
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA
S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI

LEONARDO DAVINCI

Mathematics and Mechanics
of

Complex Systems

msp

vol. 4 no. 1 2016

MARCELO EPSTEIN AND MANUEL DE LEÓN

UNIFIED GEOMETRIC FORMULATION
OF MATERIAL UNIFORMITY AND EVOLUTION





MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
Vol. 4, No. 1, 2016

dx.doi.org/10.2140/memocs.2016.4.17
MM ∩

UNIFIED GEOMETRIC FORMULATION
OF MATERIAL UNIFORMITY AND EVOLUTION

MARCELO EPSTEIN AND MANUEL DE LEÓN

Dedicated to Gérard Maugin, in gratitude for many years of inspiration and friendship

The differential-geometric underpinnings of a unified theory of material unifor-
mity and evolution are exposed in terms of the language of groupoids subordi-
nate to geometric distributions. Both the standard theory of material uniformity
and the extended theory of functionally graded materials are included in the for-
mulation as well as their temporal counterparts in anelastic and aging processes.

1. Introduction

The delightful classical survey article by Alan Weinstein [1996] brings home the
idea that groups, considered as the main carriers of information about the symme-
tries of a physical system, are actually not sufficient to convey the generality of
the intuitive concept of symmetry. His example of the regular rectangular tiling of
a bathroom floor, as opposed to the tiling of the whole plane, is very suggestive.
Indeed, in passing from the infinite to the finite extent, while the symmetries of the
individual tiles are preserved, the translational symmetries are lost. Nevertheless,
any observer of the bathroom floor will agree that it still has a remnant of this
distant kind of symmetry. In continuum mechanics, if we replace the bathroom
floor with a material body B, each tile can be identified with the tangent space
TXB at each point X ∈ B. Any given constitutive equation at X will enjoy some
material symmetries, which are encoded in the material symmetry group GX at X .
But consider now another point Y ∈ B. What would the meaning be of a distant
symmetry between X and Y ? The clearest answer to this question is that X and Y
are thus related if they are made of the same material. In the terminology of Walter
Noll [1967/68], the points are materially isomorphic. A body all of whose points
are materially isomorphic is said to be materially uniform.
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In a philosophical sense, however, the notion of symmetry is, literally, in the
eyes of the beholder. We may choose to declare the presence of a distant sym-
metry between two points if they are made of possibly different materials while
enjoying the same symmetry type,1 a much weaker condition. In this case, the
symmetry groups GX and GY need only be conjugate. We call the equivalence
relation associated with this property unisymmetry [Epstein and de León 2000].
Unisymmetric bodies are known in engineering applications as functionally graded
materials, usually made of two components with a spatially varying composition.

Fixing attention on a particular material point and following its material response
in time, we obtain the notion of material evolution [Epstein and Elżanowski 2007].
If, as time goes on, the material response remains materially isomorphic to its
initial response, we have a case of pure remodeling or anelastic evolution [Wang
and Bloom 1973/74]. The material in an infinitesimal neighbourhood undergoes a
process of reaccommodation, but does not experience any other essential changes.
This is clearly another (timewise) manifestation of the concept of distant symmetry.
Any other change of material behaviour can be considered as a process of material
aging. A particular case is obtained when, while the material ages, the symmetry
type is preserved. In other words, the material evolves unisymmetrically. Finally,
any change in the symmetry type gives rise to a process of morphogenesis [Turing
1952].

When the spatial and temporal distant symmetries are combined, it is reasonable
to expect that the corresponding geometrical descriptor will be a properly defined
material groupoid based on the consideration of a body-time manifold, which is
the main object of consideration in the present article. Some basic definitions per-
taining to the theory of groupoids and their actions on sets are reviewed in Section 2
and extended to distinguish classes of groupoids associated with distributions in
manifolds. These ideas are applied in Section 3 to define and interpret various
cases of material groupoids.

