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ELECTROMECHANICS OF POLARIZED LIPID BILAYERS

DAVID J. STEIGMANN AND ASHUTOSH AGRAWAL

A model for the electromechanics of lipid bilayers, accounting for flexoelec-
tricity, is obtained as the thin-film limit of the continuum electrodynamics of
nematic liquid crystals. A priori restrictions on the polarization field consis-
tent with minimum energy considerations effectively decouple the leading-order
membrane problem from the computation of the self field, yielding a substantial
simplification vis a vis the three-dimensional theory. Examples illustrate the
strong interplay between the electric field and membrane geometry.

1. Introduction

The idea that lipid bilayers can be regarded as thin liquid crystal films apparently
originated in the work of Helfrich [1973]. This point of view gave rise to an as-
sociated body of work that has been thoroughly documented in [Ou-Yang et al.
1999]. The liquid-crystal framework provides a clear conceptual foundation for
extensions of the basic purely mechanical theory to coupled-field problems. In the
present work, we use this foundation to develop an electromechanical theory of
lipid bilayers. This framework may be used to gain physical insight into various
phenomena. For example, lipid vesicles have been shown to deform in the presence
of applied electric fields [Winterhalter and Helfrich 1988; Kummrow and Helfrich
1991; Dimova et al. 2007; 2009; Vlahovska 2010]. The creation of nanopores
in lipid membranes by external electric fields is a standard technique — known as
electroporation — to deliver genes into cells [Neumann et al. 1982; Aihara and
Miyazaki 1998; Weaver 2000] and in some cancer treatments [Davalos et al. 2005;
Rubinsky et al. 2007]. The role of coupled electromechanical interactions is well
recognized in the context of cochlear outer hair cells [Brownell et al. 1985; Raphael
et al. 2000; Harland et al. 2015]. Electromechanical interactions also play a fun-
damental role in electrically active cells such as neurons. Further, experimental
studies have revealed that voltage-gated ion channels exhibit sensitivity to both
electrostatic and mechanical forces [Schmidt et al. 2012].
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Here we adapt the three-dimensional liquid crystal theory advanced in [de Gennes
and Prost 1992; Ericksen 1961; 1962; 1976; Virga 1994] to derive a two-dimensional
model for the response of electrically polarized lipid bilayers to applied electric
fields generated by a remote source. In this respect our approach differs substan-
tially from recent efforts directed at modeling electromechanical interactions in
lipid membranes [Gao et al. 2008; Mohammadi et al. 2014]. For definiteness and
for the sake of simplicity, we base our model on the general theory for nematics
[Virga 1994], incorporating modifications associated with the so-called flexoelec-
tric effect [Meyer 1969; de Gennes and Prost 1992].

In Section 2 we summarize those aspects of the basic three-dimensional theory
that are required for our purpose. This is based on an extension to liquid-crystal
theory of an expression for the potential energy of a polarized material, subject to
a remotely generated applied electric field regarded as an assigned function of po-
sition in the ambient space [Toupin 1956; Truesdell and Toupin 1960; Bustamante
et al. 2009; Dorfmann and Ogden 2014]. Insofar as electrical interactions are
concerned, we confine attention in this preliminary work to the effects of polariza-
tion and assume free charges to be absent. The relevant three-dimensional energy
is used, in Section 3, to derive the leading-order-in-thickness expression for the
energy of the two-dimensional model. The operative equilibrium equations and
edge conditions are derived from this via a variational procedure in Sections 4 and
5, respectively, and the theory is illustrated through numerical solution of several
examples involving axisymmetry in Section 6. We freely use the standard notation
of the classical differential geometry of surfaces. The text by Sokolnikoff [1964]
is recommended for mechanicians seeking a comprehensive treatment.

2. Energetics of three-dimensional liquid crystals in the presence of a
stationary applied field

Numerous variational formulations of electromechanical interactions in deformable
media are available in the literature. These have been extensively examined and
correlated in [Bustamante et al. 2009; Dorfmann and Ogden 2014], to which the
interested reader is referred for fuller expositions. There it is shown that Maxwell’s
equations and the equilibrium equations for a polarized medium in the presence of
an applied electric field that is fixed in space, in the absence of applied loads or
free electric charges, render stationary the energy functional

E =
∫

R

(
U − 1

2 es · p− ea · p
)

dv, (1)

where R is the volume currently occupied by the material in three-space, U is the
relevant energy density, p is the polarization per unit volume, es is the electric
self field generated by the polarized material, and ea is the applied electric field,
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assumed to be assigned as a smooth function in all of three-space, including R.
The net electric field is

e= es + ea. (2)

Further, the applied field is a fixed function of position y in the enveloping three-
space. Its variational derivative, associated with a fixed material point (a fixed lipid
molecule in the present context), is thus purely convective; i.e.,

ėa = (grad ea) ẏ, (3)

where grad is the (spatial) gradient with respect to y; and, here and henceforth,
superposed dots are used to denote variational — or Gateaux — derivatives. The
field ea is curl-free; accordingly, its gradient is symmetric: grad ea = (grad ea)

t .
The self field is also curl-free; it is obtained from

es =− grad Vs, (4)

where the self field potential Vs is given by [Kovetz 2000]

4πε0Vs( y)=
∫
∂R

p′ · n′

| y− y′|
da−

∫
R

div′ p′

| y− y′|
dv, (5)

in which ε0 is the free-space permittivity; n′ is the exterior unit normal to ∂R,
expressed as a function of the integration variable y′; p′ is likewise the polarization
in terms of y′; and div′ is the divergence with respect to y′. This is defined by
div p= tr(grad p), where tr( · ) is the trace.

