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LUCIO RUSSO: A MULTIFACETED LIFE

Lucio Russo was born in Venice, Italy,
on 22 November 1944. He attended
high school at the Liceo Ginnasio Giam-
battista Vico in Naples; in the same city
he then studied at the Università degli
Studi Federico II, from which he gradu-
ated cum laude in 1969 with a thesis on
quantum diffusion (Laurea in physics).
In 1970–72 he held a research fellow-
ship at the Istituto di Fisica Teorica of
Naples and in 1973–78 he was adjunct professor (professore incaricato) at the
University of Naples. In 1977–80 he was assistant professor of Rational Mechanics
at the University of Modena, becoming full professor there in 1980. In 1982 he
spent a research period at the Institut des Hautes Études Scientifiques (Bures-sur-
Yvette, France), and in 1982–83 he was visiting professor at Princeton University
(USA). From 1984 until his retirement in 2015 he was full professor at University
Tor Vergata of Rome. In 1999–2000 and 2000–2001 he obtained a secondment at
the Accademia Nazionale dei Lincei. In 2010 he was awarded the International
Prize “Tullio Levi-Civita” for the Mathematical and Mechanical Sciences.

During his professorship he taught, among other courses, Probability, General
Physics, Rational Mechanics, Mathematical Methods for Physics, Mathematical
Physics, Partial Differential Equations, Numerical Analysis, Real Analysis, History
of Science, History of Mathematics.

His research activity covered several topics, from statistical mechanics (Gibbs
measures of the Ising model) to probability theory (percolation theory, finite sys-
tems of random variables), reconstruction of images and recognition of shapes,
chaotic nonlinear transformations (Hénon map) and history of science. Among
his books, The Forgotten Revolution (Springer, 2004), Segmenti e bastoncini (Fel-
trinelli, 1998), Flussi e riflussi (Feltrinelli, 2003), Ingegni minuti (Feltrinelli, 2010;
with E. Santoni), L’America dimenticata (Mondadori Università, 2013), and Stelle,
atomi e velieri (Mondadori Università, 2015).

His results in technical directions, as well as his contributions in history of sci-
ence, have been characterized by remarkable ingenuity and freshness, answering
some important questions and asking interesting new ones.
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We, editors of this special issue, dedicate it to Lucio in friendship and admiration,
on behalf of the whole Editorial Board of MEMOCS.

RAFFAELE ESPOSITO

M&MOCS, Università degli Studi dell’Aquila

FRANCESCO DELL’ISOLA

Università di Roma “La Sapienza”
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THE WORK OF LUCIO RUSSO ON PERCOLATION

GEOFFREY R. GRIMMETT

Dedicated in friendship to Lucio Russo

The contributions of Lucio Russo to the mathematics of percolation and disor-
dered systems are outlined. The context of his work is explained, and its ongoing
impact on current work is described and amplified.

1. A personal appreciation

Prior to his mid-career move to the history of science in the early 1990s, Lucio
Russo enjoyed a very successful and influential career in the theory of probabil-
ity and disordered systems, in particular of percolation and the Ising model. His
ideas have shaped these significant fields of science, and his name will always be
associated with a number of fundamental techniques of enduring importance.

The author of this memoir is proud to have known Lucio in those days, and to
have profited from his work, ideas, and company. He hopes that this brief account
of some of Lucio’s results will stand as testament to the beauty and impact of his
ideas.

2. Scientific summary

Lucio Russo has worked principally on the mathematics of percolation, that is,
of the existence (or not) of infinite connected clusters within a disordered spatial
network. The principal model in this field is the so called percolation model, intro-
duced to mathematicians by Broadbent and Hammersley in 1957, [14]. Consider,
for definiteness, the hypercubic lattice Zd with d ≥ 2, and let p ∈ [0, 1]. We declare
each edge to be open with probability p and closed otherwise, and different edges
receive independent states. The main questions are centred around the existence
(or not) of an infinite open component in Zd . It turns out that there exists a critical
probability pc = pc(d) such that no infinite open cluster exists when p < pc, and
there exists a unique such cluster when p> pc. (It is not still known which of these
two occurs when p = pc for general d , specifically when 3≤ d ≤ 10. See [20].)

Communicated by Raffaele Esposito.
MSC2010: 60K35, 82B20.
Keywords: percolation, Ising model, Russo’s formula, RSW inequality, box crossing, approximate

zero-one law, influence, sharp threshold.
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200 GEOFFREY R. GRIMMETT

Let C be the open cluster of Zd containing the origin. Two functions that play
important roles in the theory are the percolation probability θ and the mean cluster
size χ given by

θ(p)= Pp(|C | =∞), χ(p)= E p|C |,

where Pp and E p are the appropriate product measure and expectation. The above
model is the bond percolation model; the site percolation model is defined similarly,
with sites being open/closed. A fairly recent account of percolation may be found
in [25].

The question was raised in 1960 (by Harris, [31]) of whether or not pc(2)= 1
2 ,

and the search for a rigorous proof attracted a number of fine mathematicians into
the field, including Lucio. Several important partial results were proved, culminat-
ing in 1980 with Kesten’s complete proof that pc(2)= 1

2 , [37]. The interest of the
community then migrated towards the case d ≥ 3, before returning firmly to d = 2
with the 2001 proof by Smirnov, [44; 45], of Cardy’s formula.

Lucio contributed a number of fundamental techniques to percolation theory
during the period 1978–1988, and the main purpose of the current paper is to
describe these and to explore their significance. We mention Russo’s formula, the
Russo–Seymour–Welsh (RSW) inequalities, his study of percolation surfaces in
three dimensions, and of the uniqueness of the infinite open cluster, and finally
Russo’s approximate zero–one law. Russo’s formula and RSW theory have proved
of especially lasting value in, for example, recent developments concerning con-
formal invariance for critical percolation.

In Section 8, we mention some of Lucio’s results concerning percolation of +/−
spins in the two-dimensional Ising model. It was quite a novelty in the 1970s to
use percolation as a tool to understand long-range order in the Ising model. Indeed,
Lucio’s work on the percolation model was motivated in part by his search for
rigorous results in statistical mechanics. His approach to the Ising model has been
valuable in two dimensions. In more general situations, the correct geometrical
model has been recognised since to be the random-cluster model of Fortuin and
Kasteleyn (see [26]).

This short account is confined to Lucio’s contributions to percolation, and does
not touch on his work lying closer to ergodic theory and dynamical systems, namely
[R2; R6; R8; R11], and neither does it refer to the paper [R7]. A comprehensive
list of Lucio’s mathematical publications, taken from MathSciNet, may be found
at the end of this paper.

Results from Lucio’s work will be described here using ‘modern’ notation. No
serious attempt is made to include comprehensive citations of the related work of
others.
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3. Russo’s formula

Let �= {0, 1}E where E is finite, and let Pp be product measure on the partially
ordered set � with density p ∈ [0, 1]. An event A ⊆� is called increasing if:

ω ∈ A, ω ≤ ω′ ⇒ ω′ ∈ A.

Let ω ∈�. An element e ∈ E is called pivotal for an increasing event A if ωe /∈ A
and ωe

∈ A, where ωe and ωe are obtained from ω by varying the state of the edge
e thus:

ωe( f )=
{

0 if f = e,
ω( f ) if f 6= e,

ωe( f )=
{

1 if f = e,
ω( f ) if f 6= e.

In other words, e is said to be pivotal for A if the occurrence of A depends on the
state of e.

Theorem 3.1 (Russo’s formula, [R14]). Let A be an increasing event. We have

d
dp

Pp(A)=
∑
e∈E

Pp(e is pivotal for A).

Similar techniques are encountered independently in related fields. For example,
Russo’s formula is essentially equation (4.4) of Barlow and Proschan’s book [7, p.
212] on reliability theory. Such a formula appeared also in the work of Margulis,
[39], in the Russian literature. A characteristic of Lucio’s work is the geometric
context of the formula when applied in situations such as percolation, and it is in
this context that Lucio’s name is prominent. In a typical application to percolation,
one uses the geometrical characteristics of the event {e is pivotal for A} to derive
differential inequalities for Pp(A).

Russo’s formula is key to the study of geometrical probability governed by a
product measure. It has so many applications that it is a challenge to single out any
one. We mention here its use in the derivation of exact values for critical exponents
in two dimensions, [38; 46].

Similarly, extensions of Russo’s formula have been central in several related
fields, including but not limited to the contact model [10, Thm 2.13], continuum
percolation [21; 34], and the random-cluster model [11, Prop. 4].

4. Russo–Seymour–Welsh inequalities

For twenty years from about 1960 to 1980, mathematicians attempted to prove that
the critical probability pc of bond percolation on the square lattice satisfies pc =

1
2 .

This prominent open problem was in the spirit of that of the critical temperature of
the Ising model, resolved in 1944 by Onsager, [42]. Harris [31] showed how to use
duality to obtain pc ≥

1
2 , but the corresponding upper bound was elusive. Then, in
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1978, a powerful technique emerged in independent and contemporaneous work of
Lucio, [R12], and Seymour and Welsh, [43]. It has come to be known simply as
‘RSW’.

Consider bond percolation with density p on the square lattice Z2. A left–right
crossing of a rectangle B is an open path in B which joins some vertex on its left
side to some vertex on its right side. For positive integers m and n, we define the
rectangle

B(m, n)= [0, 2m]× [0, 2n],

and let LR(m, n) be the event that there exists a left–right crossing of B(m, n).

Lemma 4.1 (Russo–Seymour–Welsh (RSW), [R12; 43]). Let p ∈ (0, 1). We have

Pp
(
LR( 3

2 n, n)
)
≥
(
1−
√

1− τ
)3
,

where τ = Pp(LR(n, n)).

This fundamental but superficially innocuous lemma implies that, if the chance
of crossing a square is bounded from 0 uniformly in its size, then so is the chance
of crossing a rectangle with aspect ratio 3

2 . Using the self-duality of Z2, we have
as input to the RSW lemma that

P1
2
(LR(n, n))≥ 1

2 . (4.1)

Let An be the event that the annulus [−3n, 3n]2 \ [−n, n]2 contains an open
cycle with the origin in the bounded component of its complement in R2. Using
elementary geometrical arguments and the FKG inequality, it follows by the RSW
lemma and (4.1) that there exists σ > 0 such that Pp(An)≥ σ for n ≥ 1 and p ≥ 1

2 .
The RSW lemma and the ensuing annulus inequality have proved to be key to

the study of percolation in two dimensions. In common with other useful methods
of mathematics, there is now a cluster of related inequalities, see for example [12],
[27, Sect. 5.5], and [50, Chap. 5].

RSW methods were used by their discoverers to make useful but incomplete
progress towards proving that pc =

1
2 , and they played a role in Kesten’s full proof,

[37]. (The principle novelty of Kesten’s paper was a bespoke theory of sharp
threshold, see Section 5.) More precisely, they led to the following result, which
is presented in terms of site percolation on the square lattice Z2 and its matching
lattice Z2

∗
, derived by adding the two diagonals to each face of Z2.

Theorem 4.2 (Russo, [R12]). Consider site percolation on the square lattice Z2.
The critical points

pc = sup{p : θ(p)= 0}, πc = sup{p : χ(p) <∞},
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satisfy

pc+π
∗

c = 1, p∗c +πc = 1, (4.2)

where an asterisk denotes the corresponding values on the matching lattice.

The parallel work of Seymour and Welsh, [43], was directed at the bond model
on Z2, of which the dual model lies on a translate of Z2. Following Kesten’s proof
of pc(Z

2) = 1
2 for bond percolation, Lucio revisited Theorem 4.2 in [R14] with

a proof that π∗c = p∗c , and the consequent improvement of (4.2), namely pc +

p∗c = 1. He also completed the proof, begun in [R12], that θ (and, similarly, the
dual percolation probability θ∗) is a continuous function on [0, 1]. Continuity in
two dimensions has since been extended to general percolation models (see, for
example, [25, Sect. 8.3]).

RSW theory is now recognised as fundamental to rigorous proofs of conformal
invariance of critical two-dimensional percolation and all that comes with that. The
proof of Cardy’s formula, [44; 45], provides a major illustration. It was observed
by Aizenman and Burchard, [3], that certain connection probabilities belong to a
space of uniformly Hölder functions. Since this space is compact, such functions
have subsequential limits as the mesh of the lattice approaches 0. The above Hölder
property is proved using annulus inequalities.

Indeed the power of RSW arguments extends beyond percolation to a host of
problems involving two-dimensional stochastic geometry, such as the FK-Ising
model [18] and Voronoi percolation [49]. In addition, RSW theory provides one
of the main techniques for the proof by Beffara and Duminil-Copin, [9], that the
random-cluster model on Z2 with cluster-weighting parameter q ≥ 1 has critical
value pc(q)=

√
q/(1+

√
q). We retrieve Kesten’s theorem by setting q = 1.

5. Approximate zero–one law

Kolmogorov’s zero–one law may be stated as follows. Consider the infinite product
space �= {0, 1}N endowed with the product σ -algebra and the product measure
Pp. If A is an event that is independent of any finite subcollection {ω(e) : e ∈ E},
E ⊆N, |E |<∞, then Pp(A) equals either 0 or 1. It follows that, for an increasing
event A, there exists p0 ∈ [0, 1] such that

Pp(A)=
{

0 if p < p0,

1 if p > p0.

This law is intrinsically an infinite-volume effect, in that the index set is the infinite
set N. Lucio posed the farsighted question in [R15] of whether there exists a finite
volume version of this result, and this led him to his ‘approximate zero–one law’,
following.



204 GEOFFREY R. GRIMMETT

Let �= {0, 1}E where E is finite, and let Pp be product measure on the partially
ordered set � with density p ∈ [0, 1]. The influence IA,p(e) of e ∈ E on the event
A ⊆� is defined by

IA,p(e)= Pp
(
1A(ωe) 6= 1A(ω

e)
)
,

where 1A denotes the indicator function of A. When A is increasing, this may be
written

IA,p(e)= Pp(ωe /∈ A, ωe
∈ A)= Pp(e is pivotal for A). (5.1)

Theorem 5.1 (Russo’s approximate zero–one law, [R15]). For ε > 0, there exists
η > 0 such that, if A is an increasing event and

IA,p(e) < η, e ∈ E, p ∈ [0, 1], (5.2)

then there exists p0 ∈ [0, 1] such that

Pp(A)
{
≤ ε if p < p0− ε,

≥ 1− ε if p > p0+ ε.
(5.3)

This result was motivated by a desire to generalise certain results for box-crossing
probabilities in percolation. Its impact extends far beyond percolation, and it is
a precursor of a more recent theory, pioneered by Kahn, Kalai, Linial, [35] and
Talagrand, [47; 48], of influence and sharp threshold. It is proved at [47, Thm
1.1] that there exists an absolute constant c > 0 such that, for p ∈ (0, 1) and an
increasing event A,∑

e∈E

IA,p(e)≥
(

c
p(1− p) log[2/(p(1− p))]

)
Pp(A)(1− Pp(A)) log(1/m p),

(5.4)
where

m p =max{IA,p(e) : e ∈ E}.

It follows that, when p ∈ (0, 1) and A is increasing,∑
e∈E

IA,p(e)≥ c′Pp(A)(1− Pp(A)) log(1/m p), (5.5)

where c′ > 0 is an absolute constant.
Amongst the implications of (5.5) is a quantification of the relationship between

ε and η in Theorem 5.1. Suppose (5.2) holds with η ∈ (0, 1), so that m p ≤ η. By
(5.5) and Russo’s formula,

d
dp

Pp(A)≥ c′Pp(A)(1− Pp(A)) log(1/η). (5.6)
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Choose p0 such that Pp0(A)=
1
2 , and integrate (5.6) to obtain

Pp(A)
{
≤ εp if p < p0,

≥ 1− εp if p > p0,
(5.7)

with

εp =
1

1+ (1/η)c′|p−p0|
.

Such inequalities have found numerous applications in percolation and related
topics, see for example [12; 19; 24]. They have been extended to general product
measures, [13; 28], and to probability measures satisfying the FKG lattice condi-
tion, [23]. Recent overviews include [27, Chap. 4] and [36].

6. Percolation in dimension d ≥ 3

In 1983, Lucio spent a sabbatical at Princeton University. His work during that
period led to two significant publications [R1; R3] on aspects of percolation in
three dimensions. The first of these caused quite a stir in the community at the
time of its appearance, largely since most work until then had been for models
in only two dimensions. Whereas the dual of a bond model in two dimensions is
another bond model, the dual model in three or more dimensions is a ‘plaquette’
model. Since the topology of surfaces of plaquettes is much more complicated
that that of paths, the ensuing percolation duality poses a number of challenging
topological questions.

The authors of [R1] consider bond percolation on Z3 with density p, together
with its dual ‘plaquette’ model on Z3

∗
:= Z3

+ ( 1
2 ,

1
2 ,

1
2). A plaquette is a unit

square with vertices in Z3
∗
, and its bounding lines are edges of Z3

∗
. Each edge e of

Z3 intersects a unique plaquette 5e, and 5e is termed occupied if and only if e is
closed (and unoccupied otherwise). Thus, a plaquette is occupied with probability
1− p. For any collection F of plaquettes, the boundary ∂F is defined to be set of
edges of Z3

∗
belonging to an odd number of members of F .

Let γ be a cycle of Z3
∗
. The main results of [R1] concern the probability there

exists a set F of occupied plaquettes which spans γ in the sense that ∂F = γ . For
simplicity, we shall suppose here that γ is a m× n rectangle of the x/y plane, and
we denote the above event as Wγ . Note that γ has area mn and perimeter 2(m+n).

Theorem 6.1 (Aizenman, Chayes, Chayes, Fröhlich, Russo, [R1]). There exist
constants πc, ρc ∈ (0, 1) such that

− log Pp(Wγ )∼

{
αmn if 1− p < πc,

β(m+ n) if 1− p > ρc,

where α, β > 0 depend on p, and the asymptotic relation is as m, n→∞.
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The constants πc, ρc are the critical densities of the bond percolation model on
Z3 given by

πc = sup{p : χ(p) <∞}, ρc = lim
k→∞

p̂c(k),

where p̂c(k) is the slab critical point

p̂c(k)= sup
{

p : Pp
(
0↔∞ in [0,∞)2×[0, k]

)
= 0

}
.

It was conjectured in [R1] that πc = pc = ρc. The first equality was proved later
in [2; 41], and the second in [8; 30].

There are only few percolation models on finite-dimensional lattices for which
the numerical values of the critical probabilities are known exactly, and all such
exact results are in two dimensions only (see, for example, [29]). In contrast, quite
a lot of work has been devoted to obtaining rigorous upper and lower bounds for
critical probabilities, and there is a host of numerical estimates.

Consider site percolation on the simple cubic lattice Z3. By a comparison with
the site model on the triangular lattice, Lucio has shown (with Campanino, in
[R3]) that pc ≤

1
2 . (See also [40].) They obtained also the strict inequality, with a

distinctly more complicated argument.

Theorem 6.2 (Campanino, Russo, [R3]). The critical probability of site percola-
tion on Z3 satisfies pc <

1
2 .

The point of this work was to show that, in a neighbourhood of p = 1
2 , there is

coexistence of infinite open and infinite closed clusters in Z3. The corresponding
statement for d = 2 is, of course, false, in that coexistence occurs for no value of
p.

Theorem 6.2 may still be the best rigorous upper bound that is currently known
for pc. By examining its proof, one may calculate a small ε > 0 such that pc<

1
2−ε.

It is expected that pc ≈ 0.31.

7. Uniqueness of the infinite open cluster

Let I be the number of infinite open clusters of a percolation model in a finite-
dimensional space. For a period in the 1980s, the ‘next’ problem was to prove
that Pp(I = 1) = 1 in the supercritical phase (when p > pc). This problem was
solved by Aizenman, Kesten, and Newman [5] in 1987. Their proof seemed slightly
mysterious at the time, and it was simplified by Lucio in the jointly written paper
[R9]. The key step was to show, using a large-deviation estimate present already in
[5], that there is density 0 of sites that are adjacent to two distinct infinite clusters.

This useful argument was soon overshadowed by the beautiful proof of unique-
ness by Burton and Keane, [15], of which a key step is a novel argument to show
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there is density 0 of sites that are adjacent to three distinct infinite clusters. The
proof of [15] uses translation-invariance of the underlying measure together with
a property of so called ‘finite energy’, and may thus be extended to more general
measures than product measures. On the other hand, since the proof uses no quan-
titative estimate, it yields no ‘rate’. The methods of [5; R9] provide a missing rate,
and this has been useful in the later work [16; 17].

The question of uniqueness for dependent models is potentially harder, since
the large-deviation estimate of [5; R9] is not available. In joint work [R10] with
Gandolfi and Keane, Lucio used path-intersection arguments to show uniqueness
for ergodic, positively associated measures in two dimensions, satisfying certain
translation and reflection symmetries. Unlike the Burton–Keane proof, they needed
no finite-energy assumption. An application of this work to quantum spin systems
may be found in [6].

8. Ising model

Lucio has written three papers on the geometry of the d-dimensional Ising model,
[R4; R5; R13]. In this work, he (and his coauthors) studied the relationship be-
tween properties of the infinite-volume Gibbs measures and the existence or not of
an infinite cluster of either + or − spins (that is, of percolation in the Ising model).

The first two of these papers [R4; R5] explore a relationship between the Ising
magnetization and the above percolation probability, and yield the non-existence of
percolation in the high-temperature phase. This is complemented when d = 2 with
the proof that percolation (of the corresponding spin) exists in the low-temperature
phase for either of the pure infinite-volume limits µ+, µ−, obtained respectively
as the weak limits with +/− boundary conditions. These methods were developed
further in [R5], where a phase diagram was proposed for the existence of infinite
clusters in the two-dimensional ferromagnetic Ising model, as a function of external
field h and temperature T . The principal features of this diagram were later proved
by Higuchi, [33].

One of the central problems in two dimensions of the late 1970s was to prove
or disprove the statement that every infinite-volume Gibbs measure is a convex
combination of the two extremal measures µ+, µ−. Lucio obtained the following
important result for this problem.

Theorem 8.1 (Russo, [R13]). Any infinite-volume Gibbs measure µ, which is trans-
lation-invariant in one or both of the axial directions, is a convex combination of
µ+ and µ−.

Lucio proved this by considering the existence (or not) of infinite +/− clusters
on Z2 and its matching lattice. The full conclusion, without an assumption of
partial translation-invariance, was obtained later in independent work of Aizenman,
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[1], and Higuchi, [32] (see also [22]). Therefore, in two dimensions (unlike three
dimensions) there exists no non-translation-invariant Gibbs measure.

More recent work on the geometrical properties of the Ising model has been
centred around the random-cluster model and the random-current representation,
rather than the more fundamental percolation model. See, for example, [4; 26].
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“MATHEMATICS” AND “PHYSICS”
IN THE SCIENCE OF HARMONICS

STEFANO ISOLA

Some aspects of the role that the science of harmonics has played in the history
of science are discussed in light of Russo’s investigation of the history of the
concepts of “mathematics” and “physics”.

1. The rambling route of the ancient scientific method

In several places in Russo’s writings on the history of science, one can find en-
lightening discussions about the meanings of the concepts of “physics” and “math-
ematics”, along with the particular notions of truth involved in them; see, e.g.,
[58, Chapter 6.6; 60, Chapter 15; 56; 57]. Both terms derive from the Greek: the
original meaning of the former was the investigation of everything that lives, grows
or, more generally, comes into existence, whereas the latter referred to all that is
studied, thus deriving its meaning not from its content but from its method. In the
Hellenistic period, the term “physics” continued to be used to indicate that sector
of philosophy that addressed nature (the other sectors being ethics and logic), thus
corresponding to what came to be called “natural philosophy” in modern times.
On the other hand, the term “mathematics” was used to indicate all the disciplines
(including geometry, arithmetic, harmonics, astronomy, optics, mechanics, hydro-
statics, pneumatics, geodesy and mathematical geography) that shared the same
method of investigation, based on the construction of theories by which “theorems”
are proved, leaning on explicitly stated initial assumptions. Its meaning thus corre-
sponded to what we call “exact sciences” and refers to a unitary body of scientific
disciplines alien to the modern distinction between physical and mathematical sci-
ences.

In antiquity, how the scope of mathematics contrasted with that of physics was a
topic of much debate. According to some key testimonials reported and discussed
in [56] — in particular that due to Geminus (and reported by Simplicius) in the first
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century B.C.1 and, much later, that of Thomas Aquinas2 — the “physicist” would
be able to grasp the “substance” of reality using philosophical categories, whereas
a characteristic feature of the work of the astronomer, that is, the “mathemati-
cian”, is its incapability to assert absolute truths, in that he is able to rigorously
deduce/construct a number of consequences from previously stated hypotheses
whose ultimate validity remains however out of control.

To better understand this discrepancy, let’s step back again to highlight another
important methodological difference between natural philosophy and exact science
in antiquity, in that the former operates on a single level of discourse, where data
from experience and thoughts are organized so as to produce “directly” a rational
account of the perceptions themselves.3 In particular, natural philosophy starts
“from the things which are more knowable and obvious to us and proceeds towards
those which are clearer and more knowable by nature” [4, p. 184a], thus revealing
the alleged genuine, mind-independent nature of things. This is also reflected in
the use of language. As reported by the fifth-century Alexandrian scholar Ammo-
nius, “. . . Aristotle teaches what the things principally and immediately signified by
sounds [e.g., names and verbs] are, and these are thoughts. Through these as means

1“The physicist will prove each fact by considerations of essence or substance, of force, of its
being better that things should be as they are, or of coming into being and change; the astronomer
will prove them by the properties of figures or magnitudes, or by the amount of movement and the
time that is appropriate to it. Again, the physicist will in many cases reach the cause by looking to
creative force; but the astronomer, when he proves facts from external conditions, is not qualified to
judge of the cause. . . sometimes he invents by way of hypothesis, and states certain expedients by the
assumption of which the phenomena will be saved. For example, why do the sun, the moon, and the
planets appear to move irregularly? We may answer that, if we assume that their orbits are eccentric
circles or that the stars describe an epicycle, their apparent irregularity will be saved; and it will be
necessary to go further and examine in how many different ways it is possible for these phenomena
to be brought about. . . ” [34, p. 276].

2 “Reason may be employed in two ways to establish a point: firstly, for the purpose of furnishing
sufficient proof of some principle, as in natural science, where sufficient proof can be brought to show
that the movement of the heavens is always of uniform velocity. Reason is employed in another way,
not as furnishing a sufficient proof of a principle, but as confirming an already established principle,
by showing the congruity of its results, as the theory of eccentrics and epicycles is considered as
established in astronomy, because thereby the sensible appearances of the heavenly movements can
be explained; not, however, as if this proof were sufficient, forasmuch as some other theory might
explain them” [1, pp. 63–64].

3In criticizing Protagoras’s statement that man is the measure of all things, Aristotle says, “We say
that knowledge and sense-perception are the measure of things because our recognition of something
is due to them” [41, p. 184]. To him, therefore, sense-perception and knowledge are the faculties that
furnish all our understanding of things and thus exhausted all possible meanings of the expression
“criterion of truth”. In Hellenistic practice, however, other meanings of this expression were put
forward (of which Protagoras’s dictum could be considered a likely precursor) including the Stoics’
infallible act of cognition based on kataleptic impressions (self-certifying acts of sense-perceptions)
as well as the hypothetico-deductive method of exact sciences.
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we signify things; and it is not necessary to consider anything else as intermediate
between the thought and the thing, as the Stoics do, who assume what they name
to be the meaning [lekton]” [61, p. 77].

Thus, at variance with the Aristotelian point of view, the early Stoics considered
it necessary to distinguish between the pronounced sound and the meaning of what
is pronounced as an intermediate link between a thought and a sound. The same
kind of epistemological attitude characterized the exact sciences — which flour-
ished in the same period of the early Stoic school — with their specific effort to
overcome the illusion of being able to build intellectual schemes based directly on
perceptible reality and the elaboration of abstract languages capable of describing
not only aspects of the sensible world but also other designable realities; see [58], in
particular Chapter 6. The existence of a double level of discourse seems therefore
an essential feature of exact sciences, in that their assertions do not directly concern
the things of the natural world but rather theoretical entities which are obtained
by a procedure of “pruning” which allows one to focus on certain aspects of the
phainomena — that is, what appears to the senses and calls for an explanation —
and to ignore those considered unessential. In brief, the methodological mark of
exact sciences consists in the construction of simplified models of aspects of reality
which, starting from suitable but “unjustified” hypotheses, operate on their internal
entities in a logically rigorous way and then move back to the real world. Note
that, by its very nature, every hypothesis is somehow “false”, so nothing prevents
different models based on different hypotheses of being capable of “saving” the
same phenomena. In addition, while the assertions obtained at the theoretical level
are “objective” and universally valid, the correspondence rules which transform the
entities involved in the real world and the claims about them into theoretical entities
and theoretical statements are instead historically determined. For example, in
Hellenistic scientific theories dealing with phenomena related to the sense of sight,
devices such as ruler and compass, designed to assist in the construction of the
straight line and the circle, as well as in the measurement of their parts, incorporate
the correspondence rules relating theoretical statements of geometry or optics to
concrete objects. In theories of acoustic-musical phenomena, this role was played
instead by the canon (see below). In both cases, the “concrete objects” — drawings
with ruler and compass and pitches produced by a plucked string, respectively —
are not rough natural data: rather, they are the result of a somewhat refined human
activity, which in turn is rooted in the historical and cultural context.

Although rarely acknowledged, the scientific method, as a cultural product of
earlier Hellenistic times, underwent a rapid decline in the context of a more general
cultural collapse that occurred during the second century B.C.4 Notwithstanding

4Particularly dramatic were the years 146–145 B.C., with the sharp hardening of the Roman
policy in the Mediterranean that had among its consequences the reduction of Macedonia to a Roman
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the loss of a major part of ancient knowledge, the memory of Hellenistic science
survived thanks to a series of geographically localized revival periods.5 On the
other hand, a peculiar feature of these revivals was the insertion of individual
contents, recovered from ancient science or derived from it, into foreign overar-
ching systems of thought which provided their main motivating framework.6 In
particular, “in the Age of Galileo”, Russo says, “the exact science preserved the
unity that distinguished the Greek models, from which it drew the terminology,
but the ancient method was rarely understood. Not that the explanation reported
by Simplicus had been forgotten, but few, as Stevin, used the freedom of choice
of the hypotheses to build models; much more frequently the relative arbitrariness
of the initial assumptions appeared (as it had appeared to Simplicius and Thomas
Aquinas) as a particularity (as well as an oddity) of the method of the ‘mathemati-
cian’, which determined its inferiority with respect to philosophers and theologians,
who knew how to distinguish ‘truth’ from ‘falsehood”’ [56, p. 37]. The idea that the
hypothetico-deductive method was mostly a limit that prevented approaching the
absolute truth peaked with Newton. In the well known General Scholium added to
the Principia in 1713, he writes, “But hitherto I have not been able to discover the
cause of those properties of gravity from phenomena, and I frame no hypotheses
[hypotheses non fingo]. For whatever is not deduced from the phenomena, is to be
called an hypothesis; and hypotheses, whether metaphysical or physical, whether
of occult qualities or mechanical, have no place in experimental philosophy. In
this philosophy particular propositions are inferred from the phenomena, and after-
wards rendered general by induction” [45, p. 392].

It is worth stressing that the term “phenomena” is used here with a meaning
which differs considerably from the ancient one, in that it refers to something
which lies beyond our perception.7 Likewise, the term “hypothesis” was given
the new meaning — still in use — of a statement lying at the beginning of our inter-
pretation of the external world but waiting to be corroborated or refuted as soon as
the “facts” are known with sufficient detail. Thus, in every genuine search for the

province, the razing of Carthage and Corinth and the heavy political interference in Egypt with
persecution and extermination of the Greek intellectual class [59, Chapter 5].

5The first of them was the resumption of scientific studies in imperial times, whose main protago-
nists were Heron, Ptolemy and Galen. The next ones occurred in the sixth-century Byzantine world,
then in the medieval Islamic world (eighth to ninth centuries) and finally in Western Europe, from
the “twelfth-century Renaissance” until the Renaissance par excellence of early modern times [58,
Chapter 11].

6We shall discuss below an example which illustrates this fact in connection with Ptolemy’s work.
7Think of the absolute motions of material bodies with respect to the immovable space which,

coexisting with Aristarchan heliocentrism, cannot correspond to any observable datum (see the dis-
cussion given in [58, Chapter 11.7]). In a letter of 1698, Newton affirmed, “I am inclined to believe
some general laws of the Creator prevailed with respect to the agreeable or unpleasing affections of
all our senses” [46, Letter XXIX].
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truth, hypotheses cannot be anything but a hindrance.8 As it is well known, New-
tonianism was presented in the European continent as the philosophy of progress.
The most famous of his supporters was Voltaire, who in the preface of the French
translation of the Principia dismissed as “foolish” the followers of vortices formed
by the “thin matter” of Descartes and Leibniz and affirmed that only a follower
of Newton could be truly called a “physicist”. Indeed, according to Russo, the
spread of Newtonian mechanics has brought with it the way of reasoning on the
basis of which “the exact science got broken into two stumps: ‘mathematics’ and
‘physics’. Both of them inherited from the ancient ‘mathematics’ the quantitative
approach and several technical results, and from the ancient ‘physics’ (that is from
natural philosophy) the idea of producing statements which are absolutely ‘true’.
The essential difference was lying in the nature of such truth. While the truth of
the assumptions of ‘mathematics’ (called postulates) was considered immediately
evident, the assumptions of ‘physics’ (called principles) were regarded true inas-
much as they are ‘proven by the phenomena’. . . It is plain that these differences
were strictly connected to the diverse nature attributed to the entities studied by the
two disciplines: the ‘mathematical’ entities, although usable to describe concrete
objects, were considered abstract, whereas the ‘physical’ entities were considered
as concrete as the objects they were referring to” [56, pp. 42–43]. In both cases, the
“truth” of a scientific theory (e.g., a theory of the planetary motions) does not lie in
its capability to “save the phenomena” (e.g., to determine with some accuracy the
observable position of a planet at any time) but becomes something that one can
“prove” by means of its own instruments, in the same way in which one can prove
a statement on the entities internal to the theory itself. If so, a scientific theory
would cease to be a theoretical model, instead becoming a system of statements
set to describe the true nature of the real world.9

8As d’Alembert wrote, “it is not at all by vague and arbitrary hypotheses that we can hope to
know nature; it is by thoughtful study of phenomena, by the comparisons we make among them,
by the art of reducing, as much as that may be possible, a large number of phenomena to a single
one that can be regarded as their principle” [23, p. 22], and a little further, “let us conclude that
the single true method of philosophizing as physical scientists consists either in the application of
mathematical analysis to experiments, or in observation alone, enlightened by the spirit of method,
aided sometimes by conjectures when they can furnish some insights, but rigidly dissociated from
any arbitrary hypotheses” [23, p. 25]. As an aside, this semantic transformation may have played a
role in claiming a “historic mission” to human knowledge, from the naivety of the myth towards the
final enlightenment, passing through an increasing control of the sources of error which allows one
to progressively overcome all “false hypotheses” (that is, “prejudices”): a kind of secularized version
of the medieval millenarianism, of which, among others, Newton was an ardent supporter.

9Such a prescientific position is proudly maintained by Voltaire in the entry “System” of [65,
p. 224], which starts by stating, “We understand by system a supposition; for if a system can be
proved, it is no longer a system, but a truth. In the meantime, led by habit, we say the celestial
system, although we understand by it the real position of the stars”. By the way, and not surprisingly,
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Following this reshaping of the scientific enterprise, some disciplines have been
counted on one side and others on the other; still others have been somehow in-
ternally divided or eventually disappeared, as we shall see below in a particular
example. Referring to the already cited writings of Russo for a discussion of
the splitting between “mathematics” and “physics” in nineteenth and twentieth
centuries, let us just remark that the final failure of the efforts towards a method-
ological reunification of the exact science, of which Poincaré was a prominent
exponent, and the prevailing of powerful trends towards specialization and frag-
mentation of the scientific disciplines, if on one side has led some to wonder what
mystery lies behind the “unreasonable effectiveness” of mathematics in providing
accurate descriptions of the phenomena [67], on the other side prompted one of the
greatest contemporary mathematicians to acknowledge in this trend a severe crisis
of science itself: “In the middle of the twentieth century it was attempted to divide
physics and mathematics. The consequences turned out to be catastrophic. Whole
generations of mathematicians grew up without knowing half of their science and,
of course, in total ignorance of any other sciences. They first began teaching their
ugly scholastic pseudomathematics to their students, then to schoolchildren (for-
getting Hardy’s warning that ugly mathematics has no permanent place under the
Sun)” [7]; see also [57] for a further discussion.

2. Acoustic-musical phenomena

“Ho detto che la nostra scienza o arte musicale fu dettata dalla
matematica. Doveva dire costruita. Essa scienza non nacque dalla
natura,. . . ma ebbe origine ed ha il suo fondamento in quello che
è giustamente chiamato seconda natura, ma che altrettanto a torto
quanto facilmente e spesso è confuso e scambiato. . . colla natura
medesima, voglio dire nell’assuefazione. Le antiche assuefazioni
de’ greci. . . furono l’origine e il fondamento della scienza musicale
da’ greci determinata, fabbricata e a noi ne’ libri e nell’uso traman-
data, dalla qual greca scienza vien per comun consenso e confes-
sione la nostra europea” (G. Leopardi, Zibaldone [40, 3125–3126]).

Today musical theory is mainly “the study of the structure of music”, whereas
originally it was part of mathematics. What happened in the meantime? In order
to get an idea, it is necessary to go back again to the rambling route of the ancient
scientific method through the subsequent history. Resuming what was said in the
previous section in a concise albeit vague way, we can say that the general objects
of Greek science were not so much the “laws” of the natural world viewed as

this entry proceeds by strengthening the idea of a necessary progression of the knowledge by denying
that Aristarchus introduced heliocentrism.
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an entity independent from the man who observes it but rather those indubitable
epistemological data provided by the phainomena resulting from the interaction
between subject and object through active perception. In particular, the models of
Hellenistic exact science were primarily suited for that purpose: the creation of
theoretical entities as intermediate utterances between the real objects and abstract
truths has the effect of making that interaction available to conscious manipula-
tion. This gets a peculiar meaning within the context of music theory which, as
such, establishes sound, the material aspect of music, as something which can
be knowingly investigated in connection with human experience. Although mu-
sic — perhaps the most unfathomable expression of psychic activity — might not
seem properly suited to scientific analysis, the investigation of acoustic-musical
phenomena nonetheless provides an example where the epistemological opposition
sketched in the previous section occurred with a striking character within the same
domain, as we shall now briefly outline.

It is rather well known that Pythagorean music theory — as a part of their pro-
gram of liberation of the soul by means of the intellectual perception of propor-
tions in all things — starts from the recognition that the harmonic intervals can
be expressed as simple numerical ratios. The following “Pythagorean principle”
has been viewed as the first “natural law” expressed in terms of numerical entities
(see, e.g., [11]): if two sounding bodies, such as stretched strings or sounding
pipes, have lengths which are in simple proportions, and all other aspects are kept
fixed, together they will produce musical intervals which are judged by the ear
to be in harmonious agreement, or “consonant”. Conversely, all intervals that the
ear accepts as consonant can be represented as ratios of numbers from the tetrad
1, 2, 3, 4.10 The harmonic system of Philolaus (see, e.g., [18; 19]), for example,
is a structure of intervals externally limited by the octave (diapason), whose ratio
is 2 : 1, and internally articulated by intervals of fifths (diapente), with ratio 3 : 2,
and fourths (diatessaron), with ratio 4 : 3. If we want to find four quantities —
for instance the lengths of the strings of a four-string lyre — that, taken in pairs,
reproduce these ratios, then we can choose a unit of measure so that the longest
string is 12 units, the intermediate ones 9 and 8 and the shortest 6. It is clear that
the system of reciprocal ratios, and therefore the whole harmonic structure, does
not change if the strings have lengths 12, 9, 8 and 6 meters, centimeters, stadiums,
etc. Finally, observing that (3 : 2) : (4 : 3)= 9 : 8, the interval of a tone, equivalent
to the difference between a fifth and a fourth, is represented by the ratio 9:8. The
octave is thus “harmonically” divided into two fourths spaced by a tone.11

10The question of which observations lay behind the detection of these ratios and when this
happened is hard to answer [13].

11Note that 6 · 12 = 8 · 9, i.e., the four numbers are in geometrical proportion. Moreover, 8 =
2 : ( 1

6 +
1

12 ) and 9= (6+ 12) : 2; namely, 8 and 9 are the harmonic mean and the arithmetic mean,
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Let us point out that in the transition from the Hellenic to the Hellenistic period
mathematics becomes an exact science, in the sense specified above, not only by
distinguishing theoretical entities from concrete objects but also from pure abstrac-
tions in the “platonic” sense. While discussing the subjects for the education of
the “Guardians” of the Republic, Plato lets Socrates conceive that “as the eyes are
designed to look up at the stars, so are the ears to hear harmonic motions”, therefore
agreeing that astronomy and music theory are sister sciences, as the Pythagoreans
said [50, 530d]. On the other hand, those scholars are judged inadequate to reach
the “true knowledge” beyond the sensible world in that “their method exactly cor-
responds to that of the astronomer; for the numbers they seek are those found
in these heard concords, but they do not ascend to generalized problems and the
consideration which numbers are inherently concordant and which not and why in
each case” [50, 531c]. Clearly, the just mentioned “ascension” above experience
does not need to be embedded in a theory. Rather, it would rely on “evidences”
per se.

In a different direction, music theory, or at least that part of it dealing with
tuning systems, was set to become a scientific discipline by putting together the
arithmetic theory of proportions and the recognition of the proportionality between
the pitch of the sounds and the speed of the vibrations that produce them,12 a
conceptual step that according to some sources had been made in the circle of
Archytas in about 400 B.C. [13; 36]. The “experimental device” enabling the
establishment of a correspondence between concords and numerical ratios was the
canon (kanon harmonikos), an instrument that in its simplest form is made of a
single string stretched between two bridges fixed on a rigid base and equipped
with another movable bridge by which one may divide the string into two parts,
yielding sounds of variable pitch. One can further imagine a row fixed at its base
on which the positions of the movable bridge corresponding to the notes can be
marked. The name of the entire device is then a metonym for the line segment
that represents it as a theoretical entity. The theory outlined in the Sectio canonis,
attributed to Euclid, deals precisely with the harmonic divisions of this segment,
i.e., with those divisions corresponding to musical intervals judged to be consonant
[25]; see also [26]. In this work, far away from any mystical efflorescence about
the music of the cosmos, a scheme of division of the octave by means of the theory
of proportions contained in the Elements is proposed with the aim of producing
patterns of consonant intervals adoptable in practice, e.g., when tuning musical

respectively, of the extremes 6 and 12. The exclusion of the geometric mean in “Pythagorean” music
theory is justified by an impossibility result due to Archytas (see below).

12The recognition of the nature of sound as vibration of air, with alternation of rarefaction and
compression, can already be found in Aristotle’s Problemata [3] as well as in the Peripatetic De
audibilibus [5], whereas the idea of a sound wave is attested at least as early as in the Stoa.
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instruments. Along this path, the branch of Greek music theory referred to as the
science of harmonics entered the unitary body of Hellenistic mathematics, along
with astronomy, arithmetic, geometry, optics, topography, pneumatics, mechanics
and other disciplines [58, Chapter 3].

In the short introduction of the Sectio canonis, the author establishes a corre-
spondence between musical intervals and numerical ratios and states the main
hypothesis underlying the model: consonant intervals correspond to multiple or
epimoric ratios.13 The rationale of this postulate relies on the observation that,
as consonant intervals produce a perception of unity or tonal fusion between the
notes, they must correspond to numbers which are given a “single name” in rela-
tion to one another.14 On the other hand, this postulate is clearly false not only
because it includes among the concords also intervals considered dissonant by the
Pythagorean principle stated above, such as the tone 9 : 8 or the ratio 5 : 4 (natural
major third), but also because it counts as dissonant the interval composed by an
octave plus a fourth, represented by the ratio 8 : 3, unanimously recognized as
consonant by the music theorists of antiquity (exactly as an octave plus a fifth, that
is, 3 : 1). However, this is not a problem in itself, for all hypotheses are somehow
“false”: what matters is that the theory based on them is consistent and suited to
save the phenomena which it aims to model. The introduction is then followed by
twenty propositions: the first nine, of pure “number theory”, provide a deductive
construction of the Philolaus harmonic system sketched above, whereas the remain-
ing ones form the part properly relevant to tuning systems. Of particular interest
is the third proposition, which states that neither one nor more mean proportionals
can be inserted within an epimoric interval. In particular, it is not possible to divide
the octave into equal parts that form a rational relationship with the octave itself.15

The consequences of this simple result have been the subject of a controversy
which has lasted for over two millennia, at the basis of which there is the distinction

13Greek arithmetic classified ratios into three basic types, which reduced to lowest terms corre-
sponding to n : 1 (multiple), (n + 1) : n (epimoric or superparticular) or (n +m) : n, n > m > 1
(epimeric or superpartient). Note that the first two are in a one-to-one correspondence: p : q is
multiple if and only if p : (p− q) is epimoric so that q is the greatest common divisor of both p
and p− q. In particular, the octave 2 : 1, participating to both consonant classes, is the “consonance
of the consonances”.

14The interpretation of this seemingly arbitrary correspondence is controversial. According to
some scholars [11], the “single name” has to be ascribed to the fact that, unlike the epimeric ratios,
multiple and epimoric ratios were indicated with a one-word name, like epitritos, “third in addition”,
for 4 : 3. According to a different interpretation [26] (based on [54, §I.5]), the “single name” is not a
linguistic unity but a numerical one, corresponding to the greatest common “part” which composes
the notes in both multiple and epimoric ratios (see footnote 13).

15Nor would it be possible to divide in this way the fifth, the fourth or the whole tone. This seems
to be the first impossibility result surely ascribable to an author as Boethius [12, §III.11] reports a
proof of it given by Archytas.
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between natural and tempered tunings [10; 37]. We’ll not dwell here on the ways
in which the different music theorists have conceived the division of the tonal con-
tinuum; see, e.g., [9; 14; 20]. Rather, we shall briefly discuss how in this domain
the epistemological opposition between natural philosophy and mathematics mani-
fested itself. To this end, we recall that the first writings of some importance dealing
with Greek music theory are those of Aristoxenus and Theophrastus, both students
of Aristotle and both harshly critical of the doctrine according to which the pitch
can be conceived as a quantitative attribute of sound, representable by numbers. As
representatives of the Peripatetic school, they were mainly interested in the “natural
qualities” of the object of investigation. For instance, Theophrastus claims that dif-
ferences of pitch are due to differences in the “shape” of the sounds’ movement, not
to differences of velocity, frequency of impact or the like, inasmuch as high notes
travel in a straight line from the object to the ear while low ones spread more evenly
all around the object; see his “De musica” excerpt in [52, pp. 61–65] and also [63].
In criticizing the “Pythagorean approach”, he maintains that “if every interval were
a quantity, and if melody arose from differences between notes, the melody would
be as it is because it is a number. But if it were nothing but a number, everything nu-
merable would participate in melody too, to the extent that it does in number”. This
illustrates in some way the single level of discourse maintained by natural philos-
ophy about which we were talking in the previous section, where there is no space
for intermediate entities in between the concrete objects and the abstract thoughts
about them. A rather similar position is held by Aristoxenus, the leading musical
theorist of antiquity. His Harmonic elements opens with the subject of vocal motion
within the musical topos in which it moves, which is the continuum whose maximal
range and minimal internal intervals are defined solely by what the human voice
is capable of doing and by what the human ear can apprehend the moving voice to
be doing. In particular, he claims that harmonic properties such as consonance are
firstly subjects of experience by a musically trained ear and cannot be traced to nu-
merical ratios. He wrote indeed, “we endeavor to supply proofs that will be in agree-
ment with the phenomena, in this unlike our predecessors. For some of these intro-
duced extraneous reasoning, and rejecting the senses as inaccurate fabricated ratio-
nal principles, asserting that height and depth of pitch consist in certain numerical
ratios and relative rates of vibration — a theory utterly extraneous to the subject and
quite at variance with the phenomena” [6, pp. 188–189]. Although one may argue
that the polemical target here is mostly the Platonic treatment of Pythagorean music
theory, in the rejection of rational arguments based on assumptions external to the
musical experience itself, we can see the demand that every assumption must be jus-
tified by the phenomena, that is, a substantial disclaiming of the scientific method.16

16In particular, Aristoxenus and his followers “admitted” that it was possible to divide the tone
into two equal parts. This, of course, does not “contradict” the third proposition of the Sectio
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Be that as it may, with the crisis of Hellenistic civilization and in particular
after the dramatic cultural collapse which occurred midway through the second
century B.C., the scientific methodology rapidly disappeared together with the very
possibility of understanding the need of the lekta — the conceptual constructions
intermediate between the thoughts and the things — in the devising of meaningful
representations of the relationships between human activity and the natural world.
As Russo says, “in the imperial age, when the notion of theoretical models had been
lost, such entities were conceivable only as real objects: the alternative between
‘bodies’ and ‘incorporeal beings’ thus became ineluctable. Some such entities were
indeed made corporeal — witness the crystalline celestial spheres which replaced
the spheres of Eudoxus of Cnidus and the epicycles of Apollonius of Perga. Like-
wise, the ‘visual rays’ of optics reacquired the character of physical objects emitted
by the eyes, which was not present in Euclid’s theory. . . . Other entities, such as
those of geometry, were given an incorporeal reality. This placed geometry in the
realm of Platonic thought, a position that Hellenistic mathematics had left behind”
[58, p. 232].

A similar fate befell the basic entities of the science of harmonics, such as the
musical intervals, which lost the character of theoretical entities gained within Hel-
lenistic science to be identified (again) either with corporeal items — such as the
discrete movements of a melodic voice — or else with purely ideal abstractions,
entities considered as much real as they are not attainable — such as the harmonic
ratios composing the Zodiac or the human soul — both deemed to possess quanti-
tative features to which reason can be “directly” applied by assigning them appro-
priate numbers.

An important example is provided by Ptolemy in the first book of his Har-
monica, where, no longer being able to grasp the methodological tenets main-
tained by his Hellenistic sources, he falls back upon epistemological bases close
to the Peripatetic ones, without thereby giving up the claim of employing refined
mathematical tools inherited from his predecessors (yet conceived in the Platonic
sense). For example, with a kind of inversion of the Hellenistic rule that re-
quires a theory to save the phainomena, he says, “The purpose of the harmoni-
cist would be to preserve in every way the reasoned hypotheses of the canon
which do not in any way at all conflict with the perceptions as most people in-
terpret them, just as the purpose of the astronomer is to preserve the hypotheses

canonis — implying that no (rational) mean proportional can be inserted between 9 and 8 — which
characterizes intervals as elements of a theoretical model (hence defined solely by the hypotheses
underlying the model itself). Rather, it results from the direct experience of placing one’s finger on
the string at the point corresponding to the division into equal semitones. A theoretical construction
of the equal temperament has been made almost two millennia later by Stevin (see below).
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of the heavenly movements concordant with observable paths. Even these hy-
potheses are themselves assumed from what is clear and roughly apparent, but
with the help of reason they discover detail with as much accuracy as is possi-
ble. For in every subject it is inherent in observation and knowledge to demon-
strate that the works of nature have been crafted with some reason and prear-
ranged cause and completed not at all in random” [54, §I.2, §§I.5.13–21].17 Like
other scholars of his time, Ptolemy’s “criterion of truth” is dictated by a strange
kind of “concord” between theory and observation, where the model, although
highly mathematized, has lost its meaning as a theoretical entity and taken over
the former prescientific meaning of direct representation of the known reality. In
this regard, he seems to want to frame Hellenistic scientific results within philo-
sophical arguments of the classical period. Although one might regard this as
a dialectical strategy to give maximum credibility to the position he wants to
hold, in this way he ends up denying the method of his Hellenistic predecessors,
deeming legitimate only one theory: that whose assumptions are entirely justi-
fied by the phenomena and at the same time reflect the “rationality” of nature’s
works.18

Akin to Galen’s craving to strike a balance between the “rationalist” and “empiri-
cist” schools of medicine [30],19 Ptolemy loudly distinguishes his approach to the
study of consonances from that of the “excessively rationalist” Pythagoreans — ac-
cused of accepting rationally justifiable statements even when they are contradicted
by the senses20 — and that of the “overly empirical” Aristoxeneans, for whom audi-
ble harmonies are not subject to mathematical analysis at all. Since for him the ob-
jects of sense-perception and thought are (again) identical (cf. footnote 3), though
apprehended in different ways, he feels entitled to set his “hypotheses” in the form
of alleged mathematical counterparts of the relevant perceptual impressions. In
doing so, Ptolemy assigns to the science of harmonics the task of explaining the
audible and inaudible harmonies by reference to the formal, quantitative attributes
of the different pitches, as to astronomy that of explaining the movements of the

17This goes hand in hand with some passages of the Almagest, for example where he says, “Now
it is our purpose to demonstrate for the five planets, just as we did for the sun and moon, that all
their anomalies can be represented by uniform circular motion, since these are proper to the nature
of divine beings, while disorder and nonuniformity are alien [to such beings]” [53, §9.2].

18One should perhaps also include evidence that these narrow epistemological bases will actively
operate in the development of modern science.

19A discussion on Ptolemy’s epistemological affinity with his contemporary Galen can be found
in [41].

20His concern focused in particular on the fact — already mentioned above — that the interval
corresponding to the ratio 8 : 3 (diapason plus diatessaron), although unanimously recognized as
consonant, was “deductively” counted as dissonant on the basis of the postulate opening the Sectio
canonis [54, §I.5, §§I.12.4–8].
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observable heavenly bodies by reference to the formal features of the spheres or
other bodies on which they are physically carried. In this regard, the use of math-
ematics would serve mostly as a “rational criterion” to assist the senses in making
fine discriminations.