2. Groupoids and distributions

2.1. Groupoids. Recall that a groupoid consists of a total set Z , a base set M, two
(projection) surjective maps

α : Z→M and β : Z→M (1)

called, respectively, the source and the target maps, and a binary operation (com-
position) defined only for those ordered pairs (y, z) ∈ Z ×Z such that

α(z)= β(y). (2)

1By symmetry type we mean properties such as isotropy, transverse isotropy or orthotropy.
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This operation, indicated by the reverse apposition of the operands, must be as-
sociative, that is, (xy)z = x(yz), whenever the products are defined. Moreover,
at each point m ∈M, there exists an identity idm such that z idm = z whenever
α(z)= m, and idm z = z whenever β(z)= m. Finally, for each z ∈ Z there exists
a (unique) inverse z−1 such that zz−1

= idβ(z) and z−1z = idα(z).
It follows from this definition that to each ordered pair (a, b) of elements of M

one can associate a definite subset Zab of Z, namely the subset Zab = {z ∈ Z |
β(z)= b, α(z)= a}. It is clear that these subsets (some of which may be empty) are
disjoint and that their union is equal to Z . It is also clear that the various identities
are elements of subsets of the form Zbb. It is not difficult to show that each set
of the form Zbb is actually a group. A useful way to think of a groupoid is as a
collection of symbols (a, b, c, . . . ∈M) and arrows (x, y, z, . . . ∈ Z) connecting
some of them.

One can prove that if Zab 6=∅, then the groups Zaa and Zbb are conjugate, and
the conjugation between them is achieved by any element z of Zab, namely,

Zbb = zZaa z−1. (3)

Analogously, the set Zab is spanned completely by composing any one of its ele-
ments with Zaa or with Zbb, that is,

Zab = zZaa = Zbb z. (4)

A groupoid is said to be transitive if for each pair of points a, b ∈M there exists
at least one element of the total set with a and b as the source and target points,
respectively. In other words, a groupoid is transitive if, and only if, Zab 6= ∅
∀(a, b) ∈M×M. In a transitive groupoid all the local groups Zbb are mutually
conjugate. In this case, we can consider any of the local groups as the typical group
of the transitive groupoid.

A groupoid is a topological groupoid if the total set Z and the base set M
are topological manifolds and the projections α and β are continuous, as are the
operations of composition and of inverse. It follows from the definition that each of
the sets Zbb is a topological group. If Z and M are smooth manifolds and if both
projections are surjective submersions and all operations are smooth, we obtain a
Lie groupoid.2

2.2. Groupoids subordinate to a distribution. Let C be an n-dimensional mani-
fold and let 0 < k < n be an integer. A k-dimensional distribution D in C is a
smooth assignment of a k-dimensional subspace Dc of the tangent space TcC to
each point c ∈ C. That the assignment is smooth means that each point c ∈ C has

2For a thorough treatment of Lie groupoids see [Mackenzie 1987] or [Mackenzie 2005].
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a neighbourhood within which there exist k smooth linearly independent vector
fields that span the subspaces of the distribution. In fact, a common way to specify
a k-dimensional distribution is by providing k linearly independent smooth vector
fields on C. A vector field V belongs to the distribution if, and only if, it is a linear
combination of the vector fields defining it.

A groupoid α, β : Z → C is said to be subordinate to a distribution D in C if
every element z ∈ Z is a nonsingular linear map

z : Dc1 → Dc2, (5)

with c1, c2 ∈ C.
Given a distribution D in C, all possible groupoids subordinate to the distribution

are subsets (subgroupoids) of the transitive Lie groupoid ZD obtained by consid-
ering all the possible nonsingular linear maps between all subspaces Dc in the
distribution.

A case of particular importance arises when the base manifold C is a fibre bundle
π : C→ B over an m-dimensional base manifold B, with m < n. At each point
c ∈ C the tangent space TcC has a canonically defined vertical subspace Vc, which
can be identified with the tangent space TcCπ(c) to the fibre over b = π(c) (that
is, the set π−1({b}), b ∈ B). A vector in TcC belongs to the vertical subspace Vc

(or: is vertical) if, and only if, its projection by π∗ is the zero vector of Tπ(c)B.
The existence of these vertical subspaces allows us to define the canonical (n−m)-
dimensional vertical distribution V in the bundle C. Accordingly, a groupoid Z
subordinated to V will be called a vertical groupoid.

A vertical groupoid on a fibre bundle may or may not be transitive. An inter-
mediate situation is worthy of consideration. We say that a vertical groupoid is
fibrewise transitive if

π(c1)= π(c2) =⇒ Zc1c2 6=∅. (6)

A fibrewise transitive vertical groupoid is transitive if, and only if, for every pair
a, b ∈ B there exists a pair ca, cb ∈ C, with π(ca) = a and π(cb) = b, such that
Zcacb 6=∅. The truth of this assertion follows from the associative property of the
groupoid composition.