The energy density U is a function of the polarization and appropriate deforma-
tion variables. In the conventional theory of electroelasticity the relevant deforma-
tion variable is the deformation gradient, the gradient of y = χ(x) with respect to
position x in some fixed reference configuration. Here χ( · ) is a field describing
the deformation of material points. In the present application to liquid crystals,
the relevant variables are a director field d( y)— describing the orientation of the
liquid crystal molecules — and its spatial gradient

D = grad d. (6)

We follow the conventional theory and impose |d( y)| = 1.
The electric field is given in terms of the polarization by the partial derivative

[Toupin 1956; Bustamante et al. 2009]

e=U p(d, D, p). (7)

In applications U is typically assumed to be a quadratic function of D. This re-
flects the notion that the length scale for spatial variations of the director is typically
much larger than the local length scale: the molecular length; the dimensionless
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gradient is then sufficiently small to justify the termination of the Taylor expansion
of U (d, · , p) at second order. Thus,

U = l(d, p)+ L(d, p) · D+ 1
2 D ·L(d, p)[D], (8)

in which l, L and L are scalar, second-order tensor and fourth-order tensor valued
functions, respectively, with L= Lt .

Guided by [Virga 1994], we adopt the specific forms

l(d, p)= 1
2χ⊥| p|

2
+

1
2χa( p · d)2, (9)

where χ⊥ and χa are the anisotropic dielectric constants, and

D ·L(d, p)[D]
= k1(div d)2+ k2(d · curl d)2+ k3|Dd|2+ (k2+ k4)[tr(D2)− (div d)2], (10)

in which the latter is independent of p, and k1−k4 are constants with 2k1 ≥ k2+k4,
k2 ≥ |k4| and k3 ≥ 0, in accordance with the presumed positive-definiteness of
L [Virga 1994]. The second expression is the Frank energy for nematic liquid
crystals.

To model the flexoelectric effect, we adopt Meyer’s proposal [1969] in a form
similar to that used by Ou-Yang et al. [1999]. Thus,

L(d, p) · D=− p · f (d, D), with f (d, D)= c1(div d)d+ c2 curl d× d, (11)

where c1 and c2 are the flexoelectric constants. The relationship (7) then furnishes
an expression for the electric field

e= χ⊥ p+χa( p · d)d− f (d, D). (12)

This coincides, in the specialization χa = χ⊥, with Equation (2.153) in [Ou-Yang
et al. 1999] in the case when the electric field vanishes.

In the absence of polarization (8) reduces precisely to the conventional liquid-
crystal energy. The stationarity of this energy is equivalent, under appropriate
regularity conditions, to the well-known equilibrium equations and natural bound-
ary conditions of liquid-crystal theory [de Gennes and Prost 1992; Ericksen 1976;
Virga 1994; Steigmann 2013].

Our objective in the present work is to derive the leading-order small thickness
limit of the energy (1). This limit is taken to be the energy of a polarized lipid
membrane. Stationarity conditions for the limit energy are then identified with the
equilibrium equations of a polarized lipid membrane in the presence of an applied
field generated by a remote source.

We have in mind a lipid bilayer constituting a membrane structure in a typical
animal cell. Because such a membrane is only one or two molecules across, its
thickness is on the order of the local length scale embodied in the constitutive
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response of the liquid crystal. Accordingly, this is the only relevant length scale
in the dimension reduction procedure. In contrast, in recent work on thin films
of nematic elastomers [Cesana et al. 2015], the local length scale is always much
smaller than the values of film thickness deemed to be relevant. The local scale
therefore vanishes with thickness, leading to a reduced theory in which the director
gradient ultimately plays no role. Of course it may be argued that reliance on three-
dimensional liquid crystal theory to effect a dimension reduction procedure may
not be justified if the thickness is comparable to molecular dimensions. In this
instance our procedure nevertheless furnishes guidance for the construction of a
direct two-dimensional field theory.

3. Liquid crystal films

In the purely mechanical theory of thin liquid crystal films the leading-order strain
energy density W is associated with the limit [Steigmann 2013]

lim
t→0

t−1
∫

R
U dv =

∫
ω

W da, (13)

where ω is the interior midsurface of the film, t is the (uniform) thickness of the
film, and

W =U|ω (14)

is the leading-order energy density on ω. This follows by using the volume measure
dv = µ dςda [Naghdi 1972], where ς is a linear coordinate in the direction of the
unit surface normal n, regarded as the restriction of d to ω, and µ= 1−2ςH+ς2K ,
where H and K respectively are the mean and Gaussian curvatures of ω. In effect,
then, we suppress misalignment of the lipid molecules with the surface normal —
the so-called lipid tilt — as in the classical Canham–Helfrich theory. This is ap-
propriate if the surface density of the lipids is sufficiently high. Generalizations to
accommodate tilt are described in [Steigmann 2013]. We have [Steigmann 2013]

n= d |ω and D|ω =∇n+ η⊗ n, (15)

where ∇( · ) is the (two-dimensional) surface gradient on ω and η is the restriction
to ω of the derivative of d in the direction of d. Accordingly,

n · η = 0 on ω. (16)