As an aside, in the Alexandrian milieu of the imperial age, where the lingua
franca was still Greek but life and thought were dominated by a cohort consisting
of astrological fatalism, gnostic dualism and transcendent monotheism, even mathe-
matics was mostly plunged into an atmosphere of irrationalism, with the distancing
from the deductive method and the return of numerology. At the same time, among
the objects of musical “perception”, the prototype was considered the “music of
the spheres”, an old conception dating back at least to Plato’s Timaeus [49] and
Republic, resumed by Nicomachus [47] and subsequently by Ptolemy himself in
the third book of his Harmonica.21 Thereafter, the Platonic connection between
planetary motion and music became a cornerstone of the musica speculativa —
which together with musica poetica and musica practica constituted the quadriv-
ial discipline of musica.22 The regaining of a corporeal nature of the crystalline
spheres to which the heavenly bodies were said to be attached goes hand in hand
with the resumption of the celestial harmony as a “perceptible” datum, although
emanating from an incorporeal and inaudible reality.23 Both subjects were then
transmitted through centuries by sheer copying24 until they were taken seriously

21After comparing the various harmonic functions with several aspects of the human soul [54,
§§III.4–7], he proceeds by regarding the zodiac circle as a vibrating string and comparing the prin-
cipal astrological “aspects” (angles between heavenly bodies that were believed to modify their de-
gree of influence) with musical consonances, thereby explaining their differing “effectiveness” [54,
§§III.8–9].

22This tripartition of music reflected Aristotle’s division of knowledge (epistēmē) into theōrētikē,
poiētikē and praktikē and was codified by the sixth-century Roman philosopher Boethius [12] as
musica mundana, musica humana and musica instrumentalis. More generally, the resumption of a
pre-Hellenistic classification of knowledge (in particular that outlined in Plato’s Republic) becomes
glaringly obvious with the reduction of the manifold Hellenistic sciences to the quadrivium, consist-
ing of arithmetic, geometry, music and astronomy, which along with the trivium (made by grammar,
logic and rhetoric) constituted the seven “liberal arts” that articulated the preparatory training for the
study of theology in medieval times.

23Note that Aristotle, who believed in the existence of the rigid sidereal sphere [2, Chapter 6],
refuted the conception of celestial music on the basis of physical arguments [2, Chapter 9]. On the
other hand, in the cultural context to which we are referring, it would have seemed vain to refute on
physical basis such Platonic mythological representations.

24Or else they were transmitted by anthological syntheses of the prisca sapientia, such as the
commentary on Cicero’s Somnium scipionis by the fifth-century neoplatonist Macrobius [42], where
he drew comprehensively on the whole body of Pythagorean, Orphic and Platonic teachings and
cosmology. How deep the decline of science at the end of the ancient world was can be grasped
from the fact that, although Macrobius faithfully reports the ratios corresponding to the Pythagorean
consonances, he does not even understand that they are ratios. For instance, he justifies the fact that
the tone 9 : 8 cannot be divided into equal parts (a consequence of the Archytas impossibility result
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again in early modern times. For example, Kepler’s “estimate” of the thickness
of the crystal sphere of fixed stars25 went together with his tentative attempts to
improve Ptolemy’s harmonic investigations by searching for musical proportions
in various quantities in the Solar system, such as the periods of the (heliocentric)
planetary motions.26 Note however that although the faith in the “harmony of
the world” had played an indubitable role in the reappearance of mathematics as
the pivotal language of the resurgent sciences in early modern times, when at the
time of Newton the terms “physics” and “mathematics” got the new meanings we
have discussed above, science had begun to need different images; hence, celestial
music became old-fashioned as a scientific subject and eventually became a purely
literary metaphor.27

Altogether, the early modern resumption of studies on the science of harmonics
took different forms, sometimes in open conflict with each other, often revealing
with particular vividness the prevailing beliefs on the more general meaning of
the scientific enterprise [17; 33; 16]. A well known example is the harsh con-
flict between Vincenzo Galilei (the father of Galileo) and Zarlino, where, among
other things, to the “well ordered” Nature of Zarlino, which whispers to the human
ear the true consonances, Galilei opposed the image of a Nature which proceeds
“without cognition” (senza cognitione), with principles and purposes unrelated to
man, and against which man takes advantage of the mechanical arts to an end
that nature cannot achieve [31; 69]; see also [66, Chapter 2; 48]. Among the
seventeenth-century scholars who took an active role in producing musical theories,
like Simon Stevin, Kepler, Isaac Beeckman, Descartes, Mersenne, Francis Bacon,
Galileo Galilei, Lord Brouncker, John Wallis, Christian Huygens, Robert Hooke
and others, only the first one seems to have retained the option to build a model
based on a free choice of hypotheses.28

discussed above) not with the nonexistence of a rational square root of 2 (and hence of 8) but with
the fact that 9 is not divisible by 2 [42, Book Two, Chapter I.21–23].

25He estimated about two German miles [38, p. 288].
26We have to recognize that, unlike the first, the second concern was fruitful, as it is well known

that the search for a harmonic correspondence between the periods of revolution and the radii of
planets’ orbits eventually led to the celebrated “third law” [39].

27Nevertheless, Newton himself had imagined recovering the lost prisca sapientia in which,
among other things, the inverse square law of gravitational attraction between the planets would
have been encrypted within Pythagoras’ music of the spheres [43].

28This is the subject of a short treatise written in Dutch where, among other things, the equal
temperament (i.e., the geometrical division of the octave into twelve equal parts, each corresponding
to a ratio 1 : 12√2) is constructed on the basis of two postulates. The first says that, as one part of a
string is to another, so is the coarseness of the sound of the one to that of the other. The second says
that natural singing is in the major diatonic scale, and in this scale all whole tones are equal and so
are the semitones [62].
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Somewhat later, in the age of Lights, and thus after the splitting between “physics”
and “mathematics”, an interesting confrontation about the science of harmonics
took place between Euler and d’Alembert; see, e.g., [8, Chapter 4]. The swiss
mathematician — perhaps the last representative of the conception of music as a
part of mathematics — at age 24 finished writing his major work on the subject,
the Tentamen novae theoriae musicae ex certissimis harmoniae principiis dilucide
expositae (1731), whose main goal was to give an answer to the old question of
why certain sounds are pleasant and others are not, an answer which would feature
not only the perception of single intervals but also sequences of chords or even
of a complete musical piece. He pursued this goal by assuming that any plea-
sure comes from the perception of a “perfection”, which in turn is embodied in a
notion of order that can be measured by an exponent calculated only in terms
of the arithmetic proportions associated to the pitches of the tones involved.29

As a consequence, the fact that some people appreciate the use of some chords
and others not is explained by saying that the latters’ ear is not trained enough to
perceive the order hidden in them. As we have pointed out previously about the
Sectio canonis, the assumptions underlying this construction also cannot exempt
themselves from being somehow “false”: for instance, the same “exponent”, and
thus the same degree of pleasantness, is associated to a musical piece regardless
if it is played forward or backward, which is in general something far from usual
experience. But as we have seen, this is not a problem in itself, at least as long
as things remain consistent with the ancient scientific method. It is not clear (to
me) whether Euler considered the problem dealt with in his treatise as one of
defining the value of something which was not defined before or as a Platonic
search for some “true” value. Be that as it may, even only in his ambition to
model far more than just a system of tuning, he exposed himself to the criticism
that Johann Bernoulli leveled against him in 1731: “. . . you have derived the rule
which establishes how the notes are to be combined, so that an intelligent ear can
take delight in them. I think that this is appropriate for a musician who is more
concerned about the accuracy of a piece of music than its effect, which satisfies
the listener; a person of this kind will undoubtedly find enjoyment and delight, if
you have written this down and examine it and find that it is well composed in
accordance with the fundamental rules; but as a piece of music is usually played
to ears that are devoid of understanding, and are not able to recognize the ratio
between the beats of the intervals produced by the strings, and are even less able
to count, then I believe that the same ears will appreciate or refuse the same piece

29See [27, pp. 197–427], where he starts from a masterful generalization of some previous ideas
of Galileo [32] and Mersenne [44] according to which a chord of two sounds is all the more consonant
when the “coinciding” blows resulting from the two sounds are in higher proportion in the whole of
the produced blows. An example of calculation of this exponent is given below.
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of music, depending on whether they are used to this or that kind of music” [28,
pp. 146–150].

But a critique of a different tenor was put forward by d’Alembert who, having
in mind the example, bad for him, of the “mathematician” Euler, embodied the role
of the “physicist”, in the sense advocated by his mentor, Voltaire. In particular, he
maintained that in music theory there is no place for “demonstration” — insofar
as that term is reserved to “mathematics” — and one should adopt an “empirical-
deductive” methodology modeled on that of Newton. As he made clear in the
preface of his widely read treatise on music theory,30 issued in 1752, his main
purpose in writing the work was “to show how one may deduce from a single
experiment the laws of harmony which artists had arrived at only, so to speak, by
groping” [22, p. vi]. The single experiment had to do in this case with Rameau’s
corps sonore, that is, any resonating system which, besides the fundamental fre-
quency (sounding pitch), also generates a series of harmonically related overtones,
such as the octave, the perfect twelfth (the octave of the perfect fifth), the major
seventeenth (the double octave of the major third) and so on. To d’Alembert, the
resonance of the sonorous body was the “most probable origin of harmony, and the
cause of that pleasure which we receive from it”. He thus strove to structure music
as a science based on a single “principle” which is somehow “dictated by nature”
and from which one should deduce “by an easy operation of reason, the chief and
most essential laws of harmony”.

The different positions embodied by the two scholars resulted in several contro-
versies, among which the one about the possible solutions of the wave equation is
perhaps the best known, although its current reconstructions usually neglect mu-
sical motivations and implications. In particular, the last account on the subject
written by d’Alembert ends with a polemical stance against the music theory main-
tained by Euler, in which the very possibility of dealing with a musical phenomenon
in terms of theoretical entities seems denied: “It is clear from the preceding formu-
lae that, given an equal tension and thickness, the number of vibrations in the same
time is inversely proportional to the length of the strings. As the higher or lower
sound of the strings depends on their larger or smaller number of vibrations in the
given time, it is undoubtedly for this reason that some very capable modern authors
have considered it possible to represent the sounds by means of the logarithms of
the ratios between the lengths of the strings. This idea is ingenious, and would
appear to be based equally on figures of speech in acoustics and music, when we
say that if four strings a, b, c, d are geometrically proportional, the interval formed
by sounds a and b will be equal to the interval formed by c and d; hence it was

30It is a kind of résumé of the music-theoretic writings of the great composer Jean-Philippe
Rameau [55], where he thought to find a paradigm of systematic method and synthetic structure
which somehow confirmed his own scientific ideas [22]; see also [8; 15].
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considered possible to conclude that the logarithms of the relationships a : b and
c : d represented the intervals between the sounds. But undoubtedly this conclusion
was not claimed to be anything more than a purely arbitrary supposition; the words
interval between sounds, equality and difference of intervals are only abbreviated
figures of speech, which should not be given a wider meaning than they really
have. Sounds are merely sensations, and consequently they do not in reality have
any ratio with one another; sounds cannot be compared, any more than colours
can; all that is needed is a little attention to hear this. . . ” [21] (cited in [64]). A
further interesting confrontation between Euler and d’Alembert’s methodologies
concerned the interpretation of the (widely used) dominant seventh chord, namely
a chord made out of a root, a major third, a perfect fifth and a minor seventh. Its
name comes from the fact that it occurs naturally in the seventh chord built upon the
fifth degree — the dominant — of a given major diatonic scale. For example, in the
case of the C-major diatonic scale, we get the aggregate G-B-d-f. To d’Alembert,
this aggregate was a nice major triad G-B-d to which the dissonant seventh f is
added to unambiguously mark the root tone. Differently said, the dissonance G-
B-d-f is there just to indicate to the listeners that the piece being played must be
in the key of C. Euler discussed this topic in one of the three or four articles that
he devoted to music theory in his later years; see “Conjectures sur la raison de
quelques dissonances généralement reçues dans la musique” (1766) [27, pp. 508–
515].31 To briefly review Euler’s argument, we start by recalling that he worked
with “just intonation”, i.e., the system of ratios described by Ptolemy and revived
in the sixteenth century by Zarlino to account for the intervals used in polyphonic
music.32 A portion of this system, covering a perfect twelfth interval, and reduced
to a series of whole numbers, is presented in the following table:

C D E F G A B c d e f g
24 27 30 32 36 40 45 48 54 60 64 72

The seventh chord G-B-d-f is then expressed by the ratios 36 : 45 : 54 : 64, to
which Euler assigns the exponent given by their least common multiple, that is,
26
· 33
· 5 = 8640. One recognizes that it is the tone f that troubles this chord.

Indeed, if we omit this tone, we obtain the much simpler ratios 4 : 5 : 6, whose
exponent is 22

· 3 · 5= 60. From this, “it seems that the addition of the note f ruins
the harmony of this consonance too much for it to have a place in music. However,

31We shall use the English translation [29].
32Thus, the system replaced the so-called Pythagorean system — constructed with the perfect

fifth 3 : 2 as the only reference interval besides the octave — which remained in use until the late
Middle Ages, meeting the needs of the monophonic composition and medieval parallel singing. The
subsequent invention of polyphony claimed an increasingly frequent use of intervals of third and
sixth, which in the Pythagorean scale are not very consonant [68; 10].
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to the ear’s judgment, this dissonance is at worst disagreeable and has been used in
music with great success. It even seems that musical composition acquires a certain
force from it, and without it would bee too smooth and dull. Here we have quite a
paradox, where the theory seems to be in contradiction with the practice, to which
I will try to give an explanation” [29, §4]. The explanation of Euler is based on
the following hypothesis: the organ of hearing is accustomed to taking as simple
proportions all proportions that differ very little from it so that the difference is
almost imperceptible. For example, in equal temperament, the fifth is expressed
by the (irrational) ratio 1 : 12

√
2

7
, which hardly differs from the proportion of 2 : 3,

but the ear is not bothered too much by this small discrepancy33 and in hearing
the interval C : G one may safely “think” the ratio 2 : 3. More generally, if the
proportions expressing a combination of tones are too complicated, the ear will
“substitute” a close approximation that is simpler. “Thus the heard proportions are
different than the true, and it is from them that we must judge the true harmony
and not from the actual numbers” [29, §12]. According to this assumption, the
effect of listening to the dominant seventh chord, which corresponds to the tones
36, 45, 54, 64, is absolutely the same as listening to the tones 36, 45, 54, 63, which
yield the proportion 4 : 5 : 6 : 7, whose exponent is 22

· 3 · 5 · 7= 420, about twenty
times smaller than the “true” one.

In the perspective of the present work, we can recognize in this construction a
way of “saving the phenomena” (the strange acceptance by the ear of a “dissonant”
acoustic aggregate) in the same spirit as the ancient exact sciences and therefore
the product of the scientific activity of someone who has not yet introjected the
division between “mathematics” and “physics” as was vogue in his time. Euler’s
explanation is often presented as the legacy of an outdated attitude, still attached to
a calcified “Pythagorean tradition”, whereas d’Alembert would belong to “the right
side of History”; see, e.g., [64, p. 289; 8, pp. 139–141]. Indeed, unlike Newtonian
mechanics, which, although leaning on outlandish foundations, rather quickly has
developed into a true scientific theory, the science of harmonics eventually has
fallen apart, in that the subsequent evolution has gradually ousted music theory
from the field of direct interest of the majority of scientists. On the one hand,
musica theorica has been largely absorbed into musica practica, written by musi-
cians for musicians and mainly focused on the empirical problems of harmony and
counterpoint; on the other hand, the theoretical work on the phenomena regarding
musical perception was broken up into several branches, with the result that the
acoustic problems that traditionally were part of music theory were detached from

33Adopting the tempered fifth amounts to using the convergent 7
12 of (the continued fraction

expansion of) log2( 3
2 ). The next convergent being 24

41 , the error is smaller than (12 · 41)−1, that is,
about a hundredth of a tone.



“MATHEMATICS” AND “PHYSICS” IN THE SCIENCE OF HARMONICS 231

their musical context to become subjects treated separately by the “natural sci-
ences”, such as physics34, physiology35 and psychology36. Nowadays the scenario
is rather involved, with the coexistence of several tendencies which mostly ignore
each other. On the one side, we witness a significant renewal of interest on math-
ematical modeling of some aspects of music theory, with the search for structural,
and to some extent universal, principles in the formation of musical scales; see,
e.g., [37] and the references therein. In other directions, the massive advent of new
information technologies in the last decades has created an unprecedented situation
in which quantitative methods based on the automatic processing of large masses
of data invade all fields, including music. Besides the indubitable enrichment with
new sound media and new composing techniques (often directly inspired by math-
ematical constructions such as probability theory or game theory), as far as the new
quantitative treatments of musical-acoustical phenomena are concerned — with the
related conceptualizations and cultural trends — we have to say that the aims and
the methodologies adopted in this context are often placed quite far from those
embodied by the exact sciences. This calls for a critical analysis which is still to
come.
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FROM QUANTUM TO CLASSICAL WORLD: EMERGENCE OF
TRAJECTORIES IN A QUANTUM SYSTEM

RODOLFO FIGARI AND ALESSANDRO TETA
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This note deals with models of quantum systems where the emergence of a clas-
sical behavior can be concretely analyzed. We first briefly review some well
known difficulties arising in the classical limit of quantum mechanics according
to the Copenhagen interpretation. Then we discuss the seminal contribution by
Mott (1929) on the tracks observed in a cloud chamber, where the problem can
be approached in a particularly transparent way. Finally, we propose a model
Hamiltonian, with interaction described by spin dependent point interactions,
where Mott’s analysis can be rephrased and the result can be rigorously formu-
lated.

1. Introduction

Quantum mechanics is a theory of extraordinary success meant to describe the
behavior of microscopic systems, i.e., systems with a typical action of the order of
the Planck’s constant h̄. On the other hand, in the nonrelativistic regime, quantum
mechanics is expected to be a universal theory and therefore should apply to the
macroscopic world.

Its final formulation is due to Heisenberg, Born, Jordan [Born and Jordan 1925],
Schrödinger [1982], Born [1926] and, for the mathematical aspects involved, to von
Neumann [1932]. In fact, the quantum mechanical description of physical phenom-
ena is rather abstract and counterintuitive, being based on the evolution of the wave
function, i.e., a complex probability amplitude defined on the configuration space
of the system with no direct physical meaning. This is in contrast with Newtonian
mechanics, where physical objects are described through their positions and veloc-
ities, evolving in time in the phase space. The radically different approaches are
the origin of some conceptual difficulties encountered when one tries to reconcile
the two descriptions in some concrete physical situations. The aim of the present
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note is to discuss this delicate conceptual point through the analysis of concrete
physical models. More precisely, the paper is organized as follows.

In this section we briefly review the basic rules of quantum mechanics in the
realm of the so-called Copenhagen interpretation.

In Section 2 we analyze a specific case study where the problem of the emer-
gence of a classical behavior in a quantum system appears in a clear way. In partic-
ular, we discuss the problem proposed by Mott [1929] concerning the emergence
of a classical trajectory of a quantum particle in a cloud chamber.

In Section 3 we illustrate a model, based on a spin dependent point interaction
Hamiltonian, where Mott’s result can be rephrased in a more explicit and rigorous
way.

Let us summarize the basic assumptions postulated for a system of n quantum
particles in R3. We avoid generality and technical difficulties and in particular we
neglect the specific requests needed to describe systems of identical particles.

(1) State: The state of the system at time t is described by the wave function
ψt(x1, . . . , xn), x j ∈ R3, which is an element of the Hilbert space L2(R3n) with
‖ψt‖ = 1.

(2) Evolution of the state: Given the initial state ψ0, the state at time t is the solu-
tion of the Schrödinger equation

i h̄
∂ψt

∂t
=−

n∑
j=1

h̄2

2m j
1 jψt + V (x1, . . . , xn)ψt , (1-1)

with initial datum ψ0, where m j is the mass of the j-th particle, 1 j denotes the
Laplace operator relative to the coordinates of the j-th particle and V is the inter-
action potential.

(3) Observables: An observable A relative to the system is represented by a self-
adjoint operator A in L2(R3n). In a system made of a single quantum particle,
simple examples of quantum observables are position and momentum. The posi-
tion is represented by x̂k , defined as the multiplication operator by xk , k = 1, 2, 3,
where xk denotes the k-th component of the position of the particle. Analogously,
the momentum is represented by the differential operator

p̂k =−i h̄
∂

∂xk
, k = 1, 2, 3.

One can easily check that the two observables do not commute and in fact, at
least formally, they satisfy the Heisenberg commutation relations [x̂k, p̂l] = i h̄δkl I ,
where I denotes the identity operator.

(4) Predictions: The predictions of the theory are given by Born’s rule and, in
general, are of probabilistic nature. In the special case of the position observable
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relative to a system made of one quantum particle, Born’s rule reduces to

P(x ∈�;ψ)=
∫
�

dx |ψ(x)|2, (1-2)

where the left hand side denotes the probability that the position of the particle
described by the state ψ is found in a set �⊂ R3. The prescription can be easily
extended to the case of other observables making use of the spectral theorem for
selfadjoint operators.

We list here few comments.

(i) As we already mentioned, the predictions of the theory are in excellent agree-
ment with experiments. Furthermore, quantum mechanics is formulated as a uni-
versal theory (in the nonrelativistic regime) and therefore it can be used to describe
both micro- and macrosystems.

(ii) Except in some special cases, Born’s rule gives only probabilistic predictions.
In particular, formula (1-2) means that the theory can only predict the statistical
distribution of the detected positions in a large number of experiments made in iden-
tical conditions. We notice that a quantum particle, when a position measurement
is performed in a single experiment, always appears localized in a well defined
position which, in general, cannot be predicted by the theory. It should be em-
phasized that quantum mechanics is the first fundamental theory which explicitly
renounces to a deterministic description of the physical phenomena.

(iii) For a single observable A represented by the operator A, let 1ψ A denote the
mean square deviation of the statistical distribution of the possible values of A in
the state ψ . It is always possible to find a state ψ such that 1ψ A is arbitrarily small.
This means that the values of the observable A in the state ψ can be predicted with
arbitrary accuracy. On the other hand, the noncommutative character of the algebra
of observables implies that one cannot predict, with arbitrary accuracy, the value of
all the observables relative to a given system. In particular, for a quantum particle
in the state ψ one can prove the Heisenberg uncertainty relations

1ψ x̂k 1ψ p̂l ≥ h̄/2δkl . (1-3)

It is evident that this inequality makes the notion of trajectory for a quantum particle
problematic.

(iv) A crucial point of the theory is the linearity. This means that if ψ1(x) and
ψ2(x) are two states then also the sum ψ1(x)+ψ2(x), suitably normalized, is a
possible state (superposition principle) and this property is preserved by the (linear)
evolution. This apparently trivial fact has major physical consequences, because
the predictions (see (1-2)) are given by a quadratic expression with respect to the
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state. In particular the probability density for the position is

|ψ1(x)+ψ2(x)|2 = |ψ1(x)|2+ |ψ2(x)|2+ 2 Re (ψ1(x)ψ2(x)). (1-4)

From formula (1-4) it is clear that the situation described by ψ1(x)+ψ2(x) cannot
be considered in any sense as the “sum” of the situations described by ψ1(x) and
ψ2(x) separately. In particular the last term in (1-4) is responsible for the appear-
ance of interference effects, typical of waves, in the statistical distribution of the
detected positions in a large number of identical experiments. Such effects can be
directly observed in the so-called two-slit experiment.

We notice that a completely different situation occurs when we know that the
system is in the state ψ1(x) with probability p1 and in the state ψ2(x) with prob-
ability p2, where p1 + p2 = 1. In such a case the probability involved is due to
our ignorance about the state and the system is described by a so-called classical
statistical mixture of the two pure states ψ1(x) and ψ2(x).

(v) Another important aspect is the fact that the wave function is a “wave” in the
configuration space of the system rather than in the three dimensional physical
space. This implies the occurrence of “entanglement” for systems composed by
more than one particle. An entangled state is a state that cannot be factorized in a
product of one-particle states. At a kinematical level, this means that if a system
is described by an entangled state ψ(x1, . . . , xn), it is not possible to associate a
definite (pure) state to each subsystem. The situation is again radically different
from the classical case and it is the origin of the “nonlocal effects” which can be
produced on a subsystem S1 acting on another spatially separated subsystem S2.

We emphasize that there is a general and complete agreement in the physics
community on the validity of the above rules, in the minimal formulation we have
given. They are sufficient to give an accurate description of the physical phenomena
and they can be considered the basis of the “pragmatic” view of the majority of
the physicists working with quantum mechanics and without a specific interest in
foundational problems.

On the other hand, one can strive for a better understanding of various ideas as-
sociated with the rules, such as the nature of the notion of probability arising in the
theory, the meaning of an object’s physical properties, the role of the measurement
process and so on.

When one attempts to give an answer to such questions one enters the field of
the so-called interpretational problem. Here, since the birth of quantum theory,
many different views have been proposed that have stimulated a long and intense
epistemological debate which is still active. We are not going to discuss here
the different opinions and we limit ourselves to detail some aspect of the so-called
standard or Copenhagen interpretation which, more or less consciously, is the point
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of view accepted by the majority of physicists. The aim is to highlight a conceptual
difficulty arising in such an interpretation when one describes the measurement
process or, more generally, the connection between the quantum and the classical
description of the world.

The basic assumption in the Copenhagen interpretation is the completeness of
the wave function. This means that the maximal information about a specific quan-
tum system is encoded in its wave function. Therefore, the probabilistic predictions
have an ontological character, i.e., they do not depend on our ignorance about some
property of the system. If the system is in a state ψ such that we cannot predict
the value of an observable A with probability one, then the system does not have
a definite, even if unknown, value of A.

A consequence of this assumption makes the role of observation problematic.
We recall that in classical physics a measurement of an observable is an innocuous
process that reveals the value of the observable (which was already possessed by
the system before the measurement). In the quantum case, and according to the
Copenhagen interpretation, the situation is different. Let us assume that the system
is in a state ψ such that the observable A does not have a definite value. Assume
that we perform a measurement of A and find a value a0. If, after a very short time,
we repeat the measurement of A we can reasonably expect to obtain the same value
a0. In other words, immediately after the first measurement we can predict with
probability one the value a0 for A. This means that the measurement process is
a strange mechanism that contributes to assign the value a0 to the observable and
it necessarily produces an instantaneous transition of the state ψ → ψ0, where
ψ0 is a state in which A has the definite value a0 (typically an eigenvector of the
self-adjoint operator A representing A).

The instantaneous (stochastic and nonlinear) transition ψ→ ψ0 is called wave
packet collapse.

Bohr [1928] explained the transition claiming that a measurement apparatus is a
classical object and therefore it always possesses a definite value of its observables;
he assumed that the interaction between the classical apparatus and the quantum
system determines the collapse, inducing the transition of the quantum system state.

Bohr’s explanation can be criticized in many respects. We simply mention the
following observations.

It is not clear where the border line between the measurement apparatus (show-
ing a classical behavior) and the system (showing a quantum behavior) should be
fixed. The problem is usually solved pragmatically for each specific situation, but,
at the conceptual level, there is ambiguity.

An even more relevant point is the fact that it is not explained why a measure-
ment apparatus, despite being made of atoms, cannot be described by quantum



240 RODOLFO FIGARI AND ALESSANDRO TETA

mechanics and it is a priori considered as a classical object with well-defined clas-
sical properties.

On the other hand, taking a different point of view, one can insist to describe also
the measurement apparatus as a quantum system using the Schrödinger equation.
As a matter of fact, in this case one can arrive at the unpleasant situation in which
the apparatus’ pointer has no definite position. This fact, as clearly explained by
von Neumann [1932], happens when the system is in a superposition state of two
eigenstates of the observable to be measured. Due to the linearity of the evolution
and to the interaction system-apparatus, such a superposition state is transferred to
the pointer which, as a consequence, has no definite position after the measurement.

It should be underlined once again that the above difficulty arises only at a
conceptual level. Roughly speaking, in concrete physical models describing the
system-apparatus interaction the “difference” between the situation “the pointer has
no definite position” and the situation “the pointer has a definite, even if possibly
unknown, position” is so small that it is practically undetectable.

To summarize the situation, J. Bell [1987] wrote that the quantum description
entirely based on the Schrödinger equation works perfectly well for all practical
purposes (a phrase used often enough that he abbreviated it as FAPP), but he also
insisted that a conceptual inconsistency in the Copenhagen interpretation of the
formalism related to the measurement problem undoubtedly exists.

2. Mott’s analysis of the cloud chamber problem

Here we briefly recall the basic principles of a cloud chamber [Leone and Robotti
2004; Gupta and Ghosh 1946] and the first theoretical explanation of the observed
tracks proposed by Mott [1929]. For a more detailed historical analysis we refer
to [Figari and Teta 2013; 2014].

The air contained in the cloud chamber, saturated with water vapor, is brought
into a supersaturated state by means of a fast expansion that suddenly lowers its
temperature. An α-particle, released by a radioactive source in the center of the
chamber, interacts with the atoms of the gas, inducing ionization. The ionized
atoms then act as condensation nuclei, giving rise to the formation of small drops
of water. The sequences of these drops form visible tracks which are naturally
interpreted as magnifications of the α-particle “trajectories”. In fact, they are ac-
curately characterized as trajectories of a charged classical particle (relativistic or
nonrelativistic according to the initial particle velocity) in a classical electromag-
netic field. And, in particular, they are straight lines whenever no electromagnetic
field is present.

The first quantum theoretical analysis of the radioactive decay of a nucleus with
the emission of an α-particle was given by Gamow [1928] and by Condon and
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Gurney [1928]. The authors concluded that the initial state of the emitted α-particle
has to be described by a spherical wave, with center in the nucleus and isotropically
propagating in space.

It was immediately noticed that the spherical shape of the initial state was appar-
ently in contrast with the observed tracks in the cloud chamber. In particular, in the
words of Mott [1929]: “it is a little difficult to picture how it is that an outgoing
spherical wave can produce a straight track; we think intuitively that it should
ionise atoms at random throughout space.” In an attempt to obtain a satisfactory
theoretical explanation of the tracks, it was realized that a crucial role must be
played by an act of measurement responsible for the collapse of the spherical wave.
This requires an establishment as to where a line of separation between the quantum
system and the measuring device must be fixed. In this sense, the debate on the
cloud chamber can be considered as the prototype of any further discussion about
the measurement problem and the appearance of a classical behavior in a quantum
system in the context of the Copenhagen interpretation of quantum mechanics.

In a first possible approach, the α-particle is the quantum system under consid-
eration and the gas of the chamber acts as the measurement device by which we
observe the particle. Therefore, an atom of the gas “measures” the position of the
α-particle which must be considered a particle immediately after the disintegration
process, since at that moment the gas (i.e., the device) reduces the initial spherical
wave to a narrow wave packet with a definite momentum.

Another approach consists of considering the α-particle and the gas as the whole
quantum system under consideration. In this case, one observes the ionized atoms
and the wave function ψ of the system should provide the ionization probability.

According to this second point of view, the above mentioned intuitive difficulty
can be overcome, since it arises from our erroneous “tendency to picture the wave
as existing in ordinary three dimensional space, whereas we are really dealing with
wave functions in multispace formed by the coordinates both of the α-particle and
of every atom in the Wilson chamber” [Mott 1929].

In his paper Mott proposes a simplified model to obtain a theoretical explanation
following the second point of view. He considers a three particle system consisting
of the α-particle, initially described by a spherical wave centered at the origin, and
two hydrogen atoms, initially in their ground state, whose nuclei are fixed at the
positions a1, a2, with |a1|< |a2|. The α-particle interacts with the electrons of the
atoms while the repulsion between the two electrons is neglected. Moreover, he
introduces some assumptions on the physical parameters characterizing the model:
first, the observation point is far away from the origin and the atoms; secondly, the
α-particle has a high momentum and the collision with the atoms is almost elastic.
Then he looks for a solution to the corresponding time-independent Schrödinger
equation. Using perturbation theory up to second order and standard stationary
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phase arguments, he computes the probability that both atoms are excited. His
important result can be formulated as follows: the probability that both atoms are
excited is (nearly) zero unless a1, a2 and the origin lie on the same straight line.

Let us comment on the meaning of this statement.
Since the observed phenomenon in the experiment is the excitation of the atoms,

Mott’s result says that one can only observe straight tracks. Therefore, it provides
a clear physical explanation of the straight tracks observed in the chamber entirely
based on the Schrödinger equation, without any use of the collapse postulate. On
the contrary, the explanation given following the first approach appears physically
obscure, since it is not a priori clear how an atom (i.e., a microscopic system) can
act as measurement device.

It should be stressed that the above result holds under specific physical assump-
tions on the parameters of the model. This means that the observed behavior of
the α-particle in a cloud chamber is far from being universal.

It is worth mentioning that Mott’s analysis is the first example of an approach
typical of the modern theory of environment-induced decoherence [Blanchard et al.
2000; Joos et al. 2003; Hornberger 2009; Adami et al. 2004; 2006]. In fact, the
classical behavior (the trajectory) of the system (α-particle) emerges as an effect of
the interaction with the environment (vapor atoms in the chamber) under suitable
assumptions on the physical parameters of the model.

This approach is particularly interesting since it is based on a quantitative de-
scription of the phenomenon, with a possible explicit control of the approximations.
This is a crucial aspect in a detailed comparison between theory and experiment,
which certainly would not be possible following an approach based on the idea of
wave packet reduction.

It should also be noted that from the mathematical point of view some aspects
of Mott’s analysis can be improved. For instance, the stationary phase theorem is
used without an accurate control of the conditions of applicability. Another unsat-
isfactory aspect is the use of the stationary Schrödinger equation, which prevents
a time-dependent description of the evolution of the whole system. The use of the
time-dependent Schrödinger equation, with a clear definition of the initial state and
an explicit description of the successive interactions of the α-particle with the first
and the second atom, is required to make both the analysis and the result more
transparent. We refer to [Dell’Antonio et al. 2008; 2010; Finco and Teta 2011;
Recchia and Teta 2014; Teta 2010] for results in this direction.

3. A model of cloud chamber

In this section we present a model of a quantum environment inside which a quan-
tum particle evolves. The environment should mimic the supersaturated vapor of
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a cloud chamber where ionization takes place when a fast and massive particle
is passing by. The model we propose consists of a quantum particle interacting
via point interactions with localized finite-dimensional quantum subsystems (two-
level atoms or spins). Details of the construction of the Hamiltonian of the whole
system can be found in [Cacciapuoti et al. 2007] (see also [Albeverio et al. 2005]
for a comprehensive analysis of point interactions Hamiltonians).

We consider N spins placed in fixed positions y1, y2, . . . , yN . The state space
of the system is the Hilbert space

H= L2(R3)⊗SN ≡ L2(R3)⊗ (C2)1⊗ · · ·⊗ (C
2)N , (3-1)

where (C2) j denotes the j -th copy of C2 in which the j -th spin state is represented
(note that the particle itself is assumed to have no spin). To describe the j-th spin
state in (C2) j we take the basis made up of the first Pauli matrix eigenvectors

σ̂
(1)
j χσ j = σ jχσ j , σ̂

(1)
j =

(
1 0
0 −1

)
, σ j =±1. (3-2)

Any state in H can be written according to the following decomposition

9 ∈H, 9 =
∑
σ

ψσ ⊗Xσ ,

σ = {σ1, σ2, . . . , σN }, Xσ = χσ1 ⊗χσ2 ⊗ · · ·⊗χσN ,
(3-3)

where ψσ ∈ L2(R3). Using such a decomposition, the scalar product in H reads

〈9,8〉 =
∑
σ

(ψσ , φσ ), (3-4)

where (·, ·) is the scalar product in L2(R3) and the induced norm will be denoted
by ‖·‖. With this notation, the normalization condition in H reads

‖9‖2H = 〈9,9〉 =
∑
σ

‖ψσ‖
2
= 1 (3-5)

The Hamiltonian H0 acting in H generating the free dynamics of the system reads

D(H0)= H 2(R3)⊗SN ≡ H 2(R3)⊗ (C2)1⊗ · · ·⊗ (C
2)N , (3-6)

H0 =−
h̄2

2m
1⊗ ISN +

N∑
j=1

IL2 ⊗α j S j , α j ∈ R+,

ISN = I(C2)1 ⊗ · · ·⊗ I(C2)N ,

(3-7)

S j = I(C2)1 · · · ⊗ I(C2) j−1 ⊗ σ̂
(1)
j ⊗ I(C2) j+1 · · · ⊗ I(C2)N (3-8)

In (3-7), I(C2) j and IL2 denote the identity operators in C2 and in L2(R3) respectively.
The system energy is the sum of the kinetic energy of the particle and the energy
of the spins. The j-th spin has an energy ±α j respectively in the states χ±1. In
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order to simplify notation, we will take in the following h̄ = 1, 2m = 1. The action
of H0 on functions of its domain is

H09 =
∑
σ

(−1+α · σ )ψσ ⊗Xσ , (3-9)

where α = (α1, . . . , αN ), α · σ = α1σ1+ · · ·+αNσN .
The spectrum of H0 is easily derived from the spectrum of the free Laplacian

σp(H0)=∅, σess(H0)= σac(H0)= [µ,∞), µ=min
σ
(α · σ ). (3-10)

Under the unitary group e−i t H0 , the particle evolves freely with no interaction with
the spins. The evolution of the j-th spin first component eigenstate corresponding
to the eigenvalue ±1 is given by e∓iα j tχ±1. In fact, e−i t H0 is explicitly known and
the solution of the Cauchy problem for the Schrödinger equation with initial datum
90
=
∑

σ ψ
0
σ ⊗Xσ ∈H is

9 t
= e−i t H090

=
∑
σ

(U tψ0
σ )⊗ e−iσ ·αtXσ , (3-11)

where

(U t f )(x)=
∫

R3
dx′

ei |x−x′|2/(2t)

(4π i t)3/2
f (x′). (3-12)

In order to define a Hamiltonian with spin-dependent point interactions placed at
y1, . . . , yN , one can start from the following consideration. Since the interaction
must be nontrivial only at y1, . . . , yN , such a Hamiltonian should act as the free
Hamiltonian on wave functions vanishing at the points y1, . . . , yN . This suggests
considering the operator H̃0 defined as the restriction of H0 to the set of states
whose spatial support does not contain y1, . . . , yN and to define the spin-dependent
point interaction Hamiltonian any (nontrivial) self-adjoint extension of H̃0.

In the following theorem we summarize the definition and properties of the
Hamiltonians in the subfamily of the “local” self-adjoint extensions, characterized
by local singular boundary conditions on each point y j . In order to state the theo-
rem we introduce the notation

8z
jσ = Gz−α·σ (· − y j )⊗Xσ , z ∈ C \R, (3-13)

where

Gw(x)= ei
√
w|x|

4π |x| , w ∈ C\R+, Im
√
w > 0. (3-14)

Then we have
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Theorem 3.1 [Cacciapuoti et al. 2007]. Define the operator H A with domain

D(H A)=
{
9 =

∑
σ

ψσ ⊗Xσ ∈H |9 =9z
+
∑
jσ

q jσ8
z
jσ ;

9z
∈ D(H0), Im

√
z > 0,

∑
j ′σ ′

A jσ , j ′σ ′q j ′σ ′ = f jσ
}
,

(3-15)

and action
H A9 = H09

z
+ z

∑
j,σ

q jσ8
z
jσ , 9 ∈ D(H A), (3-16)

where

q jσ = lim
|x− y j |→0

4π |x− y j |ψσ (x), (3-17)

f jσ = lim
|x− y j |→0

[
ψσ (x)−

q jσ

4π |x− y j |

]
, (3-18)

A jσ , j ′σ ′ = 0 if j 6= j ′, (3-19)

A jσ , jσ ′ = 0 if σk 6= σ
′

k for some k 6= j, (3-20)

A jσ , jσ ′ = a jσ j , jσ ′j otherwise, with

a jσ j , jσ ′j = βδσ j ,σ
′

j
+ σ j iρ(1− δσ j ,σ

′

j
) with β, ρ ∈ R.

(3-21)

Then H A is self-adjoint and its resolvent, R A(z) = (H A
− z)−1, is the finite rank

perturbation of the free resolvent R(z) given by

R A(z)= R(z)+
∑

jσ , j ′σ ′
((0β,ρ(z))−1) jσ , j ′σ ′〈8

z̄
j ′σ ′, ·〉8

z
jσ , z ∈ ρ(H A), (3-22)

where 0β,ρ(z) is the N2N
× N2N matrix defined as

0β,ρ(z)= 0(z)+ A, (3-23)

with
0(z) jσ , j ′σ ′ = 0, if σ 6= σ ′,

0(z) jσ , jσ =
√

z−α · σ/(4π i),

0(z) jσ , j ′σ =−Gz−α·σ ( y j − y j ′), if j 6= j ′,

(3-24)

and A is the matrix defined in (3-19)–(3-21).

Some particular features in the definition of H A are noteworthy:

– For the sake of convenience, the domain and action of H A are represented us-
ing the complex number z but one can check that the definition of the operator
is independent of the choice of z.
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– Functions in the domain of H A are either singular or zero in each scattering
center y j , j = 1, 2, . . . , N . The “charges” q’s are the coefficients of the
singular part whereas the f ’s are the values assumed in the scattering centers
by the “regular part” of functions in the domain (i.e., the function minus its
singular part in that point). The relation

∑
j ′σ ′ A jσ , j ′σ ′q j ′σ ′ = f jσ (see (3-15))

is then a singular boundary condition satisfied by the functions in the domain
in each point yi . Relation (3-19) guarantees that the boundary condition satis-
fied in each point by functions in the domain do not depend on the boundary
conditions satisfied elsewhere (“locality” of the self-adjoint extension). Notice
that the matrix A jσ , j ′σ ′ is defined in terms β, ρ ∈ R (see (3-21)), i.e., the two
relevant parameters characterizing the interaction.

– The Hamiltonians one obtains for ρ = 0 do not show any term indicating
interaction between particle and spins. They correspond to point interaction
Hamiltonians for the particle (see [Albeverio et al. 2005]) together with free
evolution of the spins. Among the self-adjoint extensions of H̃0 there are
Hamiltonians where β is taken as spin-dependent (β(σ )). Always in cases
with ρ = 0, the spins are still free, whereas the particle feels a point force in
each y j whose strength depends on the spin state in that same point. The latter
were the Hamiltonians used to analyze neutron scattering by (fixed) nuclei.

– ρ is the coupling constant of the particle-spin interaction. If ρ is different from
zero, the particle, in addition to the zero-range interaction with the points, can
exchange energy with the spins. Condition (3-20) guarantees locality of the
boundary conditions in this case.

– The spectrum of H A can have a very rich structure. In particular, several
eigenstates embedded in the continuum when ρ = 0 turn into resonances when
ρ 6= 0 as a consequence of the interaction particle-spin. For our scope only
the spectral structure at high energy will be relevant. It is easy to check that
the spectrum of H A is purely continuous with no embedded eigenvalues for
energies larger then maxσ (α · σ ).

The generalized eigenfunctions of H A are computable using the explicit form
of the resolvent operator (3-22). For positive energies λ > maxσ (α · σ ) their σ
components are

ϕσβ,ρ(x, λ,ω)⊗Xσ =
(λ−α · σ )1/4

(4π)3/2

[
ei
√
λ−α·σω·x

⊗Xσ

+

∑
j, j ′,σ ′

(0β,ρ(λ))
−1
j,σ , j ′σ ′e

i
√
λ−α·σω· y j Gλ−α·σ ′(x− y j ′)⊗Xσ ′

]
, (3-25)
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where ω ∈ S2 is the unit vector representing the momentum direction. In fact, (3-25)
remains valid for all values of λ provided that the imaginary part of

√
λ−α · σ is

chosen positive for all σ such that λ−α · σ < 0.
We consider the normalized initial condition

90
= ψ0⊗Xσ 0, (3-26)

where σ 0 is the spin configuration in which σ j =−1 for all j ,

ψ0(x)= N̂ e−x2/(2γ 2)

x
sin(P0x), (3-27)

with x = |x| and

N̂ = 1

π3/4√γ (1− e−P2
0 γ

2
)1/2

, (3-28)

is a normalization factor making the norm of 90 equal to one. In momentum space
the initial particle wave packet reads

ψ̂0(k)= N̂ ′/k[e−(γ
2/2)(k−P0)

2
− e−(γ

2/2)(k+P0)
2
] (3-29)

where k = |k| and N̂ ′ = γ /2N̂ .
The meaning of the choice made above relates to the physical model: the spins

are initially in the lowest energy state and are ready to detect the particle position
during time evolution; the particle is propagating isotropically from the origin, with
initial average radial momentum P0 (corresponding to a wavelength 1/P0). The
parameter γ represents the radial spread of the initial wave packet.

For simplicity, we fix α j = α > 0, for all j in the Hamiltonian H A of the system.
In this way 2α is the energy needed to flip the j-th spin from the down (σ j =−1)
to the up state (σ j = 1).

We consider situations in which the spin positions y j are distributed uniformly
on a portion 6 of linear dimension D of a sphere of radius L centered at the origin.

We assume that γ � L in such a way that the initial wave packet is concentrated
around the origin far from the scattering centers.

The parameter ρ in H A has the dimension of inverse length and the role of the
strength of the coupling between the particle and the spins; 1/β is the scattering
length of the scatterers.

We assume that the following inequalities between the order of magnitudes of
relevant physical parameters hold:

1/β� 1/P0 < D,

α� P2
0 specifically P2

0 & Nα. (3-30)

The meaning of the assumptions above can be summarized as follows:
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The average initial energy of the particle is larger than the energy needed to
produce any number of spin flips and the particle de Broglie wavelength is much
larger than the scattering length of the point scatterers. The relation 1/P0 < D will
imply that two spherical waves

sin P0|x− y j |

4π |x− y j |
, j = j1, j2,

centered in two scatterers will show constructive interference only on the axis of
the segment connecting the two points.

With the assumptions made above, Mott’s conjecture can be rephrased as fol-
lows: consider the cone C6 with apex at the origin and intersecting S2 in 6. Let
us denote with χ6 the characteristic function of the cone. It is convenient to write
the initial condition as the following superposition state

ψ̂0(k)= (1−χ6(k))ψ̂0(k)+χ6(k)ψ̂0(k). (3-31)

We can show that the first term in (3-31) evolves almost freely giving a negligible
contribution to any change in the configuration of spins in 6. Only the second
term in (3-31) can produce relevant changes in the spin configuration in 6.

The precise statement will be formulated in terms of the long term behavior of
the whole system (particle and spins). This requires the use of standard techniques
in time-dependent and independent scattering theory (see [Reed and Simon 1979]).
The wave operators �± associated to the couple H A, H0 are defined as

9+ =�+9 = s− lim
t→∞

ei t H A
e−i t H09, (3-32)

9− =�−9 = s− lim
t→−∞

ei t H A
e−i t H09. (3-33)

As a consequence of the fact that the resolvent of H A is a finite rank perturbation
of the resolvent of H0, the wave operators exist and are complete. In particular one
has

lim
t→∞
‖e−i t H A

9 − e−i t H0�−1
+
9‖H = 0. (3-34)

This means that �−1
+ applied to the initial state gives a modified initial state whose

free evolution approximates the long term evolution of the system. In terms of �−1
+

our main result can be stated as follows:

Theorem 3.2. For any σ 6= σ 0, under the assumptions (3-30),

‖(�−1
+
ψ̂0)σ (k)−χ6(k)ψ̂0(k)‖L2(R3) < e−C P0, (3-35)

where C is a positive real constant and, as an abuse of notation, we use the same
symbol �−1

+ for the wave operator acting on the particle Fourier space.
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Notice that the free evolution of the approximate modified initial state, denoted
by χ6(k)ψ̂0(k), in (3-35) is characterized by a particle momentum always con-
centrated inside the cone and by an unaltered spin configuration. The result then
states the following (conceivable) result: when the particle initial energy is very
large compared to the energy necessary to flip a large number of spins

(1) the evolution of the particle state is not affected significantly by the interaction
with the environment, and

(2) spins in a particular direction with respect to the source have negligible proba-
bility to be flipped by components of the initial wave packet heading in other
directions.

The main steps heading to the result are sketched below. Only the proof of the
main technical lemma will be detailed in the following.

The relation between wave operators and generalized eigenfunctions implies
that the modified initial condition in a specific spin configuration reads

(90
+
)σ := (�

−1
+
90)σ =

∫
∞

α·σ

dλ
∫

S2
dω φσ (·, λ,ω)(ϕσβ,ρ(λ,ω), ψ

0
σ ), (3-36)

where

φσ (x, λ,ω)=
(λ−α · σ )1/4

(4π)3/2
ei
√
λ−α·σω·x . (3-37)

• The first step in the proof consists in carrying out an explicit computation of
the scalar product of the initial conditions with the generalized eigenfunctions
appearing in the integral on the right hand side of (3-36). If y is the position
of a spin in 6 and σ 6= σ 0 then

Lemma 3.1.

‖( ̂Gλ−α·σ (· − y), ψ̂0)− (
̂Gλ−α·σ (· − y), χ6ψ̂0)‖< eC ′P0,

where C ′ is a positive real constant.

Proof. Let us write

Fσ ,6(λ, | y|)≡ (( ̂Gλ−α·σ (· − y), χ6ψ̂0)

=

∫
R3

dk ̂Gλ−α·σ (· − y)ψ̂0(k)χ6(k) (3-38)
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for the specific initial state of interest (3-27). The spherical wave Fourier
transform is the distribution

̂Gλ−α·σ (· − y)=
1

(2π)3/2

∫
R3

e−i k·x ei
√
λ−α·σ |x− y|

4π |x− y|
dx

=
e−i k· y

(2π)3/2k

∫
∞

0
sin(kξ)ei

√
λ−α·σ ξ dξ,

where σ is a generic spin configuration σ 6= σ 0.
First, we compute explicitly the integral with respect to the momentum

modulus k. Neglecting terms exponentially decreasing faster then e−cP2
0 for

any c > γ 2/2, we perform the gaussian integral

I (ξ)≡
∫
∞

0
eik| y| cos θk, y sin(kξ)e−γ /2(k−P0)

2
dk = I+(ξ)− I−(ξ),

where

I±(ξ)≡
1
2i

∫
∞

0
eik| y| cos θk, y e±ikξe−γ /2(k−P0)

2
dk,

and θk, y is the angle between the vectors k and y. The result of the integration
reads

I±(ξ)= 1/(2iγ )
√
π/2e−γ

2/2P2
0 e−1/(2γ 2)z2

± Erfc(−i/(
√

2γ )z±),

where z± = ±ξ + | y| cos θk, y − iγ 2 P0 and Erfc denotes the complementary
error function.

Defining b =
√
λ+ Nα, we have

Fσ ,6(λ, | y|) (3-39)

=
1

(2π)3/2
N̂ ′
∫
χ6

[∫
∞

0
(I+(ξ)− I−(ξ))e−ibξ dξ

]
d6

= De−(b−P0)
2γ 2/2

∫
S2
χ6(k)ei P0| y| cos θk, y e−| y|

2/(2γ 2) cos2 θk, y[∫
∞

0
e−(ξ/(

√
2γ )+i(b−P0)γ /

√
2)2e−ξ/γ

2
| y| cos θk, y Erfc(−i/(

√
2γ )z+)dξ

]
d6

+ De−(b+P0)
2γ 2/2

∫
S2
χ6(k)ei P0| y| cos θk, y e−| y|

2/(2γ 2) cos2 θk, y[∫
∞

0
e−(ξ/(

√
2γ )+i(b+P0)γ /

√
2)2e+ξ/γ

2
| y| cos θk, y Erfc(−i/(

√
2γ )z−)dξ

]
d6,
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where D = 1/(2π)3/2N̂ ′1/(2iγ )
√
π/2. Being the integral in the variable ξ

uniformly bounded for any finite value of b, P0 and θk, y, it is possible to
integrate over the momentum directions which lie inside the cone C6 .

In order to give an estimate for large P0| y| of the integral we will make use
of a stationary phase argument. We will take the axis of the cone to be the
polar axis θk = 0. Both integrals in (3-39) have the form∫ θmax

0
ei P0| y| cos θk, y G(cos θk, y) sin θk dθkdφk, (3-40)

with cos θk, y = cos θk cos θ y+ sin θk sin θ y cos(φk−φ y).
It is easy to check that the phase cos θk, y is stationary only if θk = θ y

and φk = φ y and that the Hessian matrix determinant computed at the point of
stationary phase is sin2 θ y. We deduce that the case of stationary phase applies
only if y/| y| belongs to the cone C6 and that, in such a case, the leading term
of (3-40) reads

2π
i

ei P0| y|

P0| y|
G(cos θk, y = 1)

sin θ y

|sin θ y|
. (3-41)

If y is inside the cone C6 and θmax < π/2, we then have

Fσ ,6(λ, | y|)'−
N̂
8

ei P0| y|

P0| y|
e−(b−P0)

2γ 2/2e−| y|
2/(2γ 2)[∫

∞

0
e−(ξ/(

√
2γ )+i(b−P0)γ /

√
2)2e−ξ/γ

2
| y| Erfc(−i/(

√
2γ )v+)dξ

]
−

N̂
8

ei P0| y|

P0| y|
e−(b+P0)

2γ 2/2e−| y|
2/(2γ 2)[∫

∞

0
e−(ξ/(

√
2γ )+i(b+P0)γ /

√
2)2e+ξ/γ

2
| y| Erfc(−i/(

√
2γ )v−)dξ

]
,

where v± =±ξ + | y| − iγ 2 P0.
If the scatterer position lies outside the cone, standard results in approximation
of integrals in the nonstationary case proves the exponential decay stated in
the lemma. �

Notice that, as a by-product, the lemma proves that the main contribution
to the integral with respect to λ in (3-36) is attained for b ≈ P0 which, under
our assumption, means

√
λ≈ P0.

• As a second step, one has to examine the coefficients in the sum of spheri-
cal waves Gλ−α·σ in (3-25). In particular, it is necessary to check that the
matrix 0β,ρ(λ) is invertible and to control the norm of its inverse. Under
the assumptions of the dynamical and geometrical parameters of the system



252 RODOLFO FIGARI AND ALESSANDRO TETA

listed above it is always possible to find a β, independent on the number of
spins, for which the matrix 0β,ρ(λ) is invertible and the norm of its inverse
is bounded uniformly in the number of spins. Details about the invertibility
and the continuum limit of the inverse of the 0 matrix are given in [Figari and
Teta 2014] (see also [Figari et al. 1988] for a similar result in the case of point
interactions without spin dependence).

