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In the presence of dislocations, the elastic deformation tensor F is not a gradi-
ent but satisfies the condition Curl F = 3T

L (with the dislocation density 3L a
tensor-valued measure concentrated in the dislocation L). Then F ∈ L p with
1 ≤ p < 2. This peculiarity is at the origin of the mathematical difficulties
encountered by dislocations at the mesoscopic scale, which are here modeled by
integral 1-currents free to form complex geometries in the bulk. In this paper,
we first consider an energy-minimization problem among the couples (F,L) of
strains and dislocations, and then we exhibit a constraint reaction field arising
at minimality due to the satisfaction of the condition on the deformation curl,
hence providing explicit expressions of the Piola–Kirchhoff stress and Peach–
Koehler force. Moreover, it is shown that the Peach–Koehler force is balanced
by a defect-induced configurational force, a sort of line tension. The functional
spaces needed to mathematically represent dislocations and strains are also ana-
lyzed and described in a preliminary part of the paper.

1. Introduction

Dislocations in elastic bodies are at the origin of dissipative phenomena, and in
particular, their motion is responsible for the plastic behavior of single crystals. A
dislocation loop L is a closed curve in �. Outside the dislocation, i.e., in � \ L ,
the body is considered perfectly elastic. This scale of matter description is called
the mesoscopic or the continuum scale. Nonetheless, it is not easy to understand
the physical nature of a mesoscopic dislocation. In fact, it is not a material line
since it can be equivalently generated by an excess or a lack of lattice atoms. More-
over, contrarily to fracture, it cannot even be defined as a mere singularity in the
reference configuration where deformation fields would be unbounded. In fact, a
dislocation must be viewed as a singularity of the deformation field whose support
lies in the current configuration (see, e.g., [Acharya 2003; Scala and Van Goethem
2016]). Therefore, dislocation location and field singularity are bound notions.
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Figure 1. Example of a continuum dislocation cluster.

Specifically, the support of the curl of the deformation field (which in the presence
of dislocations is not a gradient) is identified with the dislocation density field.
This definition is at the basis of the present work since a constraint reaction will
be generated by the satisfaction of the latter relation between model variables.

1.1. Mathematical and physical properties of dislocations. The intrinsic math-
ematical difficulties generated by dislocations are fundamentally different from
those encountered in the mathematical modeling of fracture mechanics. In partic-
ular, the displacement is not an appropriate model variable as opposed to most of
solid mechanics problems. Furthermore, the stress and strain fields are not square-
integrable and so the less-tractable L p spaces with 1≤ p < 2 must be considered,
and bounds on the model fields are given in terms of the curl and the divergence (in
place of the full gradient) in measure spaces (instead of Sobolev spaces). Moreover,
we believe that in order to model single crystals with dislocations, where complex
geometries such as dislocation networks (see Figure 1) are observed [Zaiser 2004],
one can hardly rely on the assumption of a periodic array of straight dislocations.
Therefore, one is forced to build specific mathematical tools step by step, which
should provide

• an appropriate functional framework and

• a geometric description of the lines.

To achieve the latter, the mathematical formalism of currents as briefly described in
Section 1.2 has been proposed. In this framework, a cluster as depicted in Figure 1
is modeled as a continuum dislocation [Scala and Van Goethem 2016]. The for-
malism of currents to study and model dislocation clusters has been introduced
in the pioneering works [Hochrainer and Zaiser 2005; Hochrainer 2013] and then
adopted in more recent contributions to the theory of continuum dislocations as in
[Conti et al. 2015a; 2015b]. The notion of integral current with coefficient in a
group, also adopted in the companion paper [Scala and Van Goethem 2016; 2015],
is the main tool to treat dislocation networks. This is due, principally, to the ability
of dislocation lines to annihilate, sum, and form complex structures with specific
rules for summing the Burgers vectors, which belong to a specific group. Moreover,
the formalism of currents in general has proven to be useful in treating variational
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problems in the theory of continuum dislocations [Scala and Van Goethem 2016;
2015]. Restricting ourselves to a quasistatic regime, we assume that the optimal
networks result from minimization laws (note that such minimization states are
reached very fast in actual crystals such as pure copper, where resistance to dislo-
cation motion is negligible [Berdichevsky 2006]).

Therefore, the first purpose of this paper is to establish the functional setting
appropriate to describe mesoscopic dislocations. The main features are that, when
Sobolev spaces W 1,p are considered, exponent p is in the “bad range” 1≤ p < 3

2
and that the second grade variable is the curl instead of the gradient and the curl
must be a concentrated Radon measure. Minimization problems in this range are
considered in [Scala and Van Goethem 2016], where, aware of [Müller and Palom-
baro 2008], the main tools used are integral currents and Cartesian maps.

We shall provide elements for an analysis of the space of L p-tensors whose
curl is bounded in a measure space and in particular bring to light and study the
homeomorphism between this space and the space of solenoidal Radon measures,
which in the model application will be the space of dislocation densities. The
second purpose is to compute the first variation of the energy with respect to the
strain and the dislocation-associated density. These will allow us to determine
a configurational force, capable of driving the dislocations outside equilibrium,
which, as far as the deformation part of the energy is concerned, is the well-known
Peach–Koehler force.

1.2. A quick survey on currents and dislocations at the continuum scale. In
[Scala and Van Goethem 2016], we proposed a mathematical model for a countable
family of dislocations in an elastic body �, here considered the current (as opposed
to “reference”) configuration. Motivated by physical reasons [Hirth and Lothe
1982; Müller et al. 2004; Zaiser 2004; Zubov 1997], we consider finite elasticity
near the line with a less-than-quadratic strain energy while linear elasticity is a valid
assumption away from the dislocations. Since the dislocation loop is the singularity
set for stress and strain, the deformation gradient field F is incompatible, meaning1

−Curl F =3T
6= 0 in �, (1-1)

with F the (inverse) deformation tensor and where the dislocation density 3 is
a Radon measure in M(�,M3) concentrated on the dislocation set L . Here, L
is a dislocation network in the current (i.e., deformed) configuration. Clearly if
3 = 0, then F is a gradient and there are no dislocations in the bulk. Moreover,
conservation properties for dislocations imply that their density is solenoidal:

Div3T
= 0. (1-2)

1Componentwise, (Curl F)i j = ε jkl∂k Fil and 3i j = τi b j δL.
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The explicit formula for 3 shows a linear dependence on the line orientation τ and
on the Burgers vector b (i.e., 3 := τ ⊗bδL ), where for crystallographic reasons the
value of the Burgers vector is constrained to belong to a countable lattice in R3.

In the proposed formalism, currents (for which the main reference is [Federer
1969]) are used to describe dislocations at the mesoscopic scale. Specifically, dis-
locations are described by integer-multiplicity 1-currents, which are mathematical
objects generalizing the concept of curves and are assumed closed to account for
the property (1-2), implying that every dislocation is a loop or ends at the crystal
boundary. A brief survey of the mathematical formalism can be found in Section 3.1
while for details we refer to [Scala and Van Goethem 2016]. For a so-called dislo-
cation current L, we will denote the associated density by 3=3L. Whatever the
model may be, in this paper, we are merely concerned with variations at optimality;
thus, modeling and existence issues are not discussed.

The starting point of the present work is the minimum problem

min
(F,L)∈A

W(F,3L), (1-3)

where the energy

W(F,3L)=We(F)+Wdislo(3L) (1-4)

satisfies some appropriate convexity and coerciveness conditions while A is the
space of admissible couples of deformation and dislocation currents. Among the
properties of admissibility, we require that F and L be related by condition (1-1)
and that F be the gradient of a Cartesian map away from L . Therefore, both F
and L are represented by particular types of integral currents.

In dislocation gauge theory, an energy like (1-4) was used in [Lazar and Anas-
tassiadis 2008; Agiasofitou and Lazar 2010], where the decomposition in an elastic
and a dislocation part is given. From a mathematical viewpoint, that is, with
variational techniques in appropriate functional spaces, problem (1-3) has been
discussed and was first solved in [Müller and Palombaro 2008] with a single fixed
dislocation loop in the crystal bulk (thus implying a minimization in F only) and
later extended in [Scala and Van Goethem 2016] for an unfixed countable family of
dislocation currents satisfying certain boundary conditions. Existence of minimiz-
ers is based on the assumption (classical in fracture mechanics) that the number of
clusters is bounded.

1.3. Formal derivation of the Peach–Koehler force. From the standpoint of con-
figurational force theory (as in [Gurtin 2000]) or as a result of invariance properties
and Noether’s theorem (as proposed by [Agiasofitou and Lazar 2010]), the Eshelby
stress E = W I− FTP appears as a crucial quantity with W the energy density
and P the first Piola–Kirchhoff stress. Assuming that Div P = 0, i.e., that static
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equilibrium holds, one immediately finds that

Peach–Koehler force= Div E = 〈3T
L×P〉, (1-5)

where the brackets emphasize that the vector product takes place in a certain func-
tion space as a duality product. Equation (1-5) is known as the Peach–Koehler
force (see, e.g., [Hirth and Lothe 1982] for a straight dislocation); it is a force due
to the equilibrium between the dislocation and the adjacent elastic medium. In
particular, the functional choice is provided by the physics considered, that is, in
the case of dislocations, whether one considers the macroscale (with Sobolev fields
and no line singularity) or on the contrary the mesoscale, as in this work, where
geometric measure theory and related functional spaces must be considered. Let us
remark that the strong form Div P= 0 is classically obtained by the Euler–Lagrange
equation

∫
�

P · ∇u dx = 0 for all test functions u, provided the integration by parts
is valid. The point is that, at our scale of matter description, P turns out to belong
to a Lebesgue space, and thus, PN is not defined at the boundary, precluding the
use of the divergence theorem. For this reason, Div P= 0 must follow from another
procedure; namely, P will be defined as the curl of a constraint reaction L (in the
sense of [Fosdick and Royer-Carfagni 2004]), in appropriate function space, and
due to the satisfaction of (1-1).

