In this example, we see that all stress components are bounded at the crack tips
whereas the deformation gradients exhibit logarithmic singularity at the crack tips.

Figure 6 shows the distributions of b̂1(x) for different values of S1 with α = 1
2 .

Since b̂1(x) is an odd function of x , we demonstrate only the results for 0< x < 1.
It is clear that b̂1(x) is finite at x =±1 when S1 6= 0 and that the magnitude of b̂1(x)
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Figure 6. Distributions of b̂1(x) for different values of S1 with
α = 1

2 .
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Figure 7. The value b̂1(1) as a function of S1 with α = 1
2 .

decreases as S1 increases. From (43), we note that b̂1(±1) and b̂2(±1) can be used
to characterize the intensity of the logarithmic stress singularity at the crack tips.
Figure 7 demonstrates b̂1(1) as a monotonically decreasing function of S1 with
α = 1

2 . Also, we see that b̂1(1)→∞ as S1→ 0 and b̂1(1)→ 0 as S1→∞.

7. Conclusions

We consider the finite plane-strain deformations of a compressible hyperelastic
solid of harmonic type containing a crack whose faces incorporate surface elasticity
as described by the Gurtin–Murdoch theory. We obtain a complete solution valid
everywhere in the domain of interest (including at the crack tips) by means of
two series of coupled Cauchy singular integrodifferential equations (25) and (26).
These equations can be simplified considerably for the three cases α = 1

2 , σ0 = 0,
and λs, µs

→∞. We propose a method based on Chebyshev polynomials and a
collocation technique to solve (25) and (26) numerically. Our results indicate that
generally the stresses exhibit a weak logarithmic singularity at the crack tips when
the Gurtin–Murdoch model is incorporated. An elementary closed-form solution
is obtained in (45) for a material with σ0 = 0 and α = 1 under mode II loading. In
this special case, the stresses are found to be bounded at the crack tips.

Finally, we mention that our fundamental hypothesis that the bulk material be-
longs to a particular class of compressible hyperelastic materials of harmonic type
while maintaining the assumption that the crack surfaces are modeled as linearly
elastic materials is a first step in analyzing the contribution of the surface in this con-
text. A justification of such a theoretical framework can be found in the Appendix
and also in the continuum-based hyperelastic surface elasticity developed by Huang
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and Wang [2006]. We mention also that, if indeed we instead model the crack faces
using similar hyperelastic materials, the resulting singular integrodifferential equa-
tions become highly nonlinear and are not accommodated by any existing theories
in the literature. This makes any further analytical investigations impossible.
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Appendix

Consider a bulk B ⊂ R3 with surface/interface ∂B. The subsurface SC ⊂ ∂B is
enclosed by a simple contour C . Let n be the unit normal vector to the subsur-
face SC before deformation and v be the outward unit normal vector to C before
deformation. The force balance condition on the subsurface SC yields∫

SC

[σ · n] +
∫

C
σ s
· v = 0, (49)

where σ is the bulk Piola–Kirchhoff stress tensor of the first kind and σ s the surface
Piola–Kirchhoff stress tensor of the first kind.

By applying Green’s theorem to (49), we obtain

[σ · n] + divs σ
s
= 0, (50)

where divs σ
s denotes the surface divergence of σ s . The above can be further writ-

ten in component forms along the tangential and normal directions of the surface:

[n · σ · n] = σ s
: κ,

[ p · σ · n] = − grads σ
s,

(51)

where p= I − n⊗ n with I being the three-dimensional identity tensor, κ is the
curvature tensor of the surface, and grads σ

s is the gradient of σ s on the surface
before deformation. Equation (51) is equivalent to (7). The balance conditions
in (51) or (7) are in fact valid whether the specific constitutive equations of the
bulk and the surface are linear or nonlinear and whether the deformations are finite
or infinitesimal.