2.3. Groupoids subordinate to an Ehresmann connection. In a fibre bundle π :
C→ B, if a vector in TcC is not vertical, there is no canonical way to assign to it a
vertical component. An Ehresmann connection provides this assignment.

Formally, an Ehresmann connection H consists of a smooth horizontal distribu-
tion in C. This is a smooth assignment to each point c ∈ C of a subspace Hc ⊂ TcC
(called the horizontal subspace at c), of the same dimension as the base manifold B,
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Figure 1. An element (arrow) in a horizontal groupoid.

such that
TcC = Hc⊕ Vc. (7)

In this equation, ⊕ denotes the direct sum of vector spaces. Each tangent vector
v ∈ TcC is, accordingly, uniquely decomposable as the sum of a horizontal part
h(v) and a vertical part v(v). A vector is horizontal if its vertical part vanishes.
The only vector that is simultaneously horizontal and vertical is the zero vector.

Given a fibre bundle π : C→ B endowed with an Ehresmann connection H, we
define a horizontal groupoid α, β : Z→ C as a groupoid whose elements z ∈ Z are
nonsingular linear maps

z : Hc1 → Hc2 . (8)

Notice that no a priori restriction is imposed on c1, c2 ∈ C, so that, in general, we
may have π(c1) 6= π(c2). Figure 1 illustrates this idea.

A horizontal groupoid is fibrewise transitive if

π(c1)= π(c2) =⇒ Zc1c2 6=∅. (9)

As in the case of a vertical groupoid, a fibrewise transitive horizontal groupoid is
transitive if, and only if, for every pair a, b ∈ B there exists a pair ca, cb ∈ C, with
π(ca)= a and π(cb)= b, such that Zcacb 6=∅.

Note. Given an Ehresmann connection, it is possible to define a particular iso-
morphism between all the horizontal spaces at points lying on one and the same
fibre. These Christoffel isomorphisms, however, may or may not belong to a given
horizontal groupoid defined on the bundle.

In a product bundle C = B×F we can always define a canonical Ehresman con-
nection in an obvious way. Moreover, as dictated by convenience in particular ap-
plications, the roles of the base manifold and the typical fibre can be interchanged.
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3. Uniformity and evolution

3.1. The body-time manifold. The concepts introduced in Section 2 can, in princi-
ple, be exploited for various applications in continuum mechanics. Material bodies
with internal structure, for example, are themselves modeled as fibre bundles. Clas-
sical space-time can be regarded as an affine bundle over the real line. General rel-
ativity provides an opportunity to regard a history as a world tube with identifiable
world lines. For our purposes, however, which aim at a unified picture of material
uniformity and evolution, we will content ourselves with a body-time manifold
consisting of the product C = R×B of the time line R with an ordinary body B.
Moreover, adopting a fixed inertial observer, we identify space-time with the prod-
uct bundle S = R×R3. In this simple setting, both time and space are admittedly
absolute, but the essence of the unified geometric picture is not greatly altered.

A history of the body can be regarded as a fibre-bundle morphism

K : C→ S

such that the map between the base manifolds is the identity. Thus, for every instant
of time t ∈ R, our morphism provides us with a map κt : B→ R3, assumed to be
an embedding, whose derivative at X ∈ B is a linear map

F = F(X, t) : TXB→ Tκt (X)R
3 ∼= R3,

called the deformation gradient at X ∈ B at time t .

3.2. Constitutive considerations. The geometrical features of a material body de-
scribed so far arise from the very nature of the body and of the physical space
as continuous entities as well as from the kinematic manifestations of the former
within the latter. An important feature of continuum mechanics is that the constitu-
tive aspects of the material medium result in additional geometric structures. This
material geometry arises essentially from a comparison of the material responses at
different body points and at different instants of time. In view of the generality of
the notion of groupoid and its ability to embrace both local and distant symmetries
under the umbrella of a single mathematical entity, it is not unreasonable to expect
that the material geometry alluded to above can be completely encapsulated within
the compass of a single material groupoid.

We have just shown how any history of the body gives rise, by differentiation, to
a collection of linear maps F between the vertical subspaces of the body manifold
and R3. In a simple or first-grade body, we assume that the constitutive response
at each body point and at each instant of time can be completely encoded in one
or more functions of F . These functions may be scalar-valued (such as the en-
ergy density of a solid) or take values in a space of tensors (such as the stress).
Without much loss of generality, we will assume the case of a single scalar-valued
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function ψ = ψc(F) for each point c = (t, X) ∈ C.3 We will assume all admissible
constitutive functions ψc(F) belong to a prespecified function space 9, such as
9 = C∞(GL(3;R)).