On the other hand, observe that the rightmost member of (1-5) has no rigorous
meaning at the mesoscale since 3L is a measure and P a Lebesgue-integrable field.

1.4. Scope of the work. It is the goal of the present work to elucidate the functional
setting allowing one to mathematically establish (1-5). To the knowledge of the
authors, such a proof was nonexistent in the literature since the variational problem
was unsolved until [Scala and Van Goethem 2016] at the mesoscale, in finite-strain
elasticity, and for curved dislocations (i.e., loops) and dislocation networks. In this
respect, it has to be emphasized that our point of view is completely different from
that of [Agiasofitou and Lazar 2010], where the relation (1-5) is derived within the
framework of gauge field theory of dislocations using the Noether theorem.

Considering the existence of minimizers of problem (1-3), in the present paper,
we analyze the variation of W at the minimum points with respect to L , which by
a formal chain rule can be written as

δLW(F,3L)= δF W(F,3L)δL F + δ3W(F,3L)δL3L.

Note first that W can be written as the sum of a deformation and a defect part, the
first depending on F and the second on 3L=−(Curl F)T. However, both variables
are related to L in an intrinsic manner, and hence, a precise meaning must be given
to the above chain rule expression.
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The first aim of this paper is of a theoretical nature: basically, it consists of giving
a precise meaning to δL F and δL3L that will be achieved by proving a series of
preliminary results. As far as the second term is concerned, the geometric analysis
made in [Scala and Van Goethem 2016] and synthesized in Section 3.1 is used as
a basis but here completed by putting the concentrated measure 3L in duality with
a certain continuous tensor, called the constraint reaction. One difficulty is related
to the identification of the dual space of Radon measures which are concentrated
in closed lines since in general it is not true that this set is a subspace of continuous
functions. This first result will in particular require inverting the curl operator. As
far as the deformation part of the energy is concerned, we have already mentioned
that it is not a gradient since to satisfy constraint (1-1) it must read F =∇u+Curl V
(an expression recognized as a tensor Helmholtz–Weyl-type decomposition). As
a matter of fact, F will depend on L through the solution of −Curl Curl V =
3T

L, which is an equation to consider with care since it is not an elliptic PDE.
In this paper, use will also be made of Helmholtz- and Friedrich/Maxwell-type
decompositions in L p (see, e.g., [Kozono and Yanagisawa 2009; Galdi 2011]),
where by Maxwell these are intended estimates of vectors/tensors with respect to
their curl and divergence [Neff et al. 2012b; 2012a; 2015b; Yanagisawa 2007],
the crucial fact being that, by (1-1), the L p-norm of the deformation gradient is
estimated by the dislocation density norm, here intended as total variation of the
Radon measure.

A direct consequence of the results in this work, discussed in Section 4.5, is
setting the basis of a model of evolution in time of dislocations, in the sense that
computing δLW amounts to considering that a certain (configurational) force ex-
erted on the dislocations is vanishing. Therefore, a moving dislocation will evolve
with a velocity proportional to this force, as documented in dislocation theories
[Hirth and Lothe 1982; Acharya 2003], and originating from the variation of the
deformation part of the energy. In the final Theorem 26, we show that, at optimality,
there is a balance of forces, one of which is the well-known Peach–Koehler force F ,
while the other is a line-tension term, G , provided by the variation of the defect
part of the energy (see also [Conti et al. 2011]). In fact, the identity

F =−G ,

holding at minimality, might be considered a constitutive law for F since G is
given explicitly in terms of the dislocation energy density and the line curvature
and normal and tangent vectors. Let us emphasize that time evolution per se is not
considered in the present work.

1.5. Structure of the paper. In Section 2, the theoretical results required as pre-
liminaries are stated and proved, unless their proofs are found elsewhere in the
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literature. An important result is the existence of a constraint reaction, given in
Section 2.4, relying on the important result on the invertibility of the curl operator
as found in Section 2.3. Section 3 contains three subsections where the mathemat-
ical properties of a dislocation model in this setting are given and discussed. In
particular, the functional relations between the deformation and the defect variables
are given (important relations are here (3-13) and (3-14)), their admissibility is
studied, and minimization results in appropriate spaces are recalled. In Section 4,
the generic results of previous sections are applied to a more specific dislocation
model. The goal here is to compute the first variation of the energy at the minimum
points, eventually yielding the Peach–Koehler force expression in Section 4.3. In
Section 4.4, a shape-optimization view of minimality provides a balance of con-
figurational forces, which is applied to an example. All preliminary results of this
paper are required to derive this force expression, collected in Theorem 26.

1.6. A remark. This paper has been written in two parts; the first, Section 2, is
where all theoretical results are stated and proved without even referring to disloca-
tions. Indeed, the functional spaces described in this section are broader than those
needed for dislocations, and hence, the results more general. Instead, Sections 3
and 4 are specifically devoted to the study of dislocations, and hence, the previous
statements are particularized. Moreover, in order to be self-contained, the essence
of [Scala and Van Goethem 2016] is recalled in simple terms in Section 3.1.

2. Theoretical setting and preliminary results

2.1. Notation and conventions. The class of 3× 3 matrices is denoted by M3
:=

R3×3. In the following definitions, the codomain space R is either tensor-valued,
R = M3, or vector valued, R = R3. Then R′ stands for R3 or R, respectively.
The symbol M stands for finite Radon measures while D denotes the topological
vector space of smooth functions with compact support. The subset of R-valued
solenoidal finite Radon measures on an open set X ⊂ R3 reads

Mdiv(X,R) := {µ ∈M(X,R) : 〈µ, Dϕ〉 = 0 for all ϕ ∈ C 1
0 (X,R′)}, (2-1)

where the product (here intended in the sense of finite Radon measures) yields, in
the case R = M3, a real tensor whose components read (〈µi j , D jϕk〉)ik . Recall
that ϕ ∈ C 1

0 (X,R′) if it is of class C 1 and if for every ε > 0 there exists a compact
set K ⊂ X such that |ϕ(x)| and |Dϕ(x)| are smaller than ε for any x ∈ X \ K .

Observe that Mdiv(X,R) is a closed subspace of M(X,R) and hence is a Banach
space, endowed with the total variation norm |µ|(X)= sup{〈µ, ϕ〉 : ϕ ∈ C (X,R),

‖ϕ‖∞ ≤ 1} (see [Ambrosio et al. 2000] for details on vector- and tensor-valued
Radon measures on metric spaces). A particular subclass of Mdiv(X,R) will be
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the family of (the transpose of) the dislocation densities2 (3?)T ∈ Mdiv(�̂,M3),
where �̂⊃� is an open set containing only dislocation loops.

For a tensor A and vector N , we use the convention (N × A)i j =−(A× N )i j =

−ε jkl Aik Nl . Further, the curl of a tensor A is defined componentwise as (Curl A)i j=

ε jkl Dk Ail . As a consequence,

〈Curl A, ψ〉 = −〈Ail, ε jkl Dkψi j 〉 = 〈Ail, εlk j Dkψi j 〉 = 〈A,Curlψ〉, (2-2)

for every ψ ∈ D(�,M3). In general, if ψ does not have compact support,

〈Curl A, ψ〉 = 〈A,Curlψ〉+
∫
∂�

(N × A) ·ψ d S. (2-3)

Note that with this convention one has Div Curl A = 0 in the sense of distributions
since componentwise the divergence is classically defined as (Div A)i = D j Ai j .3

The following lemma characterizes the dislocation measures as a particular sub-
class of the solenoidal measures.

Lemma 1. Let µ ∈Mdiv(�,R3×3) be a measure that is absolutely continuous with
respect to the H1-measure restricted on a simple Lipschitz curve L with tangent
vector τ and such that L is either closed or ends at the boundary. Then µ is a
dislocation measure; that is, there exists a constant vector b such that

µ= b⊗ τH1
xL . (2-4)

We omit the proof, which is quite simple, and refer to [Scala and Van Goethem
2015]. Let us denote by Mdislo(�,M3) the class of the transpose of such measure
as (2-4).

Let 1≤ p<∞, and let �⊂R3 be an arbitrary open set. We introduce the vector
space of tensor-valued fields

BCp(�,R3×3) := {F ∈ L p(�,R3×3) : Curl F ∈Mdiv(�,R3×3)}, (2-5)

which, as endowed with the norm

‖F‖BCp := ‖F‖p + |Curl F |(�), (2-6)

turns out to be a Banach space.

2The transpose is taken to be consistent with Van Goethem’s references on dislocations
[Van Goethem and Dupret 2012b]. This convention was originally taken from Kröner [1981].

3In this paper, we therefore follow the transpose of Gurtin’s notation convention [Cermelli and
Gurtin 2001], but care must be payed since the curl and divergence of tensor fields are given alter-
native definitions in the literature (including [Van Goethem and Dupret 2012b; Van Goethem 2014]
where the current curl would give Curl A =−A×∇).
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Remark 2. One might define BCp(�,M3) by only specifying Curl F ∈M(�,M3)

and considering the solenoidal property of µ as a direct consequence of the distri-
butional identity Div Curl F = 0 in �.