In this study, we adopt a linearized isotropic constitutive equation for the surface.
As in [Huang and Wang 2006], if the surface Cauchy stress tensor τ s is taken as

τ s
= σ0 I2+ λ

s tr(εs)I2+ 2µsεs, (52)
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with I2 being the two-dimensional identity tensor, the linearized constitutive re-
lation for the surface Piola–Kirchhoff stress tensor of the first kind can then be
written as

σ s
= σ0 I2+ (λ

s
+ σ0) tr(εs)I2+ 2(µs

− σ0)ε
s
+ σ0 grads u. (53)

If we discard the last term σ0 grads u, (53) will reduce to (8).
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AN INVESTIGATION OF THE ACTIVE DAMPING
OF SUSPENSION BRIDGES

ANDRÉ PREUMONT, MATTEO VOLTAN, ANDREA SANGIOVANNI,
RENAUD BASTAITS, BILAL MOKRANI AND DAVID ALALUF

This paper explores the feasibility of active damping of suspension bridges with
the addition of stay cables controlled by active tendons. An active tendon con-
sists of a displacement actuator collocated with a force sensor monitoring the
tension in the cable. The active tendons are controlled by decentralized integral
force feedback (IFF). In the first part of the paper, the potential of the control
strategy is evaluated on a numerical model of an existing footbridge; several
configurations are investigated where the active cables connect the pylon to the
deck or the deck to the catenary. The analysis confirms that it is possible to
provide a set of targeted modes with a considerable amount of damping, reaching
ξ = 15%. In the second part of the paper, the control strategy is demonstrated
experimentally on a laboratory mock-up equipped with four control stay cables
equipped with piezoelectric actuators. The experimental results confirm the
excellent performance and robustness of the control system and the very good
agreement with the predictions.

1. Introduction

Suspension bridges and cable-stayed bridges are widely used in infrastructures
because they are elegant and allow very long spans. However, they are subjected
to all sorts of complicated dynamic phenomena ranging from wind- or traffic-
induced vibration to flutter instability (e.g., the Tacoma Narrows Bridge). The
problem is difficult, in particular because of the highly nonlinear behavior of cable
structures, responsible for such phenomena as parametric excitation when some
tuning conditions are satisfied [Nayfeh and Mook 1979; Pinto da Costa et al. 1996;
Lilien and Pinto da Costa 1994]. Footbridges are very sensitive to pedestrian-
and jogger-induced vibrations. It is generally admitted that the over-sensitivity
to dynamic excitation of cable bridges is associated with the very low structural
damping in the global bridge modes (often below 1% and even less in the cable

Communicated by Antonio Carcaterra.
MSC2010: primary 70Q05, 70J25, 74H45; secondary 93C95.
Keywords: vibrations, damping, control, active structure, bridge, mechatronics, piezoelectric.
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modes [Pacheco et al. 1993]). The classical way of attenuating the global modes
is the use of tuned mass dampers (at least one by critical mode) [Caetano et al.
2010; Tubino and Piccardo 2015]. The active control of cable structures has also
been considered; the application of active tendons to flutter control was considered
numerically in [Yang and Giannopoulos 1979a; 1979b] and experimental studies
were pioneered in [Warnitchai et al. 1993; Fujino and Susumpow 1994; Fujino
et al. 1993]. All these studies were performed with noncollocated actuator-sensor
configurations; this did not lead to any trouble in Yang’s numerical study since
perfect knowledge and a linear system were assumed, but Fujino’s experimental
results revealed that, even for relatively simple systems, instabilities tend to occur
when the cable-structure interaction is large.

It turns out that cable-structure systems are much easier to control if collocated
actuator-sensor pairs are used because this produces alternating poles and zeros in
the open-loop transfer function of every channel of the control system [Cannon
and Rosenthal 1984; Preumont 2011], drastically reducing the spillover and other
problems associated with the high-frequency dynamics. This property was suc-
cessfully exploited in several studies demonstrating the active damping of cable-
stayed bridges [Achkire and Preumont 1996; Achkire et al. 1998; Bossens and
Preumont 2001] and guyed space trusses [Preumont and Bossens 2000; Preumont
and Achkire 1997; Preumont et al. 2000]. All these studies use a decentralized
control strategy based on the integral force feedback (IFF) family [Preumont et al.
1992]. The control strategy exhibits very good performance and robustness, and
the control design is based on clear physical parameters such as natural frequencies
and modal strain energy; the method is summarized in Appendix A.

At the end of the 1990s, the European Union research program Brite-Euram
funded a large-scale demonstration project named “ACE”, conducted by a consor-
tium involving several academic and industrial partners; this project confirmed the
results obtained on smaller test beds [Bossens and Preumont 2001]. However, the
selected application of the cable-stayed bridge had a significant drawback: the
stay cables had to carry the control loads but also the dead loads, which were
substantially larger than the control loads and complicated significantly the design
of the active tendons. This is probably why the idea did not go further towards
applications.

