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TRANSMISSION THROUGH A STRATIFIED LOSSY MEDIUM OF AN

ELLIPTICALLY POLARIZED PLANE WAVE

FABIO MANGINI AND FABRIZIO FREZZA

In this paper, a method to analyze the electromagnetic scattering of an elliptically
polarized plane wave through a stratified lossy medium is presented. The inter-
action of the electromagnetic radiation with the stratified material is taken into
account by means of the transfer-matrix approach: in this way, we can consider
the stratified medium as an effective single interface. To do that, it was neces-
sary to represent the complex plane-wave propagation vector with two different
formulations: the phase and attenuation vectors and the complex angle. Thanks
to these two formalisms, it is possible to describe the behaviors of this canonical
phenomenon in an elegant way in all the cases of presence of a stratified lossy
medium. A numerical code has been implemented to compute the field over
the whole space. Finally, to validate the presented model, comparisons with the
results presented in the literature have been provided.

1. Introduction

The determination of the Fresnel coefficients due to the presence of a layered
medium with plane interfaces has been the subject of several studies in the last
decades because of its important applications, e.g., to forward and inverse scat-
tering by buried two- and three-dimensional objects, to electromagnetic artificial
materials, to characterization of porous media and to enhancement of optical an-
tennas and photovoltaic panels [Takenaka et al. 2003; Khoo et al. 2006; Feng et al.
2003; Ziolkowski and Erentok 2006; Taminiau et al. 2008; Frezza et al. 2013;
2015]. We consider the propagation of an inhomogeneous plane wave in a lossy
medium, which impinges on the interface with another lossy medium. We assume
the media are linear, isotropic, homogeneous, dielectric and generally dispersive
and dissipative; with these exceptions, we define the problem in the most general
manner. In general, from an electromagnetic point of view, all the materials can
be subdivided into three categories: the vacuum with null conductivity (σ = 0),
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Figure 1. Geometry of the problem with the complex-angle formulation.

absolute dielectric permittivity ε = ε0 and absolute permeabilityµ= µ0; the loss-
less dielectrics with σ = 0, ε = ε0εr and µ= µ0µr ; the lossy medium with σ 6= 0,
ε = ε0εr and µ = µ0µr ; and finally the perfect conductor with σ ' ∞. Now
we can see the lossy media are the most general materials considerable. In this
paper, the complex plane-wave propagation vectors are represented with different
formulations: the complex-angle formulation [Ivlev 1987] (Figure 1) and the phase
and attenuation vectors, i.e., the Adler–Chu–Fano formulation [Adler et al. 1960]
(Figure 2). In Figure 1, considering the j-th layer, the impinging complex wave
vectors k∗j and the transmitted one, k∗j+1, are shown. The angles that these vectors
form with the normal direction (z-axis) to the interfaces are ϑ∗j and ϑ∗j+1, respec-
tively. On the other hand, in Figure 2, the phase and attenuation vectors of the
incident, β j ,α j , and of the transmitted, β j+1,α j+1, waves are shown. The angles
that these vectors form with the normal direction to the interface are, respectively,
ξ j , η j and ξ j+1, η j+1. Moreover, we define the angles between the phase and the
attenuation vectors, in the two media, as ζ j =η j−ξ j and ζ j+1=η j+1−ξ j+1, respec-
tively. The difference between the complex angle of the transmitted wave vector
and the angle of the transmitted phase vector is well understood. However, some
confusion between these angles may occur. To emphasize the possible mistake that
can be made between these formulations, we consider the arguments in [Canning
2011], where the expressions of the Fresnel coefficients found in the literature are
questioned. The mistake has been pointed out and corrected in [Besieris 2011]
but allows us to clarify the differences between the possible representations of the
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Figure 2. Geometry of the problem with the phase and attenuation
vector representation.

complex wave vector of an inhomogeneous plane wave in a lossy medium. More-
over, the connection between these two formulations has been mentioned before,
in [Roy 2003], where a numerical result, which needs different determinations in
the solution of a polynomial equation of the fourth order and the inversion of a
cosine function, is presented.