2.2. Helmholtz decomposition for tensor fields.

Lemma 3. Let G ∈ L p(�,M3) with 1 < p <∞ and � be a bounded open and
simply connected set with C 1 boundary. There exists a unique solution (up to a
constant) φ ∈W 1,p(�,R3) of{

−1φ = Div G in �,
∂Nφ =−G N on ∂�.

(2-7)

Moreover, such a solution satisfies ‖Dφ‖p ≤ C‖G‖p.

Proof. This lemma is a direct tensor extension of the theorems of existence and
uniqueness of the Neumann problem as shown in [Simader and Sohr 1996] (see
also [Galdi 2011, Lemma III.1.2, Theorem III.1.2]). �

Note that (2-7) is a formal strong form meaning that the following weak form
is solved [Yanagisawa 2007]:

−〈∇φ,∇ϕ〉 = 〈G,∇ϕ〉 for all ϕ ∈W 1,p′(�,M3). (2-8)

In particular, observe that the trace G N is not well-defined on the domain boundary.
This issue will be addressed by Lemma 4. Let us define

L p
div(�,M3) := {F ∈ L p(�,M3) : Div F = 0}, (2-9)

L p
curl(�,M3) := {F ∈ L p(�,M3) : Curl F = 0}. (2-10)

The following result can be proven [Van Goethem 2015].

Lemma 4. Let �⊂ R3 be a bounded open set with boundary of class C 1, and let
F ∈ L p(�,R3×3) be such that Div F ∈ L p(�,R3). Let us define the distribution
F N as

〈F N , γ (ϕ)〉 := 〈Div F, ϕ〉+ 〈F, Dϕ〉 (2-11)

for all ϕ ∈ W 1,p′(�,R3), with γ (ϕ) ∈ W 1/p,p′(∂�,R3) the boundary trace of ϕ,
where 〈 · , ·〉 always means the duality product in appropriate spaces. Then F N ∈
W−1/p,p(∂�,R3) := (W 1/p,p′(∂�,R3))′.

Similarly, the following holds true:

Lemma 5. Let �⊂ R3 be a bounded open set with boundary of class C 1, and let
F ∈ L p(�,R3×3) be such that Curl F ∈ L p(�,R3×3).

Then F × N ∈W−1/p,p(∂�,R3) := (W 1/p,p′(∂�,R3))′ is defined as

〈F × N , γ (ϕ)〉 := 〈Curl F, ϕ〉− 〈F,Curlϕ〉 (2-12)

for all ϕ ∈W 1,p′(�,R3), with γ (ϕ) ∈W 1/p,p′(∂�,R3) the boundary trace of ϕ.
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Let 1 < p < ∞. In virtue of the previous two lemmas, if V ∈ L p(�,R3)

is such that Div V ∈ L p(�,R), then it is well-defined and its normal trace V N ∈
W−1/p,p(∂�) := (W 1/p,p′(∂�))′ on ∂�. Similarly, if V ∈ L p(�,R3)with Curl V ∈
L p(�,R3), then its antinormal trace on ∂� is V × N ∈ W−1/p,p(∂�,R3) and is
defined as in (2-12). These properties can be straightforwardly applied to tensor-
valued maps V ∈ L p(�,M3) so that, if Div V ∈ L p(�,R3), it is well-defined and
its normal trace V N ∈W−1/p,p(∂�,R3) on ∂� (componentwise, (V N )i = Vi j N j ).
Similarly for the antinormal trace V × N (componentwise, ε jlpVil Np), it belongs
to W−1/p,p(∂�,M3) as soon as Curl V ∈ L p(�,M3) (see also [Kozono and Yanag-
isawa 2009] and references therein).

Let us introduce the spaces

Vp(�) := {V ∈ L p
div(�,M3) : Curl V ∈ L p(�,M3), V × N = 0 on ∂�}, (2-13)

Ṽp(�) := {V ∈ L p
div(�,M3) : Curl V ∈ L p(�,M3), V N = 0 on ∂�}. (2-14)

The following estimate can be found in [Kozono and Yanagisawa 2009].

Lemma 6. Let � ⊂ R3 be a bounded open set with boundary of class C 1, and
assume F ∈ Vp(�) or F ∈ Ṽp(�). Then F ∈ W 1,p(�,R3×3), and there exists a
positive constant C = C(�) such that

‖∇F‖p ≤ C(‖Curl F‖p +‖F‖p). (2-15)

This shows that Vp(�) and Ṽp(�) are closed subspaces in W 1,p(�,M3). By
virtue of Lemma 6 and for simply connected and bounded domains, a better esti-
mate can be found in [von Wahl 1992]. Note that the following is a classical result
for smooth functions with compact support [von Wahl 1992]:

Lemma 7. Let � be a simply connected and bounded domain, and let F ∈ Vp(�)

or F ∈ Ṽp(�). Then
‖∇F‖p ≤ C‖Curl F‖p. (2-16)

As a direct consequence, the following result holds.

Lemma 8. Let � be a simply connected and bounded domain, and let F ∈ Vp(�)

or F ∈ Ṽp(�). Then Curl F = 0 if and only if F = 0.

We remark that, when F ∈ Ṽp(�), Lemma 8 amounts to proving the unique-
ness property of Lemma 3. Moreover, in [Kozono and Yanagisawa 2009], a more
general statement is established without the simply connectedness assumption. In
general, for � a smooth and bounded subset of R3, Curl F = Div F = 0 has
a nontrivial solution. In particular, Kozono and Yanagisawa [Yanagisawa 2007]
show that the solutions belong to a subspace of C∞(�,M3) with positive finite
dimension, depending on the Betti numbers of �.
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The following result is well-known in the Hilbertian case L2 but is not classical
for the general Banach space L p. It is basically proven with the help of Lemma 3
(for a complete proof, see [Kozono and Yanagisawa 2009; Yanagisawa 2007] and
also [Galdi 2011; Neff et al. 2012a]).

Theorem 9 (Helmholtz, Weyl, Hodge, and Yanagisawa). Let 1 < p < ∞, and
let � be a bounded, simply connected, and smooth open set in R3. For every F ∈
L p(�,M3), there exist u0 ∈W 1,p

0 (�,R3) and a solenoidal V ∈ Ṽp(�) such that

F = Du0+Curl V
(
L p(�,M3)=∇W 1,p

0 (�,R3)⊕Curl Ṽp(�)
)
. (2-17)

Alternatively, there exist u ∈W 1,p(�,R3) and a solenoidal V0 ∈Vp(�) such that

F = Du+Curl V0
(
L p(�,M3)=∇W 1,p(�,R3)⊕Curl Vp(�)

)
. (2-18)

Moreover, the decompositions are unique, in the sense that u0, V , and V0 are
uniquely determined while u is unique up to a constant, and ‖Du0‖p, ‖Du‖p ≤

C‖F‖p, respectively.

Remark 10. When F is smooth with compact support, decompositions such as
(2-17) and (2-18) are classically given by the Stokes theorem and explicit formulae
involving the divergence and curl of F [von Wahl 1992; Bolik and von Wahl 1997].

Remark 11. Let F be of class C 1. In the particular case Curl F = 0, the Helmholtz
decomposition is trivial when � is a simply connected domain. Indeed it is well-
known that in such a case there exists u ∈ C 2(�,R3) satisfying F = Du. This
result extends for F ∈ L p with 1 < p < +∞ as shown in [Galdi 2011]. See
[Kozono and Yanagisawa 2009] for a complete treatment of Helmholtz decom-
position in L p, relying on the pioneering paper [Fujiwara and Morimoto 1977].
Moreover, if Div F = 0, then by Theorem 9, F = Curl V with V ∈ Ṽp(�). Note
that, for smooth functions F , this result holds for any simply connected domain
with Lipschitz boundary.

Remark 12. Smoothness of the boundary is a strong requirement which is needed
for the following reason: (2-17) and (2-18) require in principle solving a Pois-
son equation 1u = Div F with the right-hand side in some distributional (that
is, Sobolev–Besov) space for which smoothness of the boundary is needed. It is
known [Fabes et al. 1998] that for a Lipschitz boundary the solution holds for
restricted p (namely 3

2−ε ≤ p≤ 3+ε) for some ε = ε(�)> 0. Note that for p= 2
a Lipschitz boundary would be sufficient.

Lemma 13. Let �⊂ R3 be a bounded open set with boundary of class C 1, and let
V ∈ Vp(�). Then (Curl V )N = 0 in the sense of Lemma 4.
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Proof. Take any ϕ ∈W 1,p′(�,R3). With by-parts integration ((2-11) and (2-12)),
it holds that

〈(Curl V )N , ϕ〉∂� = 〈Curl V, Dϕ〉 = 〈V × N , Dϕ〉∂� = 0.

Since ϕ is arbitrary, the proof is done. �

By Lemma 13, the function u of (2-18) is found by solving (2-7) with φ = u
and G =−F . This also gives a meaning to the condition ∂N u = F N .

2.3. Invertibility of the curl.

Notation 14. Unless otherwise specified, the domains � we consider are bounded,
smooth, and simply connected subsets of R3, with outward unit normal N .

Let us introduce the following notation.

Notation 15. Given �, we denote by �̂ another domain satisfying Notation 14 and
such that �b �̂.

A key equation behind the results of this work is the system
−Curl F = µT in �̂,
Div F = 0 in �̂,
F N = 0 on ∂�̂,

(2-19)

with µT a Radon measure in Mdiv(�̂,M3). Note that the transpose is put here
for convenience. In fact, the right-hand side is a general tensor-valued solenoidal
bounded Radon measure. Existence and uniqueness of a solution is given by
Theorem 16 below, for the proof of which Lemma 3 (or Lemma 8) will be required.