The extension to the case of polarizable films in the presence of an applied field
is immediate. Thus,

lim
t→0

t−1E = E, (17)

with
E =

∫
ω

W da, (18)
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where W is now given by

W =
(
U − 1

2 es · p− ea · p
)
|ω
. (19)

Remark 1. Quantum mechanical considerations and molecular dynamics simula-
tions in respect of polarized lipid membranes [Seelig 1978; Frischleder and Peinel
1982; Warshaviak et al. 2011] indicate that the polarization vector is essentially
tangential to the film surface. In this case an estimate based on (5) — derived
in the mathematically identical context of magnetostatics [Barham et al. 2012] —
indicates that the magnitude |es | of the self field is of order O(t ln t); for small t
this is negligible compared to unity. It follows that the leading-order energy, i.e.,
the limit of E/t as t→ 0, is given by (18) but with W simplified to

W =U|ω− ea(r) ·π , (20)

where π = p|ω, r = y|ω is the position field on ω, and

n ·π = 0 on ω. (21)

Remark 2. The estimate on the self field effectively decouples its computation
from the problem of rendering E stationary, implying, in particular, that it may be
evaluated a posteriori. This feature affords a major simplification of the theory for
thin films vis a vis that for bulk continua. Further, in the analogous magnetostatic
setting, the condition (21), with polarization replaced by magnetization, is known
to furnish energetically optimal states of magnetization in thin films [Gioia and
James 1997]. Thus our approach via dimension reduction provides justification
for the suppression of the self field, in the leading order two-dimensional model,
under conditions in which the polarization field is tangential to the membrane. In
contrast, in [Gao et al. 2008; Mohammadi et al. 2014] no analysis is offered to
justify the suppression of the self field.

The self field at points in space remote from the membrane may be evaluated a
posteriori by applying the divergence theorem to (5), for points y not in the closure
of R. This furnishes

4πε0Vs( y)=
∫

R
p′ ·

y− y′

| y− y′|3
dv = t

[ ∫
ω

π ·
y− r
| y− r|3

da+ o(t)/t
]
, (22)

in which r is the membrane position field. The self field then follows by computing
the gradient with respect to y (cf. (4)), yielding

4πε0 lim
t→0

(t−1es)=

∫
ω

Gπ da, (23)

where
G = 3
| y−r|5

( y− r)⊗ ( y− r)− 1
| y−r|3

I . (24)
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The leading-order self field in space is thus delivered by a quadrature over ω after
membrane shape has been determined.

In the expression (20) we have

U|ω =U (n,−b+ η⊗ n,π), (25)

where
b=−∇n (26)

is the (symmetric) curvature tensor on ω; at any particular point of ω this maps the
tangent plane Tω to itself.

The explicit form used here follows from (8)–(11). For example, the restriction
to ω of the function f (d, D) in (11) is given by

f |ω = c1(n · η− 2H)n+ c2η, (27)

where
H = 1

2 tr b (28)

is the mean curvature of ω. This expression may be simplified by imposing (16)
but we refrain from doing so for reasons to be discussed later. Here use has been
made of (15) and the formula curl d× d = Dd, which follows from the fact that d
is a field of unit vectors [Virga 1994].

To reduce (10) we first introduce a coordinate parametrization r(θα) of ω. This
induces the natural tangent basis aα = r ,α ∈ Tω and associated dual basis aα ∈ Tω,
where ( · ),α = ∂( · )/∂θα . Then, the restriction of curl d to ω is [Steigmann 2013]

(curl d)|ω = aα × n,α + n× η, (29)

where aα × n,α = −bαβaα × aβ , with bαβ = aα · baβ , vanishes by virtue of the
symmetry of b; accordingly, (d · curl d)|ω = 0.

Using (26) with bn= 0 we also derive

tr(D2)|ω = tr(b2)+ (n · η)2. (30)

Applying the Cayley–Hamilton formula

b2
= 2H b+ K 1, (31)

where
K = det b (32)

is the Gaussian curvature of ω and 1 is the identity transformation on Tω, we then
obtain

[tr(D2)− (div d)2]|ω = 2H n · η− 2K , (33)

which again may be simplified by imposing (16).
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Remark 3. It is well known [Virga 1994] that the combination tr(D2)− (div d)2

is a null Lagrangian in the three-dimensional theory. It is also well known that
the Gaussian curvature is a null Lagrangian in the surface theory; in particular, the
total curvature of a closed surface is fixed by its genus and thus contributes only
a disposable constant to the energy if the latter is invariant, as we assume in the
present work. Accordingly, (16) implies that the same combination of terms also
furnishes a null Lagrangian in the two-dimensional theory.