The two possible representations of a complex wave vector in a lossy medium
are very useful to describe the most canonical scenarios about the stratified lossy
medium. The complex-angle formulation can be the best solution to represent the
transmission wave through a multilayered medium that will impinge on a buried
sphere. The actual model of the complex wave vector consists of expanding in
two different plane waves and then obtaining a single expansion involving the
Wigner 3- j symbols [Kaplan and Resnikoff 1967], i.e., using the Adler–Chu–Fano
formulation. Using the complex-angle formulation, it is possible to obtain an ex-
pansion of inhomogeneous elliptically polarized plane waves in terms of vectorial
spherical harmonics in Mie form just using the Legendre functions generalized via
hypergeometrical functions, instead of the classical Legendre functions. Hence, in
all cases where a scatterer is present below the stratified lossy medium, in which the
scattered electric field has to be represented as an expansion of vectorial harmonics,
for example when scatterers with spherical, cylindrical or ellipsoidal shape are
present, it is better to use the complex-angle formulation. Indeed, the phase and
attenuation vector formulation is indispensable to obtain an elegant model of the
classical generalized Fresnel problem.
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In this paper, we consider an elliptically polarized plane wave incident on the
stratified material, we show the two possible representations of a complex wave
vector in a lossy medium and we use the polarization vectors to calculate the real
and imaginary parts of the complex angle as functions of the phase and attenuation
vectors. The transmission through the stratified medium is determined by the well
known formalism of the transition matrix. This matrix was first introduced by
Abelès and is presented in many textbooks of optics and electromagnetics [Abelès
1950; Born and Wolf 1999; Chew 1995]. In the literature, many works have gen-
eralized the transmission-matrix method, e.g., with a polynomial expression of its
elements [Vigoureux 1991] or by considering anisotropic layers [Essinger-Hileman
2013]. Thanks to the transfer-matrix formalism, the lossy medium stratification can
be taken into account, for what concerns our problem, as an effective single inter-
face. In particular, contrary to what is present in the literature, we have obtained
an elegant matrix formulation, simply using the combination of the complex-angle
formalism and the transfer-matrix approach. Moreover, in that way, we highlight
the physical meaning of each element in the transition matrix.

Thanks to the transfer-matrix approach, we can easily extend the number of
layers to infinity so as to realize an intermediate layer with peculiar properties. In
particular, it will be possible to take into account some materials characterized by a
relative permittivity that varies, for example, linearly between two external layers.

In Section 2, the theoretical formulation of the problem is presented in detail.
In Section 3, in order to prove the correctness of our method, we show some
comparisons with the results presented in the literature. Finally, in Section 4, the
conclusions are drawn.

2. Theoretical Approach

The geometry of the problem is depicted in Figures 1 and 2. The incident monochro-
matic radiation on the first surface of the medium is a plane wave traveling from
medium 1 to medium N + 1. Let us call z the stratification direction. Considering
the j-th interface, the wave vector of the impinging radiation forms an angle ϑ j

with the z-axis, and its projection on the interface forms an angle ϕ j with the x-
axis. Let ε j , µ j and σ j be the relative permittivity, the relative permeability, and
the electrical conductivity in the j-th layer of the stratified medium. We remem-
ber that all media are linear, isotropic, homogeneous and generally dispersive and
dissipative. Then the constitutive equations are

D(r, ω)= ε0εr E(r, ω), (1)

B(r, ω)= µ0µr H(r, ω), (2)

J(r, ω)= σ E(r, ω), (3)



REFLECTION AND TRANSMISSION OF AN ELLIPTICALLY POLARIZED PLANE WAVE 157

where ω is the angular frequency of the incident field. Solving the Helmholtz equa-
tion for the electric field, we can write the incident elliptically polarized field as

Ei1(r)= (E
H
i1
ϑ0i + E E

i1
ϕ0i )ei ki ·r (4)

with

ki1 = k∗1(sinϑ∗i1
cosϕi1 x0+ sinϑ∗i1

sinϕi1 y0+ cosϑ∗i1
z0), (5)

ϑ0i = cosϑ∗i1
cosϕi1 x0+ cosϑ∗i1

sinϕi1 y0− sinϑ∗i1
z0, (6)

ϕ0i =− sinϕi1 x0+ cosϕi1 y0 (7)

and with x0, y0 and z0 the cartesian unit vectors. Throughout this paper, a time
dependence e−iωt is assumed and always omitted. The reflected Er (r) and trans-
mitted Et(r) waves by the stratified medium are given by