The following result is first given for general solenoidal measures and then
slightly improved for dislocation measures. The existence part is a straightforward
consequence of the main result of [Bourgain and Brezis 2004], whereas some fur-
ther details can be found in [Scala and Van Goethem 2015, Appendix].

Theorem 16 (Biot and Savart). Let µ be a tensor-valued Radon measure such that
µT
∈Mdiv(�̂,M3). Then there exists a unique F in BC1

div(�̂,M3) that is a solution
of (2-19). Moreover, F belongs to BC

p
div(�̂,M3) for all p with 1≤ p < 3

2 , and for
all such p, there exists a constant C > 0 satisfying

‖F‖p ≤ C |µ|(�̂). (2-20)

Moreover, if µ = τ ⊗ bH1
xL

, for some b ∈ R3 and a C 2-closed curve L in �̂ with
unit tangent vector τ , then the solution F belongs to BC

p
div(�̂,M3) for all p < 2.

Let us remark that the regularity assumption on the curve L is necessary here
since there exist examples of a measure concentrated on a rectifiable curve such
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that the associated deformation F is not in L p with 3
2 < p < 2, as shown in [Conti

et al. 2015b].
By uniqueness, there exists a linear one-to-one and onto correspondence be-

tween the spaces Mdiv(�̂,M3) and BC
p
div(�̂,M3). Thus, the map

Curl−1
:Mdiv(�̂,M3)→BC

p
div(�̂,M3), ν 7→ F =−Curl−1(ν), (2-21)

is well-defined and linear. Therefore, we may write

BC
p
div(�̂,M3) := Curl−1(Mdiv(�̂,M3)). (2-22)

Moreover, for any F ∈BC
p
div(�̂,M3), we recover by (2-20) the L p-counterpart of

the Maxwell relation in L2 [Neff et al. 2012a], that is,

‖F‖p ≤ C |Curl F |(�̂). (2-23)

Remark 17. In case � is not simply connected, the uniqueness of the solution of
problem (2-19) does not hold. In such a case, Lemma 8 would also not hold since
the problem might exhibit nontrivial solutions, as shown in [Yanagisawa 2007].

2.4. Existence of a constraint reaction. In the next subsections, we will deal with
a linear and continuous map,

8 :BCp(�̂,M3)→ R, (2-24)

such that |8(F)| ≤ C‖F‖p for some C > 0 and satisfying

L p
curl(�̂,M3)⊂ ker8. (2-25)

An important result for maps of this kind is now stated and proved.

Theorem 18. Let 1 < p < 3
2 , and let 8 be a linear and continuous map on

L p(�̂,M3) satisfying 8(Du) = 0 for every u ∈ W 1,p(�̂,R3). Then there exist
two maps L and L̃ belonging to C(�̂,M3) ∩ W 1,p′(�̂,M3), with 3 < p′ < ∞,
1/p+ 1/p′ = 1, such that, for every F ∈BCp(�̂,M3),

8(F)= 〈Curl L̃, F〉 = 〈Curl L, F〉 = 〈L,Curl F〉 (2-26)

and satisfying Div L= Div L̃= 0 in �̂, N × L= 0, and L̃N = 0 on ∂�̂.

Proof. Since 8 is linear and continuous,

8(F)= 〈T, F〉, (2-27)

for some T ∈ L p′(�̂,M3). Now for every ϕ ∈ C∞(�̂,R3), we have 〈T, Dϕ〉 =
8(Dϕ) = 0, proving that Div T = 0 in �̂ and, integrating by parts, that TN = 0
on ∂�̂. By Theorem 9 ((2-17) or (2-18)), there exist a unique L ∈ L p′

div(�̂,M3)
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satisfying N × L = 0 on ∂�̂ and a unique L̃ ∈ L p′

div(�̂,M3) with L̃N = 0 on ∂�̂
such that

Curl L+ Du = Curl L̃+ Du0 = T, (2-28)

for some u and u0 as in Theorem 9. Since Div T= 0 in �̂, one has u0= 0 and, from
Curl LN = TN = 0 on ∂�̂, Du = 0. By the Maxwell–Friedrich-type inequality
(i.e., the generalization of (2-15) [Yanagisawa 2007]), i.e.,

‖∇L‖p′ ≤ C(‖Curl L‖p′ +‖Div L‖p′ +‖L‖p′), (2-29)

the fact that L ∈ L p′(�̂,M3) with Curl L ∈ L p′(�̂,M3) and Div L= 0, implies that
L ∈W 1,p′(�̂,M3), which since 3< p′ ≤∞ entails by Sobolev embedding that

L ∈ C (�̂,M3). (2-30)

The same is true for L̃. Integrating by parts the identities (2-26), we get, since
N × L= 0 on ∂�̂,

8(F)= 〈Curl L, F〉 = 〈L,Curl F〉,

completing the proof. �

In the applications, 8 will be the first variation of the deformation part of the
energy. In the sequel, we will restrict to those variations whose deformation curl is
concentrated in a closed curve and, specifically, is associated to some dislocation
density measure. This latter notion will be made clear in Section 3.1.

3. Energy minimization of dislocation networks

The key point of this work is to perform variations around the minima of problem
(1-3) in the largest possible functional spaces. As far as the deformation part of
the energy is concerned, this amounts to proving the existence of an appropriate
Lagrange multiplier to account for the constraint (1-1). This will be achieved
thanks to Theorem 18. In principle, variations can be made with respect to F , the
dislocation density 3, and the dislocation set L . In the first case, one recovers the
equilibrium equations, where the Piola–Kirchhoff stress is written as the curl of the
constraint reaction. The second case is more delicate since the space of variations is
not a linear space (due to the so-called crystallographic assumption), thus creating
a series of difficulties which we do not address further. Most interesting is the
variation with respect to the line, that is, with respect to infinitesimal Lipschitz
variations of the optimal dislocation cluster L?. The difficulty here is that both F
and 3 depend on L . In the case of 3, the dependence is explicit since L is in
some sense the support of 3=3L (see (3-4)). In the case of F , the dependence
is implicit since

F =∇u+ F◦, (3-1)
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where F depends on L through the relation Curl F◦ =−(3L)
T. Therefore, since

the energy consists of one term in F and another in 3, variations of the energy with
respect to L (that is, with respect to its support L) will require an appropriate ver-
sion of the chain rule. This computation is the main objective of Section 4, which
to be carried out carefully requires a series of preliminary steps, collected in the
present section. In order to be self-contained, results from [Scala and Van Goethem
2016] are first recalled while rewritten in a concise form. We refer to [Scala and
Van Goethem 2016; 2015] for a full discussion of the results and of the models.
In the next two subsections, the results from Section 2 are applied to continuum
dislocations. The main results are relations (3-13) and (3-14).

3.1. Dislocation density measures. In the sequel, we will adopt Notations 14 and
15. In order to perform variations in F and3, we introduce an appropriate subspace
of Mdiv(�,M3) called the set of dislocation density measures and based upon the
notion of integer-multiplicity (or integral) 1-currents.

In many applications, the Burgers vector is constrained by crystallographic prop-
erties to belong to a lattice. For simplicity, this lattice will be assumed isomorphic
to Z3. Let the lattice basis {b1, b2, b3} be fixed, and define the set of admissible
Burgers vectors as

B := {b ∈ R3
: there exists β ∈ Z3 such that b = βi bi }.

In the sequel, we will adopt the nonrestrictive and simple choice B = Z3, i.e.,
bi = ei , the i-th Euclidean base vector. Moreover, we write b ∈ Z3 to mean b ∈B.

Let L be an H1-rectifiable subset of �̂, τ the unit oriented tangent vector defined
H1-a.e. on L , and θ : L→ Z an H1-integrable integer-valued function. Then the
integer-multiplicity 1-current L denoted by L := {L , τ, θ} is defined as

L(ω) :=

∫
L
〈ω, τ 〉θ(x) dH1(x)

for every compactly supported and smooth 1-form ω defined in �̂. The (topological
vector) space of such forms is denoted by D1(�̂,

∧
R3), where

∧
R3 is the space

of one-dimensional covectors.
A dislocation can be described using the notion of the integer-multiplicity 1-

current. For every Burgers vector b ∈ Z3, we introduce the regular b-dislocation
in �̂ as the closed integral 1-current L̂b

:= {L̂b, τ b, θb
}, where L̂b represents the

union of a finite family of Lipschitz and closed curves in �̂, τ b its oriented unit
tangent vector, and θb an integer-valued function on L̂b called multiplicity. We
define the regular b-dislocation Lb

:= {Lb, τ b, θb
} in � as the restriction of L̂b

to �, i.e., Lb(ω) :=
∫

L̂b∩�
〈ω, τ b

〉θb(x) dH1(x) for every compactly supported and
smooth 1-form ω defined in �̂. Associated to any b-dislocation in �̂ is its density,
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that is, the measure 3̂Lb ∈M(�̂,M3), defined by

〈3L̂b , w〉 := L̂b((wb)∗), (3-2)

for every w ∈D(�̂,M3), where in the right-hand side ω := (wb)∗ is the covector
(wb)∗ := wk j b j dxk . If we identify test functions w ∈ D(�̂,M3) with 1-forms in
D1(�̂,

∧
R3)3, then we can also identify the density 3L̂b with an integral 1-current

with coefficients in the group Z3, as in (3-2). We will use the notation

3L̂b = L̂b
⊗ b.