Altogether, the surface energy reduces to (cf. (8))

U|ω = 1
2χ⊥|π |

2
+

1
2χa(π · n)2− c1(n · η− 2H)n ·π − c2η ·π

+
1
2 k1(n · η− 2H)2+ 1

2 k3|η|
2
+ (k2+ k4)(H n · η− K ), (34)

yielding the net energy density in the form

W = k H 2
+ k̄K + 1

2 k3|η|
2
+

1
2χ⊥|π |

2
−c2η ·π+ ϕ̃n ·π+ ψ̃n ·η− ea(r) ·π , (35)

where
k = 2k1, k̄ =−(k2+ k4) (36)

and ϕ̃, ψ̃ are certain scalars which will prove to be irrelevant. Accordingly, W may
be regarded as a function of the list

{H, K , r, n, η,π}, (37)

subject to the constraints (16) and (21), in which it is understood that H , K and
n are determined by the parametrization r(θα). Henceforth we require the dou-
blet {θα} to maintain a fixed correspondence with a material point; i.e., a lipid
molecule. Thus the coordinates are convected with the lipids in the course of any
configurational variation.

4. Variational problem and equilibrium equations

It is convenient to adopt an extended variational formulation in which the con-
straints are relaxed. In this formulation we do not impose (16) or (21), but instead
consider the auxiliary energy

E∗ =
∫
�

[J W + λ(J − 1)+ϕn ·π +ψn · η] dA, (38)

where W is given by (35), with r , η and π regarded as independent fields, and where
ϕ and ψ are Lagrange-multiplier fields associated with the constraints (16) and (21).
Here � is the preimage of ω in a fixed reference placement, with da = J dA. In
terms of the convected-coordinate surface parametrization we have J =

√
a/A,

where a = det(aαβ), aαβ = aα · aβ is the surface metric, and A is the value of a
on �. Further, λ is a Lagrange-multiplier field associated with the constraint that
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the map from any configuration to another preserves local surface area; and, hence,
that J = 1. This restriction is appropriate in the absence of lipid distension, as in the
classical Canham–Helfrich theory; the bulk incompressibility of the liquid crystal
then implies that area is preserved locally [Steigmann 2013]. Generalizations to
account for distension in a purely mechanical setting are discussed in [Steigmann
2013; Kim and Steigmann 2015].

We observe that ϕ̃ and ψ̃ in (35) may be absorbed into the Lagrange multipliers
and conclude that no generality is lost if (35) is replaced by

W =U − ea(r) ·π (39)

in (38), where U is now given by

U = k H 2
+ k̄K + 1

2 k3|η|
2
+

1
2χ⊥|π |

2
− c2η ·π . (40)

We note that the quadratic form involving η and π is positive definite if and only
if k3 > 0, χ⊥ > 0 and c2

2 < k3χ⊥.
The expression (38) reduces to the actual energy when the constraints (16) and

(21) are operative, and is well defined when they are not; it therefore furnishes
an extension of the actual energy to arbitrary (unconstrained) states. Stationar-
ity with respect to the multipliers simply returns the constraints as the relevant
Euler–Lagrange equations. Moreover, stationarity of E∗ with respect to arbitrary
variations implies stationarity with respect to constrained variations in particular,
and hence stationarity of the actual energy E . We use this observation to derive
equilibrium equations for the actual constrained system. We note that while the
replacement of E by E∗ is permissible for the purpose of extracting stationarity
(i.e., equilibrium) conditions, it may not be used to study energy minimizers. This is
a consequence of the fact that inf E∗≤ inf E , this following trivially from constraint
relaxation.

The variational derivative of the extended energy, modulo the variations of the
Lagrange multipliers, is

Ė∗ =
∫
ω

[
Ẇ + (W + λ) J̇/J +ϕ(ṅ ·π + n · π̇)+ψ(ṅ · η+ n · η̇)

]
da, (41)

where ϕ=ϕ/J and ψ =ψ/J , and it is understood, having suppressed the variations
of the multipliers, that all terms in this expression are to be evaluated, post facto,
at states satisfying the constraints (16) and (21). In the presence of a net lateral
pressure p in the direction of the surface normal n, the virtual-work statement is
given by Agrawal and Steigmann [2009] as

Ė∗ =
∫
ω

pn · ṙ da+
∫
∂ω

χ ds, (42)
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where χ is the density of edge power, the form of which will be made explicit
below. We remark that because of the definition (14), the energy in this expres-
sion is actually the energy divided by the thickness t ; the dimensions of p and χ
are affected accordingly. Thus, for example, the actual pressure is tp, and with
p = O(1) this is of order t .

We consider the consequences of (42) with respect to variations of each variable
in turn. The simplest are those associated with the variations π̇ and η̇. They are
given respectively by

ea =Uπ +ϕn (43)

and
Uη+ψn= 0, (44)

(cf. (7) and (15)), with

Uπ = χ⊥π − c2η and Uη = k3η− c2π . (45)

Accordingly, with the constraints (16) and (21) in effect it follows that

ψ = 0 and η = (c2/k3)π; (46)

and that
ϕ = n · ea and Uπ = Pea, (47)

where P= I − n⊗ n is the projection onto Tω, with I the identity for 3-space. We
note that P= 1, the identity on Tω. Then, from (45)1,

Dπ = Pea(r), where D = χ⊥− c2
2/k3, (48)

which furnishes the polarization uniquely in terms of the surface parametrization,
provided that D 6= 0 and the applied field is assigned as a function in space. When
χ⊥ > 0, the sign of D is controlled by the strength of the flexoelectric effect; thus
D is positive or negative according as |c2| is small or large, respectively. These
alternatives correspond to the relevant quadratic form in the energy being positive
definite or indefinite, respectively.