Theorem 3.2 specifies where the main contribution to the flipping probability comes
from, yet does not give quantitative indications about the transition probabilities
to any specific final configuration of the environment. In order to investigate thor-
oughly the asymptotic behavior of the particle and the environment and character-
ize its dependence on the number of flipped spins, it is necessary to go one step
further:

• Prove a kind of Huygen’s principle stating that the spherical waves centered in
a large number of points uniformly distributed on 6 interfere constructively
only inside the cone C6 . The situation is analogous to the case of electromag-
netic wave propagation through a hole when the linear dimensions of the hole
are much larger than the wavelength (absence of diffraction).

• Give an estimate of the probability that a significant fraction of spins turns
out to be flipped.

These two last technical steps, requiring detailed combinatorial estimates, will be
examined in a paper in preparation.

To conclude, we want to summarize what we obtained in the language of the
environment induced decoherence: if a large number of “clouds” of spin depen-
dent point scatterers are present on the sphere of radius L , the above stated result
amounts to saying that the long term behavior of the whole system state is the inco-
herent sum of states with support in distant regions of the configuration space, each
characterized by a sharply defined particle momentum direction and a significant
change in the spin configuration only relative to spins in that specific direction.
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PROPAGATION OF CHAOS AND EFFECTIVE EQUATIONS
IN KINETIC THEORY: A BRIEF SURVEY

MARIO PULVIRENTI AND SERGIO SIMONELLA

We review some historical highlights leading to the modern perspective on the
concept of chaos from the point of view of kinetic theory. We focus in particular
on the role played by the propagation of chaos in the mathematical derivation of
effective equations.

1. The paradigm of kinetic theory

Propagation of chaos is a central topic in kinetic theory and certainly exhibits in-
teresting features from the point of view of probability theory and mathematical
physics.

This contribution is dedicated to our friend and colleague Lucio Russo, who gave
and is giving important contributions to these fields and to the history of science.
The purpose is to review some important steps in the mathematical understanding
of kinetic equations and of the notion of chaos.

We do not pretend to be exhaustive and limit ourselves to a selection of argu-
ments which played a key role from a modern outlook. We also comment on some
perhaps less known historical aspects underlining the long and difficult path of the
scientific progress.

Many interesting systems in physics and applied sciences consist of a large
number of identical components so that they are difficult to analyze from a math-
ematical point of view. On the other hand, quite often, we are not interested in a
detailed description of the system but rather in its collective behavior. Therefore,
it is necessary to look for all procedures leading to simplified models, retaining
the interesting features of the original system, cutting away redundant information.
This is exactly the methodology of statistical mechanics and kinetic theory. Here
we want to outline the limiting procedure leading from the microscopic descrip-
tion of a large particle system (based on the fundamental laws like the Newton or
Schrödinger equations) to the more practical picture dictated by kinetic theory.
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Although recently the methodology of kinetic theory has been applied to a large
variety of complex systems (consisting of a huge number of individuals), we will
discuss here only models arising in physics and more precisely in classical me-
chanics. The starting point is a system of N identical particles in the space R3.
A microscopic state of the system is a sequence z1, . . . , zN where zi = (xi , vi )

denotes position and velocity of the i-th particle. The particles interact via the
(smooth) two-body interaction ϕ : R3

→ R, and the equations of motion are{
ẋi = vi ,

v̇i =−
∑

j : j 6=i ∇ϕ(xi − x j ).
(1)

Particles have unit mass, and ϕ depends on the distance |xi − x j | so that the force
of particle j acting on particle i (that is, −∇ϕ(xi − x j )) is directed along xi − x j .

We are interested in a situation where N is very large (for instance, a cubic cen-
timeter of a rarefied gas contains approximately 1019 molecules). The knowledge
of the microscopic states becomes useless, and we turn to a statistical descrip-
tion. We introduce a probability measure W N (Z N ) d Z N (absolutely continuous
with respect to the Lebesgue measure), defined on the phase space of the system
R3N
×R3N , where

Z N = (z1, . . . , zN )= (xi , vi , . . . , xN , vN ).

W N assigns the same statistical weight to two different vectors Z N and Z ′N differ-
ing only for the order of particles, i.e., identifying the same physical configuration.
Physically relevant measures are symmetric with respect to permutations of the
sequence z1, . . . , zN .

The time-evolved measure is defined by

W N (Z N , t)=W N (8−t(Z N )). (2)

Here 8t(Z N ) denotes the dynamical flow constructed by solving the equations of
motion; namely, 8t(Z N ) solves (1) with initial datum Z N .

We can establish a partial differential equation, called the Liouville equation,
describing the evolution of the measure (2). However, this equation is also not
tractable from a practical point of view. To have an efficient reduced description,
one can focus on the time evolution for the probability distribution of a given
particle (say particle 1), all the particles being identical.

To this end, we define the j-particle marginals

f N
j (Z j , t)=

∫
dz j+1 · · · dzN W N (Z j , z j+1, . . . , zN , t), j = 1, . . . , N , (3)
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and we look for an equation describing the evolution of f N
1 . Roughly, we establish

an evolution equation of the form

∂t f N
1 =−v · ∇ f N

1 + Q. (4)

The first term in the right-hand side denotes the contribution to the evolution of f N
1

due to the free transport of particles, while the term Q should describe the interac-
tion of particle 1 with the rest of the system.

We now face a big difficulty. Since the interaction is binary, Q will depend on
f N
2 , namely the two-particle marginal. In other words, (4) is still useless because

to know f N
1 we need to know f N

2 and to know f N
2 we need to know f N

3 and so on.
We handle a hierarchy of equations, called BBGKY hierarchy [Bogolyubov 1946]
(from the names of the physicists Bogolyubov, Born, Green, Kirkwood, and Yvon).

Here enters the property called propagation of chaos, that is,

f N
2 (x1, v1, x2, v2, t)= f N

1 (x1, v1, t) f N
1 (x2, v2, t). (5)

Accepting (5), Q becomes a bilinear operator of f N
1 and (4) is a closed equation.

We have thus replaced a huge ordinary differential system with a single PDE. The
price we pay is that (4) is nonlinear.

Strictly speaking, (5) is certainly false since it expresses the statistical indepen-
dence of particle 1 and particle 2, which even if assumed at time 0 cannot hold
at later times. Indeed, the dynamics creates correlations. Nevertheless, one can
hope to recover this property in some asymptotic situation described by a suitable
scaling limit. This is what happens in three different physical contexts: the mean-
field, the low-density and the weak-coupling limits, yielding three different kinetic
equations, namely the Vlasov, Boltzmann and Landau equations, respectively.

2. Mean-field limit and Vlasov equation

The simplest example in which the methods of kinetic theory apply is the mean-
field limit. Let us suppose that the particle system we are considering interacts
through a very small (possibly long-range) potential O(1/N ), where the number
of particles N is going to diverge. The equation of motion becomes{

ẋi = vi ,

v̇i =−(1/N )
∑

j : j 6=i ∇ϕ(xi − x j ).
(6)

Consider also an initial distribution W N fully factorized, i.e., W N
= f ⊗N

0 . In this
situation, the dynamics creates correlations at each positive time. However, given
two particles, say 1 and 2, the dynamics of particle 1 is influenced by the presence
of particle 2 by a factor O(1/N ). The same happens for particle 2 regarding the
influence of particle 1. Therefore, we expect that the correlations are negligible
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and in the limit N →∞

f N
2 ≈ ( f N

1 )
⊗2. (7)

We shall see that, in our context, (4) becomes

(∂t+v1 ·∇x1) f N
1 (t)=

(N − 1)
N

∫
dx2

∫
dv2 ∇ϕ(x1−x2)·∇v1 f N

2 (x1, v1, x2, v2, t)
(8)

so that, using (7) and formally taking the limit N →∞, we arrive at the following
equation for the one-particle distribution f :

(∂t + v · ∇x) f (x, v, t)=
∫

dy
∫

dw f (y, w, t)∇ϕ(x − y) · ∇v f (x, v, t). (9)

Equation (9) is called the Vlasov equation (from the name of the physicist who
introduced it) and describes a large system of weakly interacting particles.

The rigorous analysis of the mean-field limit and the Vlasov equation are a well
understood subject in the case of smooth potentials (see for instance [Dobrušin
1979]). The interesting case of the Coulomb interaction is still a challenging open
problem.

3. The Boltzmann equation

Much more subtle are the limiting physical situations leading to the Boltzmann
equation.

Ludwig Boltzmann established an evolution equation to describe the behavior
of a rarefied gas in 1872, starting from the mathematical model of elastic balls and
using mechanical and statistical considerations. The importance of this equation
is twofold. On one side, it provides (as well as the hydrodynamical equations)
a reduced description of the microscopic world. On the other, it is also an im-
portant tool for applications, especially for dilute fluids when the hydrodynamical
equations fail to hold.

According to the general paradigm of kinetic theory, the starting point of Boltz-
mann’s analysis is to renounce the study of gas in terms of the detailed motion of
the molecules of the full system. It is preferable to investigate a function f (x, v)
which is the probability density of a given particle, where x and v denote its position
and velocity.

Following the original approach proposed by Boltzmann, f (x, v) dx dv is to
rather be interpreted as the fraction of molecules falling in the cell of the phase
space of size dx dv around (x, v). The two concepts are not exactly the same, but
they are asymptotically equivalent (when the number of particles diverges) if a law
of large numbers holds.
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More precisely, Boltzmann considered the occupation numbers of the cells of
a grid in the phase space, when the side of the cell is macroscopically small but
sufficiently large to contain a huge number of particles. From a historical point of
view, Boltzmann’s analysis was really remarkable. Probability theory was not well
developed from a mathematical point of view, and even the possibility of describing
the macroscopic world in terms of atoms and molecules was still doubtful.

Boltzmann considered a gas as microscopically described by a system of elastic
(hard) balls, colliding according to the laws of classical mechanics.

The Boltzmann equation for the one-particle distribution function reads

(∂t + v · ∇x) f = Q( f, f ) (10)

where Q, the collision operator, is defined by

Q( f, f )(x, v)=
∫

R3
dv1

∫
S2
+

dn (v− v1) · n [ f (x, v′) f (x, v′1)− f (x, v) f (x, v1)],

(11)
with

v′ = v− n[n · (v− v1)],

v′1 = v1+ n[n · (v− v1)]
(12)

and n a unitary vector varying in S2
+
= {n : n · (v− v1)≥ 0}.

Note that v′ and v′1 are the outgoing velocities after a collision of two elastic balls
with incoming velocities v and v1 and centers x and x + εn, with ε the diameter of
the spheres. Clearly the collision takes place if n · (v− v1) > 0. Formulas (12) are
consequences of the conservation of energy and momentum. Note that ε does not
enter (10) as a parameter.

As a fundamental feature of (10), one has the formal conservation (in time) of
the five quantities ∫

dx
∫

dv f (x, v; t)vα (13)

with α = 0, 1, 2, expressing conservation of probability, momentum and energy,
respectively. From now on, we shall set

∫
=
∫

R3 for notational simplicity.
Moreover, Boltzmann introduced the (kinetic) entropy defined by

H( f )=
∫

dx
∫

dv f log f (x, v) (14)

and proved the famous H theorem asserting the decrease of H( f (t)) along the
solutions of (10).

Finally, in the case of bounded domains or homogeneous solutions ( f = f (v, t)
is independent of x), the distribution defined for some β > 0, ρ > 0 and u ∈ R3 by

M(v)=
ρ

(2π/β)3/2
e−(β/2)|v−u|2, (15)
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called the Maxwellian distribution, is stationary for the evolution given by (10). In
addition, M minimizes H among all distributions with given total mass ρ, mean
velocity u and mean energy. The parameter β is interpreted as the inverse temper-
ature.

In conclusion, Boltzmann was able to introduce an evolution equation with the
remarkable properties of expressing mass, momentum and energy conservation
and also the tendency to thermal equilibrium. In other words, he tried to conciliate
Newton’s laws with the second principle of thermodynamics.

The H theorem is in contrast with the laws of mechanics, which are time-
reversible. This fact caused skepticism among the scientific community, and the
work of Boltzmann was attacked by several scientists. We refer the reader to the
beautiful monograph by C. Cercignani [1998], which is a marvelous compromise
between historical and high-level scientific divulgation, to have a faithful idea of
the debate at the time.

To formally derive (10), let us consider a system of N identical hard spheres of
diameter ε and unitary mass, interacting by means of the collision law (12). We
denote by ε the diameter of the particles in view of the fact that ε is very small
compared with typical macroscopic lengths.

The phase space 0N of the system is the subset of (R6)N satisfying the hard-core
condition, namely

|xi − x j | ≥ ε for i 6= j .

The dynamical flow is defined as the free flow, i.e.,

Z N (t)= (x1+ v1t, v1, . . . , xN + vN t, vN )

up to the first impact time, namely when |xi − x j | = ε. Then an instantaneous
collision takes place according to the law (12), and the flow goes on up to the next
collision instant.

We denote by Z N →8t(Z N ) the dynamical flow constructed in this way. The
well-posedness of the hard-sphere dynamics is not obvious, due to the occurrence
of multiple collisions or to the a priori possibility that collision times accumulate
at a finite limiting time. However, such pathologies cannot occur outside a set of
initial conditions Z N of vanishing measure. Therefore, the flow Z N → 8t(Z N )

can be defined almost everywhere with respect to the Lebesgue measure, and this
is enough for our purposes.

Given a probability measure with density W ε
0 on 0N , thanks to the invariance

of the Lebesgue measure under the above evolution, we define the time-evolved
measure as the measure with density

W ε(Z N , t)=W ε
0 (8

−t Z N ). (16)
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We recall that we consider probability distributions W ε
0 which are initially (and

hence at any positive time) symmetric in the exchange of the particles. The proba-
bility density of the first j particles is given by the j-particle marginal

f εj (Z j , t)=
∫

dz j+1 · · · dzN W ε(Z j , z j+1, . . . , zN , t), j = 1, . . . , N . (17)

Notational remark. Up to now, the two parameters N and ε have been introduced
independently, and the definitions 0N , Z N , W ε, f εj , etc., should exhibit a double
dependence. However, in a moment, we shall fix a precise dependence ε = ε(N )
so that the notation is unambiguous.

Cercignani [1972] derived a hierarchy of equations for the marginals, and the
first of such equations, for the one-particle distribution, is

(∂t + v · ∇x) f ε1 = Coll, (18)

where Coll denotes the variation of f due to the collisions. It takes the form

Coll= (N − 1)ε2
∫

dv2

∫
S2

dn f ε2 (x, v, x + nε, v2)(v2− v) · n. (19)

Let us argue the physical significance of (19) and (18). In absence of collisions,
the probability density of a given particle would be conserved, that is,

d
dt

f ε(x + vt, v, t)= 0.

The presence of collisions and the total conservation of the probability imply that

d
dt

f ε(x + vt, v, t)= flux,

where the flux is computed on the boundary of the spherical surface of the ball of
radius ε around x . Therefore, the probability flux due to a collision with a given
particle, say particle 2, having velocity v2, is given by

−ε2
∫

S2
f ε2 (x, v, x + nε, v2)V · n

where V = v2 − v is the relative velocity and −n is the inward normal to the
considered surface.

Integrating with respect to dv2 and summing over all the possible choices of
particles, we arrive to (18) and (19).

This is, basically, Boltzmann’s original argument, except for an important con-
ceptual difference. The basic object of investigation considered by Boltzmann is
not the probability density f but rather the quantity

f ε(x, v, t)≈
N1(t)
|1|N
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where 1 is a small cell on the phase space around the point (x, v), |1| is its volume
and N1(t) is the occupation number of the cell 1 (number of particles falling in 1)
at time t . Clearly, 1 must be small compared with the macroscopic lengths, e.g.,
the size of the box in which the gas is confined, but large with respect to the typical
microscopic lengths, for instance ε (molecular diameter).

The two concepts introduced are not exactly the same, but in view of a limit
N →∞, it is possible to conceive a law of large numbers allowing one to identify
the empirical sample with the a priori probability.

Next we shall tackle the problem of getting a closed equation. Apparently, we
are in a situation analogous to the one discussed for the Vlasov equation, but there
is a deep difference. Indeed for the hard-sphere system, one can write a hierarchy
of equations which plays the role of the BBGKY hierarchy for smooth potentials.
However, the interaction among the particles is strong and the mean-field argument
used to invoke the propagation of chaos fails.

Boltzmann’s most important assumption enters here, namely that two given par-
ticles should be (almost) uncorrelated if the gas is rarefied enough. This leads to
the propagation of chaos

f ε2 (x, v, x2, v2)= f ε(x, v) f ε(x2, v2), (20)

which is however much more delicate in the present context. In fact, if two particles
collide, correlations are created. Even assuming (20) at some time, if particle 1
collides with particle 2, such an equation cannot be satisfied at any time after the
collision.

Before discussing the propagation of chaos further, we notice that, in practical
situations, for a rarefied gas, the combination Nε3

≈ 10−8 cm3 (total volume oc-
cupied by the particles) is very small, while Nε2

= O(1). This implies that the
collision operator given by (19) is O(1). Therefore, since we are dealing with a
huge number of particles, we are tempted to perform the limit N →∞ and ε→ 0
in such a way that ε2

= O(N−1). As a consequence, the probability that two tagged
particles collide (which is of the order of the surface of a ball, that is, O(ε2)) is
negligible. Instead, the probability that a given particle collides with any of the
remaining N − 1 particles (O(Nε2)= O(1)) is not negligible. On the other hand,
condition (20) refers to two preselected particles (say 1 and 2) and it is not unrea-
sonable to conceive that it holds in the limiting situation in which we are working.

Nevertheless, we cannot insert (20) into (19) because the integral operator refers
to times both before and after the collision. Let us assume (20) only when the pair
of velocities v and v2 are incoming ((v−v2) ·n> 0). If the two particles are initially
uncorrelated, it is unlikely that they have collided before a given time t so that we
assume their statistical independence.
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This is a standard argument in textbooks of kinetic theory, but some extra com-
ments are needed. If particles 1 and 2 have not collided directly before a given
time t , this does not imply that they are uncorrelated. Indeed there may exist a
chain of collisions involving a group i1, i2, . . . of particles

1→ i1→ i2→ · · · → 2,

correlating particles 1 and 2. The occurrence of this event must be excluded by a
rigorous mathematical analysis.

Coming back to (19), for the outgoing pair of velocities v and v2 ((v2−v)·n> 0),
we make use of the continuity property

f ε2 (x, v, x + nε, v2)= f ε2 (x, v
′, x + nε, v′2) (21)

where the pair v′ and v′2 is precollisional. On the two-particle distribution expressed
in terms of precollisional variables, we apply condition (20), obtaining

Coll= (N − 1)ε2
∫

dv2

∫
S2
+

dn (v− v2) · n

×[ f (x, v′) f (x − nε, v′2)− f (x, v) f (x + nε, v2)] (22)

after a change n→−n in the positive part of Coll, using the notation S2
+

for the
hemisphere S2

+
= {n : n · (v− v2)≥ 0}.

Finally, in the limit as N →∞ and ε→ 0 with Nε2
= λ−1, we find

(∂t+v ·∇x) f =λ−1
∫

dv2

∫
S+

dn (v−v2)·n [ f (x, v′) f (x, v′2)− f (x, v) f (x, v2)].

(23)
The parameter λ represents, roughly, the typical length a particle can cover without
undergoing any collision (mean free path). (In (10), we just chose λ= 1.)

Remark. After having taken the limit N →∞ and ε → 0, there is no way to
distinguish between incoming and outgoing pair velocities because no trace of
the parameter ε is left in (23) and n plays the role of a random parameter. How-
ever, keeping in mind the way we derived the Boltzmann equation, we shall con-
ventionally maintain the name “incoming” for velocities satisfying the condition
(v− v2) · n ≥ 0 and consequently the pair v′ and v′2 is outgoing in (23).

Equation (23) (or equivalently (10)–(11)) is the Boltzmann equation for hard
spheres. Such an equation has a statistical nature, and it is not equivalent to the
Hamiltonian dynamics from which it has been derived. Indeed the H theorem
shows that it is not reversible in time in contrast with the laws of mechanics. We
note, incidentally, that this is not the case for the Vlasov equation, which inherits
all the properties of the Hamiltonian systems.
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By the analysis on the order of magnitude of the quantities in the game, we
deduced that the Boltzmann equation works in special situations only. The con-
dition Nε2

= O(1) means that we consider a rarefied gas, with almost vanishing
volume density. After Boltzmann established the equation, Harold Grad [1949;
1958] postulated its validity in the limit N →∞ and ε→ 0 with Nε2

→ const. as
discussed above (this is often called, indeed, the Boltzmann–Grad limit).

There is no contradiction in the irreversibility or in the trend to equilibrium
obtained after the limit, when they are strictly speaking false for mechanical sys-
tems. However, the arguments above are delicate and require a rigorous, deeper
analysis. If the Boltzmann equation is not a purely phenomenological model de-
rived by assumptions ad hoc and justified by its practical relevance, but rather a
consequence of a mechanical model, we should derive it rigorously. In particular,
the propagation of chaos should not be a hypothesis but the statement of a theorem.

After the formulation of the mathematical problem by Grad, Cercignani [1972]
obtained the evolution equation (hierarchy) for the marginals of a hard-sphere sys-
tem, and this was the starting point to rigorously derive the Boltzmann equation,
as accomplished by Lanford [1975] in his famous paper, even though only for a
short time interval.

Lanford’s theorem is probably the most relevant result regarding the mathemati-
cal foundations of the kinetic theory. In fact, it dispelled the many previous doubts
on the validity of the Boltzmann equation (although some authors refuse a priori
the problem of deriving the equation starting from mechanical systems [Truesdell
and Muncaster 1980]).

Unfortunately, the short-time limitation is serious. Only for special systems, as
the case of a very rarefied gas expanding in a vacuum, can we obtain a global
validity result [Illner and Pulvirenti 1986; 1989]. The possibility of deriving the
Boltzmann equation globally in time, at least in cases when we have a good global
existence of solutions, is still an open and challenging problem.

We conclude this section with some historical remarks.
Before Boltzmann, Maxwell proposed a kinetic equation that is nothing other

than the Boltzmann equation integrated against test functions [Maxwell 1867; 1995].
He considered also more general potentials, in particular inverse-power-law poten-
tials, essentially for the special properties of their cross-sections.

After Lanford’s result, the case of smooth short-range potentials has been studied
by other authors [King 1975; Gallagher et al. 2014; Pulvirenti et al. 2014], but the
validity (or nonvalidity) of the Boltzmann equation in the case of genuine long-
range potentials is open.

A rigorous derivation of the hierarchy of equations for hard spheres formally
established by Cercignani is obtained in [Spohn 1991; Cercignani et al. 1994; Si-
monella 2014].
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4. The weak-coupling limit and the Landau equation

The Boltzmann equation is suited to the description of rarefied gases, and one can
ask whether a useful kinetic analysis can be applied also to the case of a dense
gas. To introduce the problem, let us revisit first the Boltzmann–Grad limit in
an alternative way. Let ε be a small scale parameter denoting the ratio between
the microscopic and macroscopic scales, for instance the inverse number of atomic
diameters necessary to cover 1 meter or the inverse number of atomic characteristic
times necessary to cover 1 second. Then scale space and time by ε in the equations
of motion (in our case, the hard-sphere hierarchy). We need to specify the number
of particles N . In a box of side 1, there should be N ≈ ε−3 particles if one assumes
that the intermolecular distance is of the same order as the molecular diameter. The
number of collisions of a given particle per macroscopic unit time would be ε−1.
As we have seen, in a low-density regime, N scales differently, namely N ≈ ε−2,
the number of collisions per unit time is finite and the one-particle distribution
function satisfies the Boltzmann equation.

A variety of possible scalings describes different physical situations. For in-
stance, the gas may be dense, N = O(ε−3) and the particles weakly interacting
via a smooth two-body potential ϕ. To express the weakness of the interaction,
we assume that ϕ is rescaled by

√
ε. Since ϕ varies on a scale ε (in macroscopic

units), the force will be O(1/
√
ε) and act on a time interval O(ε). The variation of

momentum due to the single scattering is O(
√
ε), and the number of particles met

by a typical particle is O(1/ε). Hence, the total momentum variation for unit time
is O(1/

√
ε). However, in the case of a homogeneous gas and symmetric forces, this

variation should be zero in the average. The computation of the variance leads to a
result (1/ε)O(

√
ε)2 = O(1). Therefore, based on a central-limit type of argument,

we expect that in the kinetic limit a diffusion equation in the velocity variable holds.
Moreover, even though the force induced by a given particle on a test particle is
O(1/
√
ε) (i.e., not small as in the mean-field limit), the fact that it produces a small

variation on the momentum should be sufficient to ensure propagation of chaos.
At the level of the kinetic equation (that is, assuming propagation of chaos),

consider a model of collision with an operator of the form

Q( f, f )=
∫

dv1

∫
dpw(p)δ(p2

+ (v− v1) · p)[ f ′ f ′1− f f1] (24)

where

f ′ = f (v+ p), f ′1 = f (v1− p).

Here p is the transferred momentum in the collision, and w is the probability den-
sity of having p as an effect of the collision. The δ expresses energy conservation.
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To express the fact that the transferred momentum is small, let us rescale w
as (1/ε3)w(p/ε) (so that the transferred momenta are O(ε)). In addition, let us
rescale the inverse mean-free path by a factor 1/ε to take into account the high
density of particles. The collision operator becomes

Qε( f, f )=
1
ε4

∫
dv1

∫
dpw

( p
ε

)
δ(p2
+ (v− v1) · p)[ f ′ f ′1− f f1]

=
1

2πε2

∫
dv1

∫
dpw(p)

∫
+∞

−∞

ds eis(p2ε+(v−v1)·p)

×[ f (v+ εp) f (v1− εp)− f (v) f (v1)]

=
1

2πε

∫
dv1

∫
dpw(p)

∫ 1

0
dλ
∫
+∞

−∞

ds eis(p2ε+(v−v1)·p)

× p · (∇v −∇v1) f (v+ ελp) f (v1− ελp). (25)

Here the smooth function w, which modulates the collision, is assumed to depend
on p through its modulus only. Note that we used a change of variables p/ε→ p
and the representation formula in R1

δ(x)=
1

2πε

∫
+∞

−∞

ds eisx/ε.

To outline the behavior of Qε( f, f ) in the limit ε → 0, we introduce a test
function u for which, after a change of variables (here ( · , · ) denotes the scalar
product in L2(dv)),

(u, Qε( f, f ))=
1

2πε

∫
dv
∫

dv1

∫
dpw(p)

∫ 1

0
dλ
∫
+∞

−∞

ds

× eis(p2(ε−2ελ)+(v−v1)·p)u(v− ελp)p · (∇v −∇v1) f f1

=
1

2πε

∫
dv
∫

dv1

∫
dpw(p)

∫ 1

0
dλ
∫
+∞

−∞

ds

× eis(v−v1)·p[u(v)− ελp · ∇vu(v)]p · (∇v −∇v1) f f1

+
1

2π

∫
dv
∫

dv1

∫
dpw(p)

∫
+∞

−∞

ds eis(v−v1)·pu(v)

× isp2
∫ 1

0
dλ (1− 2λ)p · (∇v −∇v1) f f1+ O(ε). (26)

Note now that the term O(ε−1) vanishes because of the symmetry p→−p (w is
even). The last term also vanishes since the integral in dλ is zero. As a result,

(u, Qε( f, f ))=−
1

4π

∫
dv
∫

dv1

∫
dpw(p)

∫
+∞

−∞

ds eis(v−v1)·p

× p · ∇vup · (∇v −∇v1) f f1+ O(ε). (27)
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Therefore, we have recovered (formally) the kinetic equation

(∂t + v · ∇x) f = QL( f, f ) (28)

with a new collision operator

QL( f, f )=
∫

dv1 ∇va(∇v −∇v1) f f1, (29)

where a = a(v− v1) denotes the matrix

ai, j (V )=
1
2

∫
dpw(p)δ(V · p)pi p j . (30)

This matrix can be handled in a better way by introducing polar coordinates:

ai, j (V )=
1

2|V |

∫
dp |p|w(p)δ(V̂ · p̂) p̂i p̂ j

=
B
|V |

∫
d p̂ δ(V̂ · p̂) p̂i p̂ j , (31)

where V̂ and p̂ are the versors of V and p, respectively, and

B =
1
2

∫
+∞

0
dr r3w(r). (32)

Note that B is the only parameter describing the interaction appearing in the equa-
tion. Finally a straightforward computation yields

ai, j (V )=
B
|V |

(δi, j − V̂i V̂ j ). (33)

The collision operator QL was introduced by Landau in 1936 [Landau 1965;
Lifshitz and Pitaevskiı̆ 1981] for the study of a weakly interacting dense plasma,
and (28) is called the Landau equation (sometimes Landau–Fokker–Planck).

The qualitative properties of the solutions to the Landau equation are the same
as for the Boltzmann equation regarding the basic conservation laws and the H
theorem.

Following the paradigm of kinetic theory, we would like to derive the Landau
equation from particle systems. A rigorous proof is however missing, even for
short time intervals. We refer to [Boblylev et al. 2013] for a partial result.

5. Some historical remarks

The first attempt to implement the program of kinetic theory was due to Boltzmann,
who derived his celebrated equation for rarefied gases in 1872 [Boltzmann 1964].
This followed some previous work of Maxwell. He wrote a system of equations
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in 1867 for the moments of the velocity distribution in order to justify the equilib-
rium measure which inherits his name [Maxwell 1867; 1995].

Boltzmann’s work was attacked by several physicists and mathematicians due to
the apparent basic contradiction between the H theorem and the reversible nature
of Newton’s equations. In particular, the Poincaré recurrence theorem seemed to
be in contrast with convergence toward an equilibrium state. Boltzmann replied to
the criticisms asserting that the equation has a statistical meaning. Of course, he
did not have at his disposal the mathematical tools suitable to make this statement
more precise. We do not further discuss this interesting aspect and refer the reader
to [Cercignani 1998].

In spite of the success of the Boltzmann equation in solving practical problems
concerning rarefied gases, the issue of a rigorous justification of the equation re-
mained open for a long time.

As already mentioned, a significant step forward was taken by Grad [1949;
1958], who figured out the scaling limit in which the equation is expected to hold, in
the framework of classical mechanics. A second important contribution along the
lines of Grad’s approach was then made by Cercignani [1972], who established the
hierarchy for the hard-sphere system whose first equation was written in Section 3.
His analysis was formal, but it opened the way for Lanford’s [1975] rigorous result
on the short time validity of the Boltzmann equation.

Lanford’s result solved the problem of conciliating the Boltzmann equation with
the laws of classical mechanics.

On the other hand, even in recent times, the Boltzmann equation has often been
considered a useful and successful tool of investigation and not necessarily as a
direct consequence of the principles of mechanics. This is, for instance, the position
of Truesdell and Muncaster [1980] in their famous monograph:

“We will make no attempt to trace the source of this irreversibility in
more general theories or physico-philosophical speculations. Rather, in
the spirit of rational mechanics, we shall attempt to determine its specific
and rigorous mathematical nature and consequences.”

Another attitude was the one of the great probabilist Kac [1956; 1959], who con-
ceived the stochastic dynamics for an N -particle system yielding rigorously, in the
limit N →∞, the homogeneous Boltzmann equation. His work is contemporary
with the one of Grad; however, the point of view is very different. A footnote in
[Kac 1956] reads,

“This formulation led to the well-known paradoxes which were fully dis-
cussed in the classical article of P. and T. Ehrenfest. These writers made
it clear
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(a) that the ‘Stosszahlansatz’ cannot be strictly derivable from purely
dynamic considerations and

(b) that the ‘Stosszahlansatz’ has to be interpreted probabilistically.
The recent attempts of Born and Green, Kirkwood and Bogoliubov to de-
rive Boltzmann’s equation from Liouville’s equation and hence to justify
the ‘Stosszahlansatz’ dynamically are, in our opinion, incomplete, inas-
much as they do not make it clear at what point statistical assumptions
are introduced.

“The ‘master equation’ approach which we have chosen seems to us
to follow closely the intentions of Boltzmann.”

The works quoted after point (b) were the first to attempt a justification of kinetic
equations based on a hierarchical technique, and the “Stosszahlansatz” is the prop-
erty of propagation of chaos necessary to close the hierarchy (we refer in particular
to [Bogolyubov 1946] for a pioneering analysis including the three classical kinetic
equations).

Therefore, Kac’s purpose is not just to provide a toy model as it is intended to
be strongly related to the physics. A further quotation from the same paper is,

“Since the master equation is truly descriptive of the physical situation,
and since existence and uniqueness of the solution of the master equation
are almost trivial, the preoccupation with existence and uniqueness theo-
rems for the Boltzmann equation appears to be unjustified on grounds of
physical interest and importance.”

An important point is that Kac’s model is restricted to homogeneous situations
(no dependence on positions). Interestingly enough, in the completely different
context of numerical simulations of rarefied gases, Bird [1976] constructed the
successful scheme known as DSMC (direct-simulation Monte Carlo), which splits
the dynamics of a particle system into two parts: free motion and a stochastic
interaction closely related to the one of Kac. In other words (without knowing
Kac’s work), Bird was providing an inhomogeneous stochastic model approximat-
ing the Boltzmann equation (see also [Cercignani et al. 1994] and references quoted
therein).

Kac was greatly influenced by the famous treatise of Paul and Tatjana Ehrenfest
[1959], where the conceptual bases of statistical mechanics are discussed. Here
the authors try to explain the nature of the Boltzmann equation and the emergence
of irreversibility with the aid of simple examples.

We note, incidentally, that in [Ehrenfest and Ehrenfest 1959] a model is intro-
duced (often called the wind-tree model) in which a light (point) particle collides
with a random distribution of square obstacles in the whole plane, in such a way
that only four velocities are possible. The set of velocities is V={±e1,±e2}, where
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ei , i = 1, 2, are the versor of the coordinate axes in the plane. An elastic collision
of the light particle with an obstacle with sides oriented at π/4 is a rotation of the
incoming velocity by ±π/2. The corresponding kinetic equation is linear and has
the form

(∂t + v · ∇x) f = 1
2( f (v⊥)+ f (−v⊥))− f (v)

where V 3 v→ v⊥ is the rotation of π/2.
For the more realistic “Lorentz model” with circular obstacles and velocity

set S1, a rigorous derivation of the linear Boltzmann equation was obtained by
Gallavotti [1999] in a remarkable paper. His approach applies as well to the Ehren-
fest wind-tree model.

We also mention a nonlinear version of the wind-tree model, namely the Broad-
well model with kinetic equation

(∂t + v · ∇x) f = ( f (v⊥) f (−v⊥)− f (v) f (−v)).

Surprisingly, this equation cannot be derived from the mechanical system of col-
liding square particles in the plane in the Boltzmann–Grad limit [Uchiyama 1988;
Cercignani et al. 1994]. This counterexample shows how delicate a rigorous study
of the low-density limit of deterministic systems can be.

As mentioned in Section 4, Landau proposed his kinetic equation for dense
gases and plasmas in 1936. He started by assuming the Boltzmann equation with
Coulomb cross-section, cutting divergences at short and at long distances. His
argument is similar to the one presented here in Section 4, and the problem of the
propagation of chaos is pragmatically avoided.

Bogolyubov [1946] works instead with the BBGKY hierarchy and asserts that
it would be necessary to obtain the Landau equation starting from particle systems
under a suitable scaling limit instead of starting from the Boltzmann equation di-
rectly. His discussion amounts to what is nowadays called the “weak-coupling
limit” for the Landau equation (see also [Balescu 1975]) and includes an attempt
to outline the various regimes in which the kinetic equations are expected to be
valid, starting again from the hierarchy.

The Vlasov equation was introduced first in 1938 [Vlasov 1967] to study the time
evolution of the distribution function of plasmas consisting of charged particles and
long-range forces (for example, Coulomb) in contrast with the Landau equation,
which is suited for particles interacting weakly via short-range forces. Actually
both equations are needed to retain different aspects of the complicated dynamics
of plasmas.

We shall conclude by recalling the famous speech by Hilbert [1902] at the In-
ternational Congress of Mathematicians in Paris in 1900, where he posed twenty-
three problems as the basis of mathematical research in the forthcoming century.
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Among these, the sixth is perhaps a less definite problem but rather a broad field
of investigation and a prophecy of the modern role of mathematics in physics. It
is titled “Mathematical of the Axioms of Physics” and reads,

“The investigations on the foundation of geometry suggest [. . . ] to treat in
the same manner, by means of axioms, those physical sciences in which
mathematics play an important part; in the first rank are the theory of
probabilities and mechanics.

“As to the axioms of the theory of probabilities, it seems to me desir-
able that their logical investigation should be accompanied by a rigorous
and satisfactory development of the method of mean values in mathemat-
ical physics, and in particular in the kinetic theory of gases.

“Important investigations by physicists on the foundations of mechan-
ics are at hand [. . . ]. Thus Boltzmann’s work on the principles of me-
chanics suggests the problem of developing mathematically the limiting
processes, there merely indicated, which lead from the atomistic view to
the laws of the motion of continua.”

The necessity of a rigorous approach to the scaling limits starting from funda-
mental particle models is clearly expressed. Moreover, the role of mathematics in
investigating how different mathematical models of reality are connected is out-
lined:

“[. . . ] Further, the mathematician has the duty to test exactly in each
instance whether the new axioms are compatible with the previous ones.
The physicist, as his theories develop, often finds himself forced by the
results of the experiments to make new hypotheses, while he depends,
with respect to the compatibility of the new hypotheses with the old ax-
ioms, solely upon these experiments or upon certain physical intuition,
a practice which in the rigorously logical building up of a theory is not
admissible.”

Clarifying the scopes and methodologies of a physicist and a mathematician
establishes the role of modern mathematical physics, in which the concept of a
mathematical model, as a noncontradictory system of axioms, is fundamental.

The sixth problem of Hilbert can nowadays be further specified; namely there
are at least three kinds of convergence which can be analyzed: (1) derive the Boltz-
mann equation from particle systems, (2) derive the Euler and/or Navier–Stokes
equations from the Boltzmann equation and (3) derive the Euler and/or Navier–
Stokes equations from particle systems.

We have remarkable progress regarding points (1) and (2). The first point has
been discussed in this note. Regarding point (2), Hilbert [1912] himself introduced
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an expansion which is the basic tool for deriving the Euler equation for compress-
ible fluids, in a suitable scaling limit, starting from the Boltzmann equation. Many
rigorous results deriving hydrodynamic laws from the Boltzmann equation have
been obtained over recent years. We underline that the hydrodynamic laws are the
ones of a perfect gas since we start from a low-density regime. A more challenging
problem is the derivation of the Euler equation from particle systems (point (3)).
The laws relating density, pressure and temperature are not those of a perfect gas,
but they may be computed through the Gibbs state associated with the interacting
potential of the system. Such a difficult problem is unsolved on the mathematical
side. We mention only the formal computations of the pioneering work by Morrey
[1955]. Here the author gives a list of necessary steps to prove that the Euler
equation can be obtained from the Newton laws. It is a notable work, having the
merit of showing in a logically clear way what the link between the microscopic
and macroscopic descriptions of fluids is. See [Esposito and Pulvirenti 2004] for
a review of the argument.
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Nonequilibria show currents that are maintained as the result of steady driving.
We ask here what decides their direction. It is not only the second law or the
positivity of the entropy production; nondissipative aspects also often matter
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1. Introduction

Predicting the course of events given the present state is part of scientific practice.
In what direction things will evolve is however not always so evident. In thermo-
dynamics, there are a number of general rules of thumb derived from the principal
laws. For instance, macroscopic systems tend to equilibrate at the same tempera-
ture, chemical potential and pressure as the surroundings, relaxation (or time itself)
flows in the direction of increasing entropy, etc. In mechanics, the ambition is even
higher; we compute trajectories given the present state. Statistical mechanics is sup-
posed to transfer mechanical laws to thermodynamic behavior, with the attenuation
that some thermodynamic principles are not absolute but become statistical. For
example, the Boltzmann equation for a dilute gas has a direction of time, but for
mesoscopic systems, fluctuations can be expected, and as Maxwell emphasized,
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“The truth of the second law is . . . a statistical, not a mathematical, truth,
for it depends on the fact that the bodies we deal with consist of millions
of molecules . . . Hence the second law of thermodynamics is continually
being violated, and that to a considerable extent, in any sufficiently small
group of molecules belonging to a real body” [Maxwell 1878].

That is, statistical mechanics will not only derive thermodynamics, it will also cor-
rect it and extend it. That is especially true for nonequilibrium statistical mechanics
as there we are necessarily dealing with atypical behavior from the point of view
of the microcanonical ensemble. It therefore becomes both a major inspiration and
application of probability theory, exactly in the way Lucio Russo has been enjoying
and contributing to it.

Going to irreversible thermodynamics [de Groot and Mazur 1962], that is, the
thermodynamics for irreversible phenomena, the main guiding principle that sur-
vives for the direction of currents is the positivity of the entropy production. We
are for example considering an open macroscopic system which is being steadily
frustrated by contacts with different equilibrium baths. Currents will be maintained,
at least on the time scales where the environment is kept at the same intensive
values (e.g., temperature). The directions of these currents can and will vary with
different arrangements, but the entropy production 6 is positive. We denote by
6 =

∑
α JαFα a sum over all possible types of channels of transport of the product

of currents (or displacements) Jα and thermodynamic forces Fα . For predicting the
current directions, we just see what is compatible with 6 ≥ 0, nothing more. In
the linear regime, where currents are proportional to forces, Jα =

∑
γ Lαγ Fγ with

symmetric1 Onsager linear response coefficients Lαγ = Lγα, and the positivity of
6 is the positivity of the matrix (Lαγ ). Here again, statistical mechanics will derive
and extend that scheme, but now it should be nonequilibrium statistical mechanics.
That is very much unfinished business and could certainly go beyond the linear
regime around zero thermodynamic forces. In fact, nonequilibrium statistical me-
chanics is far behind the equilibrium version:

“My inclination is to postpone the study of the large-system limit: Since it
is feasible to analyze the nonequilibrium properties of finite systems — as
Gibbs did for their equilibrium properties — it seems a good idea to start
there. That may not answer all questions, but it advances nonequilibrium
statistical mechanics to the point equilibrium had reached after Gibbs”
[Ruelle 2004].

In other words, a general theory of nonequilibrium phase transitions or of univer-
sality is still nonexistent, and even a systematic way of dealing with many-body

1We ignore here the Casimir correction that takes into account the parity under time-reversal of
the physical quantity being transported.
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Inside

Outside

Figure 1. Example of a simple stationary current for which the
direction is decided by the positivity of the entropy production.

effects is largely lacking. We certainly have no percolation or geometric picture
of nonequilibrium collective phenomena, and remembering the crystal-clear and
perfectly elegant contributions of Lucio to percolation theory and to mathematical
statistical mechanics, we can only hope that the day will soon come when such a
mathematical framework and geometric interpretation will also become available
for nonequilibrium physics to match Lucio’s standards.

In what follows, we are asking about what determines the direction of a nonequi-
librium current. The main point will be that it is certainly not always the case
that the current direction is decided by the positivity of the entropy production;
nondissipative effects will be important and sometimes crucial. We refer to the
pedagogical introduction [Maes 2015] on nondissipative aspects of nonequilibrium
statistical mechanics. For the moment, it suffices to add that transition rates in a
process also have time-symmetric parameters and, quite obviously, that we need
to understand how they contribute to deciding the direction of the current.

2. Traditional arguments

2A. Phenomenology. The media inside and outside of a biological cell can be
very different. These are connected via thin pores through which ions of various
chemicals can be transported. Consider such a pore or channel in the membrane
separating outside and inside; see Figure 1. Because of different concentrations
at its ends, there will be a current through the pore. In fact, ions will be traveling
from the region of higher chemical potential to the region of lower chemical po-
tential. The same thing happens with many types of currents, whether the channel
is connected to thermal, chemical or mechanical reservoirs. At the appropriate
scale of time, the system is in steady nonequilibrium, not changing its macroscopic
appearance. There is a constant production 6 of entropy in the environment, which
is positive,

6 =−βµ1 J1−βµ2 J2

with Ji the particle flux into the i-th reservoir at chemical potential µi and inverse
temperature β. Stationarity (and bulk conservation of particles) implies J1+ J2 = 0
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µ` µr

−N −N + 1 N − 1 N

Figure 2. Stochastic lattice gas, symmetric in the bulk and gov-
erned by local interactions, driven by contact with particle reser-
voirs at different chemical potentials.

so that we can find the direction of the particle current J1 by requiring

6 = β J1(µ2−µ1)≥ 0 (second law).

By bulk conservation of particles, we still have J1 = J , the stationary particle
current through the channel or pore from the second towards the first reservoir,
and hence, J ≥ 0 whenever µ2 ≥ µ1.

Similar scenarios can be written for thermal and mechanical baths that frustrate
the system. Those are the typical cases where finding the direction of the current
amounts to applying the second law in the form such that the stationary entropy
production is positive.

While the previous case was treated rather phenomenologically, precise math-
ematical arguments can be provided for simple particle model systems following
the same physics. Here comes an example.

2B. Stochastic lattice gas. We consider identical particles that can jump from
site i to the nearest neighbor site j = i ± 1 on the finite linear chain 3N =

{−N ,−N+1, . . . , 0, 1, . . . , N−1, N }; see Figure 2. The endpoints i =±N in3N

are called the boundary of the system; the other sites are in the bulk. There is at
most one particle per site i so that a site i can be vacant or occupied, and we write
η(i)∈ {0, 1} for the occupation at site i ∈3N . The state space is K = {0, 1}3N with
elements η, η′, ξ, . . . ∈ K . The reasoning below is outlined in [Maes et al. 2009].

The energy function on K is chosen as

H(η)=−B
N∑

i=−N

η(i)− κ
N−1∑

i=−N

η(i)η(i + 1), (1)

where B and κ are some real constants. The system is imagined in thermal contact
with a very large heat bath at inverse temperature β (Boltzmann’s constant is set
equal to 1). The energy change in that bath over the transition η→ η′ gives a first
contribution β(H(η)− H(η′)) to the change of entropy in the reservoir. Another



WHAT DECIDES THE DIRECTION OF A CURRENT? 279

important quantity here is the particle number

N[ j,k](η)=

k∑
i= j

η(i)

in the lattice interval [ j, k] ∩3N , −N ≤ j ≤ k ≤ N . The total number of particles
inside the system is N= N[−N ,N ].

We now also imagine that the system is in contact with a particle reservoir at
each of its boundary sites. There can be a birth or a death of a particle at these sites,
which amounts to the entrance from and the exit to the corresponding reservoir of a
particle. In that sense, we write J` =1N` and Jr =1Nr as the changes in particle
number in the left and right particle reservoirs, respectively. The flow of particles
in and out of the system can also contribute to the dissipated heat in the reservoir
and hence to changes in entropy:

S(η, η′)= β[H(η)− H(η′)] −βµ`1N`(η, η
′)−βµr1Nr (η, η

′) (2)

is the change of entropy in the environment for µ` and µr , the chemical potentials
(up to some factor β that we have ignored) of the left and right particle reservoirs,
respectively. We will make mathematical sense of (2) entirely in terms of variables
inside the system.

For the dynamics, we choose a continuous-time Markov process on K . Write
the transformation

ηi, j (k)=


η(k) if k 6= i and k 6= j,
η(i) if k = j,
η( j) if k = i

for the state obtained from η after exchanging the occupation of the sites i and j ,
only allowed for j = i ± 1. The rate for that transition is taken to be

C(i, j, η)= exp
[
−
β

2
(H(ηi, j )− H(η))

]
, |i − j | = 1. (3)

Similarly, the rate of birth and death for the transition η→ ηi with

ηi (k)=
{

1− η(k) if k = i,
η(k) if k 6= i,

only occurring at sites i =−N , N , is

C(i, η)= e−aiη(i) exp
[
−
β

2
(H(ηi )− H(η))

]
. (4)

The relevant parameters are the values a−N = βµ` and aN = βµr representing the
(different) chemical potentials of the two reservoirs at the outer edges.
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One observes from the definition (3) that

C(i, j, η)
C(i, j, ηi, j )

=
exp[−βH(ηi, j )]

exp[−βH(η)]
. (5)

Furthermore, from (4),

C(i, η)
C(i, ηi )

=
exp[−aiη(i)]

exp[−ai (1− η(i))]
exp[−βH(ηi )]

exp[−βH(η)]
, i =±N . (6)

For a−N = aN = a, when the left and right particle reservoirs have equal concen-
tration, then the system dynamics satisfies the condition of detailed balance: for
all allowed transitions η→ η′ and corresponding transition rates W (η→ η′),

W (η→ η′)

W (η′→ η)
=

Pβ,a[η′]

Pβ,a[η]
(7)

for the grand-canonical equilibrium probabilities

Pβ,a[η] =
1
Z

ea
∑
η(i)e−βH(η) (8)

where Z= Z(a, β, N ) is a normalization factor. Thus, (8) is a reversible stationary
measure when a−N = aN = a.

We now consider a1 6= aN (different chemical potentials). At the left boundary
of the system (see (6)),

C(−N , η)
C(−N , η−N )

= e−β[H(η
−N )−H(η)]−a−N J`(η,η−N ) (9)

where J`(η, η−N ) = 1 when the particle leaves the system via the site −N , i.e.,
η(−N ) = 1, and J`(η, η−N ) = −1 when a new particle enters, i.e., η(−N ) = 0.
Analogously, the current Jr (η, η

′)= 1 when η(N )= 1 and η′ = ηN and J`(η, η
′

)=

−1 when η(N )= 0 and η′ = ηN . The currents are zero otherwise.
As a consequence,

W (η→ η′)

W (η′→ η))
= e−β[H(η

′)−H(η)]−a−N J`(η,η′)−aN Jr (η,η
′) (10)

where we see the change of entropy (2). In other words,

W (η→ η′)

W (η′→ η)
= eS(η,η′) (11)

(which is known as the condition of local detailed balance), and

J`(η, η′)+ Jr (η, η
′)= N(η)−N(η′) (12)
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or, with aN = a and a−N = a+ δ,

W (η→ η′)

W (η′→ η)
=

Pβ,a[η′]

Pβ,a[η]
e−δ J`(η,η′)

with δ thus quantifying the amplitude of breaking of detailed balance.
As above, we define the bulk currents Ji (η, η

′) to be+1 if in the transition η→η′

a particle moves over the bond i→ i+1 and equal to−1 if a particle moves i← i+1.
In fact, throughout, we confuse current with what is more like a time-integrated
current or a change of particle number.

We have piecewise-constant paths ω over the time interval [0, τ ], starting from
some initial configuration η0 after which it changes into ηt1, ηt2, . . . at random
times t1, t2, . . . . At the jump times, we take ηtk−1 = ηt−k

and ηtk = ηt+k
for having

right-continuous paths with left limits. The time-reversal transformation on path-
space 2 is defined via (2ω)t = ωτ−t , up to irrelevant modifications at the jump
times making 2ω right-continuous again.

We consider a path ω = (ηt)
τ
t=0 and currents Ji (ω), i =−N , . . . , N , defined by

Ji (ω)= Ji (η0, ηt1)+ Ji (ηt1, ηt2)+ · · ·+ Ji (ηtn−1, ητ ).

In particular, Jr = JN and for i ≤ k

Ji (ω)− Jk(ω)= N[i+1,k](ητ )−N[i+1,k](η0),

J`(ω)+ J−N (ω)= η0(−N )− ητ (−N ).
(13)

Observe that the currents Ji are extensive in the time τ .
All of that is related to the process, be it transient or steady. We concentrate on

the steady-state regime. It is easy to verify that we have here a unique stationary
distribution ρ. That stationary distribution is only implicitly known and a solution
of the (time-independent) master equation. Corresponding to ρ is then a stationary
process with distribution Pρ . If we look at expectations in the stationary process,
we write 〈 · 〉ρ .

From the conservation laws (12) and (13),

〈J`〉ρ =−〈Jr 〉ρ =−〈Ji 〉ρ, i ∈3N .

Proposition 2.1. The direction of the current is from higher to lower chemical
potential; i.e., assuming that δ ≥ 0 (or a−N = µ` ≥ aN = µr ), we have 〈Ji 〉ρ ≥ 0.

Proof. The path density of Pρ with respect to Pρ2, both started in the stationary
distribution ρ, is

dPρ
dPρ2

(ω)=
ρ(ω0)

ρ(ωτ )
exp[−β(H(ωτ )− H(ω0))+ a1N− δ J`(ω)]. (14)
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By normalization, ∫
dPρ(ω)

dPρ2
dPρ

(ω)= 1,

and hence, by concavity, ∫
dPρ(ω) log

dPρ2
dPρ

(ω)≤ 0. (15)

But from (14) and by stationarity,

0≤
∫

dPρ log
dPρ

dPρ2
(ω)=−δ〈J`〉ρ = δ〈Ji 〉ρ .

We conclude that
δ〈Ji 〉ρ ≥ 0,

which shows that the average direction of the particle current depends only on the
sign of δ.

Getting a strict inequality 〈Ji 〉ρ > 0 is also possible for δ > 0; it suffices to see
that there is a nonzero probability that the current Ji as a function of the path ω is
not identically equal to 0 even when ω0 = ωτ . �

Looking back at the proof, we see that the main inequality has been the positivity
(15) of the relative entropy between the forward and backward stationary processes.
The latter coincides with the stationary entropy production, as is in fact visible
from (11). Hence, the proof above, as in [Maes et al. 2009], is a nonperturbative
statistical mechanical argument or the physical analogue for the phenomenology
in Section 2A; there is nothing really new here.

3. Problematic cases

We collect a number of situations where either previous phenomenological or sta-
tistical mechanical arguments, based on the positivity of the entropy production, do
not work. From a general perspective comparable to the so-called Curie principle,
currents may appear whenever they are not forbidden by some symmetry. It is then
not wholly surprising that we cannot always apply the same physical arguments.
Yet the examples below are specifically relevant in the context of nonequilibrium
physics, for which we may hope to develop some framework.

3A. Ratchet currents.