Its counterpart in� is the restriction of3L̂b to�, denoted by3Lb and characterized
by

3Lb = Lb
⊗ b = τ b

⊗ bθbH1
xLb .

A general dislocation L̂ is a sequence of b-dislocations {L̂b
}b∈Z3 . The associated

dislocation densities in �̂ and � are given by

3L̂ =

∑
b∈Z3

3L̂b and 3L =

∑
b∈Z3

3Lb , (3-3)

respectively. These definitions allow us to describe any dislocation showing a finite
or countable family of Burgers vectors. However, it can be shown that actually any
dislocation current L can be split in the basis of R3, as the sum of three integral
1-currents (called canonical dislocation currents) L=L1+L2+L3, in such a way
that3Li =3i =Li⊗ei for i=1, 2, 3 and that3L=31+32+33. With the notation
Li = {L i , τ

i , θi }, we call L :=
⋃

i L i the dislocation set, which corresponds to the
support of L as shown in [Scala and Van Goethem 2016].

A dislocation current α in V := �̂\� is a boundary condition if it is the restriction
to V of a closed dislocation current α in �̂. We finally define the class of admissible
dislocations in � with respect to a given boundary condition α as the set of all
dislocation currents L which are the restrictions to � of some closed dislocation
current L̂ in �̂ such that L̂xV = α. In the sequel, we will always suppose that
dislocation currents are admissible for a fixed boundary datum.

3.2. Functional space representation of dislocation networks. We will restrict
our attention to the class of continuum dislocations (c.d.), defined as follows: L

is a continuum dislocation if, for i = 1, 2, 3, there exists a 1-Lipschitz map λi
:

[0,M i
] → �̂ such that L̂i = λ

i
][[0,M i

]], the push-forward by λi of the standard
current given by integration on the interval [0,M i

]; see [Scala and Van Goethem
2016, §2] for details (note that this definition is equivalent to the original one given
in the reference thanks to Theorem 4.5 therein). Moreover, since all such currents
are boundaryless by definition, we can rescale the functions λi and suppose they are
defined on S1. These dislocations might be called clusters because their Lipschitz
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descriptions allow for the formation of complex curves. Their counterparts in �
are defined as above. In such a case, the density of a continuum dislocation in �
can be written as the sum of the three measures

3L =

3∑
i=1

3i =

3∑
i=1

λi
][[S

1
]]x�⊗ ei , (3-4)

which can be equivalently written as 3i = (λ̇i
⊗ ei )λ

i
]H

1, where λi
]H

1 is the
push-forward of the 1-dimensional Hausdorff measure on S1 through λi (see, e.g.,
[Krantz and Parks 2008] for this notion).

If L is a continuum dislocation, then there exists a set CL ⊂ �̂ containing the
support of the density 3L̂ which is a continuum, i.e., a finite union of connected
compact sets with finite 1-dimensional Hausdorff measure. Note that such a set is
not unique and that we can always take, for example, CL =

⋃3
i=1 λ

i (S1).
Let us introduce the class of dislocation density measures with compact support

in �̂ as

M3(�̂,M3) := {µ̂ ∈M(�̂,M3) : there exists L̂, c.d., with density −(3L̂)
T
= µ̂}.

(3-5)
Let λ ∈W 1,1(S1,M3), with L :=

⋃3
i=1 λ

i (S1). We introduce

θi (P) :=#
{

s∈ (λi )−1(P) :
λ̇i

|λi |
(s)=τ(P)

}
−#
{

s∈ (λi )−1(P) :
λ̇i

|λi |
(s)=−τ(P)

}
,

for every P ∈ L , which stands for the multiplicity of the dislocation with Burgers
vector ei , where the symbol # denotes the cardinality of a set (the subtraction is
due to overlapping loops with reverse orientations).

For every ϕ ∈ Cc(�̂,M3), the density µ̂λ := −(3L̂)
T which is associated to λ

satisfies

−〈µ̂λ, ϕ〉 =

3∑
k=1

∫
S1
ϕ(λk(s)) · (ek ⊗ λ̇

k(s)) dH1(s)

=

3∑
k=1

∫
S1
(ϕ ◦ λk)k j (s)(λ̇k) j (s) ds. (3-6)

The latter equality can also be seen as the integration on the image L i of the curve λi

counted with its multiplicity θi . It turns out that

−〈µ̂λ, ϕ〉 =

∫
L
ϕi j (P)τ i

j (P)θi (P) dH1(P). (3-7)

Here

τ i
jθi dH1

= (λ̇i ) j ds. (3-8)
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The counterpart of µ̂λ in � is µλ = µ̂λx�. The correspondence between the arcs λ
and the Burgers vectors of the dislocation will appear clearer in the following:

Remark 19. When we deal with a dislocation L generated by a single loop with
Burgers vector b = (β1, β2, β3) = βi ei , βi ∈ Z (b 6= 0), then we have a Lipschitz
function γ b

∈ W 1,1(S1,R3) such that L = γ b
] [[S

1
]]x� and −µT

γ b = 3L = L⊗ b,
that is, the measure such that

−〈µγ b , ϕ〉 =

∫
S1
ϕ(γ b(s)) · (b⊗ γ̇ b(s)) ds =

∫
S1
ϕi j (γ

b(s))bi γ̇
b
j (s) ds

=

∫
L
ϕi jτ

i
j biθ dH1, (3-9)

where θ(P) represents the multiplicity of the dislocation and is defined for every
P ∈ L as

θ(P) :=#
{

s∈(γ b)−1(P) :
γ̇ b

|γ b|
(s)=τ(P)

}
−#
{

s∈(γ b)−1(P) :
γ̇ b

|γ b|
(s)=−τ(P)

}
.

(3-10)

For every µ ∈M3(�̂,M3), it is easy to check that Divµ= 0 in �̂ since Li are
closed integral currents. In fact for all ψ ∈ D(�̂,R3), one has

−〈Dψ,µ〉 =
〈

Dψ,
3∑

k=1

ek ⊗ λ̇
k(λk

]H
1)

〉
=

3∑
i=1

∫
S1

D j (ψi ◦ λ
i )λ̇i

j ds

=

∫
S1

Dt(ψk ◦ λ
k) dt = 0.

We then get M3(�̂,M3)⊂Mdiv(�̂,M3). We can now identify the space M3(�̂,M3)

with W 1,1(S1, �̂3) through the map

T :W 1,1(S1, �̂3)→M3(�̂,M3) such that T (λ)=−µ̂λ defined in (3-6). (3-11)

The map T is by definition onto while, for every λ ∈W 1,1(S1, �̂3),

‖T (λ)‖M ≤ ‖λ̇‖L1, (3-12)

implying the continuity of T . In general, T is not an injective map, but it is injective
up to an equivalence relation ∼ in W 1,1(S1, �̂3) (namely, λ ∼ λ′ if and only if
T (λ)= T (λ′) as measures). As a consequence,

T (W 1,1(S1, �̂3))=M3(�̂,M3), (3-13)

T−1(M3(�̂,M3))=W 1,1(S1, �̂3). (3-14)
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3.3. Class of admissible deformations and existence of minimizers. In this sub-
section, we exhibit an existence result for minimizers of energies W satisfying
some particular assumptions. For the proofs, we refer to [Scala and Van Goethem
2016]. Let us introduce

BCp,3(�̂,M3) := {F ∈BCp(�̂,M3) : Curl F ∈M3(�̂,M3)}, (3-15)

BCp,3(�,M3) := {F ∈BCp(�,M3)

: there exists F̂ ∈BCp,3(�̂,M3) with F = F̂x�} (3-16)

and its proper subspace

BC
p,3
div (�̂,M3) := {F ∈BC

p
div(�̂,M3) : Curl F ∈M3(�̂,M3)} (3-17)

in such a way that, by Theorem 16 and (3-13),

BC
p,3
div (�̂,M3) := Curl−1(M3(�̂,M3))= Curl−1(T (W 1,1(S1, �̂3))). (3-18)

In [Scala and Van Goethem 2016], we consider deformations F ∈BCp,3(�,M3)

which also satisfy some regularity conditions outside the continuum dislocation
set CL of the dislocation 3L ∈M3(�,M3). If F is an admissible deformation, we
assume that F satisfies the following property:

(P) For every ball B ⊂ � with B ∩ CL = ∅, there exists a Cartesian map u ∈
Cartp(B,R3) such that F = Du in B.