These results imply that the equilibrium value of the energy (40) may be re-
garded as a function of H , K and π ; on combining (46) and (48), the explicit
expression is found to be

U = k H 2
+ k̄K + 1

2 D|π |2. (49)

Necessary conditions for minimum energy states in the absence of polarization,
derived in [Agrawal and Steigmann 2008], require k > 0 but do not impose any
restriction on k̄.
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With the foregoing in effect, (41) and (42) furnish the residual virtual-work
statement∫

ω

[
Ẇ + (W + λ) J̇/J +ϕπ · ṅ

]
da =

∫
ω

pn · ṙ da+
∫
∂ω

χ ds, (50)

in which all variations are induced by the virtual velocity

u = ṙ (51)

with π̇ = 0. In particular [Steigmann 2013],

J̇/J = aα · u,α (52)
and

ṅ= εβαaβ × u,α − ( J̇/J )n, (53)

where εβα is the contravariant Levi-Civita permutation tensor (εβα = eβα/
√

a, with
e12
=−e21

= 1 and e11
= e22

= 0); and

Ẇ = U̇ − ėa(r) ·π , (54)
with

ėa = (grad ea)|ω u and U̇ =UH Ḣ +UK K̇ , (55)

in which we have invoked Uη = 0 (cf. (44) and (46)1); and, from (49),

UH = 2k H and UK = k̄. (56)

Expressions for the variations Ḣ and K̇ are known [Steigmann et al. 2003] and
will be recalled in the next subsection. To facilitate their representation we use the
decomposition

u = uαaα +wn, (57)

where uα and w respectively are the tangential and normal variations of the position
field.

4.1. Tangential variations. For tangential variations we have w = 0 and

J̇/J = uα
;α, Ḣ = uαH,α and K̇ = uαK,α (58)

[Steigmann et al. 2003]. Thus,

(W + λ) J̇/J = [(W + λ)uα];α − uα(W + λ),α, (59)
where

W,α =U,α − aα · (grad ea)|ωπ − ea ·π ,α; (60)

whereas, with π̇ = 0,

Ẇ = uα[UH H,α +UK K,α − aα · (grad ea)|ωπ ]. (61)
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We thus reach

Ẇ + (W + λ) J̇/J

= [(W + λ)uα];α + uα(UH H,α +UK K,α −U,α − λ,α + ea ·π ,α). (62)

Here we use the fact that Uη vanishes in equilibrium, together with (48) and the
symmetry of P, to derive

U,α =UH H,α +UK K,α + ea ·Pπ ,α, (63)

which furnishes

Ẇ + (W + λ) J̇/J = [(W + λ)uα];α + uα[(ea · n)(n ·π ,α)− λ,α]. (64)

To reduce the term in (50) involving ϕ, we use (53) to obtain [Steigmann 2013]

ṅ= εβαbλαuλaβ × n, (65)

where εβλ is the covariant permutation tensor, together with εβαεβλ = δαλ (the
Kronecker delta). This and

n× aβ = εβγ aγ (66)

yield
ṅ=−bλαuλaα, (67)

which combines with (47) to deliver

ϕπ · ṅ=−(n · ea)bαβπβuα. (68)

On the other hand, the constraint (21) implies that

π ,α = π
β

;αaβ + bαβπβn, (69)

where ( · );α is the covariant derivative on ω. Accordingly,

Ẇ + (W + λ) J̇/J +ϕπ · ṅ= [(W + λ)uα];α − uαλ,α. (70)

Using Stokes’ theorem, the surface integral over ω of the first term on the right-hand
side may be represented as an integral over the edge ∂ω. Remarkably, the Euler
equations emerging from (42) under tangential variations are then given simply
by λ,α = 0; i.e.,

λ is constant on ω, (71)

as in the classical Canham–Helfrich theory for uniform lipid bilayers in the absence
of electromagnetic effects [Steigmann et al. 2003; Dharmavaram and Healey 2015].
Edge conditions are discussed below.
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4.2. Normal variations. In this case u = wn, yielding [Steigmann et al. 2003]

J̇/J =−2Hw,

2Ḣ =1w+w(4H 2
− 2K ),

K̇ = 2K Hw+ (b̃αβw,α);β,

(72)

where, for any scalar field ξ ,

1ξ =
1
√

a

(√
aaαβξ,β

)
,α

(73)

is the surface Laplacian in which aαβ is the dual metric.
Recalling that Uη vanishes at equilibrium and noting that π is fixed in the present

class of variations, after a lengthy calculation presented explicitly in [Steigmann
et al. 2003] we reach

Ẇ + (W + λ) J̇/J = w
[
1
( 1

2UH
)
+ (UK );αβ b̃αβ +UH (2H 2

− K )

+ 2H(KUK −W )− 2Hλ− n · (grad ea)|ωπ
]

+
[(1

2UH aαβ +UK b̃αβ
)
w,α

]
;β

−
{[
(UH ),βaαβ + (UK ),β b̃αβ

]
w
}
;α
. (74)

Here ( · );αβ is the second covariant derivative on ω and

b̃= 2H1− b (75)

is the cofactor of the curvature tensor.
Further, (53) now gives [Steigmann 2013]

ṅ=−aαw,α, (76)
yielding

ϕπ · ṅ= w(ϕπα);α − (ϕπαw);α. (77)

Combining this with (41) and writing the integrals of the divergences as bound-
ary integrals, from (42) the relevant Euler–Lagrange equation is found to be