3A1. Triangula. In [Van den Broeck et al. 2005], a number of versions of hard-
disk microscopic ratchets are introduced and studied with molecular dynamics and
with some low-density expansions. A directed systematic motion appears when a
temperature difference is applied to different units of a motor. One of the simple
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2θ
T2

ρ

2θ

T1

ρ

Figure 3. Triangula: the triangles can only move horizontally and
are connected. They are in thermal baths at different temperatures.

examples is there called the Triangula: it is a motor consisting of two identical
triangular units, each sitting in a gas (reservoir) consisting of hard disks whose
centers collide elastically with the triangles; see Figure 3. The two triangles are
rigidly connected along a rod, with their base parallel to it, and the whole motor is
constrained to move along the horizontal direction without rotation or vertical dis-
placement. When the temperatures in the two reservoirs are different, a systematic
motion appears which turns out to be in the direction of the triangles’ apices — to
the right in Figure 3. The speed V of the Triangula depends on the difference in
temperatures T1 and T2 and on the apex angle 2θ and to some good approximation
for low-density reservoirs is given by

V = (1− sin θ)
√

2πkBm
4M

(T1− T2)
(
√

T1−
√

T2)

(
√

T1+
√

T2)2

for m the mass of the gas particle and M the mass of the triangle (see (22) in
[Van den Broeck et al. 2005] for the case of equal densities). If we write T2 =

T (1+ ε) and T1 = T , the leading order for that formula with ε ↓ 0 becomes

MV '
1− sin θ

32

√
2πkB T m ε2 (16)

and we see that the speed or current is second-order in the temperature difference.
That is not attainable with linear response theory around equilibrium. The reason is
that the translation current is orthogonal to the heat current (through the rod). Since
we are thus in the regime of nonlinear response, that should already tell us that
nondissipative features play a role [Basu et al. 2015]. As far as we know, nobody
has a good heuristic or simple argument to explain that indeed V > 0. Equation (16)
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connects the momentum of the Triangula with the thermal momentum of the gas,
which appears rectified depending on the apex angle and is second-order between
the temperatures, and is basically left without further explanation.

3A2. Parrondo game. The following is a paradoxical game invented by Juan Par-
rondo in 1996; see [Parrondo et al. 2000] for more explanations and references.

The state space is K = {1, 2, 3}, and the state at time n is xn . The Markov
chain uses a different rule (A or B) at even and odd times n. Alternating, the
following two games are played. Game A is fair coin tossing: we simply move
x→ x ± 1 mod 3 with equal probability at even times. Game B is played at odd
times and with two biased coins, a good one and a bad one. In game B, the good
coin is tossed when xn ∈ {1, 2} and the bad coin is used each time when xn = 3.
Winning takes xn+1= xn+1; losing at time n means xn+1= xn−1, always modulo 3.
The transition probabilities are then

Prob[xn+1 = x ± 1 | xn = x] = 1
2 when n is even,

Prob[xn+1 = x + 1 | xn = x] = 3
4 when n is odd and x 6= 3,

Prob[xn+1 = x + 1 | xn = x] = 1
10 when n is odd and x = 3.

(17)

Both games, when played separately at all times, are reversible. For example, for
game B (at all times), consider the cycle 3→ 1→ 2→ 3. Its stationary probability
(always for game B alone) is Prob[3→ 1→ 2→ 3] = ρ(3)× 1

10×
3
4×

3
4 =

9
160ρ(3).

For the reversed cycle, the probability Prob[3→ 2→ 1→ 3] = ρ(3)× 9
10×

1
4×

1
4 =

9
160ρ(3) is the same. The equilibrium distribution for game B is then found to be
ρ(1) = 2

13 , ρ(2) = 6
13 and ρ(3) = 5

13 . Obviously then, there is no current when
playing game B and clearly the same is trivially verified for game A when tossing
with the fair coin. Yet, and here is the paradox, when periodically playing game B
after game A, a current arises.

As in the previous case of the Triangula, the very fact that a current arises is
again not so strange, but the question is what really decides its direction. We will
show how to solve that question for a continuous-time version at low temperature
in Section 4.

3B. Multiple cycles. It is not uncommon in nonequilibrium to have multiple cy-
cles in state space along which the dynamics can proceed. We give here two ex-
amples of one-dimensional random walks, visualized in Figures 4–6. Look first at
Figure 4, where we denote the states by {0, u, 1} in an elementary triangle. For
horizontal motion, there are two “channels” to move to the right, 0→ u→ 1 and
0→ 1, and two “channels”, 0→ u→−1 and 0→−1, to move to the left. Going
right, the system prefers the “channel” 0→ u→ 1, and for going left, the system
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u u u

−1 0 1 2
Figure 4. Necklace of three-state cycles with rotational current
inducing a horizontal current.

prefers the channel 0→−1 as we take the transition rates

k(1, 0)= ϕeε/2, k(0, u)= eε/2, k(u, 1)= eε/4,

k(0, 1)= ϕe−ε/2, k(u, 0)= 1, k(1, u)= e−ε/4
(18)

for parameters ϕ, ε > 0. That is periodically repeated to obtain a random walk on
the line. We are interested in the physical “translational” current towards the right,
that is,

J = ρ(0)[eε/2+ϕe−ε/2] − [ρ(u)+ ρ(0)ϕeε/2]

where we restrict ourselves to translation-invariant stationary occupations satisfy-
ing the normalization ρ(0)+ ρ(u)= 1 and

ρ(0)[eε/2+ e−ε/4] = ρ(u)[1+ eε/4].

We claim that entropy production decides the orientation of the rotational current
within each triangle but not the direction of the induced translational current J .
The ε in (18) decides the direction of the rotational current and is responsible for
the breaking of detailed balance. It stands for an entropy flux (per kB). For example,
the trajectory 0→u→ 1 (taking the walker one step to the right) expends an entropy
flux ε (e.g., in the sense of [Maes et al. 2000]), as seen from the calculation

k(0, u)k(u, 1)
k(u, 0)k(1, u)

=
eε/2eε/4

1 · e−ε/4
= eε,

but so does the step 0→−1 exactly: taking the walker one step to the left,

k(1, 0)
k(0, 1)

= eε.

In all, there is no entropic preference to go right or left. In other words, the effective
bias is also decided by the parameter ϕ. We see that in Figure 5.

The current J is plotted in Figure 5, left, as a function of ε for two different
choices of ϕ. Fixing say ε = 6, we see a positive current for ϕ = 0.75 and a
negative current for ϕ = 0.90. In other words, the direction of the current is not
simply decided. The current diverges like (1−ϕ) exp[ε/4] for ϕ 6= 1 as ε ↑∞. If ϕ
is large, the current is to the left, and if ϕ is small, the current becomes positive.
For ϕ > 1

2 , there is a sign-reversal in the current as a function of the entropy flux ε.
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Figure 5. The horizontal current towards the right as a function
of ε corresponding to (left) Figure 4 for ϕ = 0.75 (upper) and
ϕ = 0.90 (lower curve) and to (right) Figure 6 for ϕ = 0.75 (upper)
and ϕ = 1.25 (lower curve).

u u u

d d d

−1 0 1 2

Figure 6. Four-state necklace with top versus bottom symmetry
for ϕ = 1.

We can add more symmetry in the construction by considering, minimally, a
four-state Markov process as an elementary unit. Then we look at Figure 6, denot-
ing the states by {0, u, 1, d} (where u stands for “up” and d stands for “down”),
and the transition rates are

k(1, d)= ϕeε/4, k(d, 0)= ϕeε/4, k(0, u)= eε/4, k(u, 1)= eε/4,

k(d, 1)= ϕe−ε/4, k(0, d)= ϕe−ε/4, k(u, 0)= e−ε/4, k(1, u)= e−ε/4.

We again have two elementary paths in the opposite direction, which are now R1 :

0→ u→ 1 and R2 : 0→ d →−1, for which the entropy fluxes are both equal
to ε. (Of course, R2 can be identified with the path 1→ d→ 0.) It will again be
the “reactivity” ϕ > 0 that also decides the direction of the current; see Figure 5,
right. Or what starts out as a time-symmetric parameter turns out to give rise to
time-asymmetry.

The above scenario has natural realizations, e.g., in the motion of some molec-
ular motors like Myosin V studied in [Maes and O’Kelly de Galway 2015]. The ϕ
then corresponds to the activity of the leading head. Because it is lower than that
of the trailing head, the motor moves forward. The relation between dynamical
activity or “happy feet” (of Paulo Conte’s song) and the direction of current has
been anticipated in the Inferno (Canto I) of the Divine Comedy, where Dante writes,
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“E come quei che con lena affannata,
uscito fuor del pelago a la riva,
si volge a l‘acqua perigliosa e guata,

così l’animo mio, ch’ancor fuggiva,
si volse a retro a rimirar lo passo
che non lasciò già mai persona viva.

Poi ch’èi posato un poco il corpo lasso,
ripresi via per la piaggia diserta,
sì che ’l piè fermo sempre era ’l più basso” [Dante 1787, p. 2].

In Figure 6, one should imagine the top corresponding to lifting the trailing foot
and the bottom to lifting the leading foot; ϕ > 1 corresponds to a more “active”
trailing foot which easily moves you forward. In the case of Dante leaving the
valley and climbing the mountain, as the firm or more stable foot was always the
lower (ϕ < 1), it becomes very difficult to go forward and not to retreat.

3C. Nonequilibrium internal degrees of freedom. We are used to thinking of in-
ternal degrees of freedom as an equilibrium reservoir. When a ball bounces off
the ground, it slightly deforms and warms up, indicating a restitution coefficient
which is less than 1 [Maes and Tasaki 2007]; the entropy gets dissipated in these
many internal degrees of freedom. But what if the ball is “alive” or “active”, or
to put it in less suggestive language, what if the internal degrees of freedom are
in steady nonequilibrium? Can that not produce extra interesting effects? The
problematic case of the Triangula in Section 3A1 can be seen as an example. The
two triangles connected by the vertical rod shown in Figure 3 make one extended
object which internally is subject to heat conduction (vertical energy current from
higher to lower temperature).

Look now at Figure 7 for greater simplification. Our object has position q ∈ S1

on the ring suspended in a thermal bath at inverse temperature β. For its dynamics,
we assume the overdamped Langevin dynamics

γ q̇ =−
∂

∂q
E(x, q)+

√
2γ
β
ξt (19)

in the usual physics notation with ξt standard white noise, γ the damping coefficient
and E(x, q) some interaction potential with an “internal” degree of freedom, here
a four-state Markov process with x = 1, 2, 3, 4. We assume that the x relaxes fast
to stationarity compared to the walker where the time scale is set by γ , and we
take transition rates

kq(x, x ′)= e−(β/2)[E(x
′,q)−E(x,q)]ϕ(x, x ′)es(x,x ′)/2. (20)
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Figure 7. Walker (probe or colloid) on a ring with position q with
rotating stomach x ∈ {1, 2, 3, 4}. The joint dynamics is specified
in (19)–(20). The colloid’s position is the slow degree of freedom.

The driving or nonequilibrium sits in s(1, 2)= s(2, 3)= s(3, 4)= s(4, 1)= βε and
the symmetric ϕ(x, x ′) are ϕ(1, 2)=a, ϕ(2, 3)=b, ϕ(3, 4)= c and ϕ(4, 1)=d; see
the “stomach” in Figure 7. Under the hypothesis of infinite time-scale separation,
the colloid is subject to the mean force

f (q)=−
∑

x

ρq(x)
∂

∂q
E(x, q) (21)

which can be calculated exactly from the stationary distribution ρq(x) for the in-
ternal degree of freedom x . When the rotational part of the force frot =

∮
f (q) dq

is nonzero, then the colloid will start moving around the circle. In fact, the steady
current J , as plotted in Figure 8, is essentially just given by it. Obviously, there
are many parameters: the form of the potential E(x, q) but also the coefficients a,
b, c and d . We ask here what determines the sign of that rotational force, which of
course determines the direction of the current of the walker.

We observe here that we can get a sign-reversal of the current by solely varying
the kinetic factors a, b, c and d . More specifically, we consider the energy function
E(x, q) for q ∈ [−1, 1], E(2, q)= E(4, q)= 0,

E(1, q)=
{4

7(1+ q) for q ≤ 3
4 ,

4(1− q) for q ≥ 3
4

and E(3, q)=
{

4(1+ q) for q ≤− 3
4 ,

4
7(1− q) for q ≥− 3

4 .

In Figure 8, left, we see the rotational current J = frot as a function of c for
a = b = d = 1 (first negative then positive) and as a function of a for b = c =
d = 1 (first positive then negative), both at driving ε = 5 and β = 1. The same is
represented in the right panel but now as a function of the driving ε. We clearly
get information about the time-symmetric part in the transition rates (20) from
coupling that process xt to the position qt in (19) of the walker and measuring its
induced current.
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Figure 8. The rotational current J = frot =
∮

f (q) dq of the col-
loid as it depends on the reactivities ϕ and the driving ε of the
internal nonequilibrium in Figure 7; see (20). Left: the direction
of the current can change as a function of a, b, c and d; we see the
current at ε= 5 and β = 1 as a function of ϕ = a and as a function
of ϕ = c, while the other reactivities equal 1 when not specified.
Right: the current as a function of the driving ε for various choices
of ϕ(x, x ′). From low to high, the curves correspond to c = 0.2,
a = 2.0, c = 2.0 and a = 0.2 again with all other reactivities fixed
to the value 1 when not specified.

3D. Wrong direction! The response to an external field can be negative. It is then
the case that by pushing harder the particle gets slower. It could even happen that
by pushing in one direction the particle moves in the opposite direction making
negative absolute conductivity. In [Cleuren and Van den Broeck 2002], one uses
memory to achieve that result, but one also gets it from considering the Markov
models of Section 3B.

Consider again the setup of Figure 4 and the resulting Figure 5, left, for the hor-
izontal current in the positive direction. There are possible stalling points (ε∗, ϕ∗)
where that current vanishes. Taking these values or, more generally, fixing arbitrary
(ε, ϕ), we perturb the rates (18) as

kE(1, 0)= [ϕ+ E]eε/2, kE(0, u)= e[ε+E]/2, kE(u, 1)= e[ε+E]/4,

kE(0, 1)= [ϕ+ E]e−ε/2, kE(u, 0)= 1, kE(1, u)= e−ε/4,

pushing a bit harder with E > 0 in the upper channel (only) and also changing
the time-symmetric coefficient ϕ→ ϕ+ E . We get a new value of the horizontal
current JE , and we can ask how it changes, that is, find the conductivity

σ =
dJE

dE

∣∣∣∣
E=0

. (22)
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Figure 9. The conductivity σ (22), rescaled by a factor of
exp[−ε/4], as a function of ε for ϕ = 0.55 (lowest curve) having
its stalling point at ε∗ ' 0.80, for ϕ = 0.8 with stalling point at
ε∗' 5.54 and ϕ= 1.5 (upper curve). There is negative conductivity
σ < 0, including at stalling points where the pushing makes the
walker go back instead of forward.

We see in Figure 9 that σ gets negative for large-enough values of ε, including
at stalling values. Thus, there, the current actually goes backward while pushing
forward.

4. Low temperature analysis

We consider here a continuous-time version of the Parrondo game of Section 3A2
with random flipping between a flat potential and a nontrivial energy landscape.
It gives an approach to the problems of Sections 3A2–3B by considering low-
temperature asymptotics. In particular, we use the Freidlin–Wentzell theory of
[Maes et al. 2014] to obtain an expression for the low-temperature ratchet current.
Its direction is not determined by entropic considerations (only) but involves the
reactivities.

Look at Figure 10. States of a continuous-time Markov process are on two rings,
each having N > 2 of states, denoted by x = (i, n) where i ∈ {1= N+1, 2, . . . , N }
and n = 0, 1.

On the outer ring (n = 0), energies E1 < · · ·< EN are associated to the states
and transition rates are thermal:

k((i, 0), (i+1, 0))=e(β/2)(Ei−Ei+1), k((i+1, 0), (i, 0))=e(β/2)(Ei+1−Ei ) (23)

for inverse temperature β. The inner ring (n = 1) corresponds to a walker in a flat
potential landscape so that

k((i, 1), (i + 1, 1))= k((i + 1, 1), (i, 1))= 1. (24)
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Figure 10. Continuous-time Parrondo game.
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Figure 11. Trajectories ω1 (clockwise, blue) and ω2 (counter-
clockwise, red) with the same entropy flux yet in opposite direc-
tions.

The random flipping between the two potentials is realized by moves between the
rings n = 0, 1, at transition rates k((i, n), (i, 1− n))= a for some a > 0. There is
no explicit driving except that for a = 0 there is detailed balance of course and for
very strong coupling a� 1 the model is effectively running on a single ring. In
the limit a ↑∞, there is again detailed balance with inverse temperature β/2.

The question for the nonequilibrium situation is in what sense the walker will
typically move: either clockwise of counterclockwise. Again, the direction of
that current, which we now call the ratchet current, is not decided by the pos-
itivity of the entropy production. Consider for example Figure 11, where two
trajectories ω1 = ((N , 0), (N − 1, 0), . . . , (1, 0), (1, 1), (N , 1), (N , 0)) and ω2 =

((N , 0), (1, 0), (1, 1), (2, 1), . . . , (N , 1), (N , 0)) are depicted that wind in oppo-
site directions yet whose entropy fluxes are exactly identical, equal to s(ω1) =

s(ω2)= β(EN − E1) > 0.
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The stationary ratchet current JR in the clockwise direction is

JR = j ((i + 1, 0), (i, 0))+ j ((i + 1, 1), (i, 1)) (25)

with j (x, y)= k(x, y)ρ(x)−k(y, x)ρ(y) where ρ is the stationary probability law
for the Markov dynamics (23)–(24). JR is the current over both rings together,
and of course, that current also depends on the size N , on the energies and on
temperature. We will look at the case a = 1 but at low temperatures so that the
transitions (i, 0)→ (i + 1, 0) are exponentially damped. It simplifies the structure
of the stationary distribution ρ; see [Maes et al. 2014], where a type of Freidlin–
Wentzell analysis is applied to find its low-temperature asymptotics. The following
combines proofs in [Maes et al. 2014] and in [Louis 2015] to show that the ratchet
current is clockwise and saturates:

Proposition 4.1. JR = 0 for N = 3, JR > 0 for all N > 3 and limN↑∞ JR =
1
2−

1
√

5
.

Proof. Consider the set D := {(1, 0), (i, 1) : i = 1, . . . , N }, and let M(x) be the
number of in-spanning trees in the digraph obtained from Figure 10 by keeping only
the oriented bonds (v,w) where w is one of the most likely successors of v. From
[Maes et al. 2014], we learn that at low temperatures ρ(x)∝ |M(x)| for x ∈D and
ρ(y)' |M(y)|eβ0(y)/Z, with some 0(y)< 0 for y /∈D. By the matrix-tree theorem
(see, e.g., [Tutte 1984]), we need the Laplacian matrix L on the digraph K D , and
we erase the row and the column corresponding to vertex x to obtain the matrix L x .
Then

|M(x)| = det L x . (26)

The Laplacian of the digraph K D has a rather simple structure:

L =



(1, 0) (2, 0) · · · · · · (N , 0) (1, 1) (2, 1) · · · · · · (N , 1)
(1, 0) 1 −1
(2, 0) −1 1
...

. . .
. . .

... −1 1
(N , 0) −1 0 1

(1, 1) −1 3 −1 −1

(2, 1) −1 −1 3
. . .

...
. . .

. . .
. . .

. . .
...

. . .
. . .

. . . −1
(N , 1) −1 −1 −1 3



.
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The state for which the number of in-trees becomes maximal is (1, 0): there are
more combinations to form an in-tree to (1, 0) than to any other state (i, 1) on the
inner ring.

To compute the ratchet current, we take x = (1, 1) with ρ(1, 1)' A((1, 1))/Z.
Then

j ((2, 1), (1, 1))'
1
Z
(A((2, 1))− A((1, 1))).

Moreover,

j ((2, 0), (1, 0))'
A((2, 0))

Z
.

As a consequence,

JR '
1
Z
(det L(2,1)+ det L(2,0)− det L(1,1)).

Furthermore, by inspecting the Laplacian L , one finds that

• det L(2,0) = 2 det BN−1− 3 det BN−2− 3,

• det L(1,1) = det BN−1 and

• det L(2,1) = det BN−2+ 1

with

BN =


3 −1

−1 3
. . .

. . .
. . . −1
−1 3

 . (27)

BN satisfies the recursion relation det BN =3 det BN−1−det BN−2, where det B2 = 8
and det B1 = 3. Hence, by solving the recurrence, we get

det BN =
5− 3
√

5
10

(
3−
√

5
2

)N

+
5+ 3
√

5
10

(
3+
√

5
2

)N

to be used in

JR '
det BN−1− 2 det BN−2− 2

Z

which already proves that JR > 0 for all N ≥ 4 and JR = 0 when N = 3; the
direction is clockwise. For the N -asymptotics, we also need the normalization Z.
In fact, Z'

∑
x∈D|M(x)| =

∑
x∈D det L x . In [Louis 2015], it is shown that

Z' 2
(

3−
√

5
2

)N

+ 2
(

3−
√

5
2

)N

− 4,

which concludes the proof by a simple computation. �
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Note that adding particles and interactions we can get direction-reversal of cur-
rents as we had in the previous Sections 3B–3C. An experimentally accessible
example is described in [de Souza Silva et al. 2006]. That constitutes a big chal-
lenge in the discussion of the direction of currents that has not been touched upon
here: how density and interactions can modify it.

5. Conclusion

To discover what decides the direction of a current under steady nonequilibrium
conditions is a major challenge of statistical mechanics. In the present paper, we
have seen that many effects are possible, not least from the variation of time-
symmetric parameters in transition rates defining the process. That dependence on
nondissipative aspects thus provides a method to obtain kinetic parameters from
measuring the direction of the current.
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[Maes et al. 2009] C. Maes, K. Netočný, and B. Shergelashvili, “A selection of nonequilibrium
issues”, pp. 247–306 in Methods of contemporary mathematical statistical physics, edited by R.
Kotecký, Lecture Notes in Math. 1970, Springer, Berlin, 2009.
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A REMARK ON EIGENVALUE PERTURBATION THEORY
AT VANISHING ISOLATION DISTANCE

FIORELLA BARONE AND SANDRO GRAFFI

Let T be a self-adjoint operator in a separable Hilbert space X , admitting com-
pact resolvent and simple eigenvalues with possibly vanishing isolation distance,
and let V be symmetric and bounded. Consider the self-adjoint operator family
T (g) : g ∈ R in X defined by T + gV on D(T ). A simple criterion is formulated
ensuring, for any eigenvalue of T (g), the existence to all orders of its perturba-
tion expansion and its asymptotic nature near g = 0, with estimates independent
of the eigenvalue index. An application to a class of Schrödinger operators is
described.

1. Introduction and formulation of the result

The standard Rellich–Kato regular perturbation theory [Kato 1976] applies to iso-
lated eigenvalues of finite multiplicity of a densely defined, closed operator T in a
Banach space X . We consider here only the particular case in which

• X is a separable Hilbert space,

• T is a self-adjoint operator in X with compact resolvent and simple spectrum, and

• the perturbation is symmetric, regular and linear on the perturbation parameter.

Let the operator V : D(V )→ X be symmetric and T -bounded with relative
bound b; i.e., let D(T )⊂ D(V ), and let there exist a > 0 and b > 0 such that

‖V u‖ ≤ b‖T u‖+ a‖u‖ for all u ∈ D(T ). (1-1)

With g ∈ C, consider the operator family in X defined as

g 7→ T (g) := T u+ gV u, D(T (g))= D(T ). (1-2)

Then T (g) is closed with nonempty resolvent set for |g|< 1/b and T (g)∗ = T (g)
so that T (g)= T (g)∗ if g ∈R. Let λ ∈R be an isolated eigenvalue of T (simple by
the above assumption), with isolation distance d(λ) > 0. Here, let us recall that

d(λ) := dist(Spec(T ) \ {λ}, λ) > 0. (1-3)

Communicated by Raffaele Esposito.
MSC2010: 81Q05, 81Q10, 81Q15.
Keywords: isolation distance, eigenvalue perturbation theory.
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Then for |g| suitably small, T (g) has one and only one simple eigenvalue λ(g)
such that limg→0 λ(g)= λ (see, e.g., [Kato 1976, §§VII.2–3] or [Reed and Simon
1978, §XII.1]). The function g 7→ λ(g) is holomorphic in a disk centered at the
origin because its Taylor expansion at g = 0

λ(g)= λ+
∞∑
`=1

λ`g` (1-4)

exists and converges for |g| < rd(λ), with rd(λ) > 0. The coefficients λ` are
generated by (Rayleigh–Schrödinger) perturbation theory. This existence and con-
vergence result depends in a critical way on the positivity of d(λ) and therefore
does not apply to nonisolated eigenvalues.

To the best of our knowledge, a simple, explicit criterion ensuring existence, let
alone convergence, of (Rayleigh–Schrödinger) perturbation theory when rd(λ)→ 0
is still missing, even under much stronger assumptions such as rd(λ)→ 0 only if
λ→∞ and boundedness of V . (For related questions involving the behavior of
rd(λ) as λ → ∞, we refer the reader to [Reed and Simon 1978, §XIII.5] and
to [Brownell and Clark 1961; McLeod 1961; Tamura 1974]). Within this last
class of Hilbert space operators, we formulate and prove here a similar criterion,
working out the necessary estimates on the behavior of λ` uniform with respect
to the eigenvalue index n. Under more restrictive assumptions on the vanishing
of rd(λ), the explicit dependence on n of the above estimates is actually determined.

Our hypotheses are formulated as follows.

(A1) T is a nonnegative self-adjoint operator in the separable Hilbert space X ,
with compact resolvent and simple spectrum. Its eigenvalues are denoted
by {λn : n ∈ Ns

}, s ≥ 1, and the corresponding (normalized) eigenvectors
by {ψn : n ∈ Ns

}.

(A2) d(m, n) := |λm−λn|→0 if and only if |m−n|→∞. Here |n| :=n1+· · ·+ns ,
n ∈ Ns .

(A3) There are 3> 0 and γ > s− 1 such that

|λm − λn|
−1
≤3|m− n|γ , m 6= n. (1-5)

Here |x |γ := xγ1 + · · ·+ xγs .

(A4) V : X→ X is symmetric and bounded (hence self-adjoint). Moreover, there
exist A > α and α > 0 such that

|〈ψm, Vψn〉| ≤ Ae−α|m−n|, |m− n| →∞. (1-6)

Since V is bounded, it is a fortiori T -bounded with T -bound 0. Thus, the operator
family g 7→ T (g)= T + gV with D(T (g))= D(T ) is type-A real-holomorphic in
the sense of Kato [1976, §VII.2] for all g ∈ C.
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Consider now the Rayleigh–Schrödinger perturbation expansion near any eigen-
value λn(g) of H(g). The initial point of λn(g) is the eigenvalue λn of T , n ∈ Zs .
Thus,

λn(g)= λn +

∞∑
`=1

B`(n)g`. (1-7)

The expansion (1-7) has positive radius of convergence rn , n ∈ Zs , by the bound-
edness of V , which implies

rn ≥
d(λn)‖V ‖

2
, d(λn)= dist(Spec[(T ) \ {λn}], λn). (1-8)

The vanishing of the convergence radius r(n) ↓ 0 as d(λn) ↓ 0 not only may cause
the divergence of the perturbation expansion but may prevent its very existence
also for a bounded perturbation V ; see Remarks 1.3 and 2.1. Then the purpose of
this paper is to explicit determine, under the above assumptions, the dependence
of the perturbation series on the vanishing rate of the isolation distance d(λn) by
proving the following quantitative estimate.

Theorem 1.1. Let T and V fulfill assumptions (A1)–(A3). Set

R(3, α, γ ) :=
3

αγ
. (1-9)

Then the following n-independent estimate holds:

|B`(n)|< R(3, α, γ )`(4`)`+1
[γ (`− 1)]! for all n ∈ Zs . (1-10)

The uniform estimate (1-10) makes it possible to establish the uniform asymp-
totic nature to all orders of the perturbation expansion.

Corollary 1.2. The perturbation expansion λn +
∑
∞

`=1 B`(n)g` represents an as-
ymptotic expansion to all orders of the eigenvalue λn(g) uniformly with respect
to n ∈ Ns ; i.e, for any fixed N ∈ N,

lim
|g|→0

∣∣λn(g)−
∑N

`=1 B`(n)g`
∣∣

|g|N
= 0 (1-11)

uniformly with respect to n ∈ Ns .

Remark 1.3. The very existence of perturbation theory at the vanishing of the iso-
lation distance, i.e., at the limit n→∞ in the present case, requires the validity of
estimates independent of n on the coefficients B`,n . The conditions (1-5) and (1-6)
imply the existence of g(n) > 0 such that

|g|
∑

m∈Zs

m 6=n

|〈ψm, Vψn〉|

|λm − λn|
< 1, |g|< g(n). (1-12)
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Now

sup
m 6=n

1
|λm − λn|

≤
2
dn
.

Moreover, since V is bounded and symmetric,

‖V ‖ =max
(

sup
m∈Zs

∑
n∈Zs

|〈ψm, Vψn〉|, sup
n∈Zs

∑
m∈Zs

|〈ψm, Vψn〉|

)
,

whence ∑
m∈Zs

m 6=n

|〈ψm, Vψn〉|

|λm − λn|
≤

2
dn
‖V ‖.

Thus, if n is fixed, i.e., if λn is isolated with isolation distance dn > 0, the standard
convergence criterion valid for the perturbation series of the isolated eigenvalue λn

under the bounded perturbation V (see, e.g., [Kato 1976, §VII.2])

2|g|
dn
‖V ‖< 1 (1-13)

implies a fortiori the inequality (1-12). On the other hand, as n→∞, i.e., dn→ 0,
in general the inequality (1-13) has a meaning only for g = 0, while (1-12) can be
rewritten (again by (1-5) and (1-6), which are an adaptation of the small-denominator
conditions of classical perturbation theory) in the form of an inequality independent
of n:

|g|A3
[

dγ

dαγ
(2eαγ )

]s

< 1. (1-14)

This inequality is the starting point for the n-independent estimates of Theorem 1.1.

Remark 1.4 (notation). The underlining operation always transforms into vector
indices with s components the corresponding scalar ones. Namely,

m := (m1, . . . ,ms) ∈ Zs, mi ∈ Z, i = 1, . . . , s. (1-15)

The star operation transforms a positive integer index into a nonnegative one; i.e.,
q ∈ N∗ means q = 0, 1, . . . . Furthermore, |m| denotes the length of the multi-
index m:

|m| := |m1| + · · · + |ms |. (1-16)

Products and powers of multi-indices abbreviate products and powers of the com-
posing indices:

m! := m1! · · ·ms !,

zm
:= zm1

1 · · · z
ms
s ,

0(αz) := 0(αz1) · · ·0(αzs), α ∈ R.

(1-17)
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Example 1.5. Let T be the Schrödinger operator in L2(Rs) with domain and action
defined as

D(T )= H 2(Rs)∩ L2
2(R

s),

T u =− 1
21u+

1
2

s∑
k=1

[ω2
k x2

k − s/2]u, u ∈ D(T ).
(1-18)

T is the self-adjoint, compact-resolvent Schrödinger operator generated by the p-
dimensional quantum harmonic oscillator, with frequencies 1≥ωk>0, k = 1, . . . , s.
Thus, condition (A1) is fulfilled.

The rescaling map (Uω f )(x) = (ω1 · · ·ωs)
1/2 f (ωx), ωx := (ω1x1, . . . , ωs xs),

is unitary in L2(Rs), and by an abuse of notation, we still denote by T the unitary
image UωT U−1

ω . Hence, the action T u becomes

T u =
1
2

s∑
k=1

ωk

[
−

d2u
dx2

k
+ x2

k u− I u
]
.

The corresponding eigenvalues are

λn(ω)=

s∑
k=1

ωknk := 〈ω, n〉, n ∈ (N∗)s . (1-19)

Since ωi > 0 and ni > 0, i = 1, . . . , s, the difference |λr − λn| = 〈ω, (r − n)〉
can vanish only if |r − n| → ∞, with at least two of the components r j − n j ,
j = 1, . . . , s, having different sign. Hence, condition (A2) is fulfilled. Assume
now irrational independence of the frequencies, i.e.,

ω1ν1+ · · ·+ωsνs = 0, νk ∈ Z, if and only if νk = 0, k = 1, . . . , s. (1-20)

Then all eigenvalues λn(ω) are simple, and condition (A3) is equivalent to requiring
the diophantine condition

|〈ω, ν〉|>3−1
|ν|−γ , γ > s− 1, m− n := ν 6= 0 (1-21)

on the frequencies ω. The set of the diophantine values of ω is dense in [0, 1]s .
By condition (1-20), the eigenvalues λn(ω) are simple. The corresponding nor-

malized eigenvectors are

ψn(x)=
1√
2nn!

e−x2/2 Hn(x) := |n〉, (1-22)

where x 7→ Hn(x), n = 0, 1, . . . , is the n-th Hermite polynomial in R and

x = (x1, . . . , xs) ∈ Rs, 2n
= 2n1+···+ns ,

e−x2
= e−x2

1−···−x2
s , Hn(x)= Hn1(x1) · · · Hns (xs).
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Now let 2< q < 6. Consider the function V(x) ∈ C∞(Rs
;R) such that

V(x)= e−|x |
q
8(x), sup

x∈Rs
|8(x)| ≤ 1, |x |q := |x1|

q
+ · · ·+ |xs |

q . (1-23)

Denote by V (x) the maximal multiplication operator by V(x) in L2(Rs). Then
‖V ‖L2→L2 ≤ 1. Thus, the operator H = T + V defined on D(T ) is self-adjoint
in L2(Rs) with compact resolvent. In Proposition 2.6 below we will prove the
estimate

|〈ψm, Vψn〉L2(Rs)| ≤ e−6(|m|+|n|),

with 6 > 0 independent of (m, n). Hence, (A4) is fulfilled in this example.

2. Proof of the result

We recall the basic definitions of (Rayleigh–Schrödinger) eigenvalue perturbation
theory [Kato 1976, §II.1.5 and §§VII.1–3] in this context. Consider an eigenvalue
λn , n ∈ Zs , of T corresponding to the (normalized) eigenvector ψn , henceforth
abbreviated |n〉.

• Pn denotes the (one-dimensional) orthogonal projection operator from X to the
one-dimensional subspace spanned by |n〉.

• S denotes the reduced resolvent of T , i.e., S(λ) :=
∑

k 6=n∈Zs

Pk

λk − λ
.

• Sn is the reduced resolvent evaluated at λ= λn , i.e., Sn :=
∑

k 6=n∈Zs

Pk

λk − λn
.

• [Sn]
`
:=

∑
k 6=n∈Zs

Pk

(λk − λn)`
, `≥ 1, [Sn]

0
= Pn . (2-1)

In this situation we can use the explicit expressions (2.32)–(2.33) in [Kato 1976,
Chapter II] for the coefficients B`(n) of the perturbation series (1-7):

B`(n)=
∑̀
p=1

(−1)p

p

∑
k1+···+kp=p−1

ki=0,1,...
i=1,...,p−1

Tr[V [Sn]
k1 V · · · V [Sn]

kp ]. (2-2)

Since

[Sn]
kp |n〉 = 0, kp > 0, [Sn]

0
|n〉 = |n〉,

Tr[V [Sn]
k1 V · · · V [Sn]

kp ] = 〈n, V [Sn]
k1 V · · · V kp n〉, (2-3)
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(2-2) becomes

B`(n)=
∑̀
p=1

(−1)p

p
B`,p(n), (2-4)

where

B`,p(n)=
∑

k1+···+kp−1=p−1

〈n, V [Sn]
k1 V · · · V [Sn]

kp−1 V n〉. (2-5)

Remark 2.1. For `= 2, we have p = 2 and the above formulas yield the standard
second-order term of the Rayleigh–Schrd̈inger expansion:

B2,2(n)=
∑
k 6=n

|〈n, V k〉|2

λk − λn
.

In the absence of a condition controlling the vanishing of |λk−λn| as |k−n|→∞,
the above series can of course diverge even if

sup
n∈Ns

∑
k∈Ns

〈|n, V k|〉2 <+∞.

On the other hand, this last inequality is implied by the standard Schur condition
ensuring the boundedness of V 2 and hence of V .

We can rewrite in more detail the factor 〈n, V Sk1
n · · · V Skp−1

n V n〉 making explicit
all factors with at least one ki = 0. Namely, consider the q-partition

p− 1= j1+ · · ·+ jq , js ≥ 1, 1≤ q ≤ p− 1. (2-6)

The number of the q-partitions is (see, e.g., [Andrews 1976]) N (p, q) =
(p−1

q−1

)
.

Furthermore, let m(p, q)= p−1−q be the total number of zeros in the q-partition
of (k1, . . . , kp−1). We can thus rearrange the sequence (k1, . . . , kp−1) as

k1+· · ·+kp−1= p− 1=m1+ j1+m2+ j2+mq+ jq , m=m1+· · ·+mq . (2-7)

As a consequence,

V [Sn]
k1 · · · V [Sn]

kp−1 V =
(p−1)∑
q=1

N (p, q)
m1∏

h=1

[V Pn]
h V [Sn]

j1

×

m2∏
h=1

[V Pn]
h
· V [Sn]

j2 · · ·

mq∏
h=1

[V Pn]
h
· V [Sn]

jq V, (2-8)

whence:
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Lemma 2.2. Let k1, . . . , kp,m1, . . . ,mq , j1, . . . , jq be related through (2-7). Then

B`,p(n)=
∑

k1+···+kp−1=p−1

〈n, V [Sn]
k1 · · · V [Sn]

kp−1 V n〉

=

p−1∑
q=1

N (p,q)〈n,V n〉m1+···+mq
∑

r1 6=n,...,rq 6=n
j1+···+ jq=p−1

|〈n,V r1〉|
2

(λr1−λn) j1
·
|〈n,V r2〉|

2

(λr2−λn) j2
· · ·
|〈n,V rq〉|

2

(λrq−λn)
jq

=

p−1∑
q=1

N (p,q)〈n,V n〉p−1−q
∑

r1 6=n,...,rq 6=n
j1+···+ jq=p−1

|〈n,V r1〉|
2

(λr1−λn) j1
·
|〈n,V r2〉|

2

(λr2−λn) j2
· · ·
|〈n,V rq〉|

2

(λrq−λn)
jq
.

Proof. The product (2-8) is unchanged if Pn is replaced by P2
n . Recalling that

S j
=

∞∑
r 6=n

Pr

(λr − λn) j

and denoting

�1(m, j; n) :=
m∏

h=1

[V P2
n ]

h V S j ,

�2(m− 1, j; n) :=
m−1∏
h=1

[V P2
n ]

h V Pn PnV S j ,

�3(m− 1, j; n, r) :=
m−1∏
h=1

[V P2
n ]

h V Pn PnV Pr Pr ,

this yields

B`,p(n)=
p−1∑
q=1

N (p, q)〈n, �1(m1, j1; n) · · ·�1(mq , jq; n)V n〉

=

p−1∑
q=1

N (p, q)
〈
n,

m1−1∏
h=1

�2(m1− 1, j1; n) · · ·�2(mq − 1, jq; n)V n
〉

=

p−1∑
q=1

N (p, q)(λr1 − λn)
− j1 · (λr2 − λn)

− j2 · · · (λrq − λn)
− jq

×

∑
r1 6=n,...,rq 6=n
j1+···+ jq=p−1

〈n, �3(m1− 1, j1; n, r1) · · ·�3(mq − 1, jq; n, rq)V n〉.
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Hence, by (2-8),∑
k1+···+kp−1=p−1

〈n, V [Sn]
k1 · · · V [Sn]

kp−1 V n〉

=

p−1∑
q=1

N (p, q)
〈
n,

m1−1∏
h=1

[V P2
n ]

h V Pn PnV Pr1 Pr1

×

m2−1∏
h=1

[V P2
n ]

h V Pn Pn · V Pr2 Pr2 · · ·

mq∏
h=1

V Prq Prq V n
〉

=

p−1∑
q=1

N (p, q)〈n, V n〉m1 · · · 〈n, V n〉mq

×

∑
r1 6=n,...,rq 6=n

〈n, V r1〉〈r1, V n〉
(λr1 − λn) j1

·
〈n, V r2〉〈r2, V n〉
(λr2 − λn) j2

· · ·
〈n, V rq〉〈rq , V n〉
(λrq − λn)

jq

=

p−1∑
q=1

N (p, q)〈n, V n〉p−1−q
∑

r1 6=n,...,rq 6=n
j1+···+ jq=p−1

|〈n, V r1〉|
2

(λr1−λn) j1
·
|〈n, V r2〉|

2

(λr2−λn) j2
· · ·
|〈n, V rq〉|

2

(λrq−λn)
jq
.

This concludes the proof. �

The first step in estimating the coefficients B`(n) is therefore estimating the
fractions |〈n, V r〉|2/(λr − λn)

j . In turn, this requires an analysis of the vanishing
mechanism of the denominators (λr − λn)

j . A preliminary remark is:

Lemma 2.3. With the assumptions of Lemma 2.2,∑
r 6=n∈Zs

|〈n, V r〉2|
|λr − λn|

j ≤
p A
α p

(
p3
αγ

)j

(γ j)! . (2-9)

Proof. Equation (2-9) is a direct consequence of assumptions (A3) and (A4) be-
cause∑

r 6=n∈Zs

|〈n, V r〉2|
|λr − λn|

j ≤ A3 j
∑

r 6=n∈Zs

|r − n|γ j e−α|r−n|
= A3 j

∑
x 6=0

|x |γ j e−α|x |,

where∑
x 6=0

|x |γ j e−α|x | :=
∑
x 6=0

[|x1|
γ
+· · ·+|x p|

γ
]

j e−α|x | ≤ p j (|x1|
γ j
+· · ·+|x p|

γ j )e−α|x |.

Hence, ∑
x 6=0

|x |γ j e−α|x | ≤ p j+1
∑
x1 6=0

|x1|
γ j e−α|x | ≤

p j+1(γ j)!
αγ j+p
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and summing up we get∑
r 6=n∈Zs

|〈n, V r〉2|
|λr − λn|

j ≤
p A
α p

(
p3
αγ

)j

(γ j)!,

and this proves the lemma. �

Corollary 2.4. Recalling that k1+· · ·+kp−1= p−1, p=2, . . . , in the assumptions
of Lemma 2.3, the following bounds hold:

|B`,p(n)| ≤
∑

k1+···+kp−1=p−1

|〈n, V [Sn]
k1 · · · V [Sn]

kp−1 V n〉|

≤ p
(

2A
α

)p( p3
αγ

)p−1 p−1∑
q=1

pq
∑

j1+···+ jq=p−1

(γ j1)! · · · (γ jq)! . (2-10)

Proof. It is enough to insert (2-9) in the statement of Lemma 2.2 on account of the
bounds N (p, q) < 2p, |〈n, V n〉| ≤ 1 and the fact that j1+ · · ·+ jq = p− 1. �

We can now state and prove the main estimate.

Proposition 2.5. Under assumptions (A1)–(A3),

|B`(n)| ≤ (4`2)`+1 R(3, α, γ )`[γ (`− 1)]! . (2-11)

Proof. We have, by (2-4),

|B`(n)| ≤
∑̀
p=1

B`,p(n)
p

.

Clearly, ∑
j1+···+ jq=p−1

(γ j1)! · · · (γ jq)! ≤ (p− 1)[γ (p− 1)]! .

Moreover,
p−1∑
q=1

pq
≤ p p.

Therefore, by Corollary 2.4,

|B`,p(n)|< (2p)p(p− 1)p
(

2A
α

)p( p3
αγ

)p−1

[γ (p− 1)]!,

whence since A < α

|B`(n)| ≤
∑̀
p=1

B`,p(n)≤ (2`)``32```−1
(
3

αγ

)̀ −1

[γ (`− 1)]!

≤ (4`2)`+1 R(3, α, γ )`[γ (`− 1)]!,
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where

R(3, α, γ ) :=
3

αγ
. (2-12)

Thus, the proof of the proposition is complete. �

Proof of Theorem 1.1. The assertion is just (2-11). �

Proof of Corollary 1.2. The validity of (1-11) is a direct consequence of the exis-
tence of the perturbation expansion for all n ∈ Np. The uniformity with respect to
n follows from the n-independent bound (1-10). �

Example 1.5 (continued). Consider again the normalized eigenvectors of T :

ψn(x)=
s∏

k=1

ψnk (xk), ψn(x) :=
1
√

2nn!
e−x2/2 Hn(x), n = 0, 1, . . . , (2-13)

where Hn(x), x ∈ R, is the n-th Hermite polynomial. The vectors {ψn(x) : n ∈Ns
}

form an orthonormal basis in L2(Rs). Recall that

V(x) := e−|x |
q
8(x).

Consequently, considering the potential V(x) and the corresponding maximal mul-
tiplication operator V in L2(Rs), we have:

Proposition 2.6. Condition (A4) is fulfilled in this example; i.e., there is 6(q) > 0
such that

〈ψm,Vψn〉 := 〈m,V(x)n〉 ≤ e−6[|m|+|n|]. (2-14)

Proof. Consider first the case s = 1. Recall the formula

Hn(x)= n!
[n/2]∑
k=0

(−1)k(2x)n−2k

k! (n− 2k)!
,

where as usual [n/2] is the integer part of n. We can thus write

ψm(x)ψn(x)=
√

2−(m+n)/2m! n!
[m/2]∑
h=0

[n/2]∑
k=0

(−1)h+k(2x)m−2h(2x)n−2k

h! (m− 2h)! k! (n− 2k)!
,

whence

|〈m,Vn〉| ≤
√

2(m+n)/2m! n!
[m/2]∑
h=0

[n/2]∑
k=0

∫
R xm+n−2(h+k)e−|x |

q
dx

h! (m− 2h)! k! (n− 2k)!

<
√

2(m+n)/2m! n!
[m/2]∑
h=0

[n/2]∑
k=0

0([m+ n− 2(h+ k)+ 1]/q)
h! (m− 2h)! k! (n− 2k)!

.
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Now,

min
0≤h≤[m/2]

[h! (m− 2h)!] = 0(m/3+ 1)2,

min
0≤k≤[n/2]

[h! (n− 2k)!] = 0(n/3+ 1)2,

max
0≤h≤[m/2]
0≤k≤[n/2]

[0([m+ n− 2(h+ k)+ 1]/q)] = 0([m+ n+ 1]/q),

and this implies

|〈m,Vn〉| ≤
√

2(m+n)/2m! n! ·
[m

2

]
·

[n
2

] 0([m+ n+ 1]/q)
0(m/3+ 1)2 ·0(n/3+ 1)2

. (2-15)

Now apply the Stirling formula. Since

6π2(m+n)/4e−(m+n)/2e−[m+n+1]/qe(m+n)/3
·

[m
2

]
·

[n
2

]
≤ 1

for m+ n large enough,

|〈m,Vn〉| ≤
((m+ q)/q)(m+q)/q

mm/6nn/6 .

Without loss, we can take m = n+ k, k ≥ 0. Then

|〈m,Vn〉| = |〈n,V(n+ k)〉| ≤
[(2n+ k)/q](2n+k)/q

(n+ k)(n+k)/6nn/6 .

Now (n+ k) > (2n+ k)/q > (n+ k)/6 if 2< q < 6 and hence there is 0< L < 1
such that

|〈n,V(n+ k)〉| ≤
[(2n+ k)/q](n+k)/6

(n+ k)(n+k)/6nn/6 <
Ln+k

nn/6 =
Lm

nn/6 ,

whence, a fortiori, with L = e−6

|〈m,Vn〉| ≤ e−6(m+n).

This concludes the proof for s = 1. The general case follows through an immediate
product argument. �
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SOME RESULTS ON THE ASYMPTOTIC BEHAVIOR
OF FINITE CONNECTION PROBABILITIES IN PERCOLATION

MASSIMO CAMPANINO AND MICHELE GIANFELICE

We review results of two previous papers on the asymptotic behavior of finite
connection probabilities in three or more dimensions for Bernoulli percolation
and the Fortuin–Kasteleyn random-cluster model. In the introduction, we prove
a multidimensional renewal theorem that is needed for these results and previous
results on Ornstein–Zernike behavior; the proof is significantly simpler than that
originally derived by Doney (1966) and those of other subsequent works on this
subject.

1. Introduction

In the last few decades, much progress has been made in the rigorous study of
the asymptotic behavior of connection functions in percolation outside the critical
point. This problem is related to that of typical fluctuations of clusters and, in two
dimensions, of interfaces [Gallavotti 1972; Greenberg and Ioffe 2005].

In the case of the subcritical regime for Bernoulli percolation or the Fortuin–
Kasteleyn (FK) random-cluster model on a regular lattice, connection functions,
i.e., the probabilities that two points are connected, decay exponentially as the dis-
tance between the points tends to infinity [Grimmett 1999; 2006]. In [Campanino
and Ioffe 2002; Campanino et al. 2008], the exact asymptotic behavior of this
decay has been established. It is called Ornstein–Zernike behavior [1914] since
they derived it in statistical mechanics for systems outside the critical point. More-
over, in [Campanino and Ioffe 2002; Campanino et al. 2008], the strict convexity
with positive Gaussian curvature and the analyticity of equidecay surfaces were
established.

An extension of the techniques developed in [Campanino and Ioffe 2002] has
been developed in [Campanino and Gianfelice 2009], where the exact asymptotics

Communicated by Raffaele Esposito.
Campanino and Gianfelice are partially supported by the Gruppo Nazionale per l’Analisi Matematica,
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for the probability that three points are connected has been derived. We refer the
reader to [Coquille et al. 2014] for an application of this result.

In this paper, we review some recent results related to the case of finite con-
nections in the supercritical regime. Here an infinite cluster exists and ordinary
connection functions between two points converge to a positive constant as their
distance tends to infinity. Indeed, in order to be connected between each other,
it is enough for them to be both connected to the infinite cluster that is spread
everywhere. One is therefore led to consider finite connection functions, i.e., the
probabilities that two points are connected between each other but not to the infinite
cluster. In this case, the points are surrounded by a surface in the dual lattice, where
plaquettes of the dual lattice are occupied when the dual bond is vacant. One can
expect in three or more dimensions that these surfaces have similar fluctuations as
the connecting clusters in the subcritical regime and therefore that finite connection
functions also exhibit Ornstein–Zernike behavior. The situation in two dimensions,
where the dual surface is basically composed of two random paths that can freely
fluctuate with the only constraint being no intersection, is different. In this case,
for Bernoulli percolation on the square lattice above the critical point, [Campanino
et al. 2010] established that finite connection functions exhibit a different behavior,
corresponding to that of two independent random paths.

Here we expose some recent results on the asymptotic behavior of finite con-
nection functions in three or more dimensions that appeared in [Campanino and
Gianfelice 2011; 2015]. These results refer both to Bernoulli percolation and to
the FK random-cluster model in the highly supercritical regime, i.e., when the pa-
rameter p related to the occupation probability of a bond is close to 1. It would be
desirable to extend the validity of the results to a larger region of parameter values.

1.1. Notation. We denote |x | :=
∑d

i=1|xi |, by 〈 · , · 〉 the scalar product in Rd

and by ‖ · ‖ :=
√
〈 · , · 〉 the associated Euclidean norm. We then set, for x 6= 0,

x̂ := x/‖x‖ and Sd−1
:= {z ∈Rd

: ‖z‖ = 1}, and denoting by B the closed unit ball
in Rd , for r > 0, we let r B := {x ∈ Rd

: ‖x‖ ≤ r} and Br (x) := x + r B.
For any t ∈ Rd , we define

Ht
x := {y ∈ Rd

: 〈t, y〉 = 0} (1)

to be the (d − 1)-dimensional hyperplane in Rd orthogonal to the vector t passing
through x .

In the sequel, we will omit the dependence on x in the notation if the point is
taken to be the origin.

1.2. A note on the multidimensional renewal process. We first consider a simple
model of a “multidimensional renewal process” that, with suitable adaptations, is
at the basis of the arguments used in most of these works.
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Let {X i }i≥1 be a sequence of independent and identically distributed random
vectors with values in Zd . We assume that E[et |X1|]<∞ for some t > 0. Moreover,
we assume that the support of the law of X1 spans all of Zd and that µ := E[X1] is
such that µ 6= 0.

The exact asymptotics of the expected number of visits to a point x ∈ Zd by
the random walk just defined, as ‖x‖ tends to infinity, was derived for the first
time in [Doney 1966] under the hypothesis of the existence of the first l moments,
with l an explicit function of the lattice dimensions. Extensions of this result to
the renewal measure of x + B, with B a bounded subset of Rd , are given in [Stam
1969], as well as in [Carlsson and Wainger 1984] where the exponential decay of
the tail of X1 is also assumed.

Here, under this last assumption, we present a proof of the multidimensional
theorem on which Theorem 1 relies; the proof is considerably simpler than that
originally derived in [Doney 1966].

Under the hypotheses just given on the law of X1, the following properties are
satisfied:

Local limit theorem: There exists α ∈ (0, 1
2) such that, uniformly in x ∈ Zd

with ‖x − nµ‖< n1/2+α as n tends to infinity,

P

{ n∑
i=1

X i = x
}
=

exp{−〈A−1(x − nµ), (x − nµ)〉/2n}√
(2πn)d det A

(1+ o(1)), (2)

where A is the covariance matrix of X1.

Large deviation estimate from the mean: This follows from the exponential
tail of the distribution of X1.

To estimate the asymptotic behavior in n of the series

∑
k≥1

P

{ k∑
i=1

X i = nµ
}
, (3)

we decompose it as

∑
k≥1

P

{ k∑
i=1

X i = nµ
}
=

n−bn1/2+α
c∑

k=1

P

{ k∑
i=1

X i = nµ
}

(4)

+

n+bn1/2+α
c−1∑

k=n−bn1/2+αc+1

P

{ k∑
i=1

X i = nµ
}

(5)

+

∑
k≥n+bn1/2+αc

P

{ k∑
i=1

X i = nµ
}
. (6)
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Then we estimate the second term on the right-hand side by using the local limit
theorem estimate and the sum of the first and the third terms by using the large
deviation upper bound.