Let us recall the meaning of Cartp(B,R3). If U is an open set on R3, the space of
Cartesian maps on U , denoted by Cartp(U,R3), is defined as the space of maps
u :U → R3 belonging to W 1,p(U,R3) and satisfying the conditions that adj(Du)
and det(Du) belong to L1(U,M3) and ∂Gu= 0, where Gu is the rectifiable 3-current
in U ×R3 carried by the graph of u [Giaquinta et al. 1998]. We denote by

ADp(�̂) := {F ∈BCp,3(�̂,M3) : F satisfies (P) above}, (3-19)

ADp(�) := {F∈BCp(�,M3) : there exists F̂∈ADp(�̂) with F= F̂x�}. (3-20)

Notation 20. Let �̂ be the open set introduced in Notation 15, and let α be a
boundary condition in V = �̂ \� (i.e., α = L̂xV for a closed dislocation current L̂

in �̂). We then fix F̂ ∈ADp(�̂) such that −Curl F̂ = (3L̂)
T and define

Fα := {F ∈ADp(�), 1≤ p< 2 : F̃ := Fχ�+ F̂χV ∈ADp(�̂), −Curl F̃ = (3L̂)
T

in �̂ for some closed dislocation current L̂ in �̂}. (3-21)

In particular, note that the dislocation current L̂ in the above definition must
coincide with α in V . We denote by L the restriction to � of L̂.
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Assumptions on the energy. We make the assumption on the elastic energy

W(F,3L) :=We(F)+Wdislo(3L), (3-22)

with

We(F) :=
∫
�

We(F) dx . (3-23)

As for the dislocation part, we assume that

Wdislo(3L)=W1
dislo(3L)+W2

dislo(3L), (3-24)

where the precise continuity, growth properties on the bulk, and defect energies
are discussed and motivated in [Scala and Van Goethem 2016]. Let us stress
that following [Conti et al. 2015a] (where no variational problem is solved), an
expression for the line tension W1

dislo is here taken as

W1
dislo(µ)=

∫
L
ψ(θb, τ ) dH1, (3-25)

when µ= b⊗γ][[S1
]] = b⊗θτH1

xL is the dislocation density of a cluster generated
by the loop γ ∈ W 1,1(S1,R3) and Burgers vector b = βi ei , βi ∈ Z (b 6= 0), and
takes the value +∞ if µ is not of this type. Here ψ : Z3

×R3
→R is a nonnegative

function satisfying ψ(0, · )= 0 and ψ(b, t)≥ c‖b‖ for a constant c > 0.
As for the term W2

dislo(3L), it is remarkable that, under the hypotheses needed
to get existence of minimizers, it does not depend on small perturbations of the
dislocation line set L . This will be strongly used in the subsequent section.

Now the existence theorem is the following:

Theorem 21. Under Notation 20 and suitable hypotheses on the energy W in (3-22)
(see [Scala and Van Goethem 2016] for details), there exists a minimizer F? of the
problem

min
F∈Fα

W(F,3L). (3-26)

We write Curl F? =3T
L? with L? being the optimal dislocation network, whose

support is denoted by L?. It should be remarked that, due to the Dirichlet condi-
tion F = F̂ on �̂ \� for the admissible deformations gradients, the minimizer is
not trivial and must satisfy −Curl F =3L for some closed dislocation current L

coinciding with α in �̂ \ �. An explicit example showing the nontriviality of
the solution can be found in [Scala and Van Goethem 2016, §5.4]. Note that such
energies at the macroscale are considered in [Neff et al. 2015a], where a variational
problem is solved.
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4. Configurational forces at optimal dislocation networks

Certain forces apply on the dislocation clusters, solutions to the above minimiza-
tion problem. They are due to the combined effect of the deformation and defect
part of the energy. The line having no mass, these forces must be understood as
being of configurational nature. They are related to the presence of microstructure,
here dislocations, in an otherwise static elastic medium in equilibrium. All the
results of the previous sections will allow us to prove Theorem 26, which consists
of a balance of forces at minimality. Furthermore, minimality will entail Euler–
Lagrange equations which physically correspond to the balance of forces and to
the vanishing of virtual work done by the configurational force, recognized as the
Peach–Koehler force.

4.1. Shape variation at optimality. Let F? be a minimizer of W(F). By Theorem 9
and (3-13),

F? = Du?+ (Curl−1
◦T )(λ?),

where Curl−1 is the solution of (2-19), for some λ? ∈W 1,1(S1, �̂3). Let −(3?)T :=
T (λ?)=−Curl F? on �̂.

Define the linear map

S :W 1,1(S1, �̂3)→BC
p,3
div (�̂,M3), S = Curl−1

◦T . (4-1)

We first prove the following preliminary result.

Lemma 22. The map S : W 1,1(S1, �̂3) → BC
p,3
div (�̂,M3) is Gâteaux differen-

tiable at λ? in all directions λ. In particular, DS(λ?)[λ] ∈ M(�̂,M3), for every
W 1,1(S1, (R3)3)-variation λ, and

〈DS(λ?)[λ], ϕ〉 =
3∑

i=1

∫
S1
ε jkm(ϕ ◦ λ

?)im(s)(λ̇?)ik(s)λ
i
j (s) ds (4-2)

for every ϕ ∈ Cc(�,M3) such that Divϕ = 0.

Proof. Let 9 ∈D(�,M3). From (3-6) and (3-11), we infer by a Taylor expansion
of 9 that the directional derivative of T at λ? along a variation λ ∈W 1,1(S1, (R3)3)

reads

〈DT (λ?)[λ], 9〉 =
3∑

i=1

∫
S1

(
(9 ◦λ?)i j (s)λ̇i

j (s)+Dk(9 ◦λ
?)i j (s)(λ̇?)ij (s)λ

i
k(s)

)
ds.
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Integrating the last expression by parts, we get

〈DT (λ?)[λ], 9〉 =
3∑

i=1

∫
S1

(
Dk(9 ◦ λ

?)i j (s)(λ̇?)ij (s)λ
i
k(s)

− Dk(9 ◦ λ
?)i j (s)(λ̇?)ik(s)λ

i
j (s)

)
ds

=

3∑
i=1

∫
S1

(
D j (9 ◦ λ

?)ik(s)− Dk(9 ◦ λ
?)i j (s)

)
(λ̇?)ik(s)λ

i
j (s) ds

=

3∑
i=1

∫
S1
ε jkmεmpq Dp(9 ◦ λ

?)iq(s)(λ̇?)ik(s)λ
i
j (s) ds. (4-3)

Let us now compute DS. Let ϕ ∈Cc(�,M3) such that Divϕ= 0. Then ϕ=Curl9
for some 9 ∈ C1(�,M3), and hence, by Theorem 16,

1
ε
〈S(λ?+ ελ)− S(λ?),Curl9〉 =

1
ε
〈Curl−1(T (λ?+ ελ)− T (λ?)),Curl9〉

=
1
ε
〈(T (λ?+ ελ)− T (λ?)),9〉.

Letting ε→ 0 yields the result by (4-3). �

4.2. First Euler–Lagrange equation and the static equilibrium. In this subsec-
tion, we make variations of the deformation at minimality, assuming the optimal
line fixed, and derive the classical strong form of finite-strain elasticity.

Regularity assumption on the energy. We make the assumption that the energy
We : L p(�̂)→ R in (3-23) is Fréchet differentiable in L p(�̂) with the Fréchet
derivative of F 7→ W(F,3?) denoted by WF ∈ L p′(�̂). As a consequence, for
every F ∈ L p(�̂),

(A1) δW(F?)[F] := d
dεW(F?+ εF,3?)|ε=0 =

∫
�̂

W ?
F · F dx = δWe(F?)[F] with

W ?
F :=WF (F?,3?)= δWe(F?) ∈ L p′(�̂).

Note that this assumption is rather general and is about the least we can assume
on We.

Variations F of deformation F? still satisfying the constraint−Curl(F?+εF)=
(3?)T must belong to AD

p
curl(�̂) := {F ∈ ADp(�̂) : Curl F = 0}. Moreover,

such variations at the minimum points of the energy W must provide a vanishing
variation of W. Thus, F? being such a solution, for every curl-free F = Du ∈
L p(�̂), it must hold that

δW?(Du)= δWe(F?)[Du] = 0. (4-4)
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From (A1), (4-4), and Theorem 18, it follows that there exists L? continuous such
that

P? :=W ?
F = δWe(F?)= Curl L? ∈ L p′(�̂) (4-5)

satisfying the strong form {
−Div P? = 0 in �̂,
P?N = 0 on ∂�̂.

(4-6)

One could wonder why (4-6) is not immediate from the relation
∫
�

W ?
F ·∇u dx = 0,

which is Euler–Lagrange in weak form. In fact, the integration by parts which is
classically used in this context is not legitimate in the present case simply because
the divergence theorem does not hold for L p-fields since P?N has no meaning at
the boundary. This is the reason why Theorem 18 is called and P? is obtained as
the curl of constraint reaction L?, being therefore automatically divergence-free,
while P?N has a meaning by Lemma 13 and Theorem 18.

Remark 23. By (4-6), P? :=W ?
F is identified with the first Piola–Kirchhoff stress.

P? being in L p′(�̂), and recalling that F ∈ L p(�̂), means that the Kirchhoff stress
P?F is in L1(�̂).

4.3. The Peach–Koehler force as a stationary condition. In this subsection, we
derive the second Euler–Lagrange equation of the system in equilibrium.

Regularity assumption on the stress. Regularity of the minimizers is a well-known
open problem in mathematical elasticity. Indeed, almost no results exist, even with
an energy growth with p ≥ 2 (i.e., without dislocations), as reported by J. Ball
[2002]. A related problem is the regularity of the Piola–Kirchhoff stress P?. In or-
der to derive the subsequent formulae, which are well-established by physicists, we
will also appeal to an assumption, not on F?, but rather on some components of P?.

Let us consider the orthonormal curvilinear basis (τ ?, σ ?, ν?) on the optimal
dislocation set L?, with τ ? the unit tangent vector to L?. Let us decompose P? in
this basis; i.e., P? = P?τ ? ⊗ τ ? + P̃?. Physically, P?τ ? represents the force dF

exerted on a facet d S of normal τ ?, that is, on a section of the tubular neighborhood
of the dislocation L?; namely, dF = P?τ ?d S. Since all such facets are crossed
by the dislocation, they presumably correspond to singular forces, in such a way
that no regularity assumption can be made on these components. We will therefore
make a regularity assumption on the remaining components P̃?. Let us emphasize
that the optimal deformation tensor F? is smooth in � \ L?, and hence, by (4-6),
P? will also be smooth in � \ L?. Therefore, it is assumed that

(A2) P̃? is continuous in a neighborhood of L?.