1
( 1

2UH
)
+ (UK );αβ b̃αβ +UH (2H 2

− K )

+ 2H(π · ea + KUK −U )− 2Hλ+ (ϕπα);α
= p+ n · (grad ea)|ωπ , (78)

where
(ϕπα);α =

1
√

a

(√
aϕπα

)
,α
. (79)

This generalizes the well-known shape equation of the conventional theory [Ou-
Yang et al. 1999; Agrawal and Steigmann 2009]. For the particular energy given
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by (49) it reduces to

k[1H + 2H(H 2
− K )] − D|π |2 H + 2H(π · ea − λ)+ (ϕπ

α);α

= p+ n · (grad ea)|ωπ , (80)

with ϕ = n · ea . This may be simplified by using (47) and (48) to reach

Dπ · ea = Pea · ea = |Pea|
2
= |ea|

2
−ϕ2. (81)

Then,
2Hπ · ea − D|π |2 H = D−1 H(|ea|

2
−ϕ2). (82)

5. Edge conditions

With (71) and (78) satisfied the residual virtual-work statement (42) is∫
∂ω

χ ds = Bt + Bn, (83)

with

Bt =

∫
∂ω

(W + λ)uανα ds (84)

and

Bn =

∫
∂ω

( 1
2UH aαβ +UK b̃αβ

)
νβw,α ds

−

∫
∂ω

[ 1
2(UH ),βaαβ + (UK ),β b̃αβ +ϕπα

]
ναw ds. (85)

The part Bn of the boundary working given above is exactly as in [Agrawal and
Steigmann 2009]. The part Bt may be reduced to a more convenient form by using
uα = u · aα with aα = ναν+ τατ , where τ = n× ν is the unit tangent to ∂ω. This
satisfies τ = d r(θα(s))/ds = ταaα, where τα = dθα/ds. Thus,

uα = ναu · ν+ ταu · τ , (86)

yielding

Bt =

∫
∂ω

(W + λ)ν · u ds. (87)

For smooth edges the foregoing may be combined with Bn to reduce the edge-
power density to the compact form [Agrawal and Steigmann 2009]

χ = f · u−Mτ ·ω, (88)

where ω is the variation of the surface orientation (ṅ= ω× n),

M = 1
2UH + κτUK (89)
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is the bending couple per unit length on ∂ω (divided by t in accordance with the
remarks following (42)),

f = Fνν+ Fττ + Fnn (90)

and is the edge traction (force per unit length, divided by t) on ∂ω, with

Fν =W + λ− κνM, Fτ =−τM and

Fn = (τUK ),s −
( 1

2UH
)
,ν
− (UK ),β b̃αβνα −ϕπανα. (91)

Here ( · ),ν = να( · ),α and ( · ),s = τα( · ),α = d( · )/ds are the normal and tangential
derivatives on the boundary.

Further,
τ = bαβτανβ (92)

is the twist of the surface ω on the ν, τ -axes, whereas

κν = bαβνανβ and κτ = bαβτατβ, (93)

respectively, are the normal curvatures of ω in the directions of ν and τ .
For the energy defined by (39) and (49) the bending moment and edge forces

are
M = k H + k̄τ (94)

and
Fν = k H 2

+ k̄K + 1
2 D|π |2− ea ·π + λ− κνM,

Fτ =−τM and Fn = k̄τ,s − k H,ν −ϕπανα. (95)

The force and moment are assigned on parts of the boundary that are complemen-
tary with respect to ∂ω, respectively, to those parts where position r and surface
orientation n are assigned.

6. Examples: axisymmetric states

6.1. Uniform applied field. We assume the length scale for the spatial variation of
the applied field to be much larger than that of the overall dimensions of the lipid
membrane, so that the applied field in the vicinity of the membrane is sensibly
constant; we take

ea = E k, (96)

with E constant and k a fixed unit vector.
We seek an axisymmetric solution in the class of closed surfaces of revolu-

tion with the axis of symmetry parallel to the applied field. This is parametrized
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by meridianal arclength s, measured from the north pole, and azimuthal angle
θ ∈ [0, 2π). Thus,

r(s, θ)= r(s)er (θ)+ z(s)k, (97)

where r(s) is the radius from the axis of symmetry, z(s) is the elevation above a
base plane and {er , eθ , k}, with eθ = k× er , is the usual polar orthonormal basis.
Meridians and parallels of latitude are the curves on which θ and s, respectively,
are constant. Because s measures arclength along meridians, we have

(r ′)2+ (z′)2 = 1, (98)

where ( · )′ = d( · )/ds; therefore there is ψ(s) such that

r ′(s)= cosψ and z′(s)= sinψ. (99)

Proceeding as in [Agrawal and Steigmann 2009] we have

ν =− cosψer − sinψk, τ =−eθ , n= cosψk− sinψer , (100)

and
κν = ψ

′, κτ = r−1 sinψ, τ = 0. (101)

The sum of the normal curvatures is twice the mean curvature H(s); hence the
differential equation

rψ ′ = 2r H − sinψ. (102)

Their product yields the Gaussian curvature K (s); thus,

K = H 2
− (H − r−1 sinψ)2. (103)

Following the procedure outlined in Section 4.1 of [Agrawal and Steigmann 2009]
and noting that the spatial gradient of ea vanishes, with some labor we reduce the
shape equation (80) to