At the end of the ACE project, our partner from Bouygues, M. Auperin [Auperin
and Dumoulin 2001], suggested that active damping of suspension bridges could
be achieved with a very small number of stay cables equipped with active tendons
(Figure 1) without the drawback just described for the cable-stayed bridges of hav-
ing to carry a substantial part of the dead loads. This idea received little attention
at the time and was not pursued for lack of funding. The curiosity of exploring
Dr. Auperin’s idea (15 years later!) is the motivation of the present study.
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Figure 1. Various configurations for active tendon control of sus-
pension bridges (the active control cables are in red).

2. Seriate footbridge

Model. A model of the Seriate footbridge (Figure 2) was used to evaluate the ac-
tive control strategy. The footbridge, located in Northern Italy near the city of
Bergamo, has been reported to exhibit excessive vibrations induced by the passage
of pedestrians. The survey carried out by Professor C. Gentile (personal com-
munication, 2014) revealed that the passage of eight walking pedestrians induces
a vertical acceleration of 1.8 m/s2 and the vertical acceleration induced by four
joggers reaches 4 m/s2. These values are far beyond those recommended by the
European HiVoSS guidelines [Van Nimmen et al. 2014]. The third and fourth
bending modes, respectively at 2.17 Hz (modal damping ξ3 = 1.48%) and 2.86 Hz
(ξ4 = 1.5%), were identified as the critical modes within the pedestrian excitation
range1 and will be the target of the active control system.

Figure 2. View of the Seriate footbridge.

1The typical pedestrian excitation range for walking is 1.6–2.4 Hz, for running is 2.0–3.5 Hz, and
for jumping is 1.8–3.4 Hz.
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Figure 3. 3D model of the Seriate footbridge, with in red a possi-
ble configuration of 4 active stay cables.

The bridge has a span of 64 m, the deck weighs 40 T, the main steel cables (cate-
nary) have a diameter of 60 mm, and the 2× 21 hangers have a diameter of 16 mm
and a mean tension force of 15.3 kN according to the data sheet. The columns
are articulated at the base and connected at the top; the main cables holding the
column have an axial load of 425 kN according to the data sheet. In the SAMCEF
model (Figure 3), the deck is modeled with finite elements of beams with bending

Mode 2D numer. 3D numer. Exper. Numer. Exper.
(Hz) (Hz) (Hz) mode shape mode shape

1B 1.03 1.02 1.03
ξ1 = 2.77%

2B 1.39 1.48 1.48
ξ2 = 1.34%

1T 1.79 1.92

2T 2.1 1.94

3B 2.22 2.20 2.17
ξ3 = 1.48%

3T 2.65 2.75

4B 2.81 2.78 2.86
ξ4 = 1.50%

Table 1. Natural frequencies and mode shapes of the Seriate foot-
bridge, comparison of the 3D model and 2D model with experi-
ments (personal communication, Gentile, 2014). The two critical
modes are 3B and 4B.
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Figure 4. Active control configurations of the Seriate footbridge.
Top: active cable attached to the pylon. Bottom: active control
attached to the catenary.

stiffness and mass matching those of the deck, the main cables are modeled with
bars (one element between two hangers) following a parabola (approximation of
the catenary), and the hangers are also modeled with bars (a single element per
hanger). The initial shape is taken from the bridge geometry (with some minor
simplifications such as the columns have been assumed of equal length), and the
prestress in the hangers is achieved by applying a thermal field until the appropriate
value is reached. This model was able to capture quite well the natural frequen-
cies and the mode shapes measured on the actual bridge (personal communication,
Gentile, 2014). A simplified 2D model was also developed, which was also well
representative of the bending behavior of the bridge (Table 1).

Active damping. In this study, we will restrict ourselves to an active control config-
uration involving four symmetrically located active steel cables with a diameter of
10 mm; the control system will consist of four independent identical loops with the
same gain g. We first consider the situation where the active cables are attached to
the pylons; the position of the attachment points with the deck is taken as a param-
eter, restricting us to the positions where the hangers are attached (Figure 4, top).