A useful way to look at the constitutive response of a specific body-time man-
ifold consists of considering the Cartesian product C9 = C×9. The constitutive
response is then a section σ of C9 , namely a map

σ : C→ C9, (10)

such that pr1◦σ = idC , where pr1 denotes the first projection map in a product.
In practice, this cross section is determined after choosing a particular reference
configuration, that is, an identification of B with a domain in R3. We will soon see
the influence of this choice on the resulting geometric entities. Before proceeding,
however, we need to review the notion of action of a groupoid on a set.

3.3. Action of a groupoid on a set.

3.3.1. Group actions. For the sake of clarity, we will first review the idea of right
(or left) action of a group on a set, as it is widely used in physical applications.
Since a groupoid is, in some sense, a generalization of a group, it should not be
surprising that the extended idea of groupoid action on a set can be conceived. This
extension, however, is far from trivial.

If G is a group and A is a set, we say that G acts on the right on A if for each
g ∈ G there is a map Rg : A→ A such that (i) Re(a)= a for all a ∈ A, where e is the
group identity; (ii) Rg ◦ Rh = Rhg for all g, h ∈ G. The order of the composition is
the essential difference between a right and a left action. When there is no room for
confusion, we also use the notation ag for Rg(a). With this notation, property (ii)
neatly reads a(hg)= (ah)g.

It is not difficult to show that each of the maps Rg is necessarily bijective. For
this reason, these maps are also called transformations. Moreover, the inverse
transformation is obtained as (Rg)

−1
= Rg−1 . If we select a point a in A and

follow its image ag = Rg(a) as g varies within G, we obtain a subset of A called
the orbit through a, denoted by aG. Orbits are disjoint subsets. The relation of
“belonging to the same orbit” is an equivalence relation. The orbits themselves are
the equivalence classes. An often useful concept is the quotient set, which is the
set whose elements are the orbits of A.

The action of G on A is said to be effective if the condition Rg(a)= a for every
a ∈ A implies g = e. The action is free if Rg(a)= a for some a ∈ A implies g = e.
Finally, the action is transitive if for every a, b ∈ A there exists g ∈ G such that
Rg(a)= b.

3The time dependence is often mediated by other variables which may obey additional evolution
(constitutive) equations.
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As a pertinent example of a right group action, consider the following right
action of the general linear group G = GL(3;R) on the set 9 described above. An
element of 9 is a possible constitutive equation ψ = ψ(F) for a material point.
Let P ∈ GL(3;R). We define

RP(ψ)= ψ(F P). (11)

Thus, the right action assigns to each constitutive equation another constitutive
equation that, in the parlance of continuum mechanics, differs from the original one
by the adoption of a different local reference. The orbit ψG, therefore, represents
all the constitutive equations related in this way. From the physical standpoint, ev-
ery orbit represents a different material, while the points in one orbit are different
manifestations of the same constitutive law in different reference configurations.
The symmetry group Gψ of a constitutive equation ψ is defined as the largest sub-
group of G that leaves ψ invariant. In other words,

G ∈ Gψ ⇐⇒ RG(ψ)= ψ. (12)

3.3.2. Groupoid actions. A (left) action of a groupoid α, β : Z → B on a set A
consists of two maps. The first map,

ρ : A→ B, (13)

is known as an anchor map, assumed to be surjective. To introduce the second map,
representing the action itself, we consider first the subset Z ∗ A of the Cartesian
product Z × A defined as

Z ∗ A = {(z, a) ∈ Z × A | ρ(a)= α(z)}. (14)

An action map U , given by

U : Z ∗ A→ A, (15)

must satisfy the following (rather expected) conditions:

(1) Consistency:

ρ(U (z, a))= β(z) ∀(z, a) ∈ Z ∗ A. (16)

(2) Composition:
U (yz, a)=U (y,U (z, a)) (17)

whenever the operations are defined.

(3) Unit:
U (idρ(a), a)= a ∀a ∈ A. (18)

These properties are schematically represented in Figure 2.
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A

B

ρ

Figure 2. Left action of a groupoid α, β : Z→ B on a set A.