L ′ = r
{

p/k+ (2λ/k)H − (E2/Dk)[H(1+ cos2 ψ)−ψ ′ sin2 ψ]

− 2H(H − r−1 sinψ)2
}
, (104)

with
H ′ = r−1L . (105)

We omit the details of the straightforward but lengthy derivation. The system to
be solved thus consists of (99), (102), (104) and (105), for the functions r , z, ψ ,
H and L . To render the number of differential equations consistent with the total
number of side conditions, we append (cf. (71))

λ′ = 0. (106)
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Consider the equilibrium of a subsurface ω̃ ⊂ ω containing the pole, bounded
by a parallel of latitude defined by s = s̃, where s measures meridianal arclength
from the pole. The force balance (modulo the multiplicative factor t−1) is∫

ω̃

[pn+ (grad ea)|ωπ ] da+
∫
∂ω̃

f du+ F k = 0, (107)

where u = r(s̃)θ measures arclength around the perimeter of the parallel, f is
the force per unit length exerted on ω̃ by the part ω \ ω̃ of the membrane, and F
is a point load acting at the pole and directed along the symmetry axis. Because
parallels of latitude are lines of curvature on the membrane, the twist τ vanishes
on ∂ω̃ and (cf. (90) and (101)3)

f = Fν ν̃+ Fnn, (108)

where ν̃ is the exterior unit normal to ω̃ (the opposite of ν in (100)1) and Fν , Fn

are defined in (91). Thus,

f = (Fν cosψ − Fn sinψ)er + (Fν sinψ + Fn cosψ)k, (109)

and the periodicity of er (θ) yields∫
∂ω̃

f du = 2πr(s̃)(Fν sinψ + Fn cosψ)k. (110)

The presumed boundedness of the integrand of the first term in (107), together with
the conditions

r(0)= 0, ψ(0)= 0 (111)

at the pole, imply that
F/2π + lim

s̃→0
(r Fn)= 0. (112)

According to (48), the polarization at the pole is proportional to the projection of
the applied field onto the plane with unit normal k. This vanishes by virtue of (96),
and (112) reduces to

F/2π + k lim
s̃→0

(r H ′)= 0, yielding L(0)=−F/2πk. (113)

A similar condition applies at the opposite pole of the membrane.
To solve the equations it is convenient to convert the independent variable from

the meridianal arclength s to the surface area a(s) of the sector [0, s], defined by

a(s)= 2π
∫ s

0
r(t) dt. (114)

We have a′(s) = 2πr(s), which is positive on the domain, implying that a and
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s are in one-to-one correspondence and hence that the former may replace the
latter as the independent variable. The constraint on surface area is then enforced
simply by integrating the equations over the domain [0, A], where A is the assigned
membrane area. The conversion of the equations is discussed in detail in [Agrawal
and Steigmann 2009] and thus not presented here. To treat the equations numer-
ically we adopt an assigned length scale R, say, which we take to be the radius
of a spherical reference vesicle. This is equilibrated in the absence of pressure
and applied electric field, provided that the associated value of lambda vanishes.
This radius and the modulus k are the parameters used to nondimensionalize the
equations. The electric field enters the resulting system via the combination

E = E2 R2/Dk, (115)

which is positive if the flexoelectric effect is weak, and negative if it is strong.
Figure 1 depicts membrane shapes obtained using the MATLAB boundary value

problem solver applied to the foregoing differential equations. The boundary con-
ditions are: zero radius and angle ψ , and vanishing point load, at the north pole;
and zero radius and elevation, with ψ =−π , at the south pole. The reaction force
at the south pole is given a posteriori by an appropriate adjustment to (120), if
desired, and we impose zero lateral pressure. The effect of flexoelectricity at a
given field strength manifests itself as a vertical elongation or compression of the
membrane along the field direction, corresponding respectively to weak or strong
flexoelectricity.

2.5

2

1.5

z

1

0.5

0
−1.5 −1 −0.5 0

r
0.5 1 1.5

Figure 1. Vesicle subjected to uniform electric field. Black curve:
original spherical vesicle. Blue curve: vesicle subjected to E = 2.5.
Magenta solid curve: vesicle subjected to E =−2.5.
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6.2. Remote point charge. We model the response of the membrane to a remote
point charge located on the axis of symmetry, situated at the position

yc = zck. (116)

The associated electric potential and field are

Va( y)= E
4πε0| y− yc|

and ea( y)=− grad Va =
E

4πε0| y− yc|
2 u( y), (117)

respectively, where E is the charge, ε0 is the free-space permittivity, and

u( y)= ( y− yc)/| y− yc|. (118)

The induced polarization is given by

Dπ = ea −ϕn, (119)
where

ϕ = n · ea =
E

4πε0

[
(z− zc) cosψ − r sinψ

]
/
[
r2
+ (z− zc)

2]3/2. (120)

Thus,
π = δ(cosψer + sinψk), (121)

with
δ =

E
4πε0 D

[
r cosψ + (z− zc) sinψ

]
/
[
r2
+ (z− zc)

2]3/2. (122)

This is used in (80), in the combination

(ϕπα);α =
1
r (rϕδ)

′. (123)