Er (r)= (RH
E E H

i1
ϑ0r + RE

E E E
i1
ϕ0r )ei kr ·r , (8)

Et(r)= (T H
E E H

i1
ϑ0t + T E

E E E
i1
ϕ0t)ei kt ·r , (9)

where RH
E , T H

E and RE
E , T E

E are the effective reflection and transmission coeffi-
cients of the stratified medium for parallel (E) and perpendicular (H) polarizations
of the electric field, respectively, relevant to the effective interface between medium
1 and medium N + 1, with the vectors kr , kt , ϑ0r , ϑ0t , ϕ0r and ϕ0t having expres-
sions similar to (5)–(7). For the sake of brevity, we work on the plane ϕ = 0;
however, the following considerations can be easily extended for each plane ϕ 6= 0.
In this case, the wave number and the complex angle in (5)–(7) can be written as

k∗ = kR+ ik I , (10)

ϑ∗ = ϑR+ iϑI (11)

[Adler et al. 1960]; i.e., it is always possible to represent the wave number and the
impinging angle as constituted by a real part and an imaginary part. At the same
time, as we can see from Figure 2, the complex wave vector can be represented as

ki = βi + iαi (12)

with

βi = βi (sin ξi x0+ cos ξi z0), (13)

αi = αi (sin ηi x0+ cos ηi z0) (14)

being the phase vector and the attenuation vector, respectively. Another represen-
tation useful for our treatment is

ki = kiτ x0+ kin z0, (15)

kr = krτ x0+ krn z0 (16)
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with

kiτ = k∗ sinϑ∗ = βi sin ξi + iαi sin ηi , (17)

kin = k∗ cosϑ∗ = βi cos ξi + iαi cos ηi ; (18)

i.e., we can prefer to divide the wave vector into two components: the tangential
one kiτ and the orthogonal one kin with respect to the separation interfaces. In order
to determine β and α, we have to impose the well known conditions

β2
−α2
= k2

R− k2
I , (19)

2βα cos(η− ξ)= 2k2
Rk2

I (20)

[Frezza and Tedeschi 2012]. Solving, we obtain

β =

√
k2

R− k2
I

2

√√√√√1+
[

kRk I

(k2
R− k2

I ) cos ζ

]2

+ 1, (21)

α =

√
k2

R− k2
I

2

√√√√√1+
[

kRk I

(k2
R− k2

I ) cos ζ

]2

− 1. (22)

Before proceeding to the study of the reflection and transmission coefficients of the
incident field, we want to determine each parameter presented so far; to do that,
we can consider the generalized Snell law on the j-th interface

β j sin ξ j = β j+1 sin ξ j+1,

α j sin η j = α j+1 sin η j+1,

β2
j+1−α

2
j+1 = k2

R j+1
− k2

I j+1
,

β j+1α j+1 cos(η j+1− ξ j+1)= 2k2
R j+1

k2
I j+1

(23)

[Adler et al. 1960]. Using the methodology adopted in [Frezza and Tedeschi 2012],
system (23) can be solved, obtaining

β j+1 =

√
|ki jτ
|2+ (k2

R j+1
− k2

I j+1
)+ |k2

j+1− k2
i jτ
|

2
, (24)

α j+1 =

√
|ki jτ
|2− (k2

R j+1
− k2

I j+1
)+ |k2

j+1− k2
i jτ
|

2
(25)
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and for the angles

sin ξ j+1 =
β j

β j+1
sin ξ j , (26)

sin η j+1 =
α j

α j+1
sin η j . (27)

Using the generalized Snell law again, we can extend (24) and (25) to the case of
stratified media. In particular, the system of equations (23) can be rewritten as

β1 = βN+1
sin ξN+1

sin ξ1
,

α1 = αN+1
sin ηN+1

sin η1
,

β2
N+1−α

2
N+1 = k2

RN+1
− k2

IN+1
,

βN+1αN+1 cos(ηN+1− ξN+1)= 2k2
RN+1

k2
IN+1

,

(28)

which once solved gives

βN+1 =

√
|ki1τ
|2+ (k2

RN+1
− k2

IN+1
)+ |k2

N+1− k2
i1τ
|

2
, (29)

αN+1 =

√
|ki1τ
|2− (k2

RN+1
− k2

IN+1
)+ |k2

N+1− k2
i1τ
|

2
. (30)