In fact, lack of continuity of these components would mean that the contact
forces dF tend to infinity at L?.
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Validity of Assumption (A2). First, we remark that in linearized elasticity the stress
behaves as ∼ 1/r and following [Hirth and Lothe 1982; Van Goethem and Dupret
2012a] one has P̃?screw = 0 whereas P̃?edge → ∞ as r → 0. Hence, obviously,
one must consider finite strain elasticity to discuss Assumption (A2). Here again,
the situation is not evident since nonlinear stresses depend on the choice of the
material (i.e., of the energy We) and on the physics which takes place at the singular
line. We will thus follow L. Zubov, who has reported the current state of the
art in [Zubov 1997]. About the screw dislocation, he first points out that, for a
Mooney (and neo-Hookean) incompressible material, one has divergence of P̃?screw
at the singularity, but he discards this case as being nonphysical, i.e., not suitable
for the creation of a screw dislocation [Zubov 1997, p. 74]. Then he considers
the Bartenev–Khazanovich among two other incompressible materials and finds
P̃?screw ∼ ln r , hence again lacking continuity though showing better integrability
properties. However, incompressibility is not assumed in general and in particular
not in the present paper (indeed, it would imply another constraint reaction [Fosdick
and Royer-Carfagni 2005]). Therefore, following Zubov again, one considers a
Blatz–Ko material together with the physical observation that the creation of a
screw dislocation takes place together with a cylindrical cavity, and this implies
continuity of P̃?screw at the singularity [Zubov 1997, (3.2.12), (3.2.16), (3.2.24),
(3.2.28), p. 76], whereas P− P̃ must not be continuous [Zubov 1997, (3.2.12),
p. 76]. Because the technical difficulties are huge, Zubov does not compute in
extenso the edge dislocation with a cavitation, but nonetheless we consider the
following physical interpretation, as based on Zubov’s aforementioned results and
physical evidence of dislocation nucleation as reported by, e.g., [Cottrell 1964;
Berezhkova 1969]:

Assumption (A2) holds true for a compressible material where a cavita-
tion is found along any dislocation loop.

In practice, Assumption (A2) allows one to have a finite radius R in the reference
configuration corresponding to r = 0 in the deformed configuration �. Further-
more, Zubov shows that R(0) is proportional, on the order of 10% of the Burgers
vector.

Note that the creation of such a cavity in single crystals is due to the nucleation
process of dislocation loops resulting from the collapse of a void, i.e., a cluster of
vacancies which has become unstable.

The Peach–Koehler force. We write F = Du+Curl−1(−3T)= Du+ S(λ) for all
F ∈ BCp(�̂,R3×3) with u ∈ W 1,p(�̂,R3) (by Theorem 9 and (4-1)). Following
this formalism, it is thus assumed that the energy W depends on the dislocation
path λ ∈W 1,1(S1, �̂3) as defined in (3-11), that is,

W◦(Du, λ) :=W(Du+ S(λ),−T (λ)), (4-7)
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and then W◦(Du, λ) =W(F,3) with 3T
= −Curl F if λ ∈ T−1(−3T). Let us

consider the energy at its minimum F?:

W◦(Du?, λ?) :=W(Du?+ S(λ?),−T (λ?))

=We(Du?+ S(λ?))+Wdefect(−T (λ?))

=:W◦e(λ
?)+W◦defect(λ

?). (4-8)

Let us denote the variation of the energy We by δ◦We(F?) := δW◦e(λ
?). The ex-

pression of the variation of the energy is then given by the following main result.

Theorem 24 (work done by the Peach–Koehler force). Under the assumptions of
Theorem 21 and hypotheses (A1) and (A2), one has

〈δ◦We(F?), λ〉 =
3∑

i=1

∫
L?
(P?× τ i )Tθi · λ

i
◦ (λ?)−1 dH1, (4-9)

where we have employed notation (3-7).

Proof. We want to perform variations λ ∈W 1,1(S1, (R3)3) of W◦e(λ
?). Identifying

W ?
F with the Piola–Kirchhoff P? as in (4-5), using Lemma 22 with ϕ = P̃, one has

δW◦e(λ
?)[λ] =

3∑
i=1

∫
S1
λi

jε jkm(λ̇
?)ikP̃?im ◦ λ

? ds

=

3∑
i=1

∫
S1
λi

jε jkm(λ̇
?)ikP?im ◦ λ

? ds, (4-10)

where Assumption (A2) gives a meaning to P̃?im on L? (i.e., to P̃?im ◦ λ
? on S1) and

hence to the duality pairing

δW◦e(λ
?)[λ] = 〈W ?

F , DS(λ?)[λ]〉, (4-11)

completing the proof. �

The integrand in the right-hand side of (4-9) is recognized as the Peach–Koehler
force. Theorem 24 simply says that at minimality the virtual work done by the
Peach–Koehler force must vanish.

Remark 25. The duality pairing (4-11) holds as soon as one considers a mollifi-
cation of W ?

F , that is, if W ?
F is assumed continuous. However, this assumption is

stronger than (A2), which requires only the continuity of some physically relevant
components (related to the formation of a cavitation at the line singularity). Fur-
thermore, nothing guarantees that the variation with any mollification of W ?

F would
vanish since it is strictly speaking not the minimum point. Thus, at the mesoscopic
scale, the best assumption found is (A2) in order to be able to merely define the
Peach–Koehler force as related to minimality.
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According to Remark 25, the following subsection shows how the Peach–Koehler
force would formally be recovered.

Formal derivation of the Peach–Koehler force from the Eshelby tensor. Recalling
(3-23), we introduce the Eshelby tensor E componentwise as

Ei j = δi j We− Fki Pk j . (4-12)

Then, assuming that F and P are smooth enough,

∂ jEi j = ∂i We− ∂ j Fki Pk j − Fki∂ j Pk j . (4-13)

At minimality, one has ∂ j Pk j = 0 and hence

∂ jE
?
i j = ∂i W ?

e − ∂ j F?ki P
?
k j = ∂i W ?

e − (∂ j F?ki − ∂i F?k j )P
?
k j − ∂i F?k j (W

?
F )k j , (4-14)

where the first and last terms of the right-hand side mutually cancel, whence

∂ jE
?
i j =−(∂ j F?ki − ∂i F?k j )P

?
k j = εi jlεlmn∂m F?knP?k j = εi jl(Curl F?)klP

?
k j , (4-15)

that is
∂ jE

?
i j = 〈εil j3

?
lk,P?k j 〉. (4-16)

Note that (4-16) has no rigorous meaning in our setting, i.e., at the mesoscale, since,
3? being a Radon measure but P? not being continuous, the duality pairing (4-16)
is undefined. This is the reason why the Peach–Koehler force is established in our
work by means of Assumption (A2).

4.4. Configurational balance. Let L = γ ?(S1) be a single smooth-enough dislo-
cation loop with tangent vector τ , normal vector ν, curvature κ , and total Burgers
vector B. This is assumed for simplicity of exposition, but similar results can be
stated for general λ? ∈W 1,1(S1, �̂3). We introduce

F := (P?× τ)T BδL ,

G := κ
(
ψ(b, τ )−∇ψ(b, τ ) · τ +∇∇ψ(b, τ ) · ν⊗ ν

)
ν‖γ̇ ?‖−1δL ,

the so-called Peach–Koehler force and line tension, respectively, where ψ is the
energy density as introduced in (3-25).

Deriving strong forms of equilibrium from a variational problem is classically
done provided some regularity of the minimizers is assumed, as summarized in the
following theorem. Note that restricting to a single generating loop with Burgers
vector b is chosen for simplicity of exposition. In order to well-define tangent and
normal vectors, as well as line curvature, the following regularity assumption will
be made on the optimal dislocation set L? = γ ?(S1):

(A3) γ ? ∈W 2,1(S1, �̂).



CONSTRAINT REACTION AND THE PEACH–KOEHLER FORCE 131

Theorem 26. Under the assumptions of Theorem 21, assuming ψ,ψ : Z3
×R3

→

R+ are of class C 2 and that the optimal dislocation network satisfies (A3) and
is associated to a single Burgers vector b, then minimality implies equilibrium of
configurational forces, in the sense that the Peach–Koehler force F ? is balanced
by the line tension G ? in L?, i.e.,

F ?
+G ?

= 0. (4-17)

Proof. Let us particularize (4-10) to the case where the density 3? is generated by
one single loop γ ? ∈W 1,1(S1, �̂) with Burgers vector b= βi ei , βi ∈ Z (b 6= 0) (see
Remark 19). For variations of the form γ ? + εγ with γ ∈ W 1,∞(S1, �̂), (4-10)
becomes

δW◦e(γ
?)[γ ] =

∫
S1
εk jm(P

?
◦ γ ?(s))imτkbiγ j (s)‖γ̇ ?(s)‖ ds

=

∫
L?
εk jmP?imτkbiγ j dH1

=

∫
�̂

εk jmP?imγ j d3?ki . (4-18)

Using the notation introduced in (4-8), we write

W◦(γ ?+ εγ )=W◦e(γ
?
+ εγ )+W◦defect(γ

?
+ εγ ), (4-19)

We have
δW◦(γ ?)[γ ] = δW◦e(γ

?)[γ ] + δW◦defect(γ
?)[γ ]. (4-20)

Let us now compute the variation of the defect part of the energy. For a disloca-
tion density of the form µ= b⊗ γ][[S1

]], (3-25) can be written as

W1
defect(µ)=

∫
S1
ψ

(
b,

γ̇

‖γ̇ ‖
(s)
)
‖γ̇ (s)‖ ds. (4-21)

Taking into account that the term W2
defect(µ) does not change for small perturba-

tions of the dislocation line, the first variation of (4-21) at the point γ ?∈W 1,1(S1, �̂)

can be explicitly computed and will coincide with δW◦defect(γ
?)[γ ]. It holds that

δW◦defect(γ
?)[γ ] =

∫
S1

(
Dkψ

(
b,

γ̇ ?