Therefore, we get

∑
k∈N:|k−n|<n1/2+α

exp{−〈A−1(kµ− nµ), (kµ− nµ)〉/2k}√
(2πk)d det A

(1+ o(1))

=

∑
k∈N:|k−n|<n1/2+α

exp{−|k− n|2〈A−1µ,µ〉/(2n(1+ O(nα−1/2)))}√
(2πn(1+ O(nα−1/2)))d det A

(1+ o(1))

=
1√

(2πn)d−1(det A)〈A−1µ,µ〉
(1+ o(1)). (7)

Moreover, by the standard large deviation estimate for the sums of independent
and identically distributed random variables with exponential tails, we obtain

∑
k∈N:|k−n|≥n1/2+α

P

{ k∑
i=1

X i = nµ
}
≤ e−c1n2α

. (8)

Summing up (7) and (8),

∑
k≥1

P

{ k∑
i=1

X i = nµ
}
=

c2

n(d−1)/2 (1+ o(1)), (9)

with c2 a positive constant.

1.3. Possible developments. It would be desirable to extend the results of [Cam-
panino and Gianfelice 2011; 2015] to values of p larger than some critical pc.
Moreover, it should be possible to extend the results of [Campanino et al. 2010]
from independent percolation to the FK random-cluster model.

2. Ornstein–Zernike behavior for the finite connectivity function
in highly supercritical percolation models

2.1. Bernoulli percolation and the FK random-cluster model. Let Ld denote the
graph associated to (Zd , Ed), with

Ed
:= {{x, y} ∈ P2(Z

d) : |x − y| = 1}. (10)

Let L0 be the collection of subgraphs of Ld of finite order. If G ∈ L0, V (G) is
the set of vertices and E(G) is the set of edges of G. We denote by G the graph
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induced by the union of V (G)1 with the sets of vertices of the components of Ld
\G

of finite size. We define the boundary of G as the set

∂G := {e ∈ Ed
\ E(G) : |e∩ V (G)| = 1} ⊂ Ed (11)

and the external boundary of G to be ∂G := ∂G.
Considering the realization of Ld as a geometric graph embedded in Rd , which

with abuse of notation we still denote by Ld , we can look at it as a cell complex,
i.e., as the union of Zd and Ed representing the collections of 0-cells and of 1-cells,
respectively. We denote by (Zd)∗ the collection of d-cells dual to 0-cells in Ld , that
is, the collection of Voronoi cells of Ld , and by (Ed)∗ the collection of (d−1)-cells
dual to 1-cells in Ld , usually called plaquettes in the physics literature.

A bond percolation configuration on Ld is a map Ed
3 e 7→ ωe ∈ {0, 1}. Setting

� := {0, 1}E
d
, we define

� 3 ω 7→ E(ω) := {e ∈ Ed
: ωe = 1} ∈ P(Ed). (12)

Denoting by G := {G ⊆ Ld
: G = G(E), E ∈ P(Ed)} the collection of spanning

subgraphs of Ld , we define the random graph

� 3 ω 7→ G(ω) := G(E(ω)) ∈ G (13)

and by κ(ω) the number of its components. Then, given l ≥ 1 and x1, . . . , xl ∈ Zd ,
we denote by

� 3 ω 7→ C{x1,...,xl }(ω) ∈ P(Zd) (14)

the common open cluster of the points x1, . . . , xl ∈ Zd , that is, the set of vertices
of the component of the random graph G to which these points belong, provided
it exists, and set

� 3 ω 7→ E{x1,...,xl }(ω) := E(C{x1,...,xl }(ω))∩ E(ω)⊆ Ed . (15)

We also define, in case C{x1,...,xl } is finite, the random set ∂C{x1,...,xl } to be equal
to ∂G if G is the component of G whose set of vertices is C{x1,...,xl } and the random
set

S{x1,...,xl } := (∂C{x1,...,xl })
∗. (16)

Let F be the σ -algebra generated by the cylinder events of �. If 3 is a finite
subset of Zd , let E3 be the subset of Ed such that V (E3) =3 and denote �3 :=
{0, 1}E

3

, by F3 the corresponding product σ -algebra and by T3 the σ -algebra
generated by the cylinder events {ω ∈� :ω1 ∈ A}, where1⊂3c and A ∈F1. The
random-cluster measures on Zd [Fortuin and Kasteleyn 1972; Edwards and Sokal

1We refer the reader to [Campanino and Gianfelice 2011; 2015] for the notions of graph theory
needed in the study of percolation theory.
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1988] with parameters q ≥ 1 and p ∈ [0, 1] are the dependent bond percolation
probability measures P on (�,F) specified by

P(A | T3)= P ·3;q,p(A)P− a.s., A ∈ F, (17)

where, setting, for any π ∈ �c
3, �π3 := {ω ∈ � : ωe = πe, e ∈ Ed

\ E3},Pπ3;q,p is
the probability measure on (�,F) with density

Pπ3;q,p(ω) :=
1

Zπ3(q; p)
p|E(ω)|(1− p)|E

3
\E(ω)|qκ3(ω)1�π3(ω), (18)

where κ3(ω) is the number of the components of G(ω) intersecting 3.
For q = 1, the FK random-cluster model coincides with Bernoulli percolation.

Therefore, we omit in this case the value of q in the specification of P.
Random-cluster measures satisfy the FKG inequality; that is, for any couple f, g

of random variables increasing with respect to the natural partial order defined
on �, P( f g) ≥ P( f )P(g). Moreover, the partial order of � induces a stochastic
ordering on the elements of the collection of probability measures defined by (18);
namely, for any increasing random variable f , P

π1
3;q,p( f )≤ P

π2
3;q,p( f ) if π1 ≤ π2.

Hence, denoting by � such an ordering, for all π ∈�c
3, Pf

3;q,p �Pπ3;q,p �Pw
3;q,p,

where Pf
3;q,p and Pw

3;q,p stand for the probability measure with density (18) cor-
responding to the free (π ≡ 0) and to the wired (π ≡ 1) boundary conditions,
respectively. Since, for #= f,w, the (weak) limit of the sequence {P#

3;q,p} along
any exhaustion {3} ↑ Zd exists (see, e.g., [Grimmett 2006, Theorem 4.19]) and
is the random-cluster measure that we denote by P#

q,p, the ordering � extends as
well to random-cluster measures and Pf

q,p � P� Pw
q,p.

Furthermore, denoting by Pp′ := P1,p′ the independent Bernoulli bond percola-
tion probability measures on Zd with parameter p′, by Theorem 3.21 of [Grimmett
2006, p. 43], we obtain the stochastic domination inequalities

Pp(q) � Pf
q,p � Pw

q,p � Pp, (19)

where p(q) := p/(p+ q(1− p)).
In the following, we assume the random-cluster measure Pq,p to be translation-

invariant.

2.2. Results.

Theorem 1. For any d ≥ 3 and any q ≥ 1, there exists p0 = p0(q, d) such that, for
all p > p0, uniformly in x ∈ Zd as ‖x‖→∞,

Pq,p{0↔ x, |C{0,x}|<∞} =
8q,p(x̂)√
(2π‖x‖)d−1

e−τq,p(x)(1+ o(1)), (20)
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where 8q,p is a positive real analytic function on Sd−1 and τq,p an equivalent
norm in Rd .

As a byproduct of the proof, we also obtain the following result.

Theorem 2. For any d ≥ 3 and any q ≥ 1, there exists p0 = p0(q, d) such that, for
all p > p0, the equidecay set of the two-point finite connectivity function is locally
analytic and strictly convex. Moreover, the Gaussian curvature of the equidecay
set is uniformly positive.

These theorems are proven for the independent percolation case in [Campanino
and Gianfelice 2011] and for the general case in [Campanino and Gianfelice 2015].

2.3. Analysis of connectivities. The following result appears as Proposition 4 in
[Campanino and Gianfelice 2015].

Proposition 3. Given q ≥ 1 and p ∈ (0, 1), let Pq,p be a translation-invariant
random-cluster measure on Zd with parameters q and p. Then for any x ∈ Rd ,

τq,p(x) := − lim
n→∞

1
n

log Pq,p{0↔bnxc, |C{0,bnxc}|<∞} (21)

exists and is a convex and homogeneous-of-order-1 function on Rd .

Proof. For any 1⊆ Zd , let us denote by E1 :=
⋃

x∈1 E{x} ⊆ Ed the set of edges
belonging to open paths starting at the vertices of 1.

Now let 3 be a finite subset of Zd such that 3 3 0. For any two distinct
lattice points x, y ∈ 3, looking at 1{0↔x, 0=3c} and 1{x↔y, y=3c} as functions
of (E{x}, E3c), they are both nondecreasing on E{x} and nonincreasing on E3c .
Therefore, by Theorem 2.1 in [van den Berg et al. 2006],

Pq,p({0↔ x, 0 =3c
} ∩ {x↔ y, y =3c

} | {x =3c
})

≥ Pq,p({0↔ x, 0 =3c
} | {x =3c

})Pq,p({x↔ y, y =3c
} | {x =3c

}); (22)

that is,

Pq,p{x =3c
}Pq,p{0↔ x, x↔ y, x =3c

}

≥ Pq,p{0↔ x, x =3c
}×Pq,p{x↔ y, x =3c

}, (23)

which implies

Pq,p{0↔ x, x↔ y, C{0,x,y} ∩3c
=∅}

≥ Pq,p{0↔ x, C{0,x} ∩3c
=∅}×Pq,p{x↔ y, C{x,y} ∩3c

=∅}. (24)

But

Pq,p{0↔ y, C{0,y} ∩3c
=∅} ≥ Pq,p{0↔ x, x↔ y, C{0,x,y} ∩3c

=∅}; (25)
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hence,

Pq,p{0↔ y, C{0,y} ∩3c
=∅}

≥ Pq,p{0↔ x, C{0,x} ∩3c
=∅}×Pq,p{x↔ y, C{x,y} ∩3c

=∅}. (26)

Taking the limit 3 ↑ Zd ,

Pq,p({0↔ y, |C{0,y}|<∞})
≥ Pq,p({0↔ x, |C{0,x}|<∞})×Pq,p({x↔ y, |C{x,y}|<∞}). (27)

Proceeding as in the proof of Proposition 15 in [Campanino and Gianfelice 2011],
we obtain the thesis. �

2.4. The independent percolation case. We will show, without going too much
into details for which we refer the reader to [Campanino and Gianfelice 2011],
how the proof of Theorem 1 in the independent percolation case can be reduced to
that of an estimate of the form presented in (9).

Given x, y ∈ Zd , we set

ϕ(x, y) :=
{

min{|S{x,y}(ω)| : ω ∈ {x↔ y}}, x 6= y,
0, x = y.

(28)

Here ϕ is symmetric and translation-invariant, so we write ϕ(x, y)= ϕ(x − y).
We remark that, given Gi := (Vi , Ei ), i = 1, 2, two connected subgraphs of Ld

of finite size, by (11), ∂(G1 ∪G2)⊆ ∂G1 ∪ ∂G2. Moreover,

∂(G1 ∪G2)= ∂(G1 ∪G2)⊆ ∂G1 ∪ ∂G2. (29)

This allowed us to prove (see Lemma 4 and Proposition 5 in [Campanino and Gian-
felice 2011]) that the sequence {ϕn}n∈N, where, for any n ∈N,Rd

3 x 7→ ϕn(x) :=
ϕ(bnxc)/n ∈ R+, converges pointwise to ϕ, which is a convex, homogeneous-of-
order-1 function on Rd . Furthermore, {ϕn}n∈N converges uniformly on Sd−1.

Conjecture 4. We conjecture that ϕ is the l1 norm in Rd , i.e., ϕ(x) = |x | :=∑d
i=1|xi |.

In the limit of p tending to 1, the support of the probability distribution of the
finite cluster containing two sites x and y, conditioned to its existence, is given
by the configurations minimizing ϕ(x − y). Therefore, given p sufficiently close
to 1, we can estimate the probability that the finite cluster of two points has an
external boundary of size larger than (1+ δ)ϕ(x − y), for δ larger than a given
value δ∗(p, d) that tends to 0 as p tends to 1. Indeed, we have:

Proposition 5. There exist c3=c3(d)>1 and δ∗=δ∗(p, d), with limp↑1 δ
∗(p, d)=

0, such that, for any p ∈ (1− 1/c3, 1) and any δ > δ∗,

Pp({|S{0,x}| ≥ (1+ δ)ϕ(x)} | {|C{0,x}|<∞})≤ c4e−c5ϕ(x), (30)
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with c4 = c4(d, p) > 1 and c5 = c5(d, p, δ) > 0.

Hence, we are left with the estimate of the probability that the external boundary
of C{0,x} has size smaller than (1+ δ)ϕ(x) for δ > δ∗.

Renewal structure of connectivities. Given t ∈ Sd−1, we define

Ht
y := {x ∈ Rd

: 〈t, x〉 = 〈t, y〉}, y ∈ Rd , (31)

to be the (d − 1)-dimensional hyperplane in Rd orthogonal to the vector t passing
through a point y ∈ Rd and the corresponding half-spaces

Ht,−
y := {x ∈ Rd

: 〈t, x〉 ≤ 〈t, y〉}, (32)

Ht,+
y := {x ∈ Rd

: 〈t, x〉 ≥ 〈t, y〉}. (33)

Let t ∈Sd . Given two points x, y ∈Zd such that 〈x, t〉 ≤ 〈y, t〉, we denote by C t
{x,y}

the cluster of x and y inside the strip St
{x,y} :=Ht,+

x ∩Ht,−
y provided it exists.

Let u be the first of the unit vectors in the direction of the coordinate axes
u1, . . . , ud such that 〈t, u〉 is maximal

Definition 6. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈x, t〉 ≤ 〈y, t〉 be connected
in St

{x,y}. The points b ∈ C t
{x,y} such that

(1) 〈t, x + u〉 ≤ 〈t, b〉 ≤ 〈t, y− u〉 and

(2) C t
{x,y} ∩St

{b−u,b+u} = {b− u, b, b+ u}

are said to be t-break points of C{x,y}. The collection of such points, which we
remark is a totally ordered set with respect to the scalar product with t , will be
denoted by Bt(x, y).

Definition 7. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈x, t〉 ≤ 〈y, t〉 be connected
in St

{x,y}. An edge {b, b+ u} such that b, b+ u ∈ Bt(x, y) is called a t-bond of
C{x,y}. The collection of such edges will be denoted by Et(x, y) while Bt

e(x, y)⊂
Bt(x, y) will denote the subcollection of t-break points b of C{x,y} such that the
edge {b, b+ u} ∈ Et(x, y).

Definition 8. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈t, x〉 ≤ 〈t, y〉 be connected.
Then x, y ∈ Zd are said to be ht -connected if

(1) x and y are connected in St
{x,y} and |C t

{x,y}|<∞ and

(2) x + u, y− u ∈ Bt(x, y).

Moreover, denoting by {x
ht
←→ y} the event that x and y are ht -connected, we set

h(p)t (x, y) := Pp{x
ht
←→ y}. (34)
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Notice that, by translation invariance, h(p)t (x, y) = h(p)t (y − x, 0), so in the
sequel, we will denote it simply by h(p)t (y − x). We also define by convention
h(p)t (0)= 1.

Definition 9. Let t ∈ Sd−1 and x, y ∈ Zd be ht -connected. If Bt(x + u, y − u)
is empty, then x and y are said to be ft -connected and the corresponding event is
denoted by {x

ft
←→ y}. We then set

f (p)t (y− x) := Pp{x
ft
←→ y}. (35)

We define by convention f (p)t (0)= 0.

Definition 10. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈t, x〉 ≤ 〈t, y〉 be connected.
Then:

(1) x, y are called ht -connected and the corresponding event is denoted by {x
ht
←→y},

if C{x,y} ∩St
{y−u,y} = {y− u, y} and |C{x,y} ∩Ht,−

y |<∞.

(2) x, y are called f t -connected and the corresponding event is denoted by {x
f t
←→y},

if they are ht -connected and Bt(x, y)=∅.

Definition 11. Given t ∈ Sd−1, let x, y ∈ Zd such that 〈t, x〉 ≤ 〈t, y〉 be connected.
Then:

(1) x and y are called h̃t -connected, and the corresponding event is denoted by
{x h̃t
←→ y} if

(a) C{x,y} ∩St
{x,x+u} = {x, x + u} and

(b) |C{x,y} ∩Ht,+
x |<∞.

(2) x and y are called f̃t -connected, and the corresponding event is denoted by
{x f̃t
←→ y} if they are h̃t -connected and Bt(x, y)=∅.

The functions h(p)t (x, y) := Pp{x
ht
←→ y} and h̃(p)t (x, y) := Pp{x

h̃t
←→ y} are

translation invariant.
Denoting by g(p)t (x, y), for t ∈ Sd−1, the probability of the event

{x
gt
←→ y} := {x↔ y, |C{x,y}|<∞, |Bt

e(x, y)| ≤ 1}, (36)

which is also translation invariant, we obtain

Pp{0↔ x, |C{0,x}|<∞} = g(p)t (x)+
∑

z1,z2∈Zd

f (p)t (z1)h
(p)
t (z2− z1) f̃ (p)t (x − z2),

(37)

h(p)t (x)=
∑
z∈Zd

f (p)t (z)h(p)t (x − z). (38)
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Proposition 12. Given t ∈Sd−1, for any p ∈ (0, 1) and x ∈Rd such that 〈t, x〉> 0,

τ t
p(x) := − lim

n→∞

1
n

log h(p)t (bnxc) (39)

exists and is a convex and homogeneous-of-order-1 function on Rd . Moreover, for
p ∈ (1− 1/c3, 1),

τ t
p(x)≥ ϕ(x) log

1
c3(1− p)

. (40)

The proof follows from the supermultiplicativity property of the function h(p)t ;
we refer the reader to Proposition 15 in [Campanino and Gianfelice 2011] for the
details.

Since, by Proposition 3, for any p ∈ (0, 1) and d ≥ 2, τp := τ1,p is an equivalent
norm in Rd , there exists c− = c−(p, d) > 0 such that

Pp{0↔ x, |C{0,x}|<∞} ≤ e−c−‖x‖, (41)

while as a byproduct of the proof of Proposition 5 we get that there exists c+ =
c+(p, d) > 0 such that

h(p)t (x)≥ e−c+‖x‖, (42)

it follows that τ t
p ≥ τp is finite and is an equivalent norm in Rd .

Renormalization. We define

W :=
⋂

x̂∈Sd−1

{w ∈ Rd
: 〈w, x̂〉 ≤ ϕ(x̂)}. (43)

Given x ∈ Zd , let t ∈ dW(x) := {w ∈ dW : 〈w, x〉 = ϕ(x)}.
For N ∈ N larger than 1, let us set tN = tN (x) := b‖x‖/Nc− 1 and

yi := bi N x̂c, Ht
i :=Ht

yi
, Ht,−

i :=Ht,−
yi
, Ht,+

i :=Ht,+
yi
, i = 0, . . . , tN , (44)

ytN+1 := x, Ht
ytN+1
:=Ht

x , Ht,−
ytN+1
:=Ht,−

x , (45)

St
i :=Ht,+

i ∩Ht,−
i+1 . (46)

With slight notational abuse, we still denote by S{0,x} its representation as a hyper-
surface in Rd and define

C t
i := C{0,x} ∩St

i , St
i := S{0,x} ∩St

i . (47)

Hence, C{0,x} =
⋃tN

i=0 C t
i and S{0,x} ∩St

0,x ⊆
⋃tN

i=0 St
i .

We call crossing any connected component s of St
i such that, denoting by K(s)

the compact subset of St
i whose boundary is s, there exist y ∈ Ht,−

i ∩ Zd and
y′ ∈ Ht,+

i+1 ∩ Zd , both belonging to C{0,x}, which are connected by an open path
in Ld

∩K(s).
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We remark that, since C{0,x} is connected, the existence of two crossings in St
i

implies the existence of two disjoint paths connecting Ht
i and Ht

i+1 while the con-
verse does not hold true in general.

We say that a slab St
i is good if St

i is connected and made by just a single
crossing of size smaller than twice the minimal one; otherwise, we call it bad.

In Section 3 of [Campanino and Gianfelice 2011], making use of a deterministic
statement, we proved that the number of bad slabs is at most 2δ‖x‖/N . There-
fore, it is possible to modify the configuration of at most c6 N d bonds, with c6 =

c6(d, δ), inside any 3-tuple of consecutive slabs containing a single crossing in
such a way that the resulting cluster will have at least one t-bond inside each of
these slabs. Since these modifications can be performed independently, this fact
and Proposition 5 imply the mass-gap condition f (p)t (x) ≤ e−c7‖x‖h(p)t (x) with
c7 = c7(p) > 0, uniformly in t ∈ Sd−1

x . Thus, from (37), we have τ t
p = τp for any

t ∈ Sd−1
x .

Extending f (p)t to a function defined on the whole lattice by setting it equal to 0,
where it is undefined, set

Rd
3 s 7→ H (p)

t (s) :=
∑
x∈Zd

h(p)t (x)e〈s,x〉 ∈ R, (48)

Rd
3 s 7→ F (p)t (s) :=

∑
x∈Zd

f (p)t (x)e〈s,x〉 ∈ R. (49)

The renewal equation (38) implies

H (p)
t (s)=

1

1− F (p)t (s)
. (50)

Since (41) implies that, for all p ∈ (pc(d), 1), the effective domain of Ht(s),

D
p
t := {s ∈ Rd

: H (p)
t (s) <∞}, (51)

is not empty since D̊
p
t ⊇ K̊

p
t 3 0, where

K
p
t :=

⋂
x̂∈Sd−1

{s ∈ Rd
: 〈s, x̂〉 ≤ τ t

p(x̂)} (52)

is the convex body polar with respect to U
p
t := {x ∈ Rd

: τ
p

t (x)≤ 1}.
For s ∈ K

p
t , since

〈s, x〉 ≤max
s∈K

p
t

〈s, x〉 = τ t
p(x)≤ 1, (53)

h(p)t (x)≤ e−τ
t
p(x) and F (p)t (s) is finite, moreover continuous, then, for all s ∈ ∂K

p
t ,

Zd
3 x 7→ q(p)t;s (x) := f (p)t (x)e〈s,x〉 ∈ R (54)
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is the density of the probability measure Q(p)
t;s on (Zd ,B(Zd)), which has exponen-

tially decaying tails:

f (p)t (x)e〈s,x〉 ≤ e−c7‖x‖h(p)t (x)e〈s,x〉 ≤ e−c7‖x‖. (55)

If X is a random vector with probability distribution Q(p)
t;s , denoting by Et;s

p the
expectation of a random variable under Q(p)

t;s , we set

µ
p
t (s) := Et;s

p [X ] = grad log F (p)t (s), (56)

while
C p

t (s) := Hess log F (p)t (s) (57)

denotes the covariance matrix of X . Since f (p)t (x) > 0 on a whole half-space,
C p

t (s) is nondegenerate. Hence,

∂K
p
t = {s ∈ Rd

: F (p)t (s)= 1} ⊆ Rd
\D

p
t (58)

is a real analytic strictly convex surface with Gaussian curvature uniformly bounded
away from 0, and therefore, because Q(p)

t;s is supported on Ht,+
0 ∩Zd , µp

t (s) 6= 0
and (s, µp

t (s)) > 0 for any s ∈ Br (t)∩ ∂K
p
t with r sufficiently small.

Then let s ∈ Br (t)∩∂K
p
t ; for any µ∈ B(µp

t (s))∩Hs
µ

p
t (s)

, if {X i }i≥1 is a sequence
of independent and identically distributed random vectors distributed according to
Q(p)

t;s , for n ∈ N, we can rewrite (38) as

h(p)t (bnµc)= δ0(bnµc)+ e−〈bnµc,s〉
∑
k≥1

k⊗
i=1

Q(p)
t;s

{ k∑
i=1

X i = bnµc
}
. (59)

Then the proof of the Theorem 1 follow from (9).

2.5. The case of the FK random-cluster model. One can extend the previous re-
sult to finite connections of the FK random-cluster model when the parameter p
related to the occupation probability of a bond is close to 1. As in the independent
percolation case, an estimate on the size of the surface in the dual lattice surround-
ing a finite cluster of two points, as the one given in Proposition 5, is still in force
due to the stochastic domination inequalities given in (19).

This led us to consider only realizations of the cluster C{0,x} whose external
boundary has size smaller than or equal to (1+ δ)ϕ(x) for sufficiently small δ.
Moreover, a suitably modified deterministic statement, as the one presented be-
fore to prove mass-gap condition, allows us to give a probabilistic description
of C{0,x} in terms of a concatenation of subclusters stretching along the direc-
tion dual to x̂ with respect to τp,q , whose sizes, under the conditional measure
Pq,p( · | {0< |C{0,x}|<∞}), have exponentially decaying tails.
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When the parameter p is close to 1, one can perform a polymer expansion for
the supercritical random-cluster model. In this way, we can reduce the analysis of
the exact asymptotics of the finite two-point connection function to the proof of a
local limit theorem result for a random process via thermodynamic formalism as
in [Campanino et al. 2003].

We refer the reader to [Campanino and Gianfelice 2015] for the details.
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CORRELATION INEQUALITIES FOR THE POTTS MODEL

GEOFFREY R. GRIMMETT

Dedicated in friendship to Lucio Russo

Correlation inequalities are presented for ferromagnetic Potts models with ex-
ternal field, using the random-cluster representation of Fortuin and Kasteleyn,
together with the FKG inequality. These results extend and simplify earlier
inequalities of Ganikhodjaev and Razak, and also of Schonmann, and include
GKS-type inequalities when the spin space is taken as the set of q-th roots
of unity.

1. Introduction

Correlation inequalities are key to the classical theory of interacting systems in
statistical mechanics. The Ising model, especially, has a plethora of associated
inequalities that have played significant roles in the development of a coherent the-
ory of phase transition (see, for example, the books [7; 22]). These inequalities are
frequently named after their discoverers, and include inequalities of Griffiths [14;
15; 16], Griffiths, Kelly, and Sherman (GKS) [20], Griffiths, Hurst, and Sherman
(GHS) [17], Ginibre [13], Simon and Lieb [21; 24], and so on.

A more probabilistic theory of Ising/Potts models has emerged since around
1970, initiated partly by the work of Fortuin and Kasteleyn [8; 9; 10] on the
random-cluster representation of the Potts model and the random-current method
championed by Aizenman [1] and co-authors. Probably the principle inequality in
the probabilistic formulation is that of Fortuin, Kasteleyn, and Ginibre (FKG) [11].

Inequalities are rarer for the Potts model, and our purpose in this note is to
derive certain correlation inequalities for a ferromagnetic Potts model with external
field, akin to the GKS inequalities for the Ising model. The main technique used
here is the random-cluster representation of this model and particularly the FKG
inequality.

Our results generalize and simplify the work of Ganikhodjaev and Razak [12],
who have shown how to formulate and prove GKS-type inequalities for the Potts
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MSC2010: 82B20, 60K35.
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angular spins.

327

http://msp.org/memocs
http://dx.doi.org/10.2140/memocs.2016.4-3-4
http://dx.doi.org/10.2140/memocs.2016.4.327
http://memocs.univaq.it/


328 GEOFFREY R. GRIMMETT

model with a general number q of local states. Furthermore, our Theorems 3.5
and 3.7 extend the two correlation inequalities of Schonmann [23], which in turn
extended inequalities of [6]. Some of the arguments given here may be known to
others.

The structure of this paper is as follows. The Potts and random-cluster models
are introduced in Section 2, and the results of the paper (Theorems 3.5–3.7) follow
in Section 3. The proofs are given in Sections 4, 5, and 6.

2. The Potts model with external field

Let G = (V, E) be a finite graph, and let J = (Je : e ∈ E) and h = (hv : v ∈ V ) be
vectors of nonnegative reals and q ∈ {2, 3, . . . }. An edge e ∈ E joins two distinct
vertices x and y, and we write e = 〈x, y〉.

We take the “local state space” for the q-state Potts model to be the set Q :=
{0, 1, . . . , q − 1} of “spins”. The configuration space of the model is the product
space 6 :=QV , and a typical configuration is written σ = (σv : v ∈ V ) ∈6. The
Potts measure on G with parameters J and h has sample space 6 and probability
measure given by

π(σ)=
1
Z

exp
{ ∑

e=〈x,y〉∈E

Jeδe(σ )+
∑
v∈V

hvδv(σ )
}
, σ ∈6,

where δe(σ )= δσx ,σy and δv(σ )= δσv,0 are Kronecker delta functions and Z is the
appropriate normalizing constant. Thus, the Je are edge-coupling constants, and
the hv are external fields relative to the local state 0. The Potts measure is said to
be ferromagnetic since Je ≥ 0 for e ∈ E .

We shall make use of the random-cluster representation, for a recent account
and bibliography of which we refer the reader to [18]. The graph G is augmented
by adding a “ghost” vertex g, which is joined by edges 〈g, v〉 to each vertex v ∈ V ;
the ensuing graph is denoted G+ = (V+, E+). The relevant sample space is the
product space � := {0, 1}E

+

. For ω = (ωe : e ∈ E+) ∈�, an edge e is called open
if ωe = 1 and closed otherwise.

An edge e∈ E is assigned parameter pe=1−e−Je , and an edge of the form 〈g, v〉
is assigned parameter pv = 1− e−hv . The random-cluster probability measure φ
on G has sample space � and is given by

φ(ω)=
1

ZRC

{ ∏
e=〈x,y〉∈E+

pωe
e (1− pe)

1−ωe

}
qk(ω), ω ∈�,

where k(ω) is the number of connected components of the graph with vertex set V+

and edge set η(ω) := {e ∈ E+ : ωe = 1}.
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The relationship between the Potts model and the random-cluster model is ex-
plained in [18, §1.4], where it is shown in particular that ZRC = e−|E |Z .

The measures π and φ may be coupled as follows. Suppose ω is sampled from�

according to φ, and let Cv be the connected component of (V, η(ω)) containing
v ∈ V+; the Cv are called open clusters. Every vertex in Cg is allocated spin 0. To
an open cluster of ω other than Cg, we allocate a uniformly chosen spin from Q
such that every vertex in the cluster receives this spin and the spins of different
clusters are independent. The ensuing spin vector σ = σ(ω) has law π . See [18,
Theorem 1.3] for a proof of this standard fact and for references to the original
work of Fortuin and Kasteleyn.

This paper will make use of the FKG inequality and the comparison inequalities
for the random-cluster model. These are presented in a number of places already
and are not repeated here. The reader is referred instead to [18, Theorem 3.8] for
the FKG inequality and to [18, Theorem 3.21] for the comparison inequalities.

3. The correlation inequalities

We begin with a space of functions. Let Fq be the set of functions f :Q→ C such
that, for all integers m, n ≥ 0,

E( f (X)m) is real and nonnegative, (3.1)

E( f (X)m+n)≥ E( f (X)m)E( f (X)n), (3.2)

where X is a uniformly distributed random variable on Q. The above conditions
may be written out as follows. We have that f ∈ Fq if, for m, n ≥ 0,

Sm :=
∑
x∈Q

f (x)m is real and nonnegative,

q Sm+n ≥ Sm Sn.

For I ∈Q, let F I
q be the subset of Fq containing all f such that

f (I )=max{| f (x)| : x ∈Q}. (3.3)

This condition entails that f (I ) is real and nonnegative.
Let f :Q→ C. For σ ∈6, let

f (σ )R
:=

∏
v∈R

f (σv), R ⊆ V . (3.4)

Thinking of σ as a random vector with law π , we write 〈 f (σ )R
〉 for the mean value

of f (σ )R .
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Theorem 3.5. Let f ∈ F0
q . For R ⊆ V , the mean 〈 f (σ )R

〉 is real-valued and
nondecreasing in the vectors J and h and satisfies 〈 f (σ )R

〉 ≥ 0. For R, S ⊆ V , we
have

〈 f (σ )R f (σ )S
〉 ≥ 〈 f (σ )R

〉〈 f (σ )S
〉.

If there is no external field, in that h ≡ 0, it suffices for the above that f ∈ Fq in
place of f ∈ F0

q .

Here are three classes of functions belonging to F0
q .

Theorem 3.6. Let q ≥ 2. The following functions f :Q→ C belong to F0
q :

(a) f (x)= 1
2(q − 1)− x ,

(b) f (x)= e2π i x/q , a q-th root of unity, and

(c) f :Q→ [0,∞), with f (x)≤ f (0) for x ∈Q.

When combined with Theorem 3.5, case (a) yields the inequalities of Ganikhod-
jaev and Razak [12], but with simpler proofs. When q = 2, the latter reduce to
the GKS inequalities for the Ising model; see [14; 15; 16; 20]. We do not know if
the implications of Theorem 3.5 with case (b) are either known or useful. Perhaps
they are examples of the results of Ginibre [13]. In case (c) with f (x) = δx,0,
Theorem 3.5 yields the first correlation inequality of Schonmann [23].

Our second main result follows next.

Theorem 3.7. Let q ≥ 2 and f0 ∈F0
q , and let f1 :Q→C satisfy (3.1). If f0 and f1

have disjoint support in that f0 f1 ≡ 0, then for R, S ⊆ V ,

〈 f0(σ )
R f1(σ )

S
〉 ≤ 〈 f0(σ )

R
〉〈 f1(σ )

S
〉.

If h ≡ 0, it is enough to assume f0 ∈ Fq in place of f0 ∈ F0
q .

Two correlation inequalities were proved in [23]: a “positive” inequality that is
implied by Theorems 3.5 and 3.6(c) and a “negative” inequality that is obtained as
a special case of Theorem 3.7 on setting f0(x)= δx,0 and f1(x)= δx,1. Recall that
Schonmann’s inequalities were themselves (partial) generalizations of correlation
inequalities of [6].

Amongst the feasible extensions of the above theorems that come to mind, we
mention the classical space-time models used to study the quantum Ising/Potts
models [2; 3; 4; 5; 19].

4. Proof of Theorem 3.5

We use the coupling of the random-cluster and Potts model described in Section 2.
Let ω ∈�, and let Ag, A1, A2, . . . , Ak be the vertex sets of the open clusters of ω,
where Ag is that of the open cluster Cg containing g.
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Let R ⊆ V , and let f ∈ F0
q . By (3.4),

f (σ )R
= f (0)|R∩Ag |

k∏
r=1

f (Xr )
|R∩Ar |,

where Xr is the random spin assigned to Ar . This has conditional expectation
gR :�→ C given by

gR(ω) := E( f (σ )R
| ω)

= f (0)|R∩Ag |

k∏
r=1

E( f (X)|R∩Ar | | ω).

By (3.1) and (3.3), gR(ω) is real and nonnegative, whence so is its mean φ(gR)=

〈 f (σ )R
〉. (It will be convenient to use φ(Y ) to denote the expectation of a random

variable Y :�→ R.)
We show next that gR is a nondecreasing function on the partially ordered

set �. It suffices to consider the case when the configuration ω′ is obtained from
ω by adding an edge between two clusters of ω. In this case, by (3.2) and (3.3),
gR(ω

′)≥ gR(ω). That 〈 f (σ )R
〉=φ(gR) is nondecreasing in J and h follows by the

appropriate comparison inequality for the random-cluster measure φ [18, Theorem
3.21].

Now,

E( f (σ )R f (σ )S
| ω)= f (0)|R∩Ag |+|S∩Ag |

k∏
r=1

E( f (X)|R∩Ar |+|S∩Ar | | ω).

By (3.2),
E( f (σ )R f (σ )S

| ω)≥ gR(ω)gS(ω).

By the FKG property of φ [18, Theorem 3.8],

〈 f (σ )R f (σ )S
〉 = φ(E( f (σ )R f (σ )S

| ω))

≥ 〈 f (σ )R
〉〈 f (σ )S

〉,

as required.
When h ≡ 0, the terms in f (0) do not appear in the above, and it therefore

suffices that f ∈ Fq .

5. Proof of Theorem 3.6

We shall use the elementary fact that, if T is a nonnegative random variable,

E(T m+n)≥ E(T m)E(T n), m, n ≥ 0. (5.1)
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This trivial inequality may be proved in several ways, one of which is the following.
Let T1 and T2 be independent copies of T . Clearly,

(T m
1 − T m

2 )(T
n

1 − T n
2 )≥ 0 (5.2)

since either 0 ≤ T1 ≤ T2 or 0 ≤ T2 ≤ T1. Inequality (5.1) follows by multiplying
out (5.2) and averaging.

(a) Inequality (3.3) with I = 0 is a triviality. Since f (X) is real-valued, with the
same distribution as − f (X), E( f (X)m)= 0 when m is odd and is positive when m
is even. When m+ n is even, (3.2) follows from (5.1) with T = f (X)2, and both
sides of (3.2) are 0 otherwise.

(b) An easy calculation shows that

E( f (X)m)=
{

1 if q divides m,
0 otherwise,

and (3.1) and (3.2) follow.

(c) Inequality (3.2) follows by (5.1) with T = f (X).

6. Proof of Theorem 3.7

We may as well assume that f0 6≡ 0 so that f0(0) > 0 and f1(0)= 0. We use the
notation of Section 4, and let Fi :�→ C be given by

F0(ω)= f0(0)|R∩Ag |

k∏
r=1

E( f0(X)|R∩Ar | | ω), (6.1)

F1(ω)=

k∏
r=1

E( f1(X)|S∩Ar | | ω). (6.2)

By (3.1), F0 and F1 are real-valued and nonnegative. Since f0 ∈ F0
q , F0 is non-

decreasing (as in Section 4).
Since f0 f1 ≡ 0,

E( f0(σ )
R f1(σ )

S
| ω)= 1Z (ω)F0(ω)F1(ω),

where 1Z is the indicator function of the event Z = {S = R ∪ {g}}. Here, as usual,
we write A↔ B if there exists an open path in ω from some vertex of A to some
vertex of B. Let T be the subset of V+ containing all vertices joined to S by
open paths, and write ωT for the configuration ω restricted to T . Using conditional
expectation,

〈 f0(σ )
R f1(σ )

S
〉 = φ(1Z F0 F1)

= φ(1Z F1φ(F0 | T, ωT )), (6.3)
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where we have used the fact that 1Z and F1 are functions of the pair T , ωT only. On
the event Z , F0 is a nondecreasing function of the configuration restricted to V+\T .
Furthermore, given T , the conditional measure on V+ \ T is the corresponding
random-cluster measure. It follows that

φ(F0 | T, ωT )≤ φ(F0) on the event Z

by [18, Theorem 3.21]. By (6.3),

〈 f0(σ )
R f1(σ )

S
〉 ≤ φ(1Z F1φ(F0))

≤ φ(F0)φ(F1)

= 〈 f0(σ )
R
〉〈 f1(σ )

S
〉,

and the theorem is proved.
When h ≡ 0, Ag = {g} in (6.1), and it suffices that f0 ∈ Fq .
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QUANTUM MECHANICS:
SOME BASIC TECHNIQUES FOR SOME BASIC MODELS

I: THE MODELS

VINCENZO GRECCHI

This is a short review of the main results on the oscillators considered basic
models in quantum mechanics. Since the potential is polynomial, it is possible
to extend the stationary states to entire functions on the complex plane where the
semiclassical theory works better. The control on the energy levels is based on
the isolation of the nodes, the zeros stable at the unperturbed limit. A new and
simple model for the process of racemization of chiral molecules is added.

1. Introduction

For me it is a great pleasure to contribute to a deserved homage to Professor Lucio
Russo. I have to offer only this flower from my garden, a review of results on the
spectrum of basic operators in quantum mechanics.

I remember conversations with Lucio about the existence of gambling experts
(κυβευτικοί) in Roman times, as reported by Plotinus (204–270 AD), who regarded
them as professional scientists.1 Does this mean there were probabilist mathe-
maticians in those times? In any case, it seems that only discrete probability was
known, since Plotinus apparently rejected the possibility of anything like what we
call statistical mechanics:

πῶς γὰρ επὶ τοῖς ατάκτοις τέχνη

(what science can operate where there is no order?)2

This memory is appropriate as an introduction, since probability theory was Lucio’s
first interest and it is one of the bases of quantum mechanics.

The reason for this review is the difficulty of reading all the single papers con-
sidered here. The problems considered in such papers are not unrelated and need

Communicated by Francesco dell’Isola.
PACS2010: 03.65.-w.
Keywords: quantum oscillators, PT symmetry, isospectral Hamiltonians, spectral analysis,

analyticity of the eigenvalues.
1Enneads, III, 1, 6, lines 9–10.
2Enneads, III, 1, 3, line 15.
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the same techniques to be solved. In particular, I recall the methods for summing
divergent series, going back to Guido Grandi [1710].

This review is almost entirely restricted to one-dimensional problems with poly-
nomial potentials (oscillators), with a focus on the cubic case.

Among the points of interest in such research is the meaning of perturbation
series in quantum field theory, where the summability test for perturbation series
is relevant.

Also of interest from the viewpoint of rigorous atomic and molecular physics are
the possible models for molecular structures. In some quantum models presented
here there are resonances and associated metastable states. The notion of resonance
in quantum mechanics is similar to the same notion in acoustics as discussed by
Pietro Mengoli [1670] (see also [Martinez and Nédélec 2012]).

I recall that Lucio has studied Mengoli’s contribution to the beginnings of mod-
ern mathematical analysis.

All the molecules with a structure [Woolley 1982] and the atoms in an external
uniform electric field (the Stark effect) are in a metastable state [Graffi and Grecchi
1978].

In the case of an analytic potential, a resonance is a complex eigenvalue of a
non-self-adjoint operator related in a definite way to the original Hamiltonian of
the model [Aguilar and Combes 1971].

A particular kind of non-self-adjoint operator is known as PT or PT-symmetric.
An operator H is PT if (PT )H(PT )−1

= H , where P and T , the parity and time-
reversal operators, are defined in (2) below. New interest in such problems started
from a collaboration with the late professor Vladimir Buslaev of Saint Petersburg.
In [Buslaev and Grecchi 1993] we solved a conjecture of Zinn-Justin about the
coincidence of two perturbation series: one in a double-well problem and the other
in an unstable single-well problem (where there are expected resonances). We
proved the isospectrality of the Hamiltonian (coincidence of the eigenvalues) of
the first problem with a PT extension of the formal Hamiltonian of the other one.

Actually also the operator for the resonances of the linear potential (free Stark
effect), previously considered by Herbst and Simon [1978], and an analytic con-
tinuation of the operator for the resonances in the sense of Gamow [Caliceti and
Maioli 1983] of the cubic potential, previously considered by Caliceti, Graffi and
Maioli [Caliceti et al. 1980], are PT operators.

I have considered analytic continuations of the resonances of the cubic oscillator
in collaboration with André Martinez and Marco Maioli [Grecchi and Martinez
2013; Grecchi et al. 2009; 2010] and with Riccardo Giachetti [Giachetti and Grec-
chi 2011]. In this last study, we proved the existence of level crossings in a double-
well problem. During the crossing process, the corresponding states pass from the
bilocalization in both the wells to the localization in a single well (not the same
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for the two states). This is the proof of the existence of singularities (similar to
the Bender–Wu singularities of the levels of the quartic oscillator [Bender and Wu
1969; Harrell and Simon 1980; Benassi and Grecchi 1980; Alvarez 1995]) of the
resonances as analytic functions of the parameter.

Section 2 recaps the essentials of quantum mechanics to fix some notions. In
Section 3 we discuss solvable oscillators as examples. In Section 4 is a short
exposition on the quartic oscillator. Section 5 briefly cover PT oscillators. Section 6
is devoted to the cubic oscillator with a single well. In Section 7 is the cubic PT
oscillator with a double well. In Section 8 a simple model for the racemization
effect is discussed.

2. Essentials of quantum mechanics

Sir William Rowan Hamilton [1834; 1835] laid the basis for the understanding tht
classical mechanics, in the Hamilton–Jacobi formalism, is a short-wavelength limit
of a possible theory of matter waves. Actually, he obtained the Hamilton–Jacobi
method in mechanics by analogy with the eikonal approximation of the equations
of electromagnetic waves.

Schrödinger (1926) formalized this theory, quantum mechanics, by his famous
equation.

In d-dimensional quantum mechanics, the Hamiltonian of a particle of mass
m = 1

2 is a linear operator in H= L2(Rd) of the kind

H = p2
+ V, where p2

=−∇
2 (1)

and where the Planck constant h̄ = h/2π is unitary and V is the formal multipli-
cation operator by the real function V (x) defined by (Vψ)(x) = V (x)ψ(x) for
a vector ψ ∈ H represented by a function ψ(x). In the sequel the multiplication
operator V is identified with its corresponding function V (x). We call unstable a
model with a potential not bounded below at infinity. The basic operators of interest
are self-adjoint (s.a.) (observables) restricted to their domains [Kato 1966]. The
possible eigenvalues of a self-adjoint operator are necessarily real. We call D(A)
the domain of the operator A, and the domain of the Hamiltonian H , defined as a
sum of two operators by (1), satisfies the condition

D(V )∩ D(p2)⊂ D(H)⊂H.

The spectral theorem [Kato 1966; Reed and Simon 1975; 1978] allows one to
associate the self-adjoint Hamiltonian with the real energy spectrum. A state is a
class of equivalence of vectors ψ ∈H of unitary norm, with ψ ∼ λψ , |λ| = 1. At
any t ∈ R the vector becomes ψ(t) = Utψ , where Ut := exp(−i t H) is a unitary
operator conserving the norm. We define a (energy) level to be an eigenvalue E



338 VINCENZO GRECCHI

and a stationary state, the class of equivalence of eigenvectors ψ of H , where the
stationarity is characterized by the behavior ψ(t)= exp(−i Et)ψ ∼ ψ .

The parity P and the time-reversal T operators are defined respectively by

Pψ(x)= ψ(−x) and Tψ(x)= ψ(x) for all ψ ∈H. (2)

Since the operator H is real, we have T Ut T−1
=U−t , justifying the name of time

reversal for the operator T .
Given a unitary operator U , we get the change of representation of the states

ψ → Uψ for all ψ ∈ H. In this representation the Hamiltonian becomes the
unitarily equivalent Hamiltonian HU =U HU−1, with the same spectrum. In the
case of the Fourier transform, F=U , we pass from the position to the momentum
representation. For the continuation of the resonances in the complex plane of the
parameter, we use generalized changes of representation (see Section 1d of the
sequel).

In the case of the hydrogen atom we are in 3D (d = 3):

H0 = p2
+ V (x), x ∈ R3, p2

=−∇
2, V (x)=−K/|x |,

where K > 0 is fixed and

D(H0)= D(p2)⊂H= L2(R3).

There are infinite eigenvalues of H0, (energy) levels En < 0, where the eigen-
functions are the stationary states ψn , since ψn(t) = exp(−i Ent)ψn ∼ ψn . The
absolute continuous spectrum R+ is related to the range of the mean energies
((ψ, Hψ)= E ≥ 0) of the unstable (scattering) states ψ ∈ D(H).

Now we consider the hydrogen Stark effect, with a perturbed hydrogen Hamil-
tonian

Hε = H0+ εx1, ε > 0.

In this case there are resonances, complex numbers En(ε), such that En(ε)→ En

as ε→ 0. As introduced above, the corresponding states ψn(ε) /∈H, if suitably cut
at infinity, become metastable states. This fact was proven by the complex scaling
of the variables [Aguilar and Combes 1971] x→ λx and p→ (1/λ)p, λ /∈ R and
= ln(λ) > 0, getting the non-s.a. operators

Hε(λ)= λ−2(p2
− λ(K/|x |)+ ελ3x1) and D(Hε)= D(p2)∩ D(x1),

with complex eigenvalues En(ε), invariant for 0< = ln(λ) < π/6, representing the
resonances of the Stark effect [Graffi and Grecchi 1978; Herbst and Simon 1978].
Notice that, by the use of the parabolic coordinates, the Stark effect in hydrogen
can be decomposed into two anharmonic oscillators, one stable and the other one
unstable. The perturbation series in ε of the resonances are divergent but summable
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by the distributional Borel method [Caliceti et al. 1986] to the real part of the
resonances. Also the mean life of the metastable states is given by the same method.

3. Some solvable models

As basic solvable models, we consider the linear and the quadratic potentials.
We start with the Hamiltonian with linear potential

H1(λ)= λ
−2(p2

+ λ3x), λ 6= 0, = ln(λ)= θ.

In the case of λ= 1, we have the self-adjoint Hamiltonian H1(1) with continuous
spectrum σc = R [Kato 1966]. The resonances are given by the eigenvalues of
the operators H1(λ) for 0< θ < π/3 and domain D(H1(λ))= D(p2)∩ D(x). In
particular, for θ = π/6, we have H1(exp(iπ/6))= exp(−iπ/3)O1 where

O1 = p2
+ i x

is a PT operator with discrete spectrum [Herbst and Simon 1978]. Actually, be-
cause of the invariance of the spectrum to any translation x → x + ε, ε ∈ R, an
eigenvalue En should satisfy the impossible condition that there exists m =m(n, ε)
such that En = Em + iε. Thus, there are no resonances in this problem H1(1), as
can be understood by the absence of wells or traps of the potential.

The other solvable Hamiltonians are

H±2 (λ)= λ
−2(p2

± λ4x2), λ 6= 0. (3)

In particular,

H+2 (1) := O2 = p2
+ x2

is the harmonic oscillator with simple levels En = 2n+ 1, n ∈ N, and states ψn(x).
For E = En , the interval [−

√
E,
√

E] is the internal Stokes line [Giller 2011]
(oscillatory range) where all the zeros (nodes) of ψn(x) lie.

In the case of H−2 (1)= p2
− x2, we have the repulsive harmonic oscillator with

continuous spectrum σc = R. The eigenvalues En(λ) of the operator

H−2 (λ)= λ
−2(p2

− λ4x2), λ 6= 0,

are independent of λ for 0<= ln(λ) < π/2. Moreover, the eigenfunctions ψn(λ, z),
extended as entire functions in z, are simple dilations [Aguilar and Combes 1971]
of ψn(1, z): ψn(λ, z) = λ1/2ψn(1, λz). In particular, the spectrum of H−2 (

√
i) =

−i(p2
+ x2) is the set of the top resonances of H−2 (1):

σd = {−i(2n+ 1)}n∈N.
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Associated with these resonances are metastable states trapped about the top of the
potential at x = 0. Remark that the top of the potential is an unstable equilibrium
point in classical mechanics.

Translations in the complex plane x→ x +α allow one to extend the family of
operators. In particular, for λ= 1, α = i ,

H+2 (1, i)= p2
+ (x + i)2 = p2

+ x2
+ 2i x − 1∼ H+2 (1) (4)

is a nontrivial PT operator with real levels En = 2n+ 1.
Now we consider some nonsolvable oscillators.

4. The quartic oscillator

The quartic oscillator is the first of the nonsolvable oscillators to be studied rigor-
ously. It is defined by the family of Hamiltonians

H1(β)= p2
+ V (x), V (x)= x2

+βx4, x ∈ R, p2
=−

d2

dx2 ,

where β is in the cut plane

Cc = {z ∈ C : z 6= 0, z = |z| exp(iθ), |θ |< π},

with domain D(H1)= D(p2)∩ D(x4).
For β positive, H1 is self-adjoint and the potential has a single well on the real

axis. Actually, on the real axis the force −V ′(x)=−2x(1+ 4βx2) vanishes only
at the origin.

For the corresponding levels En(β), the Stieltjes or Padé summability of the
perturbation series was proven in [Loeffel et al. 1969]. The main technique used
was the Loeffel–Martin method of control of the zeros of the states in the complex
plane. Later, the Borel summability of the perturbation series was proven in [Graffi
et al. 1970]. Analytic continuations of the levels En(β) beyond Cc suggested the
existence of crossings (the Bender–Wu singularities [1969]).

We consider also the two-dimensional quartic oscillator by the reduction of the
Hamiltonian to the radial operators:

H2(β, j)= p2
r +

j2
− 1

4r2 + r2
+βr4, r ∈ R+, p2

r =−
d2

dr2 , (5)

for β ∈ Cc and j ≥ 0. The level En(β, j), at the limit of the rim of the cut
defined by arg(β)= π−, |β| = b > 0, is the resonance in the sense of the bound-
ary conditions of Gamow [Caliceti and Maioli 1983] of the formal Hamiltonian
H2(β, j) at β = −b. Since the hydrogen Stark effect can be decomposed by the
parabolic coordinates in two operators of this kind, the existence of the resonances
of the hydrogen Stark effect was also proven [Graffi and Grecchi 1978]. Moreover,
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the Borel distributional summability of the perturbation series of the same Stark
resonances was proven in [Caliceti et al. 1993].

Of great interest is the double-well quartic oscillator defined by the families of
self-adjoint Hamiltonians

Q(β, j)= p2
+ x2(βx − 1)2− j (βx − 1

2), x ∈ R, β ∈ R+, (6)

for a fixed j ∈ R. In particular, for j = 0 we have the case of a symmetric double
well. The states are of even or odd parity, and the levels are classified in doublets
of opposite parity with a splitting of exponential order. The perturbation series are
the same for both levels of a doublet so that the distributional sum of the series
cannot give both the levels and in fact neither. In [Caliceti et al. 1988; 1996] a
sequence of approximants to the levels up to the first exponential order was given
by the distributional Borel sum [Caliceti et al. 1986] of the perturbation series.

5. PT operators: a short story

For the study of the resonances in the case of analytic potential, the introduction of
non-self-adjoint Hamiltonians [Aguilar and Combes 1971] is useful. Sometimes
the resonance Hamiltonian can be put in PT -symmetric form [Herbst and Simon
1978]. A PT operator is a real operator in the momentum representation, and its
spectrum can be real.

I recall that some numerical investigations by Zinn-Justin suggested the coinci-
dence of the perturbation series of the levels of two different problems: the unstable,
rotationally symmetric, anharmonic oscillator in 2D and the double-well oscillator.
Since usually a coincidence is not causal, the people of the scientific world looked
for a stronger fact: the isospectrality of two Hamiltonian families. Many attempts
were made without a full success. Eventually Buslaev and Grecchi [1993] proved
the isospectrality of the self-adjoint double-well Hamiltonian Q(β, j) of (6) and
the radial reduction of the unstable anharmonic operator defined by a complex
translation on the full axis as a PT operator:

Hε(β, j)=
1
2

(
p2

r +
j2
− 1

4r2
ε

+ r2
ε

)
−β2r4

ε , r ∈ R,

where pr = −i∂r and rε = r − iε, for an ε > 0. By some transformations on the
variable and on the wave function, and also by the Fourier transform, it was proven
that the two operators are isospectral, or equivalent in our terminology (the notion
of equivalence in this case is not standard but was shared by others).