According to the theory (see Appendix A), the closed-loop poles follow closely
the root locus

1+ g
s2
+ω2

i

s(s2+�2
i )
= 0, (1)

where the frequency ωi is the natural frequency when all the active cables are
removed and �i is the natural frequency when the four active cables are included.
The maximum damping ratio that can be achieved on one mode is given by

ξmax
i =

�i −ωi

2ωi
. (2)
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Position A Position B Position C Position D
Mode ωi �i ξmax

i �i ξmax
i �i ξmax

i �i ξmax
i

(Hz) (Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)

1B 1.02 1.07 2.2 1.22 9.8 1.38 17.5 1.53 24.7
2B 1.48 1.49 0.6 1.54 2.1 1.55 2.5 1.53 1.8
1T 1.79 1.81 0.6 1.91 3.3 2.04 6.9 2.12 9.0
2T 2.10 2.10 0.2 2.13 1.5 2.13 0.8 2.18 2.0
3B 2.20 2.23 0.7 2.36 3.6 2.54 7.7 2.64 10.0
3T 2.65 2.65 0.0 2.65 0.0 2.65 0.0 2.65 0.0
4B 2.78 2.85 1.26 3.13 6.3 3.31 9.6 3.17 7.1
4T 3.26 3.28 1.7 3.37 1.7 3.52 3.9 3.66 6.1

Table 2. Active control cables attached to the pylon. Natural fre-
quencies with (�i ) and without (ωi ) active cables and maximum
achievable (active) damping ratios ξi for the various modes and
the various positions of the active cables shown in Figure 4, top.
The critical modes are in bold.

Table 2 shows the values that can be achieved for the various positions of the
active cables investigated. Positions C and D are clearly very good positions for the
targeted modes (3rd and 4th bending modes), with damping ratios between 7% and
10%. Note that this is achieved with active cables with a diameter of 10 mm only.

Next, we consider the situation where the active cables connect the deck at the
foot of the pylon to the catenary (Figure 4, bottom). Table 3 shows the key numbers

Position A Position B Position C Position D
Mode ωi �i ξmax

i �i ξmax
i �i ξmax

i �i ξmax
i

(Hz) (Hz) (%) (Hz) (%) (Hz) (%) (Hz) (%)

1B 1.02 1.06 1.6 1.21 9.4 1.40 18.5 1.58 27.2
2B 1.48 1.50 0.6 1.56 2.9 1.59 4 1.58 3.4
1T 1.79 1.81 0.5 1.93 3.7 2.12 9.1 2.36 15.7
2T 2.10 2.11 0.3 2.16 1.5 2.18 1.9 2.16 1.5
3B 2.20 2.21 0.3 2.30 2.4 2.42 5.1 2.90 15.9
3T 2.65 2.65 0.0 2.66 0.0 2.66 0.1 2.66 0.1
4B 2.78 2.83 0.9 3.09 5.7 3.63 15.4 3.59 14.7
4T 3.26 3.27 0.1 3.35 1.3 3.54 4.3 3.81 8.3

Table 3. Active control cables attached to the catenary. Natural
frequencies with (�i ) and without (ωi ) active cables and maximum
achievable damping ratio ξi for the various modes and the various
positions of the active cables shown in Figure 4, bottom.
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for the various positions corresponding to the attachment point of the hangers on
the catenary. We note that, for position D, the performances are even better than for
the previous configuration, reaching 15% for both the 3rd and 4th bending modes.

The performance of the control system expected on the basis of the previous
discussion is excellent. However, although the approximate formula (2) has been
verified experimentally on several occasions [Preumont 2011], one can always ar-
gue that the control system design is based on linear models that ignore all nonlinear
aspects of cable structures and that robustness issues could eventually hamper the
practical use of this technology. In order to investigate this, a laboratory mock-up
has been built and tested.

3. Laboratory mock-up

The laboratory mock-up (Figure 5) consists of two articulated towers of 0.62 m at a
distance of 2.2 m; the deck is free to rotate at both ends and is attached to the cate-
nary by two rows of 10 hangers. The catenary consists of a steel cable with a diam-
eter of 1 mm, and the hangers are made of steel cables of 0.5 mm; the tension in the
catenary and in the hangers can be adjusted with screws. The tension T0 in a hanger
is measured indirectly from its natural frequency f according to the string formula

f =
1

2L

√
T0

%A
, (3)

f being measured by a noncontact custom-made laser sensor [Achkire and Preumont
1998]. In this way, it was possible to distribute the tension in the hangers uniformly.
Two types of active cables have been tested, one steel cable similar to the hangers,
with a diameter of 0.5 mm, and one made of Dyneema with a diameter of 0.2 mm;

active tendons
voice-coil

Figure 5. Laboratory mock-up equipped with four active cables
connecting the pylon to the deck.
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APA A50s

Piezoelectric Actuator

Force Sensor

Cable

Figure 6. Detail of the active tendon.