3.4. The body-time material groupoids.

3.4.1. Action of ZV on C9 . In Section 2.2 we introduced the canonical groupoid ZD
subordinate to a distribution D defined as the collection of all possible nonsingular
linear maps between all the subspaces in the distribution. We apply this notion to
the case in which the manifold C is the body-time manifold and the distribution is
identified with the vertical distribution V . The groupoid ZV has a natural action on
the set C9 defined in Section 3.2. The anchor map is simply the trivial bundle pro-
jection in C9 . The action U (z, (c, ψ)) of an element z ∈ZV on the pair (c, ψ)∈ C9
such that α(z)= c is defined as

U (z, (c, ψ))= (β(z), RP(z)(ψ)), (19)

where R is the right group action defined in (11) and P(z) is the matrix associated
with the element z in the vertical groupoid ZV . Note the apparent disagreement
between the right character of the group action and the left action of the groupoid.

3.4.2. The material groupoid. A particular material response, as we have seen, is
a particular cross section σ of the product bundle C9 . Consider a subgroupoid W
of ZV . We can certainly restrict the action U to W . The constitutive section σ
may or may not be invariant under the action U of W . We define the material
groupoid of a given body-time manifold with constitutive response σ as the largest
subgroupoid W of ZV that leaves σ invariant under the action U . This definition
makes sense because, on the one hand, the disjoint subgroupoid of the unit maps
is always available (so that there is no danger that the material groupoid will be
empty) and, on the other hand, given two subgroupoids with the desired property,
the subgroupoid generated by their union also enjoys that property.

A graphical way to visualize the material groupoid consists of drawing an arrow
between each pair of points c1 and c2 in the body-time manifold C for every ma-
terial isomorphism P between c1 and c2. The collection of all arrows thus drawn
constitutes the material groupoid. The groupoid is transitive if all point pairs are
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arrowwise connected. The typical group of a transitive material groupoid is the
symmetry group of any one of the body points.

3.4.3. The material-type groupoid. Within the set 9 we can introduce an equiva-
lence relation ∼ as follows.

ψ1 ∼ ψ2 ⇐⇒ ∃H ∈ GL(3;R) | Gψ1 = HGψ2 H−1. (20)

In other words, two constitutive equations are ∼-equivalent if, and only if, their
respective symmetry groups are mutually conjugate. Define the quotient set

9∼ =9/∼. (21)

The elements of the quotient set are equivalence classes ψ∼. Physically, two con-
stitutive equations are in the same equivalence class if they represent the same type
of material (e.g., isotropic, transversely isotropic, orthotropic).

The groupoid ZV acts on C×9∼ in an obvious way. Moreover, the constitutive
section σ induces uniquely a section σ∼ : C→ C×9∼ via the map ∼: ψ→ ψ∼.
We define the material-type groupoid as the largest subgroupoid of ZV that leaves
the section σ∼ invariant.

As we have suggested for the case of the material groupoid, we may visualize
the material-type groupoid by drawing an arrow between each pair of points c1

and c2 in the body-time manifold C for every conjugation H between the symmetry
groups Gc1 and Gc2 . The collection of all arrows thus drawn constitutes the material-
type groupoid. Clearly, the material groupoid is a subgroupoid of the material-
type groupoid, since materially isomorphic points have conjugate symmetry groups.
The typical group of a transitive material-type groupoid is given by the normalizer
of the symmetry group of any of the body points.

3.5. Physical interpretation.

3.5.1. The body-time material groupoid. The terminology used to describe various
kinds of distant symmetries, relevant to, among other areas, the theories of contin-
uous distributions of defects and the theories of biological growth and remodeling,
is not completely standardized. We thus start by fixing a terminological scheme to
interpret the differential-geometric picture in physically meaningful terms.

In the introduction, we referred to the concepts of material isomorphism and uni-
formity as they pertain to the purely spatial (as opposed to temporal) component of
the body-time description. Two points a and b of a material body B are materially
isomorphic if there exists a nonsingular linear map P : TaB→ TbB such that their
respective constitutive functions, ψa(F) and ψb(F), are related by the identity

ψb(F)= ψa(F P) (22)
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for all deformation gradients F . Points a and b are, therefore, made of the same
material. Within this context, a local material symmetry G at point a ∈ B can
be regarded as a material endomorphism G : TaB → TaB. The collection of
symmetries at a forms a group Ga . If a and b are materially isomorphic, their
respective symmetry groups are conjugate. More specifically, if P is a material
isomorphism, then Gb = PGa P−1. Conversely, if a and b are materially isomorphic,
the cardinality of the set P of all possible material isomorphisms between a and b
is the same as the cardinality of the respective (conjugate) symmetry groups. In
fact, P can be generated from a given P according to the formula

P = PGa = Gb P = Gb PGa.