From (116)2 we derive

4πε0
E

grad ea|ω =
1

|r− yc|
3 I − 3

|r− yc|
5 (r − yc)⊗ (r − yc), (124)

and with a bit of effort we then obtain the loading term

n · (grad ea|ω)π =
−3E

4πε0|r− yc|
5 [n · (r − yc)][π · (r − yc)], (125)

with
n · (r − yc)= (z− zc) cosψ − r sinψ,

π · (r − yc)= δ[r cosψ + (z− zc) sinψ].
(126)

We substitute these results into the shape equation (80), obtaining

L ′ = r
{
[p+ n · (grad ea)|ωπ −

1
r (rϕδ)

′
]/k

+ (2λ/k)H − D−1 H(|ea|
2
−ϕ2)− 2H(H − r−1 sinψ)2

}
. (127)

Further, the condition (113)2, connecting L to the point load at a pole, remains
valid in the present circumstances. The equations are nondimensionalized as before.
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In this case the charge intensity enters the resulting system in the combination

E =
( E

4πε0

)2
/Dk, (128)

the sign of which depends on the strength of the flexoelectric effect, as before.
We present two examples. In the first the spherical vesicle of the previous exam-

ple is subjected to a point charge located at the dimensionless position z̄c =−0.75
below the membrane. The boundary conditions are unchanged, the pressure van-
ishes, and we consider only the case of weak flexoelectricity (E > 0). The point
charge is seen to attract the membrane against the support reaction at the south
pole. Figure 2 depicts the associated membrane equilibria.

The second example concerns a flat disc acted upon by a point charge at position
z̄c =−0.50, again situated below the membrane. This is equilibrated at vanishing
charge and pressure. The areal incompressibility constraint is still operative, but
here, simply for the sake of illustration, we solve the problem on the dimensionless
arclength interval s/R ∈ [0, 0.5], with R as in the previous examples. Accordingly,
as the membrane deforms, the model accommodates areal incompressibility im-
plicitly via recruitment of lipids through the boundary, so that the computational
domain does not correspond in this instance to a fixed set of lipids. The boundary
conditions are: zero radius, angle and point load at the pole (i.e., at s/R = 0); and
zero elevation and angle at the remote edge. We impose zero pressure and take the
Lagrange multiplier λ to be zero everywhere. The latter condition renders (106)
redundant, and gives rise to a state-dependent force Fν and moment M (cf. (94)
and (95)1) at the edge of the (nonmaterial) domain.
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Figure 2. Effect of a point charge on the shape of a vesicle. Black
curve: original spherical vesicle. Blue curve: vesicle subjected to
E = 1.75. Magenta curve: vesicle subjected to E = 2.08.
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Figure 3. A flat patch of membrane with a nearby point charge.
At E = 0.5 there is an instability. The patch goes from the green
curve to the magenta curve. On increasing E further, the patch
begins to flatten out. The maximum E used is 0.83.

Figures 3 and 4 depict a sequence of predicted shapes arising in response to
an increasing sequence of charge intensities in the case of weak flexoelectricity
(E > 0). At low values of the charge intensity the membrane is attracted to the
charge, as in the previous example. We observe a sudden transition, at E = 0.50,
from a slightly curved membrane to a strongly curved one. This trend, as indicated
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0.1z
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−0.5 0
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Figure 4. A flat patch of membrane with a nearby point charge.
The arrow indicates the direction of increasing E . The innermost
shape corresponds to E = 2.0 and the outermost shape corresponds
to E = 2.5.
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by the arrows in Figure 3, is reversed upon a further increase of the charge intensity,
yielding ever flatter membranes, up to the value E = 0.83 (Figure 3).

We are unable to find equilibria for E ∈ (0.83, 2.0) and thus offer the conjec-
ture that no axisymmetric equilibria exist for charges in this interval. On further
increase of the charge, however, we find the equilibria displayed in Figure 4, in
which the arrow again indicates the trend under increasing charge intensity. These
results support a conjecture to the effect that equilibria associated with the disjoint
intervals of charge intensity are connected by a dynamic transition. On the sec-
ond branch of equilibria, the membranes have formed a sequence of buds with
ever-narrowing necks, situated, remarkably, above the initial disc shape, of a kind
reminiscent of those observed in the process of endocytosis. This suggests that
important biological processes such as endocytosis may be controlled, to some de-
gree, by the action of suitable electric fields. We find the shapes displayed in these
figures to be quite robust under shape perturbations in the setting of MATLAB,
but we have not analyzed their stability. To study stability one should work with
simulations carried out on a fixed material domain; i.e., on a patch of fixed area.

7. Conclusions

In this work, we formulate a generalized electromechanical theory of lipid mem-
branes systematically from the three-dimensional liquid crystal theory. We de-
rive the Euler–Lagrange equations and edge conditions required to solve boundary
value problems in a coupled electromechanical setting. In contrast to earlier studies,
we find that the lipid dipoles are primarily oriented in the tangent plane, as in the
analogous magnetostatic setting. This has the effect of eliminating the self field
from the leading-order two-dimensional model, and yields the important simplifica-
tion that the self field can be computed a posteriori. Further, it provides justification
for the widespread practice of suppressing the self field on an ad hoc basis. We also
find that a spatially varying electric field does not lead to a spatial variation of the
Lagrange multiplier associated with areal incompressibility. Numerical examples
highlight the strong interplay between electric fields and membrane geometry.
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