only the results obtained with the steel cables are reported in this paper. The se-
lected configuration uses active cables between the deck and the pylon (Figure 4,
top) rather than the one with active cables attached to the catenary, which performs
better, because it is closer to classical configurations in current use2 and therefore
easier to accept by the bridge community. Figure 6 shows a close view of the active
tendon; it consists of an APA-50s piezoelectric actuator from CEDRAT with a
stroke of 52µm collocated with a B&K 8200 force sensor connected with a Nexus
charge amplifier (the charge amplifier acts as a second-order high-pass filter with
a corner frequency adjustable between 0.1 and 1 Hz). A small magnet is attached
to the deck, and a voice coil is used to apply a disturbance to the structure (band-
limited white noise).

Mode Numer. Exper. Numer. Exper.
(Hz) (Hz) mode shape mode shape

1B 4.84 4.81

2B 7.68 5.59

3B 11.33 10.82

4B 17.93 18.25

3T 19.12 21.75

5B 28.01 28.84

Table 4. Laboratory demonstrator without control cables. Com-
parison between the numerical and experimental mode shapes and
natural frequencies.

2e.g., the Albert Bridge (London, 1873) or Third Bosphorus Bridge (Turkey, under construction).
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Mode Numer. Exper. Numer. Exper.
(Hz) (Hz) mode shape mode shape

1B 7.7 6.0

2B 12 12.1

3B 21.1 20.2

4B 29.3 28.8

Table 5. Laboratory demonstrator with four steel control cables of
0.5 mm. Comparison between numerical and experimental mode
shapes and natural frequencies.

Table 4 compares the experimental natural frequencies with the model predic-
tions for the bridge without the active cables. The agreement is fairly good, except
for the natural frequency of the second bending mode, which is overestimated by
the model; the measured structural damping ratios range between 0.8% and 1%.
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Figure 7. Experimental open-loop transfer functions G(ω)= T/δ
of one control loop for two values of the tension in the control
cable corresponding to a natural frequency of the control cable
of 40 Hz and 60 Hz.
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Table 5 compares the experiments with the numerical predictions for the bridge
with the active stay cables (without control). Some changes in the order of the
modes are observed: the first bending mode has the shape of the second mode of
the bridge without active cables, and the second mode has a shape similar to the
first mode without active cables. Figure 7 shows the open-loop transfer functions
T/δ of one of the four individual control loops (with the three other control cables
passive) for two values of the tension in the control cable corresponding to a natural
frequency of the control cable of 40 Hz and 60 Hz; the curves exhibit alternating
poles and zeros even above the natural frequency of the local mode of the control
cable. According to (2), the distance between the poles �i and the zeros ωi is a
measure of the controllability of the various modes (with a single loop). The very
good agreement between the curves for the four loops (not shown) is representative
of the good symmetry of the experimental set-up [Sangiovanni and Voltan 2015].

4. Active damping with one loop

The control law is the integral force feedback (IFF) H(s)= g/s, with minor modi-
fication at low frequency because of the charge amplifier. The loop gain GH(ω) is
shown in Figure 8 (the pure IFF is the dotted line). Figure 9 shows the displacement
response of the deck to a force disturbance applied to the deck by the voice coil, for
various values of the gain g, when only one control loop is in operation. Figure 9,
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Figure 8. Loop gain GH(ω) of one control loop including the
controller and the charge amplifier (IFF is the dotted line).
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Figure 9. Response to disturbance z/ f with one loop of control,
for various values of the gain g. Top: experimental FRF. Bottom:
cumulative RMS σ(ω), normalized to its value when g = 0.

top, shows the experimental frequency response function (FRF) R(ω) = z/ f be-
tween the force f applied to the deck by the voice coil and the deck displacement z
for various gains; Figure 9, bottom, shows the cumulative RMS defined as

σ(ω)=

[∫
∞

ω

|R(ν)|2 dν
]1/2

(4)
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Figure 10. Response with one control loop. Evolution of the
RMS value of the deck displacement z (normalized to the un-
controlled response) and the actuator input v as a function of the
control gain.
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Figure 11. Response with one control loop. Root-locus recon-
struction for various values of the gain: g = 0, 160, 300, 650, 800,
950, 1200 and comparison with the root locus of (1). Only the
upper half of the root locus is shown.