Scaling the variable, we also proved the isospectrality of the PT Hamiltonian

O4(ε, α, j)=
1
2

(
p2

r +
j2
− 1

4r2
ε

+αr2
ε

)
− r4

ε , r ∈ R, rε = r − iε, (7)
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for an ε > 0, and the double-well one,

Q(α, j)= p2
+ (x2

−
1
4α

2)2− j x

self-adjoint for α and j real. As a consequence, we have proven the realness of the
spectrum of families of PT Hamiltonians.

Our proofs are rigorous and obviously independent of the Zinn-Justin conjecture.
For people interested in the paper [Benassi and Grecchi 1980], let me say that
it is synthetic and very precise in the operatorial implementation of the analytic
transforms.

Later, Bender and Boettcher [1998] discussed and Shin [2002] proved the real-
ness of the spectrum of a class ON of PT -symmetric operators, containing our (7)
only in the case of j = 1.

6. The cubic single-well Hamiltonian

The cubic resonance problem is one of the simplest, not explicitly solvable ones
in quantum mechanics [Caliceti et al. 1980; Grecchi and Martinez 2013; Grecchi
et al. 2009; 2010; Caliceti 2000]. We consider the single (real) well Hamiltonian

H(β)= p2
+ x2
+ i
√
βx3, β ∈ Cc. (8)

We define nodes to be the n zeros of state ψn(β) stable at the unperturbed limit
β→ 0.

Remark. The stability of the nodes at β = 0 is equivalent to the stability of the
levels because of the Cauchy theorem.

Also our results on the analyticity of the levels for large |β| depend on the
stability and isolation of the nodes.

(a) The first thing to prove is the absence of the essential spectrum. Thus, we
prove the compactness of the resolvent.

Let us consider the Hamiltonian H(β), for any fixed β ∈Cc. For any fixed E ∈C,
the semiclassical behavior of the fundamental states [Sibuya 1975] implies that the
Green’s function G(x, y) behaves as |G(x, y)| ∼ |xy|−3/4 for both |x |, |y| →∞
and is exponentially small if only one of the coordinates (x, y) diverges, so that is
in L2(R2). The corresponding integral operator, the inverse of H(β), is Hilbert–
Schmidt.

(b) The second thing to prove is the isolation of the nodes or the confinement
and the stability of the nodes for the parameter on the cut plane.

(b1) The first part of the proof regards the existence of a no-vanishing zone [De-
labaere and Trinh 2000].
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The proof is based on the method of Loeffel and Martin [Loeffel et al. 1969] for
the confinement of the zeros (9).

We consider the stripe of the complex plane of the variable β

A(β)=
{

z = x + iy ∈ C : x, y ∈ R, 0≤ y ≤
2

3
√

b
cos

θ

2

}
,

where β = b exp(iθ).

Proposition. For all β ∈�, the eigenfunction ψβ does not admit any zeros on the
stripe A(β).

Let Vβ(z)= z2
+ i
√
βz3, z = x + iy [Loeffel et al. 1969]. Then

=ψ ′β(x + iy)ψβ(x + iy)=
∫ x

−∞

=(Vβ(r + iy)− E(β))|ψβ(r + iy)|2 dr

=−

∫
∞

x
=(Vβ(r + iy)− E(β))|ψβ(r + iy)|2 dr. (9)

It is enough to prove that the integrand changes sign at most once in R for any
z ∈ A(β). In this case at least one, and thus both, of the integrals in (9) are nonzero.
Since |ψβ(z)|2 ≥ 0 and positive almost everywhere, we look for the monotonicity
of the factor of the integrand

=(Vβ(r + iy)− E(β))= 2r y+ r3
√

bc− 3r2 y
√

b− 3r y2c−=(E(β)),

where c = cos(θ/2) and s = sin(θ/2), or the nonvanishing of the derivative

d
dr
=(Vβ(r + iy))= 3

√
bcr2
− 6
√

bysr + 2y− 3y2
√

bc

= 3
√

bc
(

r2
− 2yr tan+

2y− 3y2
√

bc

3
√

bc

)
,

where c = cos(θ/2), s = sin(θ/2) and tan= tan(θ/2). The reduced discriminant is

1= 9yb
(

y−
2

3
√

b
cos

θ

2

)
.

(b2) The second part of the proof regards the absence of zeros far from the origin
in a large sector.

The eigenfunctions are L2 on the real axis so that they are vanishing at infinity
in two Stokes sectors

S±(β)=
{

x ∈ C :

∣∣∣∣arg(i x)+
θ

10
∓

2π
5

∣∣∣∣< π

5

}
.
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This means that [Sibuya 1975] they are free of zeros (for large |x |) on two extended
sectors

S±(β)=
{

x ∈ C :

∣∣∣∣arg(i x)+
θ

10
∓

2π
5

∣∣∣∣< 3π
5

}
.

Thus, the sequence of zeros N j of ψn(x, β) have the asymptotic phase π/2+ θ/10,
as |N j | →∞.

(c) The third thing to prove is the absence of nonperturbative levels.
It is worth recalling this proof since it looks difficult but needs only a careful

analysis.
Let E(β) be an eigenvalue defined as a multiple-valued analytic function on Cc,

with normalized eigenfunction ψβ , and let En(β) be a perturbative eigenvalue for
b small.

Proposition. Let Ẽ(β) be a determination of E(β); then on a disk |β|< b0, β ∈Cc,
Ẽ(β)= En(β) for a b0 > 0 and n ∈ N.

Remark. A consequence of this proposition is that the branch points of Ẽ(β) in Cc

do not accumulate at 0.

Proof. Let γ be a simple path in Cc ∪ {0} such that Ẽ(β) is analytic in a neighbor-
hood of γ in Cc, bypassing the possible sequence of positive branch points on γ ,
with βk ∈ γ and βk→ 0 as k→∞.

Let us distinguish two cases.

Case 1. The sequence (|Ẽ(βk)|)k is bounded. In this case, we have a subsequence
converging to a limit Ẽ(βk)→ En , where En = En(0) is an eigenvalue of the
unperturbed Hamiltonian because of the stability. Moreover, for the stability and
the perturbation theory, we have Ẽ(β)= En(β) for β ∈ γ , |β|< b0, for a b0 > 0.

Case 2. |Ẽ(βk)| →∞ as k→∞.
Let us split B := (βk)k into

B± = {β ∈ B : ±|Ẽ(β)| ≤ ±β−1
}.

(2a) When β ∈ B− we make the change of variable x = λy, with λ :=
√
|Ẽ(β)|,

and we set

φ(y)=
√
λψβ(λy), h :=

1
λ2 , b′ = λ2

√
β ∈ (0, 1] and u := Ẽ(β)/|Ẽ(β)|

so that we have

(Hh(b′)− u)φ(y)=−h2φ′′(y)+ (y2
+ i
√

b′y3
− u)φ(y)= 0, (10)

and we can use the complex semiclassical method for α and h̄ small [Voros 1994].
Since b′ > 0, the numerical range of Hh(b′) and u are in the half-plane <z ≥ 1.
Thus, arg(u) < π/2 and two turning points y±(b′, u) of (10) are located in the
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half-plane =y ≤ 1/
√

2, while the third one is in =y ≥ 1. In this case there are no
zeros of φ for 0≤ =y ≤ 3/2α and thus for 0≤ =y ≤ 1. The number of zeros in a
disk of fixed radius |y+(b′, u)− y| ≤ δ diverges as O(1/h) in contradiction with
the finite constant number of the nodes.

(2b) When β ∈ B+, with λ := (|Ẽ(β)|/
√
β)1/3, we make the change of variable

x = λy, and we define the new function

φ(y)=
√
λψβ(λy)

to be the solution of the equation

−h2φ′′(y)+ (αy2
+ iy3

− u)φ(y)= 0,

with u=E(β)/|E(β)|, h=1/λ
√
|E(β)|→0 as β→0 and 0<α= (β|Ẽ(β)|)−1/3

≤

1 as β→ 0.
In this case, where β ∈ B+, we prove the same contradiction as in the case B−.

In particular, if α→ 0 both =y± become negative as in the β→∞ case.

(d) Now we prove that the levels are Stieltjes functions.
The proof that

f (β) := −
En(β)− En(0)

β
, n ∈ N, (11)

is a Stieltjes function is based on its analyticity and boundedness on Cc and the
definite sign of the imaginary part of =En(−b− i0)≤ 0. The sign of =En(−b− i0)
comes from the Gamow condition of the corresponding state φ(x) at −∞. The
state φ(x) and φ′(x) have no zeros on the real axis. The level is a generalized
resonance, or a limit of ordinary resonances, and its imaginary part, with changed
sign, is related to the inverse mean life of the associated metastable states. The
resonance eigenfunction satisfies the Gamow condition for −x > 0 large, and by
the semiclassical behavior [Sibuya 1975], we have

h̄
φ′(x)

φ(x)
√

E − V (x)
→−i,

√
E − V (x)|φ(x)|2→ |c|2 > 0,

−=E =−
h̄2∫

∞

x |φ(y)|
2 dy
=

(
φ′(x)
φ(x)
|φ(x)|2

)
→ h̄|c|2. �

7. The cubic PT -symmetric double well

The single-well cubic oscillator discussed above can be analytically continued by
generalized changes of representation [Aguilar and Combes 1971; Graffi and Grec-
chi 1978], obtaining the family of PT Hamiltonians

Hh̄ = h̄2 p2
+ V (x), V (x)= i(x3

− x), h̄ > 0. (12)
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Since V ′(x)= 0 at the two points x± =±1/
√

3 ∈R (wells), we have a double-well
PT Hamiltonian, whose states possibly localize about one of the wells (localization)
or about both (delocalization or bilocalization). The transition from one to the other
kind of state is singular and happens at the level crossing.

Also in the case of the unstable double-well Stark effect, varying the field param-
eter, there is a double level crossing and the states are localized for large negative
and large positive parameter, but not for small parameter [Grecchi et al. 1996].

The existence of the level crossings is the main issue of the research on this
model. The levels at the crossings are near a critical energy, usually the top of
the internal barrier. In our PT case the internal barrier doesn’t exist and the critical
energy is a singularity of the Stokes graph [Giller 2011; Delabaere and Trinh 2000].

The localization is a typical semiclassical effect, since the classical particles, at
low energy, are localized in one of the wells.

Actually, in usual quantum mechanics with a family of self-adjoint Hamiltoni-
ans for all real parameters, the delocalization of the states is stable and the level
crossings are forbidden [Kato 1966; Reed and Simon 1975; 1978]. Also in the case
of single-well PT Hamiltonians [Shin 2002; Caliceti 2000; Grecchi and Martinez
2013; Grecchi et al. 2009; 2010] the states are always localized about the well and
the crossings are absent.

The semiclassical theory provides good qualitative and quantitative results on
the levels En(h̄) for lower parameter h̄ up to the crossing value [Bender and Wu
1969; Benassi and Grecchi 1980; Harrell and Simon 1980; Alvarez 1995]. The
complex semiclassical method [Voros 1994; Delabaere et al. 1997] has extended
the results to larger, but not very large, values of the parameter [Delabaere and Trinh
2000; Delabaere and Pham 1997]. Recently, rigorous results were also obtained
in [Eremenko and Gabrielov 2011] by different techniques. Such approaches are
useful and complementary to our rigorous treatment based on the nodal analysis
[Giachetti and Grecchi 2015; 2016a; 2016b]. The nodal analysis is found also in
other papers [Grecchi and Martinez 2013; Grecchi et al. 2009; 2010; Eremenko
et al. 2008a; 2008b; Shanley 1988a; 1988b; Eremenko and Gabrielov 2009].

As proven above, all the states ψ̃n(β), with corresponding levels Ẽn(β), are
perturbative and their subscripts n are the numbers of their zeros stable at β = 0
(nodes). The result is relevant to our present context, as we may observe that the
Hamiltonians (12) and (8) are related by a generalized change of representation
(with a definite law of transformation of the levels). Indeed, making the unitary
translations x = x±+ y, we obtain

H±h̄ = h̄2 p2
+ i(y3

±
√

3y2)∓ i E0, E0 =
2

3
√

3
. (13)



QUANTUM MECHANICS: SOME BASIC TECHNIQUES FOR SOME BASIC MODELS, I 347

In order to connect H±h̄ with H(β) in the sectors π <∓ arg(β)< 3π/2, respectively,
we consider the analytic dilations [Aguilar and Combes 1971]

y = λ±(h̄)z, λ±(h̄)= 3−1/8√h̄ exp(∓iπ/8), (14)

conserving the spectrum. Letting c± = 31/4√
±i we find from (8)

H(β±(h̄))∼ (1/h̄c±)H±h̄ ±i E0 and En(β
±(h̄))= (1/h̄c±)E±n (h̄)±i E0, (15)

where
β±(h̄)= exp(∓i5π/4)3−5/4h̄. (16)

Notice that

E±n (h̄)= h̄6/5 Ên(α
∓), n ∈ N, and α± = exp(±iπ)h̄−4/5, h̄ > 0. (17)

We see that levels E±n (h̄) are complex conjugates and are different for small h̄ > 0,
since their semiclassical behaviors are

E±n (h̄)=∓i E0+
√
±i 4
√

3(2n+ 1)h̄+ O(h̄2) ∈ C∓ = {z ∈ C : ∓=z > 0}. (18)

The zeros of ψ±n (h̄, z) for large |z| are contained respectively in

C± = {z ∈ C : ±<z > 0}. (19)

The large-h̄ behavior of the levels Em(h̄) is studied by using a different repre-
sentation with the Hamiltonians

O3(α)= p2
+W (α, x), W (α, x)= i(x3

+αx), α ∈ C. (20)

The eigenvalue Êm(α) of O3(α) is holomorphic in a neighborhood of the origin.
Thus, for large positive h̄ the levels Em(h̄) are defined by

h̄−6/5 Em(h̄)= Êm(α), α =−h̄−4/5
≤ 0, (21)

and they are connected with the eigenvalues of H(β) by the relation

Êm(α(β))= β
−1/5 Ẽm(β)+

2β−1/5

27β
, α(β)=

1
3β4/5 ≥ 0, (22)

at α = 0. The level functions Êm(α) are real-analytic for α ∈ R, |α| small. Thus,
all such levels Em(h̄) are given by analytic continuations of the perturbative levels
Ẽm(β) through (21) and (22), and are extensible as many-valued functions (taking
different names), to the sector

C0
= {z ∈ C : z 6= 0, |arg(z)|< π/4}

of the h̄ complex plane. The corresponding states ψm(h̄) are delocalized (or bilo-
calized about both wells).
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The crossing selection rule is given in simple terms: the two positive levels
E2n+(1/2)±(1/2)(h̄)with delocalized statesψ2n+(1/2)±(1/2)(h̄), h̄> h̄n , cross at h̄n>0
and become the two complex levels E±n (h̄) with localized states ψ±n (h̄) for h̄ < h̄n .
This selection rule completely describes the full crossing process.

The two levels E±n (h̄) of (15) and (17) are complex-conjugated, and the two
states ψ±n (h̄) are PT -conjugated and concentrated about the wells x±, respectively.

This process is possible because of the instability of the delocalization of both
the states ψ2n+(1/2)±(1/2)(h̄) for decreasing h̄ > 0.

Conclusion. The nodes of the states ψ2n+(1±1)/2(h̄) for large h̄ > 0, with positive
levels E2n+(1±1)/2(h̄), are in the half-plane C−. Only the state ψ2n+1(h̄) has an
unstable imaginary node. The number of nonimaginary nodes of both the states
ψ2n+(1±1)/2(h̄) are 2n, n of them in C±.

The nodes of the states ψ±n (h̄) for hb < h̄n are in C±, respectively.

8. A simple model for the racemization

Many years ago Friedrich Hund proposed a model [Dennison and Uhlenbeck 1932]
for the ammonia molecule NH3. Supposing the hydrogen atoms lie in a plane, he
considered the motion of the nitrogen atom along an orthogonal axis. The forces
acting on the N atom should correspond to a double-well potential because of the
symmetry and the typical interatomic forces. In this quantum model the N atom
state is delocalized or localized about both the wells. Actually, we know that the
molecule in a dense gas has a structure and the N atom is localized. It is possible
to represent this effect by a nonlinear model [Grecchi and Martinez 1995].

A molecule with a structure is a metastable state of its system [Woolley 1982].
Here we consider a linear model with a PT Hamiltonian in order to define the
resonant state related to the metastable one. The delocalized state of the N atom
for low density of the gas can be represented by our PT states ψ2n+(1±1)/2(h̄)
of (12) for large h̄ > 0. The splitting 1E = E2n+1(h̄)− E2n(h̄) gives the pulsation
of the inversion line ω=1E/h̄ and the beating effect. The dynamics of the packet

ψ = C(ψ2n+1(h̄)+ψ2n(h̄)),

is
ψ(t)= C(t) exp(−i Et/h̄)(ψ2n+1(h̄)+ exp(−iωt)ψ2n(h̄)),

where E = E2n+1(h̄), showing the beating effect with the pulsation of the so-called
inversion line.

For large density of the gas, we expect a localization of the nitrogen atom in
one side of the plane of the hydrogen atoms, so that the structure of the molecule
is pyramidal. If two of the hydrogen atoms are substituted by different isotopes
NH3→ NHDT, the pyramidal structure of the molecule gets a definite chirality.
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Actually, the model is not complete since there exists the racemization effect: a
slow change of chirality.

In our model we can represent the state by one of the eigenfunctions ψ(0) =
ψ±n (h̄), h̄ < h̄n , localized about one of the wells x±, respectively. This state is
stationary:

ψ(t)= C(t) exp(−i Et/h̄)ψ(0), E = E±n (h̄),

where the coefficient C(t) > 0 is given by the unitary normalization ‖ψ(t)‖ = 1.
But it is also possible to represent the racemization.
The dynamics of a state is given by ψ(t)=C(t) exp(−i Hh̄ t)ψ(0), where C(t)>

0 is given by the unitary normalization ‖ψ(t)‖ = 1. Let us consider the PT state
as a wave packet at t = 0,

ψ(0)= C(0)(ψ−n (h̄)+ψ
+

n (h̄)),

with unitary norm, for h̄> 0 small. This packet is PT -symmetric and is delocalized,
or better, it is bilocalized about both the wells. The dynamics of the packet is

ψ(t)= C(t)(exp(−i Et/h̄)ψ−n (h̄)+ exp(−i Et/h̄)ψ+n (h̄)),

where E= E+n (h̄). Since =E<0, we have |ψ(t)|→|ψ∓n (h̄)| as t→±∞. Thus, we
have a process of localization of the packet about the well x∓ in the limit t→±∞,
respectively. The full process for t going from −∞ to ∞ is a slow change of
localization of the N atom from a well to the other one. This corresponds to a
change of chirality of the molecule or a racemization [Streitwieser and Heathcock
1985, p. 122–124].

In this case it is evident that the P and T symmetry of the process breaks, con-
serving the PT symmetry. If h̄n − h̄ is small enough, the time of the racemization
process is much longer than the period of the beating effect.

I don’t attempt to justify the model from a physical point of view. As a physical
comment, I would say that, in general, time symmetry breaking is a consequence of
space symmetry breaking. A rigid body is not a system in a stationary state since
it breaks the space symmetry of the potential [Woolley 1982]. Thus, it breaks
translational time symmetry.
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This paper is a continuation of the previous one: “Quantum mechanics: some
basic techniques for some basic models, I: The models”. The main subject is the
perturbation theory in quantum mechanics giving diverging perturbation series
for the energy levels of the oscillators. Thus, a short historical introduction on
the methods of the sum of diverging power series is given.

1. Introduction and some techniques

This is the second part of an article in honor of Professor Lucio Russo. In Section 2
there is a short history of the regular methods of the sum of divergent series. It
starts with the formal series S̃(a)=

∑
n an , where a = a0, a1, . . . is considered a

vector of components an = (−1)n , with a possible sum S(a)= 1
2 as suggested by

Guido Grandi. The best proof of the value of this sum, if existent, is based on the
assumption that S(a) is a linear functional. The same linearity was used by Pietro
Mengoli for the sum of some convergent series.

1a. Quadratic estimates. A family of analytic operators of type A should have
constant domain [Kato 1966; Reed and Simon 1975; 1978]. For the control on the
domain, the quadratic estimates can be used. We consider the simple closed PT
operator H :=O3(0)= p2

+i x3, and we want to prove that D(H)=D(p2)∩ D(x3),
knowing that D(p2)∩ D(x3)⊂ D(H). We consider the quadratic norm as a qua-
dratic form

‖Hψ‖2 = 〈ψ, H∗Hψ〉 for ψ ∈ D(p2)∩ D(x3),

where

H∗H = p4
+ x6
+ 3[x2, p]+ = p4

+ x6
+ 3[(p+ x2)2− p2

− x4
],

Communicated by Francesco dell’Isola.
PACS2010: 03.65.-w.
Keywords: confinement of the nodes and exact quantization condition, Stokes lines, Stokes sectors,
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and we have the inequality

‖Hψ‖2 ≥ ‖p2ψ‖2− 3‖pψ‖2+‖x3ψ‖2− 3‖x2ψ‖2

> (1− ε)(‖p2ψ‖2+‖x3ψ‖2)−
C
ε
‖ψ‖2, ε > 0, (1−ε)> 0, C > 0,

so that D(H) cannot be extended and D(H)= D(p2)∩ D(x3).

1b. The method of Loeffel and Martin for the confinement of the zeros. We ex-
plain the Loeffel–Martin method [Loeffel et al. 1969] with a useful example. We
consider a positive level E = Êm(0) with state ψ(z) = ψ̂m(z), of the operator
O3(0)= K (0) [Giachetti and Grecchi 2016a] transformed by the analytic transla-
tion x→ x + iy:

O3(y, 0)= p2
+ i(x + iy)3 = p2

+ i(x2
− 3y2)x + y3

− 3yx2
= p2

+ Vy(x).

Then

−=[ψ(x + iy)∂xψ(x + iy)] =
∫
∞

x
=(Vy(s)− E)|ψ(s+ iy)|2 ds

=

∫
∞

x
(s2
−3y2)s|ψ(s+ iy)|2 ds =−

∫ x

−∞

(s2
−3y2)s|ψ(s+ iy)|2 ds 6= 0 (1-1)

for |x | ≥
√

3|y|, y ∈ R. In this case we have a rigorous confinement of the nodes
in the region

Cσ = {z = x + iy : y < 0, |x |<−
√

3y} ⊂ C− = {z ∈ C : =z < 0}.

Now we extend the Loeffel–Martin method to the case =E 6= 0, x = 0, obtaining
the equation

=(h̄2φ(y)∂yφ(y))=−=E
∫
∞

y
|φ(s)|2 ds for all y ∈ R, (1-2)

where φ(y)= ψ(iy), if the integral in (1-2) exists and is bounded. Thus, the state
of a nonreal level is free of imaginary zeros.

1c. The exact quantization condition [Giachetti and Grecchi 2016b]. We con-
sider the semiclassical Hamiltonian

Hh̄ = h̄2 p2
+ V (x), V (x)= i(x3

− x), p2
=−

d2

dx2 , h̄ > 0. (1-3)

Let us fix h̄ > 0 small, the level E = E+n (h̄) ∈ C− (the case E−n (h̄) is perfectly
analogous) and the state ψE(z)=ψ+n (h̄, z) with n nodes in C+ = {z ∈ C : <z > 0}.
We have the exact quantization condition

J (E, h̄) :=
h̄

2iπ

∮
γ

ψ ′E(z)
ψE(z)

dz+
h̄
2
= h̄(n+ 1

2), (1-4)
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where γ = ∂�⊂ C+ and � is a connected domain large enough to contain all the
nodes. The fixed number n and the isolation of the nodes allow us to bound the
energy value.

In particular, for small h̄ > 0, and fixed n ∈ N, the quantization rules (1-4)
become the semiclassical quantization conditions for E = E+n (h̄)

J (E, h̄)=
1

2iπ

∮
γ

p0(E, z) dz+ O(h̄2)= h̄(n+ 1
2), (1-5)

where p0(E, z)=
√

V (z)− E , and the path γ shrinks around the short Stokes line.

1d. The generalized changes of representation [Aguilar and Combes 1971]. A
change of representation is given by a unitary transform Uδ 6=U0 = I , where δ is
any nonzero real number and I is the identity operator, giving a new Hamiltonian
Hδ = UδHU∗δ unitarily equivalent to the original one. In this case, a level of the
Hamiltonian is the same as that of the original one, En(δ)= En(0), and the state is
transformed into ψn(δ)=Uδψn . Let Hδ be an analytic family of operators of type A
in the parameter δ ∈�⊂ C, with R⊂�, and let H have discrete spectrum {En}n .
Then the operator Hδ, δ ∈�⊂ C, is isospectral to H := H0 so that

En(δ)= En, (1-6)

and the vector ψn(δ) = Uδψn , δ ∈ � and δ = iθ , θ ∈ R, is the state ψn in a
generalized representation.

Actually, there are more general changes of representation with definite trans-
formations of the eigenvalues

En(δ)= fδ(En).

1e. The Stokes sectors, the asymptotic behavior, the Riccati equation [1761] and
the semiclassical series expansion. We recall the asymptotic behavior of the states
at infinity, the Stokes sectors and the Carlini semiclassical series expansion [Plana
1832; Fröman and Fröman 1965].

Let us fix a direction in the complex plane of the variable arg(z) = α. The
asymptotic behavior of a fundamental solution of Hh̄ (see (1-3)) at infinity in this
direction is given by [Sibuya 1975]

h̄ lim
|z|→∞
arg z=α

lnψn(z)∫ z√V (w) dw
=±1.

The Stokes directions α j are defined by the oscillatory condition of the fundamental
solutions at infinity:

lim
|z|→∞

arg(lnψn(z))= π/2+ jπ, j =−2,−1, 0, 1, 2.
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A Stokes sector of the complex plane is a minimal sector between two Stokes
directions. In the case of the cubic oscillator Hh̄ , the Stokes directions arg(z)= α j

are

lim
|z|→∞

arg(lnψn(z))= 5 arg(i z)/2= π/2+ jπ, j =−2,−1, 0, 1, 2,

and the Stokes sectors

S j = {z ∈ C : |arg(i z)− 2 jπ/5|< π/5}, j =−2,−1, 0, 1, 2. (1-7)

A state ψn(h̄) of the Hamiltonian Hh̄ is exponentially decreasing at infinity in the
sectors S±1 and exponentially increasing in the sectors S0 and S±2.

This state has large zeros only in the imaginary asymptotic direction. If we label
the zeros Z j such that |Z j | →∞ for j→∞,

arg(Z j )→ α±2 = π/2 as j→∞. (1-8)

Remark. In the case of a double-well cubic oscillator, this result is not sufficient
for our purposes. We have proven that in the case of positive levels Em the large
zeros of ψm are exactly imaginary. Moreover, we have ∓=E±n > 0 and the large
zeros of ψ±n are in C∓.

We express two fundamental solutions, in a given sector S j , of the Schrödinger
equation

(h̄2 p2
+ p2

0(z))ψ(z)= 0, p2
=−

d2

dz2 , p2
0(z)= V (z)− E,

in the form

ψ±(z)= exp
(
±

1
h̄

∫ z

0
ph̄(w) dw

)
,

where ph̄(z) satisfies the Riccati equation

p2
h̄(z)+ h̄ p′h̄(z)= p2

0(z), p2
0(z)= V (z)− E . (1-9)

We formally solve by the Carlini series

ph̄(z)∼
∑

n

pn(z)h̄n,

where the coefficients are computed recursively starting from the positive definition
of the classical momentum: p0(z)=

√
V (z)− E and

p1(z)=
i p′0(z)
2p0(z)

,

pn(z)=−
1

2p0(z)

( n−1∑
j=1

pn− j (z)p j (z)+ i p′n−1(z)
)
, n = 2, 3, . . . .

(1-10)
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Defining
ph̄(z)= Pχ (z)+ h̄Qχ (z), χ = h̄2,

we get the equation for Pχ (z)

P2
χ (z)− p2

0(z)=−χ(Q
2
χ (z)+ Q′χ (z)), (1-11)

where

Qχ (z)=−
P ′χ (z)

2Pχ (z)
.

We thus have the equivalent expression of the solutions

ψ±(z)=
1√

Pχ (z)
exp

(
±

1
h̄

∫ z

0
Pχ (w) dw

)
, (1-12)

where the Riccati solution Pχ (z) has the even part of the Carlini expansion:

Pχ (z)∼
∑
j∈N

χ j p2 j (z) with truncations P N
χ (z)∼

N∑
j

χ j p2 j (z). (1-13)

Thus, the semiclassical momentum Pχ (z) is an asymptotic notion, and the coeffi-
cients of the Carlini series are singular near the turning points. In certain cases,
the exact momentum Pχ (z) is the Borel sum of the series in (1-13) [Voros 1994;
Delabaere et al. 1997]. Notice that the behaviors of the fundamental solutions, for
large |z| in a Stokes sector, are given by (1-12) at a zeroth order of approximation
with p0(z) in place of Pχ (z) [Sibuya 1975].

1f. The Stokes lines and the classical trajectories. Here we also examine the crit-
ical energies at the semiclassical limit h̄ = 0.

Let us consider the real cubic oscillator

Hr (h̄) := h̄2 p2
+ V r (x), V r (x)= x3

− x, h̄ > 0,

and the energy range R0 = [−E0, E0], where E0 = 2/3
√

3. The union of the
trajectories of the classical motion M(E) consists of the oscillation range σ(E) :=
[I−, I+] and the escape route B(E) := (−∞, I0], I0<−1/

√
3< I−< I+. We recall

the definition of the Stokes lines at energy E . A Stokes line is tangent at each one of
its points z to the direction dz2(z), where p(z)2 dz2(z)< 0, p(z)2= V r (z)−E , and
starts from a turning point I . From the complex semiclassical point of view, σ(E)
is the internal Stokes line and B(E) is the exceptional Stokes line [Giller 2011].

The fundamental state ψ0
E(h̄, x), E ∈ R0, subdominant in the positive semiaxis,

ψ0
E(h̄, x)∼

1
√

p(x)
exp

(
−

1
h̄

∫ x

I+
p(w) dw

)
,
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for large x > 0, can be continued onto the complex plane cut along σ(E) and B(E).
We extend the approximate fundamental state by settingψ0

E(h̄, x)=(ψ0
E(h̄, x+i0)+

ψ0
E(h̄, x−i0))/2 for all x ∈ M(E). This approximation oscillates in M(E) as the

exact fundamental state. In the limit h̄→ 0 all the zeros of the exact fundamental
state ψE(h̄) tend to M(E) as h̄→ 0 [Giller 2011]. The union of the trajectories of
the classical motion M(E) is singular at E = E0 = 2/3

√
3, where the escape route

B(E) touches the oscillation range σ(E).
Now we consider the PT -symmetric double well with Hamiltonian Hh̄ = h̄2 p2

+

i(x3
− x), for h̄ > 0. For E > 0 large, the escape route is part of the imaginary

axis, while the oscillation range should be computed numerically.
The union of the trajectories of the classical motion M(E) has the singular point

Ec
= 0.352268 . . . where the escape route touches the oscillation range at its middle

point. For larger E > Ec the escape route and the oscillation range are separated.
The energy levels En(h̄) are positive for large h̄ > 0 and are imaginary at the limit
h̄→ 0. This means the existence of (at least) a singularity and a crossing at h̄n > 0
for each pair of functions E±n (h̄), 0 < h̄ < h̄n . The crossing parameters h̄n > 0
and the energy crossings Ec

n > 0 have the limits h̄n→ 0 and Ec
n = E±n (h̄n)→ Ec

as n→∞. The approximate actions around the oscillation range defined at the
crossing, Jn := nh̄n , have limit J (Ec, 0) as n→∞ (see (1-5)), the action integral
around the oscillation range σ(E).

We now consider the two cases denoted by the signs ± together. At energies
E∓n (0)=±i E0, the oscillation range σ(E) reduces to the points I−= I+=∓1/

√
3,

respectively. It is possible to prove that the escape route B(E) starts at I0=±2/
√

3
and goes toward +i∞ staying in the half-plane C±. Moreover, the levels E±n (h̄)
are nonreal for h̄ < h̄n and the zeros of ψ±n (h̄) cannot be on the imaginary axis.
Thus, the n nodes of ψ±n (h̄) are stable in C∓ for 0< h̄ < h̄n .

1g. The theory of the regular perturbations. Let H0 be a self-adjoint operator on
the Hilbert space H with compact resolvent, so that the spectral theorem takes the
expression

H0 =
∑

n

En Pn, 1=
∑

n

Pn, Pn Pk = δ
k
n Pn, P∗n = Pn,

where the set of real eigenvalues {En}n (the spectrum of H0: σ(H0)) have no ac-
cumulation points in R and the orthogonal projectors Pn have a finite-dimensional
image: mn = dim(PnH) ∈ N.

Resolvent. For z ∈ C− σ(H0) the resolvent of H0 with parameter z,

R0(z)= (H0− z)−1
=

∑
n

(En − z)−1 Pn, (1-14)



QUANTUM MECHANICS: SOME BASIC TECHNIQUES FOR SOME BASIC MODELS, II 359

is a compact operator, with norm

‖R0(z)u‖2 ≤max
n
|En − z|−2

∑
n

‖Pnu‖2 = ‖u‖2/ρ(z, σ (H0))
2,

where ρ(z, σ (H0)) is the distance of z from the spectrum of H0. In particular, if
u = Pj u, we have

‖R0(z)u‖ = 1/ρ(z, E j ).

Operator V relatively bounded with respect to H0 (Kato). Let V be another oper-
ator on H such that D(H0)⊂ D(V ) and

‖V u‖ ≤ a‖H0u‖+ b‖u‖ for all u ∈ D(H0)

for positive constants a and b. We use the notation V < H0.

Theorem. With V as above, the operator

A := A(z) := V R0(z) (1-15)

for z /∈ σ(H0) is a bounded operator.

Proof. Let us consider any v ∈ H; then Av = V u, where u = R0(z)v, with
norm ‖u‖ ≤ ‖R0(z)‖‖v‖ ≡ c‖v‖. For the relative boundedness we have ‖V u‖ ≤
a‖H0u‖+ b‖u‖, where ‖H0u‖ = ‖H0 R0(z)v‖ = ‖v+ zu‖ ≤ ‖v‖+ |z|‖u‖; hence,
‖Av‖ ≤ (a(1+ |z|c)+ bc)‖v‖, whence A is a bounded operator with norm

‖A‖ ≤ a(1+ |z|c)+ bc. �

Analytic family of operators. Let us consider the analytic family of operators Hε =
H0+ εV for ε ∈ C.

Theorem. The resolvent of Hε , Rε(z) = Bε for a fixed z /∈ σ(Hε), is an analytic
family of bounded operators on the domain |β|< b0.

Proof. We have

Bε = Rε(z)= ((H0− z)+ εV )−1
= R0(z)(1+ εA)−1

= R0(z)
∑

n

(−εA)n,

where A is defined in (1-15) and the series of powers of operators converges in
norm for |ε|< b0 = 1/‖A‖. �

Norm convergence of the resolvents. We have that

‖Bε − B0‖ ≤ ‖R0(z)‖
∞∑

n=1

(|ε|‖A‖)n

vanishes as ε→ 0. Analogously, for b1 > 0 small and |ε1|< b1, ‖Bε − Bε1‖→ 0
as ε→ ε1.
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Perturbation not relatively bounded.

Quadratic estimate 1. For any u ∈ D(H0)∩ D(V ), there exist a, b > 0 such that

‖H0u‖2+ |ε|2‖V u‖2 ≤ a‖Hεu‖2+ b‖u‖2.

Let V = V0V ′ such that V ′ < H and V0 = V ∗0 < H0.

Quadratic estimate 2. For any u ∈ D(H0)∩ D(V ), there exist positive constants
a and b such that

‖V ′u‖2 ≤ a‖Hεu‖2+ b‖u‖2.

We have

Rε − R0 = εR0V Rε = εA0 A′,

where the z /∈ σ(H0) dependence is omitted. Both the operators A0 = R0V0 and
A′ = V ′Rε are uniformly bounded as ε→ 0. Thus, we have the norm resolvent
convergence

‖Rε − R0‖ ≤ |ε|‖A‖‖A′‖→ 0

as ε→ 0.
In our case, we have H0 = p2

+αx2, |α| = 1, V0 = x , V ′ = i x2 and ε =
√

b≥ 0.

Projector on an isolated part of the spectrum. Let γ = ∂0 be a regular closed
positively oriented curve in C encompassing a simple isolated eigenvalue of H0

once:

σ0 := E j = 0 ∩ σ(H0), γ ∩ σ(H0)=∅.

For instance, let γ be the circle |z−E j | = d/2, where d > 0 is the isolation distance
of E j . We have

Pj =−(1/2π i)
∫
γ

R0(z) dz,

because of (1-14) and the residue theorem. Because of the norm convergence of
the resolvents and γ being a compact set, we have the norm convergence of the
projectors Pj (ε) := Pε ,

‖Pε − Pj‖→ 0

for |ε| → 0, and there exists b0 > 0 such that

Pjε =−(1/2π i)
∫
γ

Rε(z) dz,

for 0< ε < b0.
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Perturbation expansion of Pε . The set of projectors Pε is an analytic family of
projectors, and its power series expansion is

Pε =
∑

n

εn Qn,

where

Qn =−(2π i)−1
∫
γ

R0(z)(−V R0(z))n dz.

Continuity and stability of the spectrum. Let mε = dim(PεH) ∈ N be the total
multiplicity of the eigenvalues of Hε contained in 0. This is a continued function
for 0 < ε ≤ ε0 and, being discrete-valued, is constant. This means that in 0 we
always have the only eigenvalue E j (ε) near E j , for ε small, and we can compute
this analytic eigenvalue by the perturbation method.

1h. Perturbation expansion of a simple isolated eigenvalue. Let E(0) be a sim-
ple isolated eigenvalue of H0, with normalized eigenvector u0 and projector P0, so
that H0u0 = E(0)u0 and P0u0 = u0. We have ‖Pε − P0‖ → 0 as ε→ 0 so that
uε = Pεu0 → u0 as ε → 0 is an eigenvector: Hεuε = E(ε)uε , ‖uε‖ > 0. Thus,
〈u0, Pεu0〉 = 〈Pεu0, Pεu0〉→ 1 as ε→ 0. We can compute E(ε) by the expression

E(ε)= 〈u0, HεPεu0〉/〈u0, Pεu0〉

= E(0)+ ε〈u0, V Pεu0〉/〈u0, Pεu0〉

= E(0)+ ε
∑

n ε
n
〈u0, V Qnu0〉∑

n ε
n〈u0, Qnu0〉

= E(0)+ ε〈u0, V u0〉+ O(ε2)=
∑

n

εncn,

where the {cn}n are the coefficients of the power series expansion given by the per-
turbation theory as a ratio of two power series. Since the two series are geometric,
it is possible to evaluate the remainder, and it turns out to be of the same order as
the next perturbation coefficient.

1i. Divergent perturbation series. If V is not bounded with respect to H0, but
any vector V Qnu0 or Qnu0, n ∈ N, is bounded, we have bounded coefficients of
a divergent perturbation series. We do not use the estimates of the growing of the
coefficients and the remainders made with the perturbation theory because we have
the exact behavior from the Stieltjes property and the behavior of the imaginary
part of the “resonances”.

Now it is useful to recall the method of summing the divergent perturbation
series.
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2. Divergent power series regular sum: a short story

The formal series [Akhiezer 1965] as a vector function with specified terms

S̃(a) :=
∞∑

k=0

ak :=
∑

ak, a = {ak}k∈N, ak ∈ C, (2-1)

is convergent (Cauchy) with sum S(a), if there exists

S(a)= lim
n→∞

Sn(a) ∈ C, Sn(a)=
n∑

k=0

ak .

Actually Pietro Mengoli’s [1650] idea of a convergent series was not so different.
For the simple formal series S̃(a) as a function of the sequence of its terms

a = {ak = (−1)k}k∈N, (2-2)

Guido Grandi [1703], obviously unaware of the Cauchy condition, suggested that
the only possible sum of the series S(a) is 1

2 .
Let us recall a possible proof.
We assume that the sum S(a) is a linear functional of the vector a. Now we

recall some obvious facts.
The sum of a series with only one nonzero term must exist:

if b = b0, 0, 0, 0, . . . , S(b)= b0. (2-3)

The invariance of the series by translation of the indexes is obvious:

S̃(T a)= S̃(a), a = a0, a1, . . . , T a = 0, a0, a1, . . . .

So we must admit the same invariance for the sum

S(T a)= S(a). (2-4)

The proof that S(a), for a as in (2-2), if it exists, must be equal to 1
2 , is based on the

extension of the linearity of the sum used by Pietro Mengoli for convergent series.

Hypothesis 1. The sum of a series S(a) is a linear function of the vector of its
elements a:

S(a)= S(b)+ λS(c), a = b+ λc, (2-5)

if all the sums exist.

Proposition. Assuming the existence of the sum S(a) of the formal series (2-2),

S(a)= 1
2 . (2-6)
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Proof. We decompose the vector a as a = b + a′0, where b = a0, 0, 0, . . . and
a′0= 0, a1, a2, . . .=−T a. Thus, since a= b+λT a where λ=−1, by Hypothesis 1,

S(c)= S(b)+ λS(T a)= b0+ λS(a), (2-7)

if λ ∈ C, c = b+ λT a and b is as above in (2-3). The sum of the series satisfies a
linear equation

S(a)= S(b)− S(T a)= a0− S(a)= 1− S(a),

with the unique solution S(a)= 1
2 . �

Notice that Mangione [1971] says that the statement of the existence of the sum
of the series S̃(a) is a mistake (obviously it is, assuming the Cauchy definition of
the sum).

Later Cesaro proposed his method of the sum (1894–1897). The partial sums
of S̃(a) are

Sn(a)= 1
2 +

1
2(−1)n, n = 0, 1, 2, . . . ,

so that the mean values of the first sums are

Sc
N (a)=

N−1∑
n=0

Sn(a)
N
=

1
2
+

1
2N

(−1)N−1, N = 1, 2, . . . .

The Cesaro sum of the series, limN→∞ Sc
N (a), exists and coincides with Grandi’s.

2a. The Taylor expansion of a function. An analytic function is the sum of its
power series expansion on a disk:

f (z)=
∞∑

k=0

ckzk, ck =
f (k)(0)

k!
, |ck | =

1
r k

k
, |z|< r, (2-8)

where r = lim rk > 0.

Example 1. We have the expansion

f (z)=
1

1+ z
=

∞∑
k=0

ckzk
=

∞∑
k=0

ckz−k−1, ck = (−1)k, (2-9)

on the open disk |z|< 1. Extending the sum by continuity to the point z = 1, we
get the Grandi proof of the Grandi sum of the Grandi series.

We now state some definitions and results.
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2b. A divergent power series asymptotic to a function (Poincaré). A divergent
power series is asymptotic to a function f when∣∣∣∣ f (x)−

N−1∑
n=0

cnxn
∣∣∣∣≤ CN x N , 0< x < X. (2-10)

The astronomer approximants. Let CN = aN N !, where a > 0. For any x as above,
we fix N (x)= [1/ax] and we take the approximant

N (x)−1∑
n=0

cnxn,

with an error exponentially small as x→ 0.

Remark. The asymptotic function f (x) in (2-10) is not unique; there is also the
family of functions fε(x)= f (x)+ ε exp(−1/ax) for ε 6= 0 with |ε| small enough.

2c. Strong asymptotics and uniqueness of the function (Carleman). Consider
the formal power series

∑
∞

n cnzn and the function f (z). If there exist X,CN > 0
such that ∑

N

1
N
√

CN
=∞

and f (z) is analytic on

DX = {z : |z| ≤ X, |arg(z)| ≤ π/2}
with ∣∣∣∣ f (z)−

N−1∑
n

cnzn
∣∣∣∣≤ CN |z|N

uniformly for N ∈N and z ∈ DX , then the function f (z) is uniquely defined on DX

by the formal series and is called the sum of the series.

2d. Direct methods of sum. We define more general approximants of the series
(2-8), not only the polynomials Sn(z)=

∑n
k=0 ckzk but also the rational functions

called diagonal Padé approximants:
Q j (z)
Pj (z)

= S2 j (z)+ O(z2 j+1)

where Pj (z) and Q j (z) are polynomials of degree j , with Pj (0) = 1. If they
converge, we say that the series is summable, and the limit is called the Padé sum.
Let us notice that in the case (2-9) the approximants are exact:

Q j (z)
Pj (z)

= f (z), z 6= −1,

for all j ≥ 1.
Another regular method of sum is the Borel one.
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For the series of Example 1, we call the Borel transform the entire function
defined by the convergent series

f B(z)=
∞∑

k=0

ck

k!
zk
=

∞∑
k=0

1
k!
(−z)k = exp(−z),

and we get the sum of the original series by the integral

f (z)=
∫
∞

0
f B(t z) exp(−t) dt =

∫
∞

0
exp(−t (1+ z)) dt

on the half-plane <z >−1.

Example 2 (Euler function (1770)). We may take

f (z)=
∫
∞

0

1
1+ zt

exp(−t) dt =
∞∑

k=0

ckzk, ck = (−1)kk!.

In this case, the power series converges nowhere, but we understand by inspection
that it is the Borel sum of the Borel transform, f B(z)= (1+ z)−1, on the half-plane
<z > 0.

Remark. In this case, the Borel transform is not entire, and the analytic continua-
tion of the Borel transform on the half-axis is not automatic. In any case, the Borel
summability does not directly give convergent approximants, but it is not difficult
to find them by mapping the region of analyticity of the Borel transform on a disk
containing the origin.

Criterion of Borel summability of a series to a function (Nevanlinna) [Caliceti et al.
1986]. Let us consider the formal power series

∑
∞

n cnzn and the function f (z). If
there exist X,CN > 0 such that

CN = O(AN N !)

and the function is analytic and∣∣∣∣ f (z)−
N−1∑

n

cnzn
∣∣∣∣≤ CN |z|N , DX = {z : |z− X |< X}

uniformly for N and z, then the function is uniquely defined as the Borel sum of
the formal series.

Returning to the problem, is it possible for the Padé approximants to do better?
Yes! Stieltjes (1894) proved the convergence of the Padé approximants on all of
the cut plane Cc = {z ∈ C : z 6= 0, |arg(z)|< π}. Our function can be written

f (z)= yg(y)= y
∫
∞

0

1
y+ t

exp(−t) dt=
∫
∞

0

1
1+ t z

exp(−t) dt=
∑

j

(−1) j c j z j ,
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where y= 1/z and g(y) is a Stieltjes function with the associated continued fraction
(Laguerre) [Wall 1948]

g(y)= 1/(y+ 1/(1+ 1/(y+ 2/(1+ 2/(y+ 3/(· · · )))))).

The approximants of the continued fraction are the Padé approximants of the series.

Definition. A Stieltjes function is a bounded analytic function on the cut plane,
real for z > 0, with g(z)= g(z), which satisfies the Herglotz property [Shohat and
Tamarkin 1943, Lemma 2.2],

=g(z)
=z

< 0, =z 6= 0,

vanishing at∞. In this case, by the Stieltjes–Stone inversion formula, the nonde-
creasing measure µ(t) with µ(−∞)=µ(0)= 0 and µ(t)= (µ(t−0)+µ(t+0))/2
is defined by

µ(b)−µ(a)= lim
ε→0
−

1
2iπ

∫ b

a
(g(t + iε)− g(t − iε)) dt,

for any a and b with 0≤ a < b, such that

g(z)=
∫
∞

0

1
z+ t

dµ(t) := S
( 1

z+t

)
.

Definition of the series of Hamburger (more general than the Stieltjes one) and
the Hamburger moment problem. Let us consider the real sequence c := {cn}n∈N.
There exists a nondecreasing function µ, taking on infinitely many values in the
interval [−∞,∞), such that the sequence c is the sequence of the moments of the
measure dµ:

cn =

∫
∞

−∞

tndµ(t) := S(tn) ∈ R for all n ∈ N.

The existence of a measure is proved if and only if we have the positivity of the
sequence of n× n matrices

(An) j,k = c j+k

so that the determinants

Dn = det An > 0 for all n ∈ N.

We can set c0 = D0 = D−1 = 1.
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2e. The Stieltjes series and the Stieltjes moment problem. Let us consider the real
sequence c := {cn}n∈N. There exists a nondecreasing function µ, taking on infinitely
many values in the interval [0,∞), such that the sequence c is the sequence of the
moments of the measure dµ:

cn =

∫
∞

0
tn dµ(t) := S(tn) ∈ R for all n ∈ N.

The existence is proved if and only if we have the positivity of the two sequences
of n× n matrices

(An) j,k = c j+k, (Bn) j,k = c j+k+1

so that we have
Dn = det An > 0 for all n ∈ N.

We can set c0 = D0 = D−1 = 1.

2f. Definition of orthonormal polynomials. The orthonormal polynomials Pn(t)
for the measure dµ and the mean S,

S(Pn Pm)= δ
n
m,

have an explicit expression:

Pn(t)=
1

√
Dn−1 Dn

det


c0 c1 · · · cn

c1 c2 · · · cn+1
...

...
. . .

...

cn−1 cn · · · c2n−1

1 t · · · tn

=
√

Dn−1
√

Dn
tn
+ Rn−1(t).

It is easy to prove that

S(Pn(t)tm)=
√
(Dn/Dn−1) δ

m
n

if m ≤ n. Let us expand

t Pn(t)= an,n+1 Pn+1(t)+ an,n Pn(t)+ an,n−1 Pn−1(t)+ · · · .

Comparing the leading coefficients, we get

an,n+1 =

√
Dn−1 Dn+1

Dn
.

Multiplying by Pm(t) and taking the mean, we get

an,n− j = S(t Pn(t)Pn− j (t))= 0 for all j > 1, an,n−1 = an−1,n.
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Setting bn = an,n+1 and an = an,n , we get the difference equation

t Pn(t)= bn Pn+1(t)+ an Pn(t)+ bn−1 Pn−1(t), n ∈ N,

with the boundary conditions given by b−1 = 0 and P0(t)≡ 1.

2g. The determination of the moment problem and the essential self-adjointness
of an operator! The determination of the Stieltjes moment problem can be seen
as the essential self-adjointness of a positive operator B in H. Let us consider a
generating vector e0 on the domain of all the operators D =

⋂
n Bn and the linear

space L= L(B, e0) generated by the vectors {e′n := Bne0}n and the Hilbert subspace
H(B, e0), the closure of L(B, e0) in H. Ȧ is B restricted to L . If Ȧ is essentially
self-adjoint, we call A its positive self-adjoint closure in H(A, e0) with spectral
function E(x), x ≥ 0. In this case, the unique measure µ(x) is the mean value
of the spectral function on the generating vector e0, 〈e0, E(x)e0〉, and the Stieltjes
function given by the mean value of the resolvent for −z ∈ Cc,

g(z)=−
〈
e0,

1
A− z

e0

〉
=

∫
∞

0

1
z− x

dµ(x)

=
c0

z
+

c1

z2 + · · ·+
c2n−1

z2n + O(1/z2n+1), (2-11)

for |z| large, is the Stieltjes sum of its asymptotic series. Let us consider the infinite
real Jacobian matrix as the representation of the linear operator Ȧ on the canonical
basis {en = Pn( Ȧ)e0}n so that

Ȧek = bk−1ek−1+ akek + bkek+1, bk > 0, k ∈ N, b−1 = 0.

The operator Ȧ is defined as a symmetric operator on the dense set of finite vectors,
gN =

∑N xkek . We define the adjoint operator Ȧ∗ by the condition g =
∑

xkek ∈

D( Ȧ∗) if there exists g∗ =
∑

ykek such that

〈 Ȧek, g〉 = 〈ek, g∗〉 for all k ∈ N with g∗ := Ȧ∗g
or

bk−1xk−1+ ak xk + bk xk+1 = yk for all k ∈ N.

Thus, the vector g ∈ D( Ȧ∗) if g∗ is in the space l2:∑
k

|bk−1xk−1+ ak xk + bk xk+1|
2 <∞.

The deficiency index of the operator Ȧ is (0, 0) or (1, 1).
We look for complex eigenvalues of Ȧ∗:

Ȧ∗g =
∑

(bk−1xk−1+ ak xk + bk xk+1)ek

=

∑
xk(bk−1ek−1+ akek + bkek+1)= λ

∑
xkek := λg
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so that
λxk = bk−1xk−1+ ak xk + bk xk+1, k ∈ Z+, (2-12)

with boundary conditions λx0 = a0x0 + b0x1 or x1 = (λ− a0)x0/b0, x0 = c 6= 0,
so that xk = cPk(λ). The same recurrence relation (2-12), with initial conditions
Q0(λ)= 0 and Q1(λ)= 1/b0, defines the polynomials Qk(λ).

It is equivalent to consider the relation

zYk+1(z)= (z− ak)Yk(z)− b2
k−1Yk−1(z), k ∈ Z+, (2-13)

with solutions Nk and Mk for boundary conditions N0 = Q0 = 0, N1 = 1, M0 =

P0 = 1 and M1 = z− a0:

Mk(z)= b0b1 · · · bk−1 Pk(z), Nk(z)= b0b1 · · · bk−1 Qk(z), k > 0,

g(z)= 1/(z− a0− b2
0/(z− a1− b2

1/(z− a2− b2
2/(z− a3− · · · ))))

=
Qk(z)
Pk(z)

+ O(1/z2k+1).

In the determined case the sequence of diagonal Padé approximants converge for
z ∈ Cc to the function

g(z)= lim
k→∞

(
Nk(z)
Mk(z)

≡
Qk(z)
Pk(z)

)
.

Thus, we have deficiency index (0, 0) if and only if∑
k

|Pk(λ)|
2
=∞. (2-14)

We have the analogue of the Liouville–Ostrogradskii formula for k ∈ Z+:

bk−1 Pk−1 Qk− Pkbk−1 Qk−1 =−bk Pk+1 Qk+ Pkbk Qk+1 = b0 P0 Q1− P1b0 Q0 = 1

or
Pk−1 Qk − Pk Qk−1 = Pk−1 Q′k−1− P ′k−1 Qk−1 =

1
bk−1

, (2-15)

where
Q′k−1 = Qk − Qk−1, P ′k−1 = Pk − Pk−1.