‖γ̇ ?‖
(s)
)(

γ̇k‖γ̇
?
‖

2
− γ̇ ?k γ̇

?
j γ̇ j

‖γ̇ ?‖2
(s)
)

+ψ

(
b,

γ̇ ?

‖γ̇ ?‖
(s)
)(

γ̇ ?j γ̇ j

‖γ̇ ?‖
(s)
))

ds, (4-22)

where Dkψ is the derivative of ψ with respect to the k-th component of its second
variable. Denoting τ = γ̇ ?/‖γ̇ ?‖, we integrate by parts to obtain

δŴdefect(γ
?)[γ ] = −

∫
S1

(
ψ(b, τ )τ̇ j − Dkψ(b, τ )τk τ̇ j

+ D j Dkψ(b, τ )τ̇k − Dp Dkψ(b, τ )τ̇kτpτ j
)
γ j ds,
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where we dropped the variable s. Equivalently, recalling that τ̇i = κνi and since
D j Dkψ(b, τ )τ̇k = τ

i
jτ

i
p Dp Dkψ(b, τ )τ̇k + ν jνp Dp Dkψ(b, τ )τ̇k ,

g?j [b] := ψ(b, τ )τ̇
i
j − Dkψ(b, τ )τk τ̇

i
j + D j Dkψ(b, τ )τ̇k − Dp Dkψ(b, τ )τ̇kτ

i
pτ

i
j

= ψ(b, τ )τ̇ i
j − Dkψ(b, τ )τk τ̇

i
j + Dp Dkψ(b, τ )τ̇kνpν j

= κ
(
ψ(b, τ )− Dkψ(b, τ )τk + Dp Dkψ(b, τ )νpνk

)
ν j . (4-23)

Plugging the last expression into (4-20) and using (4-18), we obtain

δW◦(γ ?)[γ ] =

∫
S1

(
εk jm(P

?
◦ γ ?)im(s)bi γ̇

?
k (s)− g?j [b](s)

)
γ j (s) ds. (4-24)

From the condition

δW◦(γ ?)[γ ] = 0 for all γ ∈W 1,1(S1,R3),

due to the minimality of γ ?, we then get from (4-24) F ?
j +G ?

j = 0, with

F ?
j := εk jm(P

?)im BiτkδL? and G ?
j := ρdislo(B)ν jδL?,

where
ρdislo(B) := −g?[B]ε−1 (4-25)

with g? := g?jν j , ε = ε(P) := ‖γ̇ ? ◦ γ ?
−1
(P)‖, the local deformation of the curve

at P ∈ L?,
B := θ(P)b,

the total Burgers vector, and θ(P) as defined by (3-10), the multiplicity of the dis-
location (accounting for the loops of the cluster whose Burgers vector is a multiple
of b). �

Remark 27. Actually, (4-17) holds at H1-a.e. P ∈ L and not at all P . This is due
to the fact that it might happen that a point P ∈ L is the overlapping of parts of γ
which, although having the same tangent vector τ , do not have the same curvature κ
nor the same orthogonal vector ν.

In the case where θ = 1 and the dislocation is parametrized by arc length
(|γ̇ ?| = 1), the balance of forces can be rewritten as

εk jmP?imbiτk = g?j [b] on L?.

A modeling example. Conti et al. [2015a] consider a potential W1
dislo of the form

(3-25) with
ψ(b, τ ) := |b|2+ η〈b, τ 〉2, (4-26)

where η > 0 is a constant.
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In the particular case where b = βe1, β ≥ 1, it is shown that such energy is also
lower-semicontinuous.

In such a case, the above computations entail that

G ?
j (P)= (|b|

2
− η〈b, τ 〉2+ 2η〈b, ν〉2)κν j

so that at the minimum of the energy

θ2((1− η)〈b, τ 〉2+ (1+ 2η)〈b, ν〉2
)
κν j = ε j pkP?i pθbiτk .

4.5. Some additional remarks.

Formal balance of configurational forces. Equation (4-18) yields, by (4-16) and a
slight abuse of notation,

δW◦e(γ
?)[γ ] =

∫
�̂

−∂kE
?
jkγ j dx . (4-27)

Therefore, (4-24) and (4-27) can be rewritten as the virtual configurational work
balance at minimality, i.e.,

−Div E ? = G ?, (4-28)

where E ? and G ? stand for the configurational stress and the internal configurational
force [Gurtin 2000, p. 34]. In our case, G ?

:= ρdislo[B]ν jδL? . Quoting Gurtin, such
force is “related to the material structure of the body B; to each configuration of B

there correspond a distribution of material and internal configurational forces that
act to hold the material in place in that configuration. Such forces characterize
the resistance of the material to structural changes and are basic when discussing
temporal changes associated with phenomena such as the breaking of atomic bonds
during fracture [and during dislocation motion]”.

Let us note that Agiasofitou and Lazar [2010] have also derived a relation such
as (4-28) in the framework of dislocation gauge theory by means of invariance
properties and the Noether theorem (without considering a minimization problem
as done here). These authors showed that the translational balance laws of the
elastic and dislocation parts give rise to the Peach–Koehler force and also give the
interpretation that “the Peach–Koehler force is the interaction force between the
elastic subsystem and the dislocation subsystem” (see also (5.39) in [Lazar and
Anastassiadis 2008]).

A brief glance at the dynamic problem. So far, we have identified the stationarity
condition as a balance of configurational work. This happens when minimality is
reached.

Consider now a time-evolution problem involving dislocation lines. In principle,
no variational problem drives its evolution instantaneously, but minimality might be
reached as t→∞ [Berdichevsky 2006]. So a first remark is that, before minimality
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is reached, one has Div E ?+ g? 6= 0, by definition, and hence there exists a nonzero
momentum p such that, according to [Gurtin 2000, p. 46],

−FT ṗ = Div E ?+G ?. (4-29)

Hence, one might determine the motion of the line towards equilibrium, i.e., until
ṗ = 0.

Now, Gurtin [2000, p. 11] further says that as far as ṗ = 0 the internal configura-
tional force remains “indeterminate when and only when the associated structures
are fixed in the material”. This is similar to the constraint forces in classical me-
chanics (as the line tension of the pendulum) which do not need to be determined
to establish the motion equation. In particular, no constitutive law for these forces
is required in general.

However, we would like to emphasize that we have derived a constitutive law
since (4-28) can be rewritten as

Peach–Koehler force= Div E ? =−ρdislo[B]ν jδL?, (4-30)

where ρdislo is given in extenso by (4-23) and (4-25) in terms of the dislocation
energy.

Second Euler–Lagrange equation and the dislocation equation. With the view of
establishing an equation relating dislocation density and stress, the second Euler–
Lagrange equation for our minimum problem should be derived; that is, the dif-
ferential of the total energy should be computed with respect to divergence-free
deformations G (recall that curl-free deformations were considered for the first
Euler–Lagrange equation in Section 4.2). We would like to point out serious
mathematical issues in order to give a meaning to a vanishing of such a variation,
0= δW(F?)[G]. The principal reason (and the only which we discuss here) is that
the differential d

dεWdislo(3
?
+ ε3)|ε=0 has no meaning in M3(�̂,M3), this space

not being linear, due to the fact that, as ε tends to zero, the resulting Burgers vector
might not be an integer, whereas the minimum is achieved in this class of measures,
with a crystallographic Burgers vector.

5. Concluding remarks

On the way to mathematically understanding time evolution of dislocations, the
work achieved in [Scala and Van Goethem 2016] was the first step, allowing us to
describe the geometry of dislocation clusters and to prove existence of solutions
to a general variational problem. With the present contribution, our wish was to
provide a further decisive step since the result of Theorem 26 introduces two forces
balancing each other at optimality, the first deriving from the elastic part of the en-
ergy and named after Peach and Koehler (well-known in dislocation models [Hirth
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and Lothe 1982]) and the second deriving by shape variation of the defect part of
the energy. Here crucial use has been made of the decomposition F = ∇u+ F◦

where F◦ and Curl F◦ depend on the line. Such a force and such a balance of
forces could be derived at the mesoscopic scale, without the required mathemati-
cal formalism, since there is subtle interplay between concentrated measures and
Sobolev functions.

It turns out that the sum of these two forces naturally provides an expression
of the velocity of the dislocation (for instance, a linear law is acceptable under
certain working assumptions [Acharya 2003]). Of course, a nonvanishing velocity,
i.e., a nonzero force, means that the solution does not coincide with energy mini-
mization, as is well-known for evolution problems. In future work, our task is to
determine the dissipative effects and the balance equations and to analyze in detail
the evolutionary scheme.

The force we derived here yields an important output in terms of modeling,
but to achieve a proof of Theorem 26, a series of results have appeared about
the mathematical nature of functional spaces for dislocation-induced deformations.
These should also be considered as contributions to the general aim of understand-
ing dislocation problems considered at the mesoscale in appropriate mathematical
terms. Moreover, the paper has been written with a first part containing generic
results, which are not related to dislocation models.
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