Now we can see the phase and attenuation constants are independent of the pres-
ence of the intermediate layers, as for the case of the lossless scenario. Therefore,
the real and the imaginary parts of the complex angle ϑ∗ relevant to the last layer
may be written as functions of the phase and attenuation vectors:

cosϑRN+1 =
kRN+1βN+1 cos ξN+1+ k IN+1αN+1 cos ηN+1√

k2
RN+1

β2
N+1− k2

IN+1
α2

N+1+ 2(kRN+1k IN+1)
2
, (31)

sinϑRN+1 =
kRN+1βN+1 sin ξN+1+ k IN+1αN+1 sin ηN+1√
k2

RN+1
β2

N+1− k2
IN+1

α2
N+1+ 2(kRN+1k IN+1)

2
, (32)

ϑIN+1 =
1
2 atanh

(
2βN+1αN+1

k2
N+1

)
. (33)

To determine the value assumed by ϑRN+1 , both (31) and (32) are needed.
We consider a scattering approach to solve the problem; i.e., we take into ac-

count all the fields in the different layers and recursively apply the boundary con-
ditions on each interface in order to find the effective reflection and transmission
coefficients. Referring to Figure 1, we consider N + 1 different media, separated
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by N surfaces, each of them identified by the subscript j ; i.e., we indicate with
ϑ j , ϕ j , ε j , µ j and k j the angle of the propagation vector with the z-axis, the
angle with the x-axis of its projection on the (x, y) plane, the relative permittivity,
the relative permeability and the wavenumber of the j-th medium. Moreover, each
layer has thickness h j with the exception of layers 1 and N +1, which are two half-
spaces. The j-th interface separates the j-th medium from the ( j + 1)-th medium.
Firstly, we consider the parallel (E) polarization; then we will obtain the same
result in perpendicular (H) polarization by duality. Our goal is to determine the
effective reflection and transmission coefficients for the electric and the magnetic
fields RE

E , T E
E and RE

H , T E
H , respectively, of the structure:

RE
E =

E E
r1

E E
i1

, T E
E =

E E
iN+1

E E
i1

, RE
H =

H E
r1

H E
i1

, T E
H =

H E
iN+1

H E
i1

. (34)

Looking at the problem from the point of view of multiple reflections on the in-
terfaces between the media, we expect that, in the j-th layer, two plane waves
propagate: one in the forward direction, with propagation vector ki j , that is the
superposition of all the secondary reflected waves in the forward direction and
the second one in the backward direction, with propagation vector kr j , resulting
from the superposition of all the secondary reflected waves in the backward di-
rection (see Figure 1). In the last medium, i.e., the (N + 1)-th layer, there is no
backward wave because it is an infinite layer. While the amplitudes of the waves
in each layer are our unknowns, the corresponding wave vectors are determined
from the Snell law. In fact, similarly to the case of a single dielectric interface,
the tangential components of all the wave vectors must be equal to one another:
ki jτ
= kr jτ

= ki j+1τ
= kr j+1τ

. From these equalities, we can derive the expressions of
the angles ϑ∗i j

and ϑ∗r j
in each layer. At this point, in order to obtain the coefficients,

we have to impose the boundary conditions on each interface. Imposing the conti-
nuity of the tangential components of the electric and magnetic field, we obtain

z0× (Ei j + Er j − Ei j+1 − Er j+1)= 0 for z = z j , (35)

z0× (Hi j + Hr j − Hi j+1 − Hr j+1)= 0 for z = z j . (36)

The expressions of the electric and magnetic fields for the j-th layer are

Ei j = E0i j y0ei[ki jτ
x+ki jn

(z−z j )], (37)

Er j = E0r j y0ei[kr jτ
x−kr jn

(z−z j )], (38)

Hi j =
E0i j

ωµ j
(ki jτ

z0− ki jn
x0)e

i[ki jτ
x+ki jn

(z−z j )], (39)

Hr j =
E0r j

ωµ j
(kr jτ

z0+ kr jn
x0)e

i[kr jτ
x−kr jn

(z−z j+1)]. (40)
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Replacing these expressions in the boundary conditions, we obtain{
E0i j + E0r j = E0i j+1e−iki j+1n