Theorem (Hellinger). Let us fix z, n ∈ Z+ and

wn(t) := wn(z, t)=−
Qn(z)− t Qn−1(z)
Pn(z)− t Pn−1(z)

, =(z) 6= 0,

where wn(z,∞) = wn−1(z, 0). The images of wn : R→ C are nested circles of
n-decreasing radii

r = r(n, z)=
1
|=z|

1∑n−1
k=0|Pk(z)|2

.
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In the case of zero deficiency index, we have the limit point case: r(n, z)→ 0, as
n→∞, and wn(z, t) have a t-independent limit as n→∞.

Theorem (criterion). Let ∑
n

1
bn
=∞.

The J-matrix is determinate: we have a unique solution of the moment problem
and convergence of the continued fraction.

Proof. Use the formula (2-15):

n∑
k=1

1
bk−1
=

∣∣∣∣ n∑
k=1

(Pk−1 Qk − Pk Qk−1)(λ)

∣∣∣∣
≤ 2

√√√√ n∑
k=0

|Q2
k(λ)|

n∑
k=0

|P2
k (λ)|. �

Theorem (Carleman criterion). If∑
n

1
2n
√

c2n
=∞,

then the Hamburger moment problem

ck =

∫
∞

−∞

xk dµ(x),

is determinate.

Proof. From (2-12) we have

b0b1 · · · bn−1 Pn(λ)= λ
n
+ O(λn−1)

for λ large. Hence,

b0 · · · bn−1S(P2
n )=

∫
∞

−∞

xn Pn(x) dµ(x)≤
√

c2n

√
S(P2

n ),

or since S(P2
n )= 1,

b0 · · · bn−1 ≤
√

c2n,

and

∞=

∑
n

1
2n
√

c2n
≤

∑
n

1
n
√

b0 · · · bn−1
< e

∑
n

1
bn

for a general inequality of Carleman.
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The determined Hamburger moment problem corresponds to a determined Stielt-
jes one:

c′n =
∫
∞

0
yn dµ′(y)

where c′n = c2n , y = x2 and

dµ′(y) := dµ(
√

y)+ dµ(−
√

y)

is the unique solution. �
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In many applications, it is of great importance to handle random closed sets
of different (even though integer) Hausdorff dimensions, including local infor-
mation about initial conditions and growth parameters. Following a standard
approach in geometric measure theory, such sets may be described in terms of
suitable measures. For a random closed set of lower dimension with respect to
the environment space, the relevant measures induced by its realizations are sin-
gular with respect to the Lebesgue measure, and so their usual Radon–Nikodym
derivatives are zero almost everywhere. In this paper, how to cope with these
difficulties has been suggested by introducing random generalized densities (dis-
tributions) á la Dirac–Schwarz, for both the deterministic case and the stochastic
case. For the last one, mean generalized densities are analyzed, and they have
been related to densities of the expected values of the relevant measures. Ac-
tually, distributions are a subclass of the larger class of currents; in the usual
Euclidean space of dimension d, currents of any order k ∈ {0, 1, . . . , d} or k-
currents may be introduced. In this paper, the cases of 0-currents (distributions),
1-currents, and their stochastic counterparts are analyzed. Of particular interest
in applications is the case in which a 1-current is associated with a path (curve).
The existence of mean values has been discussed for currents too. In the case
of 1-currents associated with random paths, two cases are of interest: when the
path is differentiable, and also when it is the path of a Brownian motion or (more
generally) of a diffusion. Differences between the two cases have been discussed,
and nontrivial problems are mentioned which arise in the case of diffusions. Two
significant applications to real problems have been presented too: tumor driven
angiogenesis, and turbulence.

1. Introduction: preliminaries and notation

Many real phenomena may be modeled as random closed sets in Rd, and in several
situations as evolving random closed sets. Application areas include crystallization
processes: Figures 1 and 2 (see [Capasso 2003; Capasso and Micheletti 2006], and
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Figure 1. The final tessellation in a real experiment of a crystal-
lization process of a polymer [MONTELL-Italy].

references therein; see also [Ubukata 2003] for the crystallization processes on sea
shells, and [Callister Jr. 2007, p. 92; Hochrainer et al. 2007; Kassner et al. 2000]
for dislocations: Figure 3); tumor growth [Anderson 2003]; angiogenesis: Figure 6
[Carmeliet and Jain 2000]; patterns in biology: Figure 4; the spread of a pollutant
in an environment; etc.

All quoted processes may be described by time dependent random closed sets at
different Hausdorff dimensions (for instance, crystallization processes are modeled
in general by full dimensional growing sets and lower dimensional interfaces, while
angiogenesis by systems of random curves). In many cases, because of the coupling
with suitable underlying fields (such as temperature, nutrients, etc.), these kinds of
phenomena may be modeled as space-time structured stochastic processes, whose
geometric structure is of great relevance, as discussed in [Capasso et al. 2013].

A rigorous definition of the relevant geometric quantities in a stochastic setting
of the above systems (fibers for angiogenesis, dislocations for crystalline materials,
etc.) is very important for statistical applications (see, e.g., [Ambrosio et al. 2009;
Camerlenghi et al. 2014]), and in mean field approximations (see, e.g., [Bonilla
et al. 2017; Hochrainer et al. 2007; Bessaih et al. 2017]).

A presentation of an angiogenesis model will be offered later in Section 4.1.
For definitions and basic properties of Hausdorff measure and Hausdorff dimen-

sion see, e.g., [Ambrosio et al. 2000; Falconer 1986; Federer 1996; Morgan 1998].
We remind here the concepts and results of current literature which are relevant

for our analysis. Actually, the subject of stochastic geometry, considered here in
the direction of geometric measure theory, does have a nontrivial intersection with
the literature on convex geometry for which the reader may refer to [Baddeley et al.
2007] and references therein.
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0-facet
↓

1-facet←

2-facet
↓

Figure 2. The final tessellation in a simulated experiment of a
crystallization process of a polymer. This picture, together with
the real one, shows the relevance of components at all integer
Hausdorff dimensions for describing the final morphology [Burger
et al. 2002].

1µm

Figure 3. Dislocations in copper crystals [M. Kassner; private collection].

Figure 4. Pattern formation in a lichen colony [V. Capasso; pri-
vate collection].
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Figure 5. Angiogenesis on a rat cornea [Dejana, personal collection].

Figure 6. Vascularization of an allantoid. [Dejana, personal col-
lection]. An important example of a fiber process of Hausdorff
dimension 1 in a 3D space.

Let us consider the space Rd for d > 1, and denote by νd the usual d-dimensional
Lebesgue measure, and by BRd the Borel σ -algebra of Rd.

We know that every positive Radon measure µ on Rd can be represented as

µ= µ�+µ⊥,

where µ� and µ⊥ are the absolutely continuous part with respect to νd and the
singular part of µ, respectively. We shall denote by Br (x) the d-dimensional closed
ball centered in x with radius r .

Let us denote by Hs the s-dimensional Hausdorff measure.
We will consider a class of subsets of Rd with integer Hausdorff dimension.

Definition 1. Given an integer n ∈ [0, d], we say that a closed subset A of Rd is
n-regular if it satisfies the following conditions:

(i) Hn(A∩ BR(0)) <∞ for any R > 0;
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(ii) lim
r→0

Hn(A∩ Br (x))
bnrn = 1 for Hn-a.e. x ∈ A.

We recall that when n is integer, then b(n)= bn , which is the volume of the unit
ball in Rn.

Note that condition (ii) is related to a characterization of the Hn-rectifiability of
the set A [Falconer 1986, p.256, 267; Ambrosio et al. 2000, p.83].

Remark 2. We may observe that if 2 is an n-regular closed set in Rd, we have

lim
r→0

Hn(2∩ Br (x))
bnrn =

{
1 Hn-a.e. x ∈2,
0 for x 6∈2.

(1-1)

In fact, since 2C is open, for all x 6∈2 there exists r0 > 0 such that for all r ≤ r0,
we have Br (x)⊂2C, that is Hn(2∩ Br (x))= 0 for all r ≤ r0; thus the limit equals
0 for all x ∈2C.

For a general set A, problems about “Hn-a.e.” and “for all” may arise when we
consider a point x ∈ ∂A where the boundary is not a regular manifold. For example,
if A is a closed square in R2, for all points x on the edges,

lim
r→0

H2(A∩ Br (x))
b2r2 =

1
2
,

while for each of the four vertices the limit equals 1
4 .

Observe that in both cases the set of such points has H2-measure zero.

From now on we shall consider n-regular closed sets 2 in Rd, with 0≤ n ≤ d.
As a consequence, for n < d (by assuming 0 ·∞ = 0) by (1-1) we also have

lim
r→0

Hn(2∩ Br (x))
bdrd = lim

r→0

Hn(2∩ Br (x))
bnrn

bnrn

bdrd =

{
∞ Hn-a.e. x ∈2,
0 for x 6∈2.

Note that in the particular case n = 0, with 2 = X0 point in Rd (X0 is indeed a
0-regular closed set),

lim
r→0

H0(X0 ∩ Br (x))
bdrd =

{
∞ if x = X0,

0 if x 6= X0.

Note that if 2 is an n-regular closed set in Rd with n < d , then the Radon measure

µ2(·) :=Hn(2∩ ·)

is a singular measure with respect to νd.
It is then clear that the quantity

δ2(x) := lim
r→0

Hn(2∩ Br (x))
bdrd , x ∈ Rd,
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associated with 2 cannot be considered as a classical function. But, analogously
to the Dirac delta function δX0(x) associated with a point X0 ∈ Rd, we may refer
to it as a generalized density (or the generalized Radon–Nikodym derivative of
the measure µ2 with respect to νd), or better as a distribution á la Schwarz (see
Section 2).

We may notice that in the case 2= X0, the generalized density δX0(x) coincides
with the well-known Dirac delta function at a point X0 that is the (generalized)
density of the singular Dirac measure εX0 [Kolmogorov and Fomin 1970].

The usefulness of introducing these generalized functions associated with sets
of any dimension n ∈ {0, . . . , d}, in particular in the stochastic case, has been
discussed in various papers [Matheron 1965; Ambrosio et al. 2009; Burger et al.
2002; Capasso and Villa 2006; 2007; Vladimirov 1979].

The previous ideas extend to another framework, the one of currents. First, let us
restrict ourselves to the so-called 1-currents, which heuristically are distributional
generalizations of the concept of vector fields. In the smooth case, a 1-current in Rd

is simply a smooth vector field ξ : Rd
→ Rd. A smooth vector field ξ(x) acts on

test functions (above we have introduced objects using the language of measures,
but here it is more natural to use directly the language of test functions) as

(ξ, θ)=

∫
Rd
〈ξ(x), θ(x)〉 dx,

for all smooth test vector fields θ : Rd
→ Rd. But, similarly to the case of measures

concentrated on lower-dimensional subsets 2 of Rd, we may consider vector fields
concentrated on lower-dimensional subsets. Let us restrict further our discussion
of 1-currents to the case of currents associated with curves. Given a smooth curve
γ : [a, b] → Rd, the concept of current associates to it a distribution vector field
concentrated along the curve, and having the direction tangent to the curve. The
action on smooth test vector fields θ : Rd

→ Rd is

(ξ, θ)=

∫ b

a
〈θ(γ (t)), γ ′(t)〉 dt,

or, in the more intuitive language that we shall explain in the sequel,

ξ(x)=
∫ b

a
δγ (t)(x)γ ′(t) dt,

which emphasizes the fact that the vector field is localized on the curve, with the
direction of the tangent.

In Section 2 we present densities of measures as linear functionals for both the
deterministic and the stochastic case; special emphasis is given to random function-
als associated with random closed sets and their mean values. Section 3 is devoted
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to 1-currents with their stochastic counterparts. Finally Section 4 presents exam-
ples of significant applications of real interest, such as tumor driven angiogenesis
and turbulence.

2. Densities as linear functionals

2.1. The deterministic case. We know that the Dirac delta δX0 at a point X0 ∈ Rd

can be defined as a linear functional associated with a finite Borel measure, the
well-known Dirac measure εX0 , concentrated at X0; as such it is the (generalized)
density of εX0 . In fact, we recall that, according to the Riesz representation theorem
(see, e.g., [Folland 1999, p. 212]), Radon measures in Rd (i.e., nonnegative and σ -
additive set functions defined on the Borel σ -algebra BRd that are finite on bounded
sets) can be canonically identified with linear and order preserving functionals on
Cc(R

d,R), the space of continuous functions with compact support in Rd. The
identification is provided by the integral operator, i.e.,

(µ, f )=
∫

Rd
f dµ ∀ f ∈ Cc(R

d,R).

If µ� νd, it admits (as a Radon–Nikodym density) a classical function δµ defined
almost everywhere in Rd , so that

(µ, f )=
∫

Rd
f (x)δµ(x) dx ∀ f ∈ Cc(R

d,R),

in the usual sense of a Lebesgue integral.
If µ ⊥ νd, we may speak of a density δµ only in the sense of distributions

(formally, it is almost everywhere trivial, but it is∞ on a set of νd -measure zero).
In this case, the symbol ∫

Rd
f (x)δµ(x) dx := (µ, f )

can still be adopted, provided the integral on the left-hand side is understood in a
generalized sense, and not as a Lebesgue integral.

In either case, from now on, we may denote by (δµ, f ) the quantity (µ, f ).
Accordingly, we say that a sequence of measures µn weakly∗ converges to a Radon
measure µ if (δµn , f ) converges to (δµ, f ) for any f ∈ Cc(R

d,R). A classical
criterion (see, for instance, [Evans and Gariepy 1992, p. 54; Ambrosio et al. 2000])
states that µn weakly∗ converge to µ if and only if µn(A)→µ(A) for any bounded
open set A with µ(∂A)= 0.

By the common integral representation for generalized functions,∫
A
δX0(x) dx := εX0(A)=H0(X0 ∩ A),
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we have

(δX0, f )=
∫

Rd
δX0(x) f (x) dx = f (X0), f ∈ Cc(R

d ,R).

Now we are ready to introduce the delta function of an n-regular set 2 as the
linear functional (the generalized function) δ2 in a similar way.

Consider the measure defined on the Borel σ -algebra of Rd, as follows:

µ2(A) :=Hn(2∩ A), A ∈ BRd . (2-1)

The linear functional associated with it is

(µ2, f ) :=
∫

Rd
f (x)µ2 dx (2-2)

for f ∈ Cc(R
d ,R).

In accordance with what we have said in the Introduction, the following holds.

Proposition 3. If n is an integer strictly less than dp the measure µ2 is a singular
measure with respect to the usual Lebesgue measure on Rd.

In accordance with the usual representation of distributions in the theory of
generalized functions, we formally write∫

Rd
f (x)µ2 dx =

∫
Rd

f (x)δ2(x) dx =: (δ2, f ). (2-3)

Remark 4. We may notice that the classical Dirac delta δX0(x) associated to a
point X0 is now a particular case corresponding to n = 0. If 2 is a piecewise
smooth surface S in Rd (and so 2-regular), then by the definition in (2-2), it follows
that for any test function f,

(δS, f )=
∫

S
f (x) dS,

which is the definition of δS in [Vladimirov 1979, p. 33].

In terms of the above arguments, we may state that δ2(x) is the (generalized)
density of the measure µ2, defined by (2-1), with respect to the usual Lebesgue
measure νd on Rd. Note that if n= d , then µ2 is absolutely continuous with respect
to νd, so that δ2 is its classical Radon–Nikodym derivative [Kolmogorov 1956].

2.1.1. Paths: 1-dimensional sets.

Definition 5. A path (or curve or line) in Rd is a continuous mapping γ : [a, b] ⊂
R→ Rd. The point γ (a) is called the initial point, and the point γ (b) is called the
final point. The image of the path γ ([a, b]) is called the arc or the support of γ . A
path γ is closed if its end points coincide; it is simple if it has no multiple points
(apart from possibly the end points for a closed path).
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If we denote by e j : j = 1, . . . , d the canonical basis of Rd, we may introduce
the components of the vector function γ as

γ j = 〈e j , γ 〉 : [a, b] → R.

For t ∈ (a, b), we put

γ ′(t) := lim
h→t;h∈[a,b]

γ (h)− γ (t)
h− t

whenever the limit exists. This is equivalent to state that all derivatives

γ ′j (t) := lim
h→t;h∈[a,b]

γ j (h)− γ j (t)
h− t

, j = 1, . . . , d,

exist in t .

Definition 6. A path γ : [a, b]→Rd is said to be smooth if it is a function of class
C1([a, b]) and γ ′(t) 6= 0 for any t ∈ (a, b).

An additional piece of information related to the regularity of a path regards the
evaluation of its arc length.

Definition 7. Let γ : [a, b] → Rd be a path and let 5 the set of all finite partitions
π := {a = t1 < · · ·< tk = b} of the interval [a, b]. Denote by

L(γ, π) :=
k−1∑
i=1

‖γ (ti+1)− γ (ti )‖.

The path γ is said rectifiable or of bounded variation if

L(γ ) := sup
π∈5

L(γ, π) <+∞;

this quantity is referred to as the length of γ .

The following theorem holds [Galbis and Maestre 2012, p. 24].

Theorem 8. If γ is a smooth curve whose domain is an interval [a, b] ⊂ R, then it
is rectifiable and its length is given by

L(γ )=
∫ b

a
‖γ ′(t)‖ dt.

Remark 9. The above theorem can be easily extended to a piecewise smooth path
[Galbis and Maestre 2012, p. 26].

Example 10. The following are examples of smooth simple curves:

1. A segment in Rd with end points xini and xfin ∈ Rd :

0 =
{

xini · t + xfin · (1− t) : t ∈ [0, 1]
}
.



382 VINCENZO CAPASSO AND FRANCO FLANDOLI

2. A circle in R2:
0 =

{
(cos t, sin t) : t ∈ [0, 2π ]

}
.

These sets are 1-regular, according to Definition 1.

If γ : [a, b] → Rd is a smooth path, denote by 0 := γ ([a, b])⊂ Rd its support;
we may associate to 0 the Radon measure defined as

µ0 : A ∈ BRd 7→ µ0(A) :=H1(0 ∩ A). (2-4)

The following theorem shows the action of the measure µ0 on test functions
f ∈ Cc(R

d ,Rd) (see, e.g., [Evans and Gariepy 1992]).

Theorem 11. If γ : [a, b] → Rd is a C1([a, b]) simple curve such that 0 =
γ ([a, b]), then for all f ∈ Cc(R

d ,Rd),∫
f (x)µ0 dx =

∫ b

a
f (γ (t))‖γ ′(t)‖ dt. (2-5)

Similarly, for every A ∈ B(Rd),

µ0(A)=
∫ b

a
εγ (t)(A)‖γ ′(t)‖ dt. (2-6)

2.2. The stochastic case.

2.2.1. Random Radon measures. Consider the space Cc(R
d ,R) of continuous func-

tions with compact support. This space is the union of the separable Banach spaces
C(K,R) over all compact sets K ∈ Rd ; let us write ‖ · ‖K for the norm on C(K ):

‖ f ‖K = sup
x∈K
| f (x)|.

The space Cc(R
d ,R) can be endowed with the direct limit topology associated

to a family C(Kn,R) with Kn increasing to Rd ; we do not need the details of
this definition but we need to know the following useful fact: a linear functional
I : Cc(R

d ,R)→ R is continuous if and only if for every compact K ∈ Rd there is
CK > 0 such that

|I ( f )| ≤ CK‖ f ‖K for every f ∈ C(K ,R).

Moreover, the dual of Cc(R
d ,R) is the space of signed Radon measures, which we

shall denote by M.

Definition 12. Given a probability space (�,F, P), a random Radon measure is
a map µ : �→M such that for every f ∈ Cc(R

d ,R), the function (µ, f ) :=∫
Rd f (x)µ dx : �→ R is measurable. We shall write (µω, f ) to emphasize the

dependence on ω when µ is random.
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Proposition 13 (expected value of a random Radon measure). Let µ :�→M be
a random Radon measure. Assume that for every compact K ∈ Rd there is CK > 0
such that ∫

�

|(µω, f )|P dω ≤ CK‖ f ‖K ,

for every f ∈ C(K ,R). Then there exists an element µ̂ ∈M such that

(µ̂, f )=
∫
�

(µω, f )P dω = E[(µ, f )],

for every f ∈ Cc(R
d ,R).

Proof. Define the number (µ̂, f ) by the previous identity; for every f ∈ Cc(R
d ,R),

since f ∈ C(K ,R) for some compact set K , we have
∫
�
|(µω, f )|P dω <∞ by

assumption, hence
∫
�
(µω, f )P dω is well-defined.

Denote by 8 : f ∈ Cc(R
d ,R) 7→ 8( f ) := (µ, f ) ∈ L1(�). We have to show

that, as a function of f, the number (µ̂, f ) is linear continuous on Cc(R
d). Taking

f, g∈Cc(R
d ,R) and α, β ∈R, since8 is linear, we have8ω(α f +βg)=α8ω( f )+

β8ω(g), hence∫
�

8ω(α f +βg)P dω = α
∫
�

8ω( f )P dω+β
∫
�

8ω(g)P dω,

which implies the linearity. For the continuity, for every compact set K and f ∈
C(K ,R), we have

|(µ̂, f )| ≤
∫
�

|8ω( f )(ω)|P dω ≤ CK‖ f ‖K

by assumption, hence µ̂ is a continuous functional. �

Under the assumptions of Proposition 13, the measure µ̂ ∈M, which satisfies
the equality

(µ̂, f )= E[(µ, f )] (2-7)

for every f ∈ Cc(R
d ,R) will be called the expected value of the measure µ and

will be denoted by E[µ].

2.2.2. Random linear functionals. Let S be a separable linear metric space of test
functions, for instance, Cc(R

d,R) or C∞c (R
d,R) or L2(0, T ). Denote by S′ the

space of continuous linear functionals on S. Let (�,F, P) be a probability space.
The following definition generalizes Definition 12.

Definition 14. We call random functional in the strict sense any map φ :�→ S′

such that (φ, f ) is measurable for every f ∈ S.
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Remark 15. The definition above is analogous to the well-known definition for
Banach valued random variables (see, e.g., [Araujo and Giné 1980; Bharucha-Reid
1972; Bosq 2000]).

Later we will consider random functionals in a broad sense.

2.3. Random functionals associated with random closed sets. We recall that a
random closed set 4 in Rd is a measurable map

4 : (�,F,P)−→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ -algebra
generated by the so-called hit-or-miss topology (see [Matheron 1975]).

Definition 16. Given an integer n with 0 ≤ n ≤ d, we say that a random closed
set 2 in Rd is n-regular if it satisfies the following conditions:

(i) for almost all ω ∈�, the set 2(ω) is an n-regular closed set in Rd ; and

(ii) E[Hn(2∩ BR(0))]<∞ for any R > 0.

Suppose now that 2 is a random n-regular closed set in Rd. Thanks to the
assumptions on the random set 2, it can be shown that the random measure µ2 is
P-a.s. a Radon measure on BRd ; it can be further shown that, as a map µ2 : ω ∈
� 7→ µ2(ω) ∈M, it is a random Radon measure according to Definition 12 (see,
e.g., [Baddeley and Molchanov 1997; Matheron 1965; Zähle 1982]).

In this case it makes sense to define, for any ω ∈�, the linear functional δ2(ω)
such that, for any f ∈ Cc(R

d ,R):

(δ2, f ) :=
∫

Rd
f (x)µ2(x) dx, P-a.s. (2-8)

According to Definition 14, δ2 is then a random linear functional in the strict sense.
By recollecting all of the above, we may finally state the following.

Proposition 17. Let2 be a random closed n-regular set in Rd. Then the associated
random Radon measure µ2 satisfies the assumption of Proposition 13, and there-
fore the expected value E[µ2] is well-defined. We therefore define the expected
value of the generalized density δ2 by the following identities:

(E[δ2], f )=
∫

Rd
f (x)E[δ2](x) dx

:=
∫

Rd
f (x)E[µ2] dx = E

[∫
Rd

f (x)µ2(x) dx
]

= E

[∫
Rd

f (x)δ2 dx
]
= E[(δ2, f )], (2-9)

for any f ∈ Cc(R
d ,R).
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Proof. Let K be a compact in Rd and f ∈ Cc(K ,R). We have∫
�

|(µ2(ω), f )|P dω =
∫
�

∣∣∣∣∫
Rd

f (x)µ2(ω) dx
∣∣∣∣P dω

≤

∫
�

∫
Rd
| f (x)|µ2(ω) dx P dω

=

∫
�

∫
K
| f (x)|µ2(ω) dx P dω,

because f has support in K , and∫
�

|(µ2(ω), f )|P dω ≤ ‖ f ‖K

∫
�

∫
K
µ2(ω) dx P dω

= ‖ f ‖K

∫
�

µ2(ω)(K )P dω

= ‖ f ‖K E[Hn(2∩ K )]

≤ CK‖ f ‖K ,

by (ii) of the previous definition (the set K is included in a ball BR(0)). Hence we
may apply Proposition 13 for the existence of the expected value E[µ2]. �

2.3.1. Absolutely continuous (in mean) random sets.

Remark 18. When n= d , the integral and expectation in (2-9) can be exchanged by
Fubini’s theorem, since in this case both µ2 and E[µ2] are absolutely continuous
with respect to νd and δ2(x)= 12(x), νd -a.s.

In particular, δ2(x)= 12(x), νd -a.s. implies that

E[δ2](x)= P(x ∈2), νd -a.s.,

and the following chain of equalities are well-known (according to our definition
of E[δ2] [Kolmogorov 1956, p. 46]):

E[νd(2∩ A)] = E

(∫
Rd

12∩A(x) dx
)
= E

(∫
A

12(x) dx
)

=

∫
A

E(12(x)) dx =

∫
A

P(x ∈2) dx . (2-10)

In materials science, the density

ρ(x) := E[δ2](x)= P(x ∈2)

is known as the (degree of) crystallinity.

If2 is not a pathological set, i.e., if Hn(2)(ω)> 0 with P-a.e. for ω ∈� (n< d),
we may notice that, even though for a.e. realization 2 of 2 the measure µ2 is
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positive and singular (and so it is not absolutely continuous), and the expected
measure E[µ2] may be absolutely continuous with respect to νd .

Example. Consider the case n = 0. Let 2= X0 be a random point in Rd ; in this
case, H0(X0 ∩ A)= 1A(X0), and so

E[H0(X0 ∩ A)] = P(X0 ∈ A).

If X0 is a continuous random point with the pdf pX0 , then E[H0(X0 ∩ · )] is abso-
lutely continuous and, in this case, E[δX0](x) is just the probability density function
pX0(x), so

∫
A E[δX0](x)ν

d dx is the usual Lebesgue integral. Note that we formally
have

E[δX0](x)=
∫

Rd
δy(x)pX0(y)ν

d dy =
∫

Rd
δx(y)pX0(y)ν

d dy = pX0(x);

and in accordance with Proposition 17,∫
A

E[δX0](x)ν
d dx =

∫
A

pX0(x)ν
d dx = P(X0 ∈ A)

= E[H0(X0 ∩ A)] = E

[∫
A
δX0(x)ν

d dx
]
. (2-11)

If X0 is discrete, i.e., X0 = xi with probability pi , only for an at most countable
set of points xi ∈ Rd , then E[H0(X0 ∩ · )] is singular and, as in the previous case,
we have that E[δX0](x) coincides with the probability distribution pX0 of X0.

In fact, in this case pX0(x) =
∑

i piδxi (x), and by computing the expectation
of δX0 , we formally obtain

E[δX0](x)= δx1(x)p1+ δx2(x)p2+ · · · =
∑

i

piδxi (x)= pX0(x).

Remark 19. By Remark 18 and the considerations in the above example, we may
claim that, in the cases n = d and n = 0 with X0 being continuous, the expected
linear functionals E[δ2] and E[δX0] are defined by the function ρ(x) := P(x ∈2)
and by the pdf pX0 of X0, respectively, in the following way:

(E[δ2], f ) :=
∫

Rd
f (x)ρ(x) dx

and

(E[δX0], f ) :=
∫

Rd
f (x)pX0(x) dx .

In fact, let us consider the random point X0; in accordance with Proposition 17,

(E[δX0], f ) :=
∫

Rd
f (x)pX0(x) dx = E[ f (X0)] = E[(δX0, f )].
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Of particular interest is the case of fiber processes, i.e., 1-dimensional random
sets that occur in medicine as models for vessels, nerves, etc., and in materials sci-
ence as models for line dislocations (defects in a crystalline material) [Hochrainer
et al. 2007], etc. In these cases, an empirical definition of line density is given as
the total length of dislocation lines per unit volume (see, e.g., [Callister Jr. 2007,
p. 177]). This has given a strong motivation for a rigorous definition of the mean
density of random sets of any Hausdorff dimension; for a discussion about conti-
nuity and absolute continuity of random closed sets, we refer to [Capasso and Villa
2006; 2007].

2.3.2. Example: an absolutely continuous 1-regular random set. Let (X t , Vt) be
the solution of the stochastic differential system in Rd :

dX t = Vt dt,

dVt = b(X t , Vt) dt + dWt ,

where b is Lipschitz continuous and Wt is a Brownian motion in Rd. If the initial
condition (X0, V0) of the above system has a smooth density p0(x, v) with respect
to the usual Lebesgue measure on Rd , thanks to hypoellipticity, (X t , Vt) has (for
every t > 0) a smooth density pt(x, v) with respect to the Lebesgue measure; it is
a solution to the Fokker–Planck equation:

∂p
∂t
=1v p− v · ∇x p− divv(bp),

p|t=0 = p0.

Given T > 0, consider the random path in Rd given by t ∈ [0, T ] 7→ X t ∈ Rd (not
necessarily simple); in accordance with Theorem 11, the associated random Radon
measure µX is such that∫

f (x)µX dx =
∫ T

0
f (X t)‖Vt‖ dt, f ∈ Cc(R

d ,R).

This formula defines a random generalized density δX (x) by the identity

(δX , f )=
∫ T

0
f (X t)‖Vt‖ dt, f ∈ Cc(R

d ,R).

It can be checked that we have

δX (x)=
∫ T

0
δX t (x)‖Vt‖ dt =

∫ T

0
δX t (x)‖X

′

t‖ dt.

Proposition 20. Assume E[‖X0‖+‖V0‖]<∞. Then the random generalized den-
sity δX , which is a.s. concentrated on the random curve X , has a smooth average
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density E[δX ](x) given by

E[δX ](x)=
∫ T

0

∫
Rd
‖v‖pt(x, v) dv dt.

Proof. We only sketch the proof. We have, with 21 equal to the support of the
curve X ,

E
[
H1(21 ∩ BR(0))

]
= E

[∫ T

0
1BR(0)(X t)‖Vt‖ dt

]
≤ E

[∫ T

0
‖Vt‖ dt

]
=

∫ T

0
E[‖Vt‖] dt.

We continue the proof under the additional assumption that b is bounded, otherwise
it is sufficient to use a Gronwall-type argument (it is here that we use E[‖X0‖]<∞).
We have

Vt = V0+

∫ t

0
b(Xs, Vs) ds+Wt ,

hence

‖Vt‖ ≤ ‖V0‖+ T ‖b‖∞+‖Wt‖,

which implies supt∈[0,T ] E[‖Vt‖]<∞ (because E[‖V0‖]<∞), hence∫ T

0
E[‖Vt‖] dt <∞

and therefore E[H1(21∩ BR(0))]<∞. By the general criterion above, this implies
that E[δX ] exists and

(E[δX ], f )=
∫ T

0
E[ f (X t)‖Vt‖] dt.

It follows that

(E[δX ], f )=
∫ T

0

∫
Rd

∫
Rd

f (x)‖v‖pt(x, v) dx dv dt

=

∫
Rd

(∫ T

0

∫
Rd
‖v‖pt(x, v) dv dt

)
f (x) dx .

The arbitrarity of f gives us the existence of the average density E[δX ](x) and its
formula. �

Hence we may claim that the path X is a 1-dimensional absolutely continuous
(in mean) random set in Rd .
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2.4. More on random functionals. Given a probability space (�,F, P), we de-
note by L0(�) the space of P-equivalence classes of random variables X :�→ R,
endowed with the Ky Fan topology, i.e., the topology of the convergence in prob-
ability.

In the previous sections, we defined as random functionals all measurable map-
pings from � to the dual space Cc(R

d ,R)′ (we continue to restrict ourselves to
functionals on Cc(R

d,R)). However, there exist examples of random objects which
are natural to call random functionals, but do not enter in the previous definition.
Let us then introduce a broader concept.

Definition 21. We use random functional in the broad sense of any continuous
linear map 8 : Cc(R

d ,R)→ L0(�). When there exists a random functional in the
strict sense φ :�→ Cc(R

d ,R)′ such that

8( f )(ω)= (φω, f )

for all f ∈ Cc(R
d ,R) and for a.a. ω ∈�, we say that φω is a pathwise realization

of 8.

Example 22. Let W be a Brownian motion on (�,F, P) and let d = 1. To any
function f ∈ Cc(R,R), we associate the random variable

8( f )=
∫ T

0
f (Wt) dWt .

It is known that there is no simple pathwise meaning for this integral: we cannot
fix ω ∈ � and consider it as a map from Cc(R,R) to R. This is an example of a
random functional in the broad sense which has no pathwise realization.

Example 23. Referring to the above example, a pathwise realization exists if we
restrict ourselves to more regular test functions f . Indeed, if f ∈ C1

c (R,R), and
F ′ = f , by Itô’s formula we have

F(WT )= F(W0)+

∫ T

0
f (Wt) dWt +

1
2

∫ T

0
f ′(Wt) dt,

and therefore the random functional in the strict sense φω, defined as

(φω, f )= F(WT (ω))− F(W0(ω))−
1
2

∫ T

0
f ′(Wt(ω)) dt

(these expressions are all well-defined path by path) satisfies

(φ·, f )=
∫ T

0
f (Wt) dWt =8( f ), P-a.s.,

hence φω is a pathwise realization of 8; but only on f ∈ C1
c (R,R).
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Example 24. If we allow ourselves to use L2(0, T ) as a set of test functions in
place of Cc(R

d ,R), the classical Wiener integral

8( f )=
∫ T

0
ft dWt

is another example of random functional in the broad sense which has no path-
wise realization. Again, if we change the set of test functions and we take f ∈
W 1,2(0, T ), the pathwise realization exists, given by

(φω, f )= fT WT −

∫ T

0
f ′t Wt dt.

The previous examples have mainly an academic character, so we do not insist
on this notion here. However, in the context of random currents, there are examples
of great potential interest for applications, so we shall enter in more detail.

3. Currents

In this section we wish to extend our analysis to vector fields in Rd, hence to random
currents. Motivations for the study of random currents are the same as anticipated
in Section 2.3 for 1-dimensional random sets, i.e., fiber processes.

We will start by defining line integrals of differential forms (see, e.g., [Giaquinta
et al. 1998; Giaquinta and Modica 2009; Galbis and Maestre 2012, p. 21; Buck
1956]).

3.1. Differential forms. Let g :U ⊂ Rd
→ R be a real function of class C1 in the

open set U , i.e., it has all partial derivatives of the first order continuous in U . The
differential of g at a point x ∈U is the linear function dg(x) : Rd

→ R such that

h = (h1, . . . , hd) ∈ Rd
7→ dg(x)(h)=

d∑
j=1

∂g
∂x j

(x)h j . (3-1)

It is usually suggestive to denote the partial increments h j = 〈e j , h〉 by dx j , so
that the expression (3-1) is usually written as

dx = (dx1, . . . , dxd) ∈ Rd
7→ dg(x) (dx)=

d∑
j=1

∂g
∂x j

(x) dx j . (3-2)

Expressions (3-1) or (3-2) are a particular case of a more general mathematical
entity called differential form of degree one, or simply 1-form, defined below.

Definition 25. Let U ⊂ Rd be an open set. A differential form of degree one or
simply a 1-form on U is a mapping

ω :U → L(Rd ,R)= (Rd)′,
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where L(Rd ,R) denotes the space of all real valued linear functions on Rd , i.e.,
the dual space (Rd)′ of Rd.

Given a 1-form ω, a point x ∈U , and an integer j = 1, . . . , d, we will denote
the scalar ω(x)(e j ) ∈ R by f j (x). Evidently f j : U → R; by the linearity of
ω(x) ∈ (Rd)′, for any h = (h1, . . . , hd) ∈ Rd we have

ω(x)(h)=
d∑

j=1

f j (x)h j , (3-3)

or

ω(x) (dx)=
d∑

j=1

f j (x) dx j . (3-4)

This expression is usually abbreviated into

ω =

d∑
j=1

f j dx j . (3-5)

The functions f j , where j = 1, . . . d , are called the component functions of the
differential form ω. We will usually assume that the component functions of a
1-form are continuous; in such a case we say that the form is continuous.

Remark 26. The above discussion shows that the study of a 1-form is essentially
equivalent to the study of a vector field, say

F(x)= ( f1(x), . . . , fd(x)); x ∈U.

3.2. Line integrals of differential forms. The line integral of a differential form
was originally motivated by the calculation of the work done by a force field along
a path.

Consider a smooth path γ : [a, b] → R3 all contained in an open set U ⊂ R3;
and let F :U → R3 be a force field acting on a point object. The work done by the
force field F along the path γ can be obtained by taking into account two facts:

1. The work done by a force field along a path depends only upon the component
of the force along the tangent direction of the path at each point.

2. The work done by a constant field F0 to move an object along a line segment
in its direction is given by the product of ‖F0‖ and the length of the line
segment.

Consider a very fine partition π = {a = t1 < · · ·< tk = b} of the interval [a, b],
so that the arc length of γ |[t j ,t j+1], according to Theorem 8, can be approximated by

‖γ ′(t j )‖(t j+1− t j ).
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We know that the unit vector which is tangent to a smooth path at γ (t), t ∈ [a, b]
is given by

T (t)=
γ ′(t)
‖γ ′(t)‖

,

so that we may assume, at a good approximation, that along the path γ |[t j ,t j+1] the
force field has a constant value F(γ (t j )). Consequently, the work done by the
force field F along γ |[t j ,t j+1] can be approximated by

〈F(γ (t j )), T (t j )〉‖γ
′(t j‖(t j+1− t j )= 〈F(γ (t j )), γ

′(t j )〉(t j+1− t j ),

where j = 1, . . . , k− 1. Summing up a good approximation of the work done in
moving the object along γ is given by

k−1∑
k=1

〈F(γ (t j )), γ
′(t j )〉(t j+1− t j );

the usual theorem of existence of the Riemann integral of a continuous function
along a finite interval leads to the following proposition.

Proposition 27. The work done by a continuous force field F : U → R3 along a
piecewise smooth path γ : [a, b]→R3 all contained in an open set U ⊂R3 is given
by ∫

γ

F =
∫ b

a
〈F(γ (t)), γ ′(t)〉 dt. (3-6)

The following definition is then meaningful.

Definition 28. Let F : U → Rd be a continuous vector field along a piecewise
smooth path γ : [a, b] → Rd all contained in an open set U ⊂ Rd. The line integral
of F along γ is given by∫

γ

F :=
∫ b

a
〈F(γ (t)), γ ′(t)〉 dt. (3-7)

It is clear that the line integral of a vector field depends upon the orientation of
the path, i.e., ∫

γ [a,b]
F := −

∫
γ [b,a]

F. (3-8)

Thanks to the correspondence between 1-forms and vector fields, the following
definition is appropriate.

Definition 29. Let U ⊂ Rd be an open set, let ω be a continuous 1-form on U,
and let γ : [a, b] → Rd be a piecewise smooth path, all contained in U . If F(x)=
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( f1(x), . . . , fd(x)), for x ∈U , is the vector field associated with ω, the line integral
of ω along γ is given by∫

γ

ω :=

∫ b

a
ω(γ (t))γ ′(t) dt =

∫ b

a
〈F(γ (t)), γ ′(t)〉 dt

=

d∑
j=1

∫ b

a
f j (γ (t))γ ′j (t) dt.

(3-9)

3.3. 1-currents. In the sequel, a 1-current will be a continuous linear functional on
Cc(R

d ,Rd) (more generally the literature considers a continuous linear functional
on C∞c (R

d ,Rd)).
Typical examples of 1-currents are those induced by regular curves in Rd. Let

γ : [a, b] ⊂ R→ Rd be a smooth curve in Rd ; the linear functional ξ defined by

θ ∈ Cc(R
d ,Rd) 7→ (ξ, θ)=

∫ b

a
〈θ(γ (t)), γ ′(t)〉 dt

=

d∑
j=1

∫ b

a
θ j (γ (t))γ ′j (t) dt ∈ R

(3-10)

is a 1-current.
Another case is one in which the 1-current is induced by a vector field. By an

abuse of notation, let ξ : Rd
→ Rd be a vector field; the associated current is

θ ∈ Cc(R
d ,Rd) 7→ (ξ, θ)=

∫
Rd
〈θ(x), ξ(x)〉 dx =

d∑
j=1

∫
Rd
θ j (x)ξ j (x) dx . (3-11)

We may recover the case (3-10) as a particular case of (3-11) by the localization
on the regular path {γ (t), t ∈ [a, b]} made by a usual Dirac delta distribution

ξ(x)=
∫ b

a
δγ (t)(x)γ ′(t) dt, x ∈ Rd

; (3-12)

i.e.,

ξ =

∫ b

a
δγ (t)(·)γ

′(t) dt. (3-13)

3.4. Random 1-currents and their mean densities. We have said above that a de-
terministic 1-current is a linear continuous functional on C∞c (R

d ,Rd). Since it is
sufficient for our purposes, in order to stress the analogy with Radon measures,
we consider afterwards only 1-currents which are linear continuous functionals
on Cc(R

d ,Rd). There are two definitions of random 1-currents, as in the case of
random functionals (see Section 2.2.2).

The most natural one is the following [Flandoli et al. 2009; Bessaih et al. 2017].
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Definition 30. Given a probability space (�,F, P), consider the space Cc(R
d ,Rd)

of compact support continuous vector fields endowed with the topology of con-
vergence on compact sets and let Cc(R

d ,Rd)′ be the space of 1-currents on Rd,
endowed with the dual topology, and the corresponding Borel sigma algebra. We
call a random 1-current in the strict sense any measurable map

ξ : ω ∈� 7→ ξω ∈ Cc(R
d ,Rd)′. (3-14)

The second, a weaker one, relates to the real value obtained when applying the
current to a test vector field.

Definition 31. Given a probability space (�,F, P), consider the space L0(�) of
real-valued random variables endowed with the Ky Fan topology, i.e., the topol-
ogy of the convergence in probability, and the corresponding Borel sigma alge-
bra. We call a random 1-current in the broad sense any continuous linear map
4 : Cc(R

d ,Rd)→ L0(�). When there exists a random 1-current in the strict sense
ξ :�→ Cc(R

d ,R)′ such that

4( f )(ω)= (ξω, f )

for all f ∈ Cc(R
d ,Rd) and a.a. ω ∈�, we say ξω is a pathwise realization of 4.

One can show, as in the case of random functionals, that strict sense implies
broad sense, but the opposite is not true. Below we provide a typical example for
each category and compute the corresponding mean densities.

3.4.1. The mean of a 1-current. Consider a random 1-current in the strict sense
ξω ∈ Cc(R

d ,Rd)′, and ω ∈ �. We say that it admits a mean value if a 1-current
ξ̂ ∈ Cc(R

d ,Rd)′ exists such that, for any θ ∈ Cc(R
d ,Rd),

(ξ̂ , θ)= E[(ξ, θ)]. (3-15)

Whenever this happens, we will identify the current E[ξ ] := ξ̂ as the mean value
of the current ξ .

We will say that the mean current E[ξ ] is induced by a vector field if a locally
integrable vector field u : Rd

→ Rd exists such that

(E[ξ ], θ)=

∫
Rd
〈θ(x), u(x)〉 dx . (3-16)

3.5. Example of a random 1-current in the strict sense and its expectation. Let
(X t , Vt) be the solution of the stochastic equation in Rd

×Rd :

dX t = Vt dt,

dVt = b(t, X t , Vt) dt + dWt ,
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where b is Lipschitz continuous and Wt is a Brownian motion in Rd. Assume that
(X0, V0) has a smooth density p0(x, v) with respect to Lebesgue measure. Thanks
to hypoellipticity, (X t , Vt) has, for every t > 0, a smooth density pt(x, v) with
respect to Lebesgue measure; it is a solution to the Fokker–Planck equation:

∂p
∂t
=1v p− v · ∇x p− divv(bp),

p|t=0 = p0.

Given T > 0, consider the random curve in Rd given by t ∈ [0, T ] 7→ X t ∈ Rd

(not necessarily simple) and consider the associated random 1-current ξX formally
defined as

ξX (x)=
∫ T

0
δX t (x)Vt dt, x ∈ Rd

; (3-17)

namely

(ξX , θ)=

∫ T

0
〈θ(X t), Vt 〉 dt, θ ∈ Cc(R

d ,Rd).

One can easily recognize that ξX is a 1-current in the strict sense. We have

E[(ξX , θ)] = E

[∫ T

0
〈θ(X t), Vt 〉 dt

]
=

∫ T

0
E[〈θ(X t), Vt 〉] dt

=

∫ T

0

(∫
Rd×Rd

〈θ(x), v〉pt(x, v) dx dv
)

dt.

We may also proceed as in Proposition 20, and see directly from (3-17) that, for
any x ∈ Rd , we do have formally

E[ξX (x)] =
∫ T

0
E[δX t (x)Vt ] dt

=

∫ T

0
dt
∫

Rd×Rd
δy(x)vpt(y, v) dy dv

=

∫ T

0
dt
∫

Rd×Rd
δx(y)vpt(y, v) dy dv

=

∫ T

0
dt
∫

Rd
vpt(x, v) dv. (3-18)

In accordance with the above, we have proven the following.

Proposition 32. The 1-current ξX admits a mean current E[ξX ] on Rd, induced by
the vector field

u(x)=
∫ T

0

∫
Rd
vpt(x, v) dv dt, x ∈ Rd. (3-19)
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3.6. Example of a random 1-current in the broad sense and its expectation. Let
X t be the solution of the stochastic equation in Rd :

dX t = b(t, X t) dt + dWt ,

where b is Lipschitz continuous and Wt is a Brownian motion in Rd. Assume that
X0 has a smooth density p0(x) with respect to Lebesgue measure. Also X t has,
for every t > 0, a smooth density pt(x) with respect to Lebesgue measure; it is a
solution to the Fokker–Planck equation:

∂p
∂t
=1x p− divx(bp),

p|t=0 = p0.

Given T > 0, consider again the random curve X t in Rd (not necessarily simple)
and consider the associated random 1-current ξX formally defined as

ξX (x)=
∫ T

0
δX t (x) dX t , x ∈ Rd

;

namely,

(ξX , θ)=

∫ T

0
〈θ(X t), dX t 〉, θ ∈ Cc(R

d ,Rd),

where now the integral is understood as a stochastic integral. There are two main
choices: Itô and Stratonovich integrals. Let us discuss only the Itô case, but the
other one is also not difficult.

Given θ ∈ Cc(R
d ,Rd), (ξ, θ) is a well defined random variable, because the

process θ(X t) is adapted, E[
∫ T

0 ‖θ(X t)‖
2 dt]<∞, and

∫ T
0 〈θ(X t), dX t 〉 is given by∫ T

0
〈θ(X t), dX t 〉 =

∫ T

0
〈θ(X t), b(t, X t)〉 dt +

∫ T

0
〈θ(X t), dWt 〉.

So ξX is a current in the broad sense. In general, it is not clear if it is a current
also in the strict sense because we cannot “fix ω” and consider the map ω ∈� 7→∫ T

0 〈θ(X t(ω)), dX t(ω)〉 (the Itô integral is an equivalence class and its pointwise
evaluation at ω is not a well-defined concept).

We have

E

[∫ T

0
〈θ(X t), dX t 〉

]
=

∫ T

0
E[〈θ(X t), b(t, X t)〉] dt + E

[∫ T

0
〈θ(X t), dWt 〉

]
.

Since for an Itô integral E[
∫ T

0 〈θ(X t), dWt 〉] = 0, we have∫ T

0
E[〈θ(X t), b(t, X t)〉] dt =

∫ T

0

(∫
Rd
〈θ(x), b(t, x)〉pt(x) dx

)
dt. (3-20)

Hence we have proved the following.
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Proposition 33. The 1-current ξX admits a mean current E[ξX ] on Rd, induced by
the vector field

u(x)=
∫ T

0
b(t, x)pt(x) dt.

4. Advanced applications and open problems

4.1. A mathematical model for tumor induced angiogenesis. The main features
of the process of formation of a tumor-driven vessel network are (see [Chaplain
and Stuart 1993; Plank and Sleeman 2004; Bonilla et al. 2017])

(i) vessel branching;

(ii) vessel extension;

(iii) chemotaxis in response to a generic tumor angiogenic factor (TAF), released
by tumor cells;

(iv) haptotactic migration in response to fibronectin gradient, emerging from the
extracellular matrix and through degradation and production by endothelial
cells themselves; and

(v) anastomosis, the coalescence of a capillary tip with an existing vessel.

We will limit ourselves to describe the dynamics of tip cells at the front of
growing vessels, as a consequence of chemotaxis in response to a generic TAF
released by tumor cells.

The i-th tip cell is characterized by its position and velocity (X i
t , V i

t ) ∈ R2d for
t ≥ 0; also its history

(X i
s, V i

s )s∈[T i ,2i∧t)

plays a role; the random variables T i and 2i are respectively the birth (branch-
ing) and death (anastomosis) times of the i-th tip cell. All random variables and
processes are defined on a filtered probability space (�,F,Ft , P).

The number of tip cells changes in time, due to proliferation and death. We
denote this random number by Nt for t ≥ 0.

The growth factor is a random function C :�×[0,∞)×Rd
→R, that we write

as C(t, x).
Tip cells and growth factor satisfy the system

dX i
t = V i

t ,

dV i
t =

[
−k1V i

t + f (C(t, X i
t ))∇C(t, X i

t )
]

dt + σ dW i
t ,

∂

∂t
C(t, x)= k2δA(x)+ d11C(t, x)− η(t, x, S·)C(t, x),

(4-1)
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where k1, k2, σ, d1 > 0 and f : R→ R are given, W i
t for i ∈ N are independent

Brownian motions, A is a Borel set of Rd representing the tumoral region acting
as a source of the TAF; initial conditions X i

0, V i
0 and C(0, x) are also given.

Let us describe the term η(t, x, S·). For every t ≥ 0, we introduce the measure

St :=

Nt∑
i=1

1t∈[T i ,2i )ε(X i
t ,V

i
t )
,

where ε denotes the usual Dirac measure. With these notations we may assume
that, for every t ≥ 0, the function η(t, ·, ·) maps Rd

×C([0, t];M(Rd)) into R:

η(t, ·, ·) : Rd
×C([0, t];M(Rd))→ R.

With the notation η(t, x, S·), we understand η(t, x, {Ss}s∈[0,t]).
We may leave the function η unspecified, with suitable assumptions. However,

to help with intuition, we may assume the following structure:

η(t, x, S·)=
∫ t

0
e−(t−s)/τ

(∫
Rd

∫
Rd

K (x − x ′)|v′|Ss(dx ′, dv′)
)

ds

for a suitable function K : Rd
→ R.

In the SDE system (4-1), besides the friction force, there is a force due to the un-
derlying TAF field C(t, x); from the relevant literature we take [Plank and Sleeman
2004; Stéphanou et al. 2006]

f (C)=
d1

(1+ γ1C)q
. (4-2)

The capillary network of endothelial cells X (t) consists of the union of all ran-
dom trajectories representing the extension of individual capillary tips from the
random time of birth (branching) T i to the random time of death (anastomosis) 2i,

X (t)=
Nt⋃

i=1

{
X i (s), T i

≤ s ≤min{t,2i
}
}
, (4-3)

giving rise to a stochastic network. Thanks to the choice of a Langevin model for
the vessel’s extension, we may assume that the trajectories are sufficiently regular
and have integer Hausdorff dimension 1.

Hence the random measure [Capasso and Villa 2008]

A ∈ BRd 7→H1(X (t)∩ A) ∈ R+ (4-4)
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may admit a random generalized density δX (t)(x) with respect to the usual Lebesgue
measure on Rd such that, for any A ∈ BRd ,

H1(X (t)∩ A)=
∫

A
δX (t)(x) dx . (4-5)

By Theorem 11, we may then state that

H1(X (t)∩ A)=
∫ t

0

Ns∑
i=1

εX i (s)(A)|
d
ds

X i (s)
∣∣∣Is∈[T i ,2i ) ds.

Hence,

δX (t) =

∫ t

0

Ns∑
i=1

δX i (s)

∣∣∣ d
ds

X i (s)
∣∣∣Is∈[T i ,2i ) ds.

4.1.1. Vessel branching. Two kinds of branching have been identified; either from
a tip or from a vessel.

The birth process of new tips can be described in terms of a marked point process
(see, e.g., [Brémaud 1981]), by means of the random measure 8 on BR+×Rd×Rd

such that, for any t ≥ 0 and any B ∈ BRd×Rd ,

8((0, t]× B) :=
∫ t

0

∫
B
8(ds× dx × dv), (4-6)

where 8(ds × dx × dv) is the random variable that counts those tips born either
from an existing tip, or from an existing vessel, during times in (s, s + ds], with
positions in (x, x + dx], and velocities in (v, v+ dv].

Given the history Ft− of the whole process up to time t−, we claim that the
compensator of the random measure 8(ds× dx × dv) is

α(C(s, x))Gv0(v)Ss(d(x, v)) ds

+β(C(s, x))Gv0(v)(K1 ∗ δX (t))(x) dx dv ds, (4-7)

where α(C) and β(C) are nonnegative functions; for example, we may take

α(C)= β(C)= α1
C

CR+C
, (4-8)

where CR is a reference density parameter [Capasso and Morale 2009]; K1 : R
d
→

R is a suitable mollifying kernel.
As a technical simplification, we will further assume that the initial value of the

state of a new tip is (T N (t)+1, X N (t)+1, vN (t)+1), where T N (t)+1 is the random time
of branching, X N (t)+1 is the random point of branching, and vN (t)+1 is a random
velocity, selected out of a normal distribution Gv0 with mean v0, and some variance.
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4.1.2. Anastomosis. When a vessel tip meets an existing vessel, it joins at that
point and time and it stops moving. This process is called tip-vessel anastomosis.