(this form assumes a white noise input f ). The steps in the diagram indicate how
much each mode contributes to the RMS response. Increasing values of the gain
lead to increasing values of the control force. Figure 10 shows the influence of the
control gain on the overall RMS value of the response and the RMS value of the
control input, measured here by the voltage v applied to the piezoelectric actuator.
One sees that, for small gains, the response reduces quickly, but for values larger
than g = 300, no further reduction is achieved in the response while the control
input increases steadily; this diagram allows us to make a tradeoff between perfor-
mance and control cost. Figure 11 shows the root-locus reconstruction for various
values of the gain, g = 0, 160, 300, 650, 800, 950, 1200, and the comparison with
the root-locus prediction of (1); the part of the locus in the vicinity of the real axis
corresponds to the charge amplifier.

5. Decentralized control with four loops

Next, a decentralized active damping has been implemented with four independent
loops using the same gain. Figure 12 shows the same information as Figure 9, with
four channels of control, and Figure 13 shows the root-locus reconstruction of the
closed-loop poles for various values of the gain: g = 50, 70, 100, 210, 300, 500,
600, 700. Observe in Figure 12 that spillover3 is totally absent.

3Spillover is the phenomenon by which the active damping of the low-frequency modes is
achieved at the expense of decreasing the damping, and possibly destabilizing the high-frequency
modes, outside the bandwidth of the controller.
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Figure 12. Decentralized control with four independent control
loops. Response to disturbance z/ f , for various values of the gain
g. Top: FRF. Bottom: cumulative RMS σ(ω), normalized to its
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Finally, regarding the quality of the model and the ability of the fairly simple
linear bridge model to capture properly the closed-loop response, Figure 14 com-
pares the FRF z/ f obtained experimentally with those obtained with the numerical
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Figure 13. Decentralized control with four independent loops.
Root locus reconstruction for various values of the gain: g = 50,
70, 100, 210, 300, 500, 600, 700.
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Figure 14. Decentralized control with four independent control
loops. Response to disturbance z/ f , for various values of the gain
g. Comparison between numerical predictions and experimental
results (only the relative values of g matter). Top: model. Bottom:
experiment.

model (the absolute values of the gain are irrelevant here because the experimental
loop gain includes many items such as charge amplifier gain, current amplifier gain,
etc., which do not appear in the numerical model).

6. Summary and conclusion

This paper explores the feasibility of active damping of suspension bridges with the
addition of stay cables controlled with active tendons. An active tendon consists of
a displacement actuator collocated with a force sensor monitoring the tension in the
cable. The active tendons are controlled with decentralized integral force feedback
(IFF). In the first part of the paper, the potential of the control strategy has been
evaluated on a numerical model of an existing footbridge; several configurations
have been investigated where the active cables connect the pylon to the deck or the
deck to the catenary. The analysis confirmed that it is possible to provide a set of
targeted modes with a considerable amount of damping, reaching ξ = 15%. In the
second part of the paper, the control strategy has been demonstrated experimentally
on a laboratory mock-up equipped with four control stay cables. The experimental
results confirm the excellent performance and robustness of the control system and
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the very good agreement with the predictions. The linear bridge model is sufficient
to capture properly the closed-loop response. The next logical step towards the
application of the idea to large suspension bridges should be a full scale experiment
on a footbridge.
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Appendix A: Decentralized active damping of a cable-structure

Consider the cable-structure system similar to that of Figure 15, where a passive
structure is connected to a set of active cables operated with active tendons. In the
example shown, the passive structure consists of a vertical truss structure and there
are three active cables and three active tendons. Each active tendon consists of a
displacement actuator (e.g., piezoelectric) colinear with a force sensor. Ti is the
tension in the active cable i , measured by the sensor integrated in the active tendon,
δi is the free extension of the actuator, the variable used to control the system, and
ki is the axial stiffness of the cable and the active tendon, jointly. We assume that
the dynamics of the active cables can be neglected and that their interaction with
the structure is restricted to the tension Ti . Assuming a classical finite-element
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formulation, the equation governing the dynamic response of the system is4

Mẍ + K x =−BT + f, (A-1)

where x is the vector of global coordinates of the finite-element model, M and K
are the mass and stiffness matrices of the passive structure, respectively (including
a linear model of the passive cables, if any, but excluding the active cables). The
right-hand side represents the external forces applied to the system; f is the vector
of external disturbances such as gravity and wind loads (expressed in global coor-
dinates), T = (T1, . . . , Ti , . . . )

T is the vector of tension in the active cables, and B
is the influence matrix of the cable forces, projecting the cable forces in the global
coordinate system (the columns of B contain the direction cosines of the various
active cables). B depends on the topology of the active cable network.