(z j+1−z j )
+ E0r j+1eiki j+1n

(z j+1−z j ),

E0i j − E0r j = ζ j, j+1
[
E0i j+1e−iki j+1n

(z j+1−z j )
− E0r j+1eiki j+1n

(z j+1−z j )
]
,

(41)

having put, for the sake of simplicity, ζ j, j+1 = µ j ki j+1n
/(µ j+1ki jn

). The linear
system (41) can be written in matrix form, yielding[

E0i j+1

E0r j+1

]
=
[
M j
] [E0i j

E0r j

]
(42)

with [
M j
]
=

1
2ζ j, j+1

[
(1+ ζ j, j+1)eiφ j+1 −(1− ζ j, j+1)eiφ j+1

−(1− ζ j, j+1)e−iφ j+1 (1+ ζ j, j+1)e−iφ j+1

]
, (43)

having put φ j+1 = ki j+1n
(z j+1− z j ), the phase difference between two adjacent

layers.
We can highlight the term 1+ ζ j, j+1:

[
M j
]
=

1+ ζ j, j+1

2ζ j, j+1

 eiφ j+1 −
1− ζ j, j+1

1+ ζ j, j+1
eiφ j+1

−
1− ζ j, j+1

1+ ζ j, j+1
e−iφ j+1 e−iφ j+1

 . (44)

We can note that the term 2ζ j, j+1/(1+ζ j, j+1) is the Fresnel transmission coefficient
between the j -th and ( j+1)-th layer (T E

j, j+1) and the term (1−ζ j, j+1)/(1+ζ j, j+1)

is the Fresnel reflection coefficient (RE
j, j+1). So we can rewrite the

[
M j
]

matrix as

[
M j
]
=

1
T E

j, j+1

[
eiφ j+1 −RE

j, j+1eiφ j+1

−RE
j, j+1e−iφ j+1 e−iφ j+1

]
. (45)

Now, it is trivial to analyze the transmission through all the layers; in fact, we can
write the transmitted field as[

E0iN+1

0

]
=
[
MN

] [E0iN

E0rN

]
=

N∏
`=1

[
M`

] [E0i1

E0r1

]
=
[
M
] [E0i1

E0r1

]
. (46)

About the last layer, there is no reflection to obviate this drawback; it is sufficient
to place, only for the last layer, φN+1 = 0, i.e., consider the last layer to have zero
thickness.

Once the overall matrix is obtained, the effective reflection and transmission
coefficients of the structure can be found. If we define the transmission matrix as[

M
]
=

[
M11 M12

M21 M22

]
, (47)
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we have {
M11 E0i1 +M12 E0r1 = E0iN+1

M21 E0i1 +M22 E0r1 = 0;

then the effective coefficients for the parallel polarization are

RE
E =

E E
r1

E E
i1

=−
M21

M22
, (48)

T E
E =

E E
iN+1

E E
i1

=
M11 M22−M12 M21

M22
=

det
[
M
]

M22
, (49)

RE
H =

H E
r1

H E
i1

=
E E

r1
(k∗r1

/ωµ1)

E E
i1
(k∗i1

/ωµ1)
=

E E
r1

E E
i1

= RE
E =−

M21

M22
, (50)

T E
H =

H E
iN+1

H E
i1

=
E E

iN+1
(k∗iN+1

/ωµN+1)

E E
i1
(k∗i1

/ωµ1)

=

√
εN+1/

√
µN+1

√
ε1/
√
µ1

E E
iN+1

E E
i1

=
Z∗1

Z∗N+1
T E

E =
Z∗1

Z∗N+1

det
[
M
]

M22
. (51)

It should be noticed that the matrix
[
M
]

that we derived is not the same obtained
in the literature [Born and Wolf 1999] but is its inverse: in fact, usually the relation
between the transmitted and the incident fields is considered, while we derived the
opposite relation.

About the perpendicular polarization, we can find the expression of the coeffi-
cients simply exchanging ζ j, j+1=µ j ki j+1n

/µ j+1ki jn
with χ j, j+1=ε j ki j+1n

/ε j+1ki jn
.