A body is called materially uniform if all of its points are materially isomorphic.
Since material isomorphism is an equivalence relation, a body is materially uniform
if and only if all its points are materially isomorphic to a fixed reference body point.

The temporal counterpart of uniformity is a special kind of material evolution,
whereby a material point remains materially isomorphic to a reference material
point with the passage of time. This special kind of material evolution is common
in the realm of biological tissues, with their natural tendency to adapt to their chang-
ing environments. A classical example is Wolff’s law of trabecular bone, whose
trabeculae are thought to change their orientations to follow the principal directions
of stress. The fact that the material remains materially isomorphic to its initial state
does not preclude the possibility of growth and resorption, whereby material of the
same kind is added or removed volumetrically to the material neighbourhood. But
material isomorphism does preclude the transformation of the underlying material
in terms of variation of its intrinsic material properties and chemical composition.
In a simplified model, we may imagine a constitutive response idealized as an
elastic spring with a characteristic rest length and a given stiffness constant. Mate-
rial isomorphism would imply that, while the rest length may change in time, the
stiffness constant must remain unchanged. We call this special type of material
evolution remodeling. Any other kind of evolution we call aging. We will later
identify a particular kind of aging as worthy of further attention.

If we consider a transitive body-time material groupoid, its physical meaning
is a body that is initially materially uniform and that evolves by pure remodeling
(with no aging). In particular, it remains always materially uniform. Classical
plastic evolution belongs to this material class and so does the model of tissue
growth pioneered in [Rodriguez et al. 1994].

Assume, on the other hand, that the material groupoid is only fibrewise transitive,
a concept introduced in Section 2.2. The meaning of this situation is that, while
the body is materially uniform at all times, there is a process of aging taking place
at all points at the same pace. In constitutive terms, this will be the case if the
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dependence of the constitutive equation ψ = ψ(F; t, X) is expressed explicitly in
terms of the observer time t , rather than mediated by some internal variable subject
to evolution conditions. In other words, the material degradation takes place by the
mere passage of time, without any coupling to other observable phenomena (such
as the state of stress).

Since the body-time manifold has been defined as a Cartesian product R×B,
we may exchange the role of the base and the typical fibre and consider instead the
product manifold B×R. In this product bundle, we have a natural horizontal dis-
tribution (Ehresmann connection) induced by the constant sections. The material
groupoid can now be regarded, in the terminology of Section 2.3, as a horizontal
groupoid. If this new material groupoid happens to be fibrewise transitive, we ob-
tain the representation of a body that, without necessarily being materially uniform,
evolves by pure remodeling, without aging. Notice that under these conditions if
the body is initially nonuniform, it will never attain uniformity.

3.5.2. The body-time material-type groupoid. We want to explore now the phys-
ical meaning of the material-type groupoid. Recall that the “arrows” of this groupoid
represent only conjugation maps between the material symmetry groups of the
source and target points. Put differently, the elements of this groupoid are not
sensitive to any constitutive property, except the symmetries of the constitutive law.
If the material-type groupoid is transitive, all that this implies is that the different
material points are of the same symmetry type (isotropic, say). For all we know,
part of the body may be made of cement and the rest of rubber. Moreover, as time
goes on, the cement may be undergoing a process of curing and change its elastic
properties. A functionally graded material obtained by varying the relative concen-
tration of the components of a mixture belongs to the same category, even if the
components undergo chemical reactions, as long as the symmetry type is preserved.

If the material-type groupoid is only fibrewise transitive, we have a phenome-
non of morphogenesis or symmetry breaking. In this instance, all the body points
undergo a change of symmetry type simultaneously. In solid materials, where
the collection of all possible symmetry groups is countable, this transition is, of
necessity, abrupt. In some cases of phase transition these changes may be directly
observable with the naked eye and be manifest as pattern formations. Reversing
the role of the base and the fibre manifolds, a fibrewise transitive material-type
groupoid represents a body with initially demarcated portions obeying different
symmetry types and remaining so with the passage of time.
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