If we neglect the cable dynamics, the active cables behave like (massless) bars.
If δ = (δ1, . . . , δi , . . .)

T is the vector of (free) active displacements of the active
tendons acting along the cables, the tension in the cables is given by

T = Kc(BT x − δ), (A-2)

where Kc = diag(ki ) is the stiffness matrix of the cables and BT x is the relative
displacements of the end points of the cables projected along the chord lines. This
equation expresses that the tension in the cable is associated with the elastic exten-
sion of the cable. Combining (A-1) and (A-2), we get

Mẍ + (K + BKc BT )x = BKcδ+ f. (A-3)

This equation indicates that K + BKc BT is the stiffness matrix of the structure
including all the guy cables (passive and active). Next, we assume that all the
active cables are controlled according to the decentralized force feedback law:

δ = gh(s)K−1
c T, (A-4)

where gh(s) is the scalar control law applied to all control channels5 (note that
K−1

c T represents the elastic extension of the active cables). Combining (A-2)
through (A-4), the closed-loop equation is[

Ms2
+ K +

1
1+ gh(s)

BKc BT
]

x = f. (A-5)

It is readily observed that the open-loop poles, solutions of the characteristic equa-
tion for g = 0, satisfy

[Ms2
+ K + BKc BT

]x = 0 (A-6)

4We momentarily neglect the structural damping to make the equations formally simpler.
5Here s is the Laplace variable.
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(the solutions are the eigenvalues of the structure with all cables) while the trans-
mission zeros, solutions of (A-5) for g→∞, satisfy

[Ms2
+ K ]x = 0, (A-7)

which is the eigenvalue problem for the open-loop structure where the active cables
have been removed (they can be computed very easily).

Control law. If an integral force feedback (IFF) controller is used, h(s)= s−1 and
the closed-loop equation becomes[

Ms2
+ K +

s
s+ g

BKc BT
]

x = f, (A-8)

which indicates that the closed-loop static stiffness matrix is

lim
s→0

[
Ms2
+ K +

s
s+ g

BKc BT
]
= K . (A-9)

This means that the active cables do not contribute to the static stiffness, and this
may be problematic in applications. However, the static stiffness can be recovered
if a high-pass filter is inserted in the control loop. One way to achieve this is to
change the control law into6

gh(s)=
gs

(s+β)2
, (A-10)

where β is small and positive (the influence of β will be discussed later); the closed-
loop equation becomes[

Ms2
+ K +

(s+β)2

gs+ (s+β)2
BKc BT

]
x = f, (A-11)

and the closed-loop static stiffness matrix becomes

lim
s→0

[
Ms2
+ K +

(s+β)2

gs+ (s+β)2
BKc BT

]
= K + BKc BT , (A-12)

which indicates that the active cables have a full contribution to the static stiffness.

Modal behavior. Next, let us project the characteristic equation on the normal
modes of the structure with all the cables, x =8z, which are normalized according
to 8T M8 = 1. According to the orthogonality condition of the normal modes
[Gawronski 2004],

8T (K + BKc BT )8=�2
= diag(�2

i ), (A-13)

6We will refer to this as the beta controller in what follows.
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where �i are the natural frequencies of the complete structure. In order to derive a
simple and powerful result about the way each mode evolves with g, let us assume
that the mode shapes are little changed by the active cables so that we can write

8T K8≈ ω2
= diag(ω2

i ), (A-14)

where ωi are the natural frequencies of the structure where the active cables have
been removed. It follows that the fraction of modal strain energy contained in the
active cables is given by

νi =
φT

i BKc BTφi

φT
i (K + BKc BT )φi

=
�2

i −ω
2
i

�2
i

. (A-15)

Considering the IFF controller, the closed-loop characteristic equation (A-8) can
be projected into modal coordinates, leading to

(s2
+�2

i )−
g

g+ s
(�2

i −ω
2
i )= 0

or

1+ g
s2
+ω2

i

s(s2+�2
i )
= 0. (A-16)

This result indicates that the closed-loop poles can be predicted by performing two
modal analyses (Figure 16), one with all the cables, leading to the open-loop poles
± j�i , and one with only the passive cables, leading to the open-loop zeros ± jωi ,
and drawing the independent root loci (A-16). The maximum modal damping is
given by

ξmax
i =

�i −ωi

2ωi
, (A-17)

and it is achieved for g = �i
√
�i/ωi ; a formal proof of this result is given in

Appendix B. This equation relates directly the maximum achievable modal damp-
ing with the spacing between the pole �i and the zero ωi , which is essentially
controlled by the fraction of modal strain energy in the active cables, as expressed
by (A-15).