It means that the magnetic fields are related by matrices analogous to the ones
in (43) but where the parameters ζ j, j+1 must be substituted with χ j, j+1. In this
polarization, the transmission matrix assumes the form

[
N j
]
=

1
2χ j, j+1

[
(1+χ j, j+1)eiφ j+1 −(1−χ j, j+1)eiφ j+1

−(1−χ j, j+1)e−iφ j+1 (1+χ j, j+1)e−iφ j+1

]
(52)

=
1

T H
j, j+1

[
eiφ j+1 −RH

j, j+1eiφ j+1

−RH
j, j+1e−iφ j+1 e−iφ j+1

]
, (53)

where T H
j, j+1 = 2χ j, j+1/(1+ χ j, j+1) is the transmission coefficient between the

j-th and ( j + 1)-th layers and the term RH
j, j+1 = (1−χ j, j+1)/(1+χ j, j+1) is the

reflection coefficient, both in perpendicular polarization. Now the reflection and
transmission coefficients of the electric and magnetic fields are

RH
H =−

N21

N22
, T H

H =
det

[
N
]

N22
, RH

E =−
N21

N22
, T H

E =
Z N+1

Z1

det
[
N
]

N22
. (54)
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Figure 3. Geometry used to validate the model.

3. Validation of the model

To validate our formulation, we compared our results with those of [Curtis 2005],
which are based on [Reitz et al. 1979]: their methods exploit an algebraic series
that adds up all of the contributions to the net amplitude reflection coefficient of
the traveling field in the particular case of just three layers. As a first example,
we consider a circular plane wave incident on the stratified medium with the three
layers at a frequency of 100 MHz (see Figure 3). The first one is air (ε1 = 1 and
σ1 = 0 S/m), the second one moist soil whose relative dielectric constant is chosen
to be ε2 = 10+ i2, which results in a conductivity of σ2 = 11.1 mS/m, and the last
one dry soil with a complex dielectric constant of ε3 = 3+ i0.2, which means an
effective conductivity of σ3 = 1.1 mS/m. The thickness of the intermediate layer is
0.05 m in the first case and 0.20 m in the second one. In these conditions, we show
in Figure 4 the comparison between our results (dashed lines) and the Curtis results
(solid line) of the square amplitude of the reflection coefficient in E polarization
and H polarization as a function of the incidence angle: as we can see, the results
show a very good agreement in both cases. The second result concerns the square
amplitude of the reflection coefficient as a function of the ratio between the top-
layer thickness and the top-layer wavelength; the electromagnetic parameters and
the geometrical configuration are the same as in the previous case, but now we have
considered an incidence angle of 30 degrees (see Figure 5). From the comparisons
shown, we can see an optimum agreement, validating our procedure.
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Figure 4. Square amplitude of the reflection coefficient for the
electric field as a function of the incidence angle in both polariza-
tions. The stratified medium is located below an air half-space and
composed of a layer of moist soil 5 cm (top) and 20 cm (bottom)
thick on an infinite layer of dry soil.

4. Conclusion

In this paper, a rigorous method to solve the electromagnetic scattering problem of
an elliptically polarized plane wave by a stratified lossy medium is presented. To
determine the reflection and transmission coefficients, we considered the so-called
transfer matrix approach. In order to determine each parameter of interest, we have
adopted two formalisms: the phase and attenuation vectors and the complex-angle
formulation. With these approaches, it is possible to describe all the canonical cases
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Figure 5. Square amplitude of the reflection coefficient for the
electric field as a function of the ratio between the top-layer thick-
ness and the top-layer wavelength in both polarizations with an
incident angle of 30 degrees.

in the presence of a multilayered lossy medium, i.e., with or without the presence
of a scatterer in the stratified medium. To validate our model, some comparisons
with literature results have been presented, obtaining very good agreement in any
situation. Obviously this method enjoys the advantages of the transmission-matrix
method from which it derives; that is, it can be easily extended to an infinite number
of layers to realize an intermediate layer with exotic properties. The generality of
the presented method allows its application to several fields of engineering, such
as detection of buried or immersed objects, biomedical sensing problems, meta-
material analysis, radar systems, diagnosis of cultural heritage and microscopy; in
particular, it can be used to model the lossy medium characterized by a dielectric
constant with an anisotropy along the depth direction. Moreover, thanks to this
approach, it is possible to design an adaptive material in order to obtain, for exam-
ple, the zero-reflection and zero-transmission between two external materials: to
do this, we can interpose a medium with a relative complex permittivity linearly
dependent on the depth.
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