As in the case of the branching process, we may model this process via a marked
counting process; anastomosis is modeled as a “death” process.

Let 9 denote the random measure on BR+×Rd×Rd such that, for any t ≥ 0 and
any B ∈ BRd×Rd ,

9((0, t]× B) :=
∫ t

0

∫
B
9(ds× dx × dv), (4-9)

where 9(ds×dx×dv) is the random variable counting those tips that are absorbed
by the existing vessel network during time (s, s+ ds], with position in (x, x + dx],
and velocity in (v, v+ dv].

We assume that the compensator of the random measure 9(ds× dx × dv) is

γ (K1 ∗ δX (s))(x)Ss(d(x, v)) ds, (4-10)

where γ is a suitable constant.

4.2. Turbulence. The topic of turbulence is too wide and deep to be recalled here;
let us mention a general reference [Frisch 1995] and one example to attempt to
develop fragments of a rigorous theory based on the stochastic Navier–Stokes
equations and their invariant measures [Flandoli et al. 2008]. Among the several
ideas to approach turbulence, which is to a wide extent a statistical theory, there
is one of Alexander Chorin [1994] which is particularly attractive. Based on some
evidence that turbulent fluids are “made” (this sentence has to be taken in a very in-
tuitive sense) of vortex structures, in particular filament-like structures (see [Frisch
1995] for a discussion), Chorin had the idea to describe such “vortex filaments”
by means of paths of stochastic processes, and relate the statistical properties of
these processes to the statistical properties of turbulent fluids. In particular, Chorin
considered the so called self-avoiding walk and tried to connect its Flory exponents
to the Kolmogorov exponents of K41 theory of turbulence — we cannot enter in
further detail here, see [Chorin 1994]. Unfortunately, as Chorin admitted in his
book, this connection is not clearly identified, so it was only a research suggestion;
taken by some authors, like Gallavotti [2002], Lions and Majda [2000] and Flandoli
and Gubinelli [2002] who tried to develop part of such arguments using Brownian
motion instead of self-avoiding walk. The problem remains essentially open after
these contributions.

The concept of a random 1-current described in the present work is strongly
related to — in fact, it was strongly motivated by — stochastic vortex filaments. It
does not solve in itself the question of connection with K41 or other statistical
theories of turbulence, but it gives a precise language to approach it. Before we
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continue, let us say again that vortex filaments are an intuitive concept, since classi-
cal continuum mechanics allows us only to define the vorticity field of a fluid, and
the identification of “structures” in it is not rigorous, at least at present. Having
said this, the intuitive idea of a vortex filament is a curve, a vortex line (an integral
curve of the vorticity field) over which the vorticity field is supported — maybe
with the generalization of a finite number of such lines, not only one. This directly
leads to the concept of a 1-current, a distributional vector field, concentrated along
curves. Since a statistical theory should be developed, random 1-currents are the
right objects. If we denote by X the process whose paths represent the vortex
filaments, the random distributional vorticity field is given by

ξX =

∫ T

0
δXs dXs .

The two main open questions are about statistical properties and about the re-
alism of these random vortex structures. Concerning the realism, we mean the
connection between these structures and more classical objects of fluid dynamics,
typically the partial differential equations of continuum mechanics. The only par-
tial result until now in this direction is the mean field result [Bessaih et al. 2017],
where a smoothed version of 3D Euler equations is obtained as the mean field of
interacting vortex filaments — also with a smoothed Biot–Savart kernel.

Concerning the statistical properties, first attempts have been made in [Chorin
1994; Lions and Majda 2000; Flandoli and Gubinelli 2002] by using Gibbs mea-
sures. The problem, not yet solved, is to identify a stochastic process X such that
the random distributional vorticity field ξX written above has statistical properties
like those of K41 theory. This means that the associated random velocity field
u X = K ∗ ξX has to be introduced (K denotes here the Biot–Savart kernel) and
expected values like

E[|u(x + re)− u(x)|2],

where r is a real number and e is a unitary vector, have to be computed and com-
pared with the prescription of statistical theories of turbulence (K41 prescribes a
behavior of the form Cr2/3 for small r ).

A more modest but still quite open problem, very related to the machinery de-
veloped in the present work, is the following one: given a vorticity field ξ(x)—
generic, or typical of turbulent fluids — find a stochastic process X such that

ξ(x)= E[ξX ](x).

Solving this problem may increase some understanding of the statistical problem
above and provide relevant initial conditions for the mean-field approach of [Bes-
saih et al. 2017].
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4.3. Pathwise stochastic analysis. In recent years, a new direction in stochastic
analysis grew up thanks to a number of outstanding contributions. The beginning
of this direction is often traced back to a paper by Hans Föllmer [1981] where he
derived an Itô formula for the composition f (xt) of a C2 function f :Rd

→R with
a single deterministic path x : [0, T ] → Rd , which possesses quadratic variation
along a sequence of partitions (πn) of [0, T ], in the sense that

[x (i)
·
]
(πn)
t := lim

n→∞

∑
ti∈πn

(x (i)ti+1∧t − x (i)ti∧t)
2

exists finite and continuous in t ∈ [0, T ], for each i = 1, . . . , d , where x (i)t denotes
the i-coordinate of xt . The stochastic integral

∫ t
0 〈∇ f (xs), dxs〉 required in the

formula,

f (xt)− f (x0)−
1
2

∫ t

0

d∑
i, j=1

∂i∂ j f (xs) d[x (i)
·
, x ( j)
·
]
(πn)
s =

∫ t

0
〈∇ f (xs), dxs〉, (4-11)

is not a priori defined, but it exists from the formula itself: the limit or Riemann
sums

lim
n→∞

∑
ti∈πn

〈∇ f (xti∧t), xti+1∧t − xti∧t 〉

exists since the sum of the other terms in the formula have a limit, thanks to the exis-
tence of the quadratic variation (the so-called joint quadratic variation between two
coordinates [x (i)· , x ( j)

· ]
(πn)
t exists by polarization and it is a bounded variation func-

tion, hence the integral on the left-hand side of (4-11) exists as limit of Riemann–
Stieltjes sums). Probability is not totally excluded by this approach, but its role
is localized: probability provides the existence of the quadratic variation [x (i)· ]

(πn)
t

for almost every path of relevant stochastic processes, like Brownian motion and
more generally continuous semimartingales; it is otherwise very difficult to con-
struct a deterministic function having nonzero quadratic variation [x (i)· ]

(πn)
t (if it

is zero, the formula above is just the usual chain rule). In a sense, a main topic
in stochastic analysis, which previously has been treated by probability from the
first to the last step (namely Itô’s formula from the viewpoint of Itô’s approach),
is now decoupled: one half of the story is based on probability — the existence of
the quadratic variation — and the other half is purely deterministic.

The question arisen by that paper is: to what extent can one develop a similar
approach for other pieces of stochastic analysis? A breakthrough is rough path
calculus developed by Terry Lyons [1998], which introduces new classes of paths,
defines stochastic integrals for them and solves stochastic differential equations.
Again, the theory is fully deterministic but at the foundation there is the concept of
rough path, a sort of path x enriched by its Lévy areas

∫ t
0 x (i)s dx ( j)

s (we refer here to
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a subclass for the general theory); the latter object exists for almost every path of
Brownian motion and semimartingales using probability, namely using Itô’s theory
of stochastic integration.

The theory of rough paths has been revisited with a novel approach by Massimil-
iano Gubinelli [2004] and, in a sense based on this new viewpoint, a sort of multidi-
mensional analog (namely for functions x : Rd

→ R or more precisely for distribu-
tions) has been developed in the outstanding work of Martin Hairer [2014], see also
the alternative theory by Gubinelli et al. [2015]. Again in these theories, probability
guarantees the existence of fundamental objects, after which the procedure to define
other objects and solve (ordinary or partial) differential equations is fully determin-
istic. Let us also mention this kind of two-step approach in other recent directions
of stochastic analysis, like stochastic homogenization [Gloria and Otto 2015].

After reviewing this introduction to the subject of “stochastic calculus without
probability”, let us mention an open research direction related to the topics of the
present paper. Probability allows us to define stochastic integrals of the form∫ t

0
〈θ(Xs), dXs〉

for several stochastic processes X and functions θ . The map θ 7→
∫ t

0 〈θ(Xs), dXs〉

is a random 1-current in the broad sense. In many cases, thanks to probabilistic
estimates, there is a random 1-current in the strict sense ξX,t(ω) associated to it,
given by

ξX,t =

∫ t

0
δXs dXs .

This is, for a given ω, a deterministic 1-current associated to the deterministic
path X ·(ω). Conceptually, this is similar to the quadratic variation or the Lévy area
associated to X ·(ω): concepts which are well-defined by probability, and would
be extremely difficult to define without. The question then is: starting from the
deterministic pair

(X ·(ω), ξX,·(ω)),

is it possible to develop, by purely deterministic methods, some pieces of stochas-
tic calculus, as it was done by the theories recalled above starting from the pairs
(path, quadratic variation), (path, Lévy area) and so on? For instance, is it possible
to formulate and solve differential equations driven by single paths of Brownian
motions? At present, this program has not been developed. Only the regularity, in
terms of distributions, of ξX,·(ω) has been partially understood, see [Flandoli et al.
2005; 2009].
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A NOTE ON GIBBS AND MARKOV RANDOM FIELDS WITH
CONSTRAINTS AND THEIR MOMENTS

ALBERTO GANDOLFI AND PIETRO LENARDA

This paper focuses on the relation between Gibbs and Markov random fields,
one instance of the close relation between abstract and applied mathematics so
often stressed by Lucio Russo in his scientific work.

We start by proving a more explicit version, based on spin products, of the
Hammersley–Clifford theorem, a classic result which identifies Gibbs and Markov
fields under finite energy. Then we argue that the celebrated counterexample of
Moussouris, intended to show that there is no complete coincidence between
Markov and Gibbs random fields in the presence of hard-core constraints, is not
really such. In fact, the notion of a constrained Gibbs random field used in the
example and in the subsequent literature makes the unnatural assumption that
the constraints are infinite energy Gibbs interactions on the same graph. Here we
consider the more natural extended version of the equivalence problem, in which
constraints are more generally based on a possibly larger graph, and solve it.

The bearing of the more natural approach is shown by considering identifi-
ability of discrete random fields from support, conditional independencies and
corresponding moments. In fact, by means of our previous results, we show iden-
tifiability for a large class of problems, and also examples with no identifiability.
Various open questions surface along the way.
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This paper focuses on one instance of this close association between abstract
and applied mathematics, namely the relation between Gibbs and Markov random
fields; in spite of the great number of studies and applications of these models, this
relationship has not been appropriately investigated in the literature.
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1. Introduction

Gibbs random fields are important models in equilibrium statistical mechanics,
and Markov random fields are fundamental models in applications. They can both
be defined in terms of a given graph, and they are almost two faces of the same
phenomenon: Gibbs fields are defined from microscopic interactions and Markov
fields by, in principle observable, conditional independencies.

Leaving the details for later, we can say in a nutshell that every Gibbs measure
is Markov; the question is whether the opposite is also true. A celebrated result
of Hammersley and Clifford [1971] states that with finite energy, i.e., the absence
of zero probability configurations, every Markov random field is Gibbs. On the
other hand, a famous example by Moussouris [1974] shows that in the presence of
hard-core constraints, which is to say without the finite energy assumption, there
are Markov fields which are not Gibbsian. Further studies have clarified that on a
chordal graph Gibbsianity is equivalent to the global Markov property, regardless
of finite energy [Lauritzen 1996], and that detailed algebraic conditions seem to
be needed on nonchordal graphs [Geiger et al. 2006]. These results would seem to
settle the issue.

There is, however, one weakness in this picture. When hard-core conditions,
which can also be graph-based, appear in the results above, they are defined in
terms of the same graph as the one used for the interactions. Such a choice seems
to be justified by two simple remarks: first, one can always take the union of the
two graphs, the one for interactions and the one for the hard-core conditions, as a
common graph for both (as larger graphs accommodate more interactions or less
conditional independence requirements); second, one can interpret the hard-core
conditions as unbounded interactions, that are thus subject to the same geometrical
dependence. In spite of these two remarks, however, the assumption of a unique
graph is physically unwarranted; in general, the mechanisms which induce hard-
core conditions are completely different from those generating interactions. For
gravitational fields, for instance, the interaction is long-range while hard-core con-
ditions can take care of the impenetrability of rigid bodies; on the other hand, in
a canonical ensemble of short range interacting particles, the hard-core condition
is long-range as opposed to the interaction. Even more importantly, the graph
of Markov conditional independencies is naturally related to the one on which
the interaction is based, which, as we just argued, has no relation to the one for
hard-core conditions. Assuming a unique range for hard-core conditions and in-
teractions hinders the more relevant relation between interactions and conditional
independencies, and leads to confusing results.

The first consequence of the remarks above is the need of a more careful analysis,
and of more explicit notation highlighting the importance of the graphs next to the
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notions of Markov or Gibbs; we present this in Section 2. Notice that a more careful
distinction of the role of interactions and hard-core constraints already appears (al-
beit with less explicit notation) in the literature, chiefly in Ruelle’s thermodynamic
formalism [Ruelle 1978].

With the more explicit and natural identification of the graphs, it is still the case
that a Gibbs random field is Markov, but the issue of whether a Markov random
field on a given finite graph can always be obtained as a Gibbs field on the same
graph with hard-core conditions based on a possibly larger graph falls outside the
scope of past researches. In Section 5 we provide an answer to this question.

Prior to this, we give an alternative proof of the Hammersley–Clifford theo-
rem, potentially more suitable for applications. One of the earlier proofs by Besag
[1974] expresses the interaction in terms of products of spins, but works only for the
binary case and has some problematic steps in the argument; the proof of Grimmett
[1973], on the other hand, is valid for all finite and countable state spaces, but does
not express the interaction as an explicit function of the spin values. The proof we
present here expresses the interaction in terms of spin products and holds for all
finite state spaces. In a sense, it exploits the fact that spin products are a basis of
the interaction space. In so doing, we get an explicit calculation in terms of inverse
Vandermonde matrices; we also get a more direct relation with the moments of the
distribution.

Another noticeable consequence of our work is explored in Section 7, where
we show that the statistical identifiability of a discrete random field by support,
conditional independencies and moments can be analyzed by a combination of the
moment related representation of Gibbs fields in Section 4, and of the clarification
of the role of the graphs in the Markov–Gibbs relation in Section 5.

2. Definitions

Let3 be a finite set of vertices, �x be a finite set for each x ∈3, and�=
∏

x∈3�x .
For a subset A ⊆3, ωA is a configuration in �A =

∏
x∈A �x ; the same notation is

used for the restriction of a configuration ω ∈� to A. Later on, we use the notation

[ω1, ∗, ω2, . . . , ∗] = {ω ∈� : ωi = ωi , for all i such that ωi 6= ∗}

for cylinders.
In this paper we consider probabilities, generally denoted as P, on (�,P(�)),

where for every finite set S, P(S) indicates the set of all subsets of S.
To express the notions of interest here, we consider a graph G = (3,B) in which

the set of undirected bonds is B⊆ {{x, y} | x 6= y, x, y ∈3}. Given a probability P,
we say that two sets A, B ⊆3 are conditionally independent given a third set C ,
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A ⊥⊥ B | C , if ωA and ωB are conditionally independent given ωC for all ωS ∈�S ,
and S = A, B,C .

A probability P is pairwise Markov with respect to the bonds B, or as we call
it from now on, B-pair-Markov, if

(1) for all pairs of vertices x, y ∈3 which are not neighbors on G, i.e., such that
{x, y} /∈ B, x ⊥⊥ y | (3 \ {x, y}),

and it is B-global-Markov with respect to the bonds B if

(1′ ) for all pairs of disjoint sets A, B ⊆ 3 which are not neighbors on G, i.e.,
such that there is no bond in B connecting a vertex of A to a vertex of B,
A ⊥⊥ B | (3 \ A∪ B).

P is B-pair-Markov>, or B-global-Markov>, if in addition

(2) P(ω) > 0 for all ω ∈�.

These are the notions of Markov probability or Markov random field generally used
in the literature [Grimmett 1973; Lauritzen 1996; Geiger et al. 2006].

A B-clique of the graph G is a maximal complete subgraph, possibly including
single vertices, of G. We denote by C`(B) the collection of subsets A ⊆3 which
are subsets of the vertex set of a clique of G = (3,B). A B-interaction is a function
φ : ∪A∈C`(B)�A→R. Next, we consider a further collection F ⊆P(3) of subsets of
3, and a (possibly empty) set�A of forbidden configurations for each A∈F ; notice
that some authors focus on the set of allowed configurations (see [Ruelle 1978]),
but our choice underlines the exceptionality of being forbidden and highlights the
role of F , as no restrictions can be imposed for sets not in F . In greater generality,
one can take as forbidden configurations those belonging to the set � of zeros of
a function ρ defined on �. It is convenient to deal with forbidden configurations
by assigning them a probability anyway, which is then required to be zero.

A probability P is Gibbs with respect to the graph G = (3,B) and the allowed
configurations on F , or B-F-Gibbs, as we call it from now on, if for all ω ∈�,

P(ω)= 1
Zφ

(
e
∑

A∈C`(B) φ(ωA)
∏
B∈F

I�B\�B
(ωB)

)
, (1)

where IS the indicator function of the set S, φ is a B-interaction, �B for B ∈ F is
a collection of forbidden configurations, and Zφ is a normalization factor. Notice
that B-∅-Gibbs means that all configurations have positive probability; ∅-∅-Gibbs
is a Bernoulli distribution; and ∅-F-Gibbs is a Bernoulli distribution constrained
to have some zero probabilities. Moreover, B-3-Gibbs means that the hard-core
constraints can be imposed on the entire configuration, and B-B-Gibbs indicates the
fact that both interaction and hard-core constraints are assigned on configurations
defined on subsets of the cliques of the same graph (3,B).
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In abstract terms, φ and � are measurable with respect to a σ -algebra of �, but
as the σ -algebra can be expressed in terms of set B of bonds (in the sense that the σ -
algebra is the one generated by ∪A∈C`(B)�A), we focus on B and F in the notation.

Finally, we sometimes use indices to distinguish the various collection of bonds
B. In general, we indicate it by Bm if m is the size of the largest clique. Notice that
if B ⊆ B′ and F ⊆ F ′, then B-pair(global)-Markov implies B′-pair(global)-Markov,
and B-F-Gibbs implies B′-F ′-Gibbs, so one is generally interested in the minimal
such graphs and collections.

3. Previous results and one ensuing question

Global Markov implies pairwise Markov, but one can easily construct an example
with enough configurations of zero probability showing that the opposite impli-
cation does not hold [Lauritzen 1996]. On the other hand, on some graphs there
is no difference between pairwise and global Markov, as the only sets which can
be separated are pairs. Such is, for instance, the graph with 3 = {1, 2, 3, 4} and
B2 = {(1, 2), (2, 3), (3, 4), (4, 1)}; this graph is used for several examples below.

B-F-Gibbs implies B-global-Markov for any F , which then implies B-pair-
Markov. The reversed implication is given for the case in which finite energy holds
by the celebrated Hammersley–Clifford theorem [1971], which in our terminology
can be phrased as follows:

Theorem 3.1 (Hammersley–Clifford). Given a graph G= (3,B), a random field P
is B-pair-Markov> if and only if it is B-∅-Gibbs for some potential φ.

There are various proofs of this result, probably starting from [Brook 1964]
and the unpublished paper [Hammmersley and Clifford 1971] (see also [Grimmett
2010]). An explicit dependence of φ from the spin values appears for the binary
case (i.e., |�x | = 2) in [Besag 1974] (with some unclear steps in the proofs); a
general version including countable state spaces was proven by Grimmett [1973],
but without the explicit dependence of φ from the spin values. A simpler statement,
in which conditional probabilities are known instead of unconditional ones, is pre-
sented in [Onural 2016] and very likely elsewhere. For completeness, we prove
Theorem 3.1 once again in Section 4 below; the proof we give is for all finite �x

but with φ explicitly expressed in terms of spin products. Our results can also be
indirectly obtained from [Grimmett 1973] by decomposing φ on the basis of spin
products.

The Hammersley–Clifford theorem has been generalized by Lauritzen [1996] by
means of chordal graphs: an undirected graph is said to be chordal if every cycle
of length 4 or more has a chord.

Theorem 3.2. If the graph G = (3,B) is chordal, then a random field P is B-
global-Markov if and only if it is B-B-Gibbs for some potential φ.
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An algebraic interpretation and a slight generalization of these results is given
in [Geiger et al. 2006].

In the opposite direction, Moussouris’ counterexample [1974] shows that it is
not true that every B-global-Markov random field is B-B-Gibbs. This happens
necessarily on a nonchordal graph.

Example 3.3 (Moussouris). Take 3= {1,2,3,4}, B2 = {(1,2), (2,3), (3,4), (4,1)}
and let PM be the uniform distribution on

�′ = {(0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,1,0),

(1,1,1,1), (0,1,1,1), (0,0,1,1), (0,0,0,1)}.

It is easily seen (and we will explicitly show a related statement in Lemma 5.2
below) that

{1} ⊥⊥ {3} | {2, 4} and {2} ⊥⊥ {4} | {1, 3}

so that PM is B2-pair-Markov, and is (on this graph) also B2-global-Markov. On
the other hand, PM cannot be B2-B2-Gibbs; if it was so, then

PM(ω)=
1
Z

∏
A∈C`(B2)

eφB(ωB)
∏

B∈B2

I3\�B
(ωB)

=c(ω)ψ(1,2)(ω1, ω2)ψ(2,3)(ω2, ω3)ψ(3,4)(ω3, ω4)ψ(4,1)(ω4, ω1)

for suitable, not necessarily nonnegative, functions ψ(i, j) and c(ω) > 0. But

PM(0, 1, 1, 0)= ψ(1,2)(0, 1)ψ(2,3)(1, 1)ψ(3,4)(1, 0)ψ(4,1)(0, 0)= 0,

PM(0, 1, 1, 1)= ψ(1,2)(0, 1)ψ(2,3)(1, 1)ψ(3,4)(1, 1)ψ(4,1)(1, 0)= 1
8 ,

PM(0, 0, 0, 0)= ψ(1,2)(0, 0)ψ(2,3)(0, 0)ψ(3,4)(0, 0)ψ(4,1)(0, 0)= 1
8 ,

PM(1, 1, 1, 0)= ψ(1,2)(1, 1)ψ(2,3)(1, 1)ψ(3,4)(1, 0)ψ(4,1)(0, 1)= 1
8 ,

are incompatible.

However, the probability in Moussouris example is B2-3-Gibbs, actually even
∅-3-Gibbs: to see this, it is enough to take the uniform Bernoulli distribution
P̂(ω) = 1/Ze0

= 1/24, with F = 3 and �3 = � \ �′; the graph of the hard-
core constraints can actually be further reduced (see Section 6 below), although
obviously not to B2. Moussouris’ example is thus clearly not a counterexample to
the following, more natural, question.

Question. Is every Markov random field a constrained Gibbs random field on the
same graph, in the more natural sense that every B-global-Markov random field is
B-3-Gibbs?

We take over this issue in Section 5 below.
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4. Markov–Gibbs equivalence with no constraints:
an explicit Hammersley–Clifford theorem

Before tackling the main question, we give a new proof of Theorem 3.1. We ac-
tually prove the following more explicit version, assuming that the possible states
�x are real numbers. It amounts to an explicit expansion of the interaction on the
basis of spin products.

Lemma 4.1. Let G = (3,B) be a given finite graph; � =
∏

x∈3�x for finite
�x ⊆ R; and P be a B-pair-Markov> random field on (�,P(�)).

Next, let �̃x = {0, 1, . . . , |�x | − 1}; �̃=
∏

x∈3 �̃x ; and for σ ∈ �̃ and ω ∈�,
let ωσ :=

∏
x∈3 ω

σx
x (with the convention 00

= 1, if needed). Moreover, let �̃(B)
be the set of σ such that {x : σx 6= 0} is contained in a clique of B. Then

P(ω)= 1
Z

e
∑
σ∈�̃(B) Jσωσ (2)

with
Jσ =

∑
ω∈�

V−1
σ,ω log P(ω),

where V−1
σ,ω =

∏
x∈3 V−1

σx ,ωx
(x) and V−1

σx ,ωx
(x) is the element in position (σx , ωx) of

the inverse V−1(x) of the Vandermonde matrix V (x)= (r s)r∈�x ,s∈�̃x
.

Proof. The Vandermonde matrix is invertible as long as the elements of �x are all
different [Macon and Spitzbart 1958]. Next, for each ω ∈�,

e
∑
σ∈�̃ Jσωσ = e

∑
σ∈�̃ ω

σ
∑
ω∈� V−1

σ,ω log P(ω)

= e
∑
ω∈� log P(ω)

∑
σ∈�̃

∏
x∈3 ω

σx
x V−1

σx ,ωx (x)

= e
∑
ω∈� log P(ω)

∏
x∈3

(∑
σx∈�̃x ω

σx
x V−1

σx ,ωx (x)
)

= e
∑
ω∈� log P(ω)

∏
x∈3 δωx ,ωx

= elog P(ω)
= P(ω),

which gives (2) but with �̃ instead of �̃(B). We now need to show that if x ⊥⊥ y |
(3 \ {x, y}), then Jσ = 0 for all σ such that σxσy 6= 0; it would then follow that
for all σ ∈ �̃ such that Jσ 6= 0 we have that {x : σx 6= 0} is contained in a clique
of G, as required. Indeed, if x ⊥⊥ y | (3 \ {x, y}) then for all ωx ∈ �x , ωy ∈ �y ,
ω\x,y ∈�\x,y =

∏
z∈3\{x,y}�z and ω = (ωxωyω\x,y) we have

P(ωxω\x,y)P(ωyω\x,y)= P(ω\x,y)P(ωxωyω\x,y),

i.e.,

log P(ω)= log P(ωxωyω\x,y)= log P(ωxω\x,y)+ log P(ωyω\x,y)− log P(ω\x,y).

Therefore, if σ is such that σxσy 6= 0, we have
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Jσ =
∑
ω∈�

V−1
σ,ω log P(ω)

=

∑
ω\x,y∈�\x,y

∏
z∈3\{x,y}

V−1
σz,ωz

(z)
∑
ωx∈�x

∑
ωy∈�y

V−1
σx ,ωx

(x)V−1
σy ,ωy

(y)

(
log P(ωxω\x,y)+ log P(ωyω\x,y)− log P(ω\x,y)

)
, (3)

which vanishes for the following reason: We have∑
ωx∈�x

V−1
σx ,ωx

(x)=
∑
ωx∈�x

V−1
σx ,ωx

(x)1= [V−1(x)V (x)](σx ,1) = δσx ,0

since the first column of V (x) is constantly equal to 1; here, [A]i, j denotes the ele-
ment {i, j} of the matrix A. This way, if σxσy 6= 0 then both

∑
ωx∈�x

V−1
σx ,ωx

(x)= 0
and

∑
ωy∈�y

V−1
σy ,ωy

(y) = 0, so we always get 0 for the right-hand side of (3) by
taking the last two sums in the appropriate order.

It follows that if x and y are conditionally independent, then Jσ = 0 unless
σxσy = 0. This implies that all bonds between vertices in {x : σx 6= 0} belong to
G, and hence {x : σx 6= 0} is contained in a clique of G. Therefore, only σ ∈ �̃(B)
appear in (2), and the result is proven. �

Proof of Theorem 3.1. One direction is proven by Lemma 4.1. For the converse,
if P is B-∅-Gibbs then P(ω) = 1/Zφ(e

∑
A∈C`(B) φ(ωA)) and if A, B ⊆ 3 are two

disjoint sets which are not neighbors on G then the probability factorizes, hence
A ⊥⊥ B|(3 \ A∪ B). �

The interaction thus identified is unique, except for the value of Jσ(0), where
σ(0) denotes the configuration such that (σ (0))x = 0 for all x ∈3.

Lemma 4.2. If P(ω)= 1
Z

e
∑
σ∈�̃ Jσωσ , then∑

ω∈�

V−1
σ,ω log P(ω)= Jσ for all σ 6= σ(0).

Proof. For σ 6= σ(0),∑
ω∈�

V−1
σ,ω log P(ω)

=

∑
ω∈�

V−1
σ,ω

(
log e

∑
σ∈�̃ Jσωσ − log Z

)
=

∑
ω∈�

V−1
σ,ω

(∑
σ∈�̃

Jσωσ − log Z
)

=

∑
σ∈�̃

Jσ
∑
ω∈�

V−1
σ,ωω

σ
−

∑
ω∈�

V−1
σ,ω log Z

=

∑
σ∈�̃

Jσ
∑
ω∈�

∏
x∈3

V−1
σx ,ωx

(x)ωσ x
x − (log Z)δσ=σ(0)

=

∑
σ∈�̃

Jσ
∏
x∈3

∑
ωx∈�x

V−1
σx ,ωx

(x)ωσ x
x =

∑
σ∈�̃

Jσ
∏
x∈3

δσx=σ x =

∑
σ∈�̃

δσ=σ Jσ = Jσ . �
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5. Markov–Gibbs with hard-core constraints

We go back to our Question formulated on page 412 and answer it.
For a probability P on some (3,P(3)), P̂ is a strictly positive extension of P

if P̂(ω) > 0 for all ω ∈�, and

P̂(ω)= 1
Ẑ

P(ω), (4)

for some constant Ẑ , for all ω ∈� for which P(ω) > 0.

Lemma 5.1. On a graph G = (3,B), a probability P is B-3-Gibbs if and only if
it has a B-global-Markov strictly positive extension P̂.

Proof. If P is B-3-Gibbs, then define P̂(ω) := 1/(Z(P̂))e
∑

A∈C`(B) φ(ωA), for a
suitable constant Z(P̂), which is B-∅-Gibbs (and hence B-global-Markov). More-
over, P̂ is strictly positive; if P(ω) > 0 then P(ω) = 1/Zφ(e

∑
A∈C`(B) φ(ωA)) =

(Z(P̂)/Zφ)P̂(ω) so that (4) holds with Ẑ = Z(P̂)/Zφ .
Vice versa, if P has a B-global-Markov strictly positive extension P̂ , then by

the Hammersley–Clifford Theorem, P̂ is a B-∅-Gibbs random field, i.e., P̂(ω)=
1/(Z(P̂))(e

∑
A∈C`(B) φ(ωA)) for some suitable φ. By (4),

P(ω)= Ẑ
1

Z(P̂)

(
e
∑

A∈C`(B) φ(ωA)
∏
B∈F

I�B\�B
(ωB)

)
,

which is B-3-Gibbs with Zφ = Z(P̂)/Ẑ . �

Our Question has a negative answer.

Lemma 5.2. There is a graph G = (3,B) and a B-global-Markov random field
(with hard-core constraints) which is not B-3-Gibbs.

Proof. In fact, we can take the same graph as Moussouris, with bond set B2. As
support of the probability we take

�′′ = {(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (0, 0, 1, 1),

(1, 1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 0)};

hence, we assume that all configurations in � = � \�′′ have zero probability:
this is a F = 3 (or possibly a subgraph, see the next section below) constraint.
This time, however, the probability P∗ is taken as follows: P∗(1, 1, 1, 1)= 2

9 , and
P∗(ω)= 1

9 for all other ω ∈�′′ \ {(1, 1, 1, 1)}.
We first show that

{1} ⊥⊥ {3} | {2, 4} and {2} ⊥⊥ {4} | {1, 3}.
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For each x, y ∈3, if ω = ω3\{x,y} has nonzero probability, then x ⊥⊥ y |3 \ {x, y}
under a probability P is equivalent to

P(ωx = 1, ωy = 1, ω3\{x,y} = ω)P(ωx = 0, ωy = 0, ω3\{x,y} = ω)

= P(ωx = 1, ωy = 0, ω3\{x,y} = ω)P(ωx = 0, ωy = 1, ω3\{x,y} = ω),

as easily seen by elementary calculations [Moussouris 1974; Lauritzen 1996]. To
verify the claimed conditional independencies we the have to verify the following
equalities [Lauritzen 1996; Geiger et al. 2006], in which x = 1, y = 3 in the first
four equalities, and x = 2, y = 4 in the others:

(I ) P(1, 1, 1, 1)P(0, 1, 0, 1)= P(0, 1, 1, 1)P(1, 1, 0, 1),

(II ) P(1, 0, 1, 1)P(0, 0, 0, 1)= P(0, 0, 1, 1)P(1, 0, 0, 1),

(III ) P(1, 1, 1, 0)P(0, 1, 0, 0)= P(0, 1, 1, 0)P(1, 1, 0, 0),

(IV ) P(1, 0, 1, 0)P(0, 0, 0, 0)= P(0, 0, 1, 0)P(1, 0, 0, 0),

(V ) P(1, 1, 1, 1)P(1, 0, 1, 0)= P(1, 0, 1, 1)P(1, 1, 1, 0),

(VI ) P(0, 1, 1, 1)P(0, 0, 1, 0)= P(0, 0, 1, 1)P(0, 1, 1, 0),

(VII ) P(1, 1, 0, 1)P(1, 0, 0, 0)= P(1, 0, 0, 1)P(1, 1, 0, 0),

(VIII ) P(0, 1, 0, 1)P(0, 0, 0, 0)= P(0, 0, 0, 1)P(0, 1, 0, 0),

(5)

with none having four zero values, so that the condition P(ω) > 0 is valid. These
relations are easily seen to hold for P∗, as in each row there is exactly one config-
uration in � on the right-hand side and one on the left-hand side of the equality.
So, P∗ is B2-pair-Markov; since on this graph the two notions coincide, P∗ is also
B2-global-Markov.

We now verify that P∗ does not admit a B2-global-Markov strictly positive ex-
tension so that it cannot be B2-3-Gibbs. If such extension P̂ existed, then all
the above equalities would have to hold for P̂ as well, as it would have to be B2-
global-Markov; since P̂ is an extension of P∗, it would have to be P̂(ω)/P̂(ω′)=
P∗(ω)/P∗(ω′) for all ω,ω′ ∈�′′. From the first equality above we would have

P̂(0, 1, 0, 1)

P̂(1, 1, 0, 1)
=

P̂(0, 1, 1, 1)

P̂(1, 1, 1, 1)
=

P∗(0, 1, 1, 1)
P∗(1, 1, 1, 1)

=
1
2
. (6)

On the other hand, from the seventh equality

P̂(1, 1, 0, 1)

P̂(1, 0, 0, 1)
=

P̂(1, 1, 0, 0)

P̂(1, 0, 0, 0)
=

P∗(1, 1, 0, 0)
P∗(1, 0, 0, 0)

= 1, (7)

or P̂(1, 1, 0, 1)= P̂(1, 0, 0, 1); the second and eighth equality would give

P̂(1, 0, 0, 1)= P̂(0, 0, 0, 1) and P̂(0, 0, 0, 1)= P̂(0, 1, 0, 1),
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respectively. Hence, it would be P̂(1, 1, 0, 1) = P̂(0, 1, 0, 1), which would be a
contradiction with (6) above. �

6. Examples of minimal graphs

Given a graph G = (3,B), it would be interesting to classify B-global-Markov or
B-pair-Markov random fields P in terms of the minimal graphs B′ = B′(�,B, P)
and B′′ = B′′(�,B, P) so that P is B′-B′′-Gibbs; this problem can be given an
explicit algebraic form, following the lines of [Geiger et al. 2006]. We have not
been able to develop relevant results in this direction though, and therefore we limit
ourselves to a review of the previous examples from this point of view.

Example 6.1 (minimal graphs in Moussouris’ example). �=�\�′ is measurable
with respect to the σ -algebra generated by the cylinders

[10 ∗ 1], [01 ∗ 0], [∗101], [∗010],

where we use the previously introduced notation for cylinders. Therefore, a mini-
mal collection F is {1, 2, 4}, {2, 3, 4}, which corresponds to the graph with bonds
B3 = B2 ∪ {{2, 4}}. As we already observed, to define the uniform probability we
can take bonds B0 =∅; hence, PM is B2-global-Markov and B0-B3-Gibbs.

We see now that even changing the probability in Moussouris’ example would
not have yielded a counterexample to our Question.

Example 6.2 (minimal graphs in a modified Moussouris example). Consider the
same graph with bonds B2 and�′ as in Moussouris’ example, but with any probabil-
ity P strictly positive on �′. We can construct a B2-global-Markov strictly positive
extension P̂ as follows. Start from some configuration ([0101] for instance), let
P̂(0, 1, 0, 1) = c, and notice that the conditions for B-global-Markov are those
in (5). From relation (I ), any B2-global-Markov strictly positive extension has

P̂(1, 1, 0, 1)=
P(1, 1, 1, 1)
P(0, 1, 1, 1)

c;

next, from equality (VII ), one gets

P̂(1, 0, 0, 1)=
P(1, 0, 0, 0)
P(1, 1, 0, 0)

P̂(1, 1, 0, 1)=
P(1, 0, 0, 0)
P(1, 1, 0, 0)

P(1, 1, 1, 1)
P(0, 1, 1, 1)

c;

recursively, we get all probabilities as function of c, and finally c from normaliza-
tion. This generates an extension P̂ of P. We know P̂ is strictly positive as P was
strictly positive on �′ and the above operations preserve positivity; furthermore, it
is B2-global-Markov as the relations in (5) are all valid for P̂ as well. As such, the
Hammersley–Clifford theorem applies to P̂, which is then B2-∅-Gibbs. We have
seen in Example 6.1 that the constraints are generated by the graphs with bonds B3;
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therefore, any absolutely continuous modification P of Moussouris’ example is B2-
B3-Gibbs.

Example 6.3 (minimal graphs for P∗). The configurations in � = � \ �′′ are
generated by the cylinders

[∗ ∗ 10], [∗ ∗ 01];

hence, a minimal collection F is {3, 4}, which corresponds to the graph with bonds
B′2 = {{3, 4}}.

Next, observe that is not possible to express the probability in terms of a B2-
Markov probability, as otherwise P∗ would be B2-B2-Gibbs, and we know from
Lemma 5.2 that it is not. On the other hand, as on B3 pairwise Markov is the same
as global Markov, and B3 produces a separable graph, the result in [Lauritzen 1996]
implies that P∗ is B3-B3-Gibbs. Hence, P∗ is certainly factorizable on B3. A simple
calculation shows that all such factorizations have interactions

J{3} = x3, J{4} = x4, J{3,4} =−(x3+ x4),

J{4,1} = log 3
2 , J{1,2,3} = log 2, J{3,4,1} = log 2

3 ,

and JA = 0 for all other sets A. Therefore, taking

B′3 = {{3}, {4}, {3, 4}, {4, 1}, {1, 2, 3}, {3, 4, 1}},

we have that P∗ is B′3-B3-Gibbs. As we have already noticed that the hard-core
constraints are generated by B′2, we have that P∗ is B′3-B′2-Gibbs.

Back to the question and notation at the beginning of this section, it is not easy
at this point to elaborate on the relationship between B and B′ and B′′. For instance,
in all the previous examples, one of the two graphs B′ or B′′ was always contained
in B; but not even this holds in general.

Example 6.4. Consider 3 as in the examples above, and identical copies 3(1)
and 3(2); in each copy consider a copy B2(1) and B2(2), respectively, of the edges
in B2, in each copy between the appropriate vertices. The graph we consider is then
G = (3(1)∪3(2),B2(1)∪B2(2)). The configuration space is �=�(1)×�(2),
where�(i) is the copy over3(i) of the configurations of {0, 1}3. The probability P
is taken to be the product P = PM × P∗. It is easily seen that P is (B2(1) ∪
B2(2))-global-Markov. On the other hand, the hard-core constraints are generated
by cylinders in Examples 6.1 and 6.3 in the two copies, so that the graph of hard-
core conditions is B′′3 = B3(1)∪B′2(2). However, the interactions are generated by
the graph B′′′3 = B0(1)∪B′3(2). So, altogether, P is (B2(1)∪B2(2))-global-Markov
and B′′3 - B′′′3 -Gibbs, but neither B′′3 nor B′′′3 are contained in B2(1)∪B2(2).
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7. Identifiability of statistical models by support, moments and
conditional independencies

As an application of our results, we turn to an identifiability problem in statistics.
Suppose that of a discrete random field P on the configuration space �3, for some
finite set 3, we have observations that determine the support of the distribution,
the pairwise (or global) conditional independencies, leading to a dependency graph
G = (3,B) with bonds B, and finally the collection of moments determined by the
cliques of B, that is, all moments

mσ = EP(ω
σ ) (8)

where σ ∈ �̃ is such that {x : σx 6= 0} is contained in a clique of B. If (8) holds
then we say that P satisfies the B-moments.

We start by combining the results of Sections 4 and 5 to show that these are,
in general, sufficient statistics to determine the distribution. Later we verify, how-
ever, that the counterexample of Lemma 5.2 leads to exceptional cases in which
identifiability by the above statistics breaks down.

The result about identifiability is given in two steps. First, we assume that P is
known to B-F-Gibbs for some F .

Lemma 7.1. Given B,F , the �A for A ∈ F , and B-moments mσ , there is at most
one B-F-Gibbs random field P satisfying the B-moments.

Proof. Suppose there are two B-F-Gibbs random fields P and P ′ satisfying the B-
moments. Each has a B-global-Markov strictly positive extension by Lemma 5.1,
which can be expressed as in Lemma 4.1 with interactions J and J ′, respectively.
Now consider

f (t)= EP(t)

( ∑
σ∈�̃(B)

ωσ (J ′σ − Jσ )
)
,

where P(t)= 1
Z e

∑
σ∈�̃(B) ω

σ (Jσ+t (J ′σ−Jσ )) for t ∈ [0, 1]. We have

f (0)=
∑

σ∈�̃(B)

EP(0)(ω
σ )(J ′σ − Jσ )=

∑
σ∈�̃(B)

EP(1)(ω
σ )(J ′σ − Jσ )= f (1)

by equality of B-moments. Moreover, f ′(t)= VarPt

(∑
σ∈�̃(B) ω

σ (J ′σ − Jσ )
)
≥ 0.

Combined with f (0)= f (1) this implies f ′(t)= 0 for all t ∈ [0, 1]. Hence, 0=
f ′(0)=VarP0

(∑
σ∈�̃(B) ω

σ (J ′σ−Jσ )
)
≥0, which implies

∑
σ∈�̃(B) ω

σ (J ′σ−Jσ )≡0
and that the two extensions of P and P ′ coincide. This implies that also the two
random fields coincide. �

Theorem 7.2. Let B and B-moments mσ be given.
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(1) If finite energy holds then there is at most one B-global-Markov random field
P satisfying the B-moments; in particular, P is B-∅-Gibbs.

(2) If G = (3,B) is chordal then there is at most one B-global-Markov random
field P satisfying the B-moments; in particular, P is B-B-Gibbs.

Proof. (1) If a random field is B-global-Markov and completely positive then it is
B-∅-Gibbs by Theorem 3.1, and uniqueness follows from Lemma 7.1.

(2) If G= (3,B) is chordal then P is B-B-Gibbs by Theorem 3.2, hence uniqueness
follows from Lemma 7.1. �

Identifiability can break down. We first observe that in Moussouris’ example
identifiability still holds, and then show that it does not hold for P∗ in Lemma 5.2.

Example 7.3. B2-moments in Moussouris’ example are E(ωi )=
1
2 , i = 1, . . . , 4;

E(ωiωi+1)=
3
8 , i = 1, . . . , 3; E(ω4ω1)=

1
8 . With some algebra one can see that

if a random field P satisfies these B2-moments then

P(1,0,1,1)=−P(0,0,1,0)− P(0,1,0,0)− P(0,1,0,1)

− P(0,1,1,0)− P(1,0,0,1)− P(1,0,1,0)− P(1,1,0,1),

which implies that �′ is the support of P ; some further algebra shows that the other
linear relations imply then that P is uniform on �′, so that P = PM.

Example 7.4. The random field P∗ in the proof of Lemma 5.2 has B2-moments
E(ωi ) =

5
9 , i = 1, . . . , 4; E(ωiωi+1) =

3
9 , i = 1, 2, 4; E(ω3ω4) =

5
9 . We see

that there is not a unique random field which has the same support �′′ of P∗, is
B2-global-Markov, and satisfies the above B2-moments. With a little algebra one
can easily verify that every random field P with support in �′′ and

P(1,0,1,1)= 1
3 − λ, P(1,1,0,0)= 1

3 − λ, P(1,0,0,0)=− 1
9 + λ,

P(0,1,1,1)= 1
3 − λ, P(0,1,0,0)=− 1

9 + λ, P(0,0,1,1)=− 1
9 + λ,

P(0,0,0,0)= 1
3 − λ,

with λ = P(1, 1, 1, 1) ∈
[ 1

9 ,
1
3

]
, satisfies the above B2-moments and is also B2-

global-Markov (as it is absolutely continuous with respect to P∗).
By Lemma 7.1, there is a unique B2-3-Gibbs satisfying the above B2-moments,

namely the one with λ≈ 0.2119 equal to the real root of λ
(
λ− 1

9

)3
−
(1

3 − λ
)4
=

−9+ 107x − 459x2
+ 729x3

= 0; one can get this equation directly by explicitly
writing out the conditions for P to be B2-3-Gibbs, or indirectly by noticing that
this must be the only value of λ which does not lead to a contradiction in (6) and
(7). For all other values of λ∈

[1
9 ,

1
3

]
, including λ= 2

9 as in Lemma 5.2, the random
fields are not B2-3-Gibbs, so they constitute a family of counterexamples to our
Question, all with the same B2-moments.
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Remarks. (1) The last example raises the question (related to that of the minimal
graph mentioned in Section 6) of the minimal set of moments which can identify
a B-Markov random field with hard-core constraints.

(2) The results above about identifiability of random fields from Markov proper-
ties and moments can be interpreted as follows. B-moment conditions identify a
simplex of probability measures, as described in detail in [Pitowsky 1989] for the
violation of correlation conditions in quantum mechanics. When the B-Markov
conditional independencies are added, then the resulting algebraic variety reduces
to a point in the interior of the simplex, or to a (possibly nontrivial) variety con-
tained in the boundary of the original simplex. We do not know which additional
observations could guarantee uniqueness.

8. Conclusions

We have reviewed the Hammersley–Clifford Theorem, which states the equiva-
lence of Markov and Gibbs random fields when there are no hard-core conditions,
giving a more explicit proof than usual with the interaction expressed in terms of
spin products.

We then addressed the same problem when there are hard-core constraints. We
argued that the hard-core constraints are more naturally represented in terms of
a separate graph from that used to determine the interactions; in this respect, the
counterexample of Moussouris as well as the subsequent literature on constrained
Markov random fields do not address the appropriate issues.

We have shown that even allowing the largest possible graph for the hard-core
constraints, there are cases in which it is not possible to restrict the graph of the
interactions to the one for the Markov conditional independence.

This, in turn, has opened the question of finding minimal graphs for the hard-
core conditions and the interactions given the graph of the Markov conditional
independencies. We have not been able to address this issue, but we have provided
examples of minimal graphs.

Finally, we discussed the statistical identifiability of a random field in terms of
support, conditional independencies and moments, with the last two requirements
based on the same graph. Our proof of the Hammersley–Clifford theorem allows us
to easily show identifiability if finite energy is ascertained or the graph is chordal;
while our counterexample allows us to exhibit a case in which support, conditional
independencies and moments do not uniquely determine the random field.
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QUANTUM MECHANICS: LIGHT AND SHADOWS
(ONTOLOGICAL PROBLEMS AND EPISTEMIC SOLUTIONS)

GIANFAUSTO DELL’ANTONIO

We discuss several problems that arise in the Copenhagen interpretation of quan-
tum mechanics, in an attempt to come to grips with what E. T. Jaynes has called
the quantum omelette.1

1. Introduction

In this contribution in honor of Lucio Russo, friend and admired colleague, I will
present some remarks on the status of quantum mechanics, a theory through which
we try to understand the world of atoms and molecules.

The research in this field has led to extraordinary successes; in fact, our present
technology is to a large extent based on our description of this world.

We are convinced that we have found the key that opens the door to its full con-
tent, and that in the future our task is only (!) to unravel ways to solve complicated
equations, maybe with the aid of a computer.

But quantum mechanics (QM) also poses conceptual problems and has been the
arena of debates since the times of the founding fathers.

These problems are related to the meaning of QM as a physical theory.
The problematic relations between ontology and epistemology have been de-

bated in western culture since the time of Plato, but the debate has seen a new life
with QM since the basic foundational elements of classical physics are not valid in
QM.

I will consider here only the traditional presentation of QM based on the for-
mulation given by the Copenhagen school and developed among others by Born,
Jordan, Heisenberg, and Schrödinger.

Generally speaking, this is the only presentation taught in universities and known
to the majority of physicists.

Another presentation, which I will call pilot wave theory, originated by de Broglie
and brought to a high mathematical standard by S. Goldstein and D. Dürr, gives
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a totally different representation of the building blocks of theory and has its own
conceptual difficulties. I shall come back briefly to this theory.

It is a basic assumption of western science that existence and reality can be rep-
resented through a metaphysical system which, while creating its own fundaments,
serves the purpose of representing reality.

One should recognize that the origin of physics is the idea that reality exists and
is at least partially accessible to our inspection.

At the same time, humans shape their experiences not only through their senses
but also through their metaphysical and categorial presuppositions.

Causality, identity, and noncontradiction are not regarded as platonic concepts
that humans discovered in the world as ideas but rather as prior conditions for
human understanding.

The categorial representation of reality, in particular Newtonian space-time, lim-
its and configures in a definite manner Newtonian physics.

On the other hand, there is David Hume’s analysis of the inductive nature of
science and the impossibility of grounding the notion of causation in experience.
Causation as such is never found in the observable word; it is rather a metaphysical
presupposition which allows the subject to make sense of observations.

In the same way, identity and noncontradiction are the conditions that constrain
our observations.

Positivism relies on the distinction between empirical terms (empirically given
in physical theories and experiments) and theoretical terms which are their trans-
lations into simple statements.

In this way, true knowledge (episteme) is replaced by objective knowledge with
humans’ shaping (experience).

One may say that the machian critic of Newton mechanics paved the way for
quantum mechanics.

In fact, the multiple representations provided by different modern theories sug-
gest that the successes of human understanding must be regarded as creations rather
that discoveries.

When discussing the breakdown of the foundations of theories in the twentieth
century, Wolfgang Pauli [1994] remarked that the modern physicist regards with
skepticism philosophical systems which, while imagining that they have defini-
tively recognized the a priori conditions of human understanding itself, have in fact
succeeded only in setting up the a priori conditions of the system of mathematics
and the exact sciences of a particular epoch.

Still we believe that physical theories are not only mirrors that reflect our own
beliefs.

Within physical discourse, a cornerstone is counterfactual reasoning. If a theory
makes predictions which agree reasonably well with experimental or observational
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results, scientists are inclined to believe that its logical and mathematical structure
reflects the structure of the real world in some way, even if the philosophers remain
permanently skeptical [Griffiths 2002].

In this regard, the classical representation of physics was produced when Newton
related the mathematical theory of calculus with physical notions such as space,
time, force, particles, and mass.

This representation was extended by Maxwell relating the theory of partial dif-
ferential equations with electromagnetism and introducing in physics the notions
of charge and fields.

This approach, contrary to the pythagorean–platonic view, regards mathematics
as a nonrepresentative discipline. It is only physics which, making use of the
mathematical formalism, attempts to discuss physical reality.

In this respect, it can be said that quantum mechanics represents a dissolution
of this classical representation of the world.

2. Origins of QM

Conventionally one places the beginning of quantum mechanics at Planck’s for-
mulation of the quantum postulate. The theory soon went beyond its original
formulation, which aimed to justify the spectrum of black-body radiation.

It was observed that in the quantum world some physical quantities, in partic-
ular the energy of the states of the atoms, seemed to be forced to have a discrete
spectrum. This is of course totally different from the classical world as we perceive
with our senses.

On the basis of the relation between energy and momentum of particles of light
established by Einstein, this provided a quantization also of the frequency of the
radiation emitted or absorbed.

The energy of the states of the atoms and some quantities related to a pair of
states (emission or absorption of light) were the only information accessible to
experimenters.

Following the positivistic rule that only observable quantities should be consid-
ered within a theory, W. Heisenberg advanced the first closed formulation of the
theory, matrix mechanics.

The theory was not designed to talk about trajectories of particles; following
the Einstein dictum “it is only the theory that tells you what you can observe”,
Heisenberg derived the uncertainty principle from matrix mechanics and the quan-
tum postulate.

Notice that in this postulate enter quantities (position and momentum) that are
well defined in classical physics, but are attributed to matrices in this formulation
of QM.
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Through a more accurate analysis, for which the contributions of M. Born and
P. Jordan and the reference to the dispersion relations of Kramers were essential, it
was soon discovered that the theory could have a wider scope, still within atomic
physics.

The theory of matrices was given a stronger mathematical flavor with the theory
of operators in a Hilbert space. Notice that at the very same time and in the same
place (Göttingen) Hilbert was developing his functional calculus (and Jordan was
his assistant for some time).

Several other matrices entered in the relations that were derived with matrix
mechanics. The ones that more frequently appeared in the analysis were powers
of position matrices, powers of momentum matrices, and their real linear span.

If ai, j is a matrix that represents the observable A and φi is the vector associated
to the state S in order to account for experimental data,

∑
i, j φi ai, jφ j has to be

taken to be the expected value for a measurement of A in the state S.
The measurements resulted in a real number, and therefore, all matrices which

were used were hermitian. It was natural (and mathematically more convenient) to
agree that all hermitian matrices represent observables.

Notice that observable is here understood as a definition, without reference to
the instrumental apparatus that can be used to measure its value. This is a clear
violation of the positivistic rule, since for very few observables can a prescription
be given to construct an instrument which can be used to measure them.

Therefore, the term observable, often used in the mathematical formulation of
QM, refers to an ontological description.

In this formalism, it turns out that in order to represent something one is forced
to consider matrices which are complex-valued. Therefore, observables can be
represented by matrices with complex entries. Observations always lead to a real
number, and therefore, not all matrices represent observables but only those that
are hermitian.

Notice that the algebra of matrices is not commutative and the product of two
hermitian matrices need not be hermitian. In the