The foregoing results are very easy to use in design. Although they are based
on several assumptions (namely that the dynamics of the active cables can be
neglected, that the passive cables behave linearly, and that the mode shapes are
unchanged), they are in good agreement with experiments [Preumont and Achkire
1997; Preumont et al. 2000].

If, instead of the IFF controller, the beta controller is used, the closed-loop
characteristic equation projected into modal coordinates reads

(s2
+�2

i )−
gs

gs+ (s+β)2
(�2

i −ω
2
i )= 0
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Natural frequency
with the active cable

Òi

!i

Active cables
removed

Òi

!i
ø
max
i

ø
max
i

= 2!i

Òià!i

1 + g
s(s2+Òi)
(s2+!i) = 0 Im(s)

Re(s)

Figure 16. Root locus of the closed-loop poles with an IFF con-
troller. The system is unconditionally stable.

or

1+ g
s(s2
+ω2

i )

(s+β)2(s2+�2
i )
= 0. (A-18)

Thus, as compared to the IFF controller, the pole at the origin has been replaced
by a zero at the origin and a pair of poles at −β on the real axis. The effect of this
change on the root locus is shown in Figure 17. When β = 0, there is a pole-zero
cancellation and the control is reduced to the IFF. As β increases, the root locus has

0.25
0.5

Òi

!i

Òi

!i

à ì

Im(s)

Re(s)

ì=!i=0 ì=!i=1

ì=!i=0.5

Figure 17. Root locus of the closed-loop poles with the beta con-
troller gs/(s+β)2, for various values of the ratio β/ωi . The IFF
controller corresponds to β = 0. The locus is always stable for
β < ωi ; for β = ωi , it is tangent to the imaginary axis at the zero
± jωi .
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two branches on the real axis, starting from s =−β in opposite directions; one of
the closed-loop poles remains trapped between 0 and −β. The loops still go from
± j�i to ± jωi , but they tend to be smaller, leading to less active damping; this is
the price to pay for recovering the static stiffness of the active cables. Analyzing
the root locus in detail, one can show that the system is unconditionally stable (for
all modes) provided that β < ω1.

Appendix B: Proof of (A-17)

The characteristic equation corresponding to (A-16) reads

s3
+ gs2

+�2
i s+ gω2

i = 0. (B-1)

The root locus (locus of the solutions of the characteristic equation when g varies
from 0 to∞; see Figure 16) has one branch on the negative real axis (say at −a)
and two branches corresponding to a complex conjugate pair at −ξω± jω

√
1− ξ 2.

This leads to the characteristic equation

(s+ a)(s2
+ 2ξωs+ω2)= 0, (B-2)

where a, ξ , and ω depend on the gain g. Observe that the frequency ω decreases
monotonously from �i to ωi . Matching the coefficients of the two foregoing equa-
tions, one gets the three identities

aω2
= gω2

i , 2aξω+ω2
=�2

i , a+ 2ξω = g.

We seek the maximum value of ξ and the corresponding value of the gain g. From
the first equality, a = gω2

i /ω
2; substituting in the other two equalities,

2gω2
i ξ/ω+ω

2
=�2

i , gω2
i /ω

2
+ 2ξω = g.

From the second of these equalities, one finds

ξ =
g

2ω

(
1−

ω2
i

ω2

)
, (B-3)

and substituting into the first one,

g2
=

(
�2

i −ω
2

ω2−ω2
i

)
ω4

ω2
i
. (B-4)

Back-substituting into (B-3), one finds the relationship between ξ and ω along the
root locus:

ξ =
[(�2

i −ω
2)(ω2

−ω2
i )]

1/2

2ωiω
. (B-5)
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This expression may be regarded as ξ(ω) (recall that ω is monotonously decreasing
in g). Solving the equation dξ/dω = 0, one easily finds

ω = (�iωi )
1/2 (B-6)

and, substituting in (B-4),

g =�i (�i/ωi )
1/2, (B-7)

and from (B-3), the maximum damping ratio is

ξ =
�i −ωi

2ωi
, (B-8)

which is the desired equation. Additionally, one finds a = (�iωi )
1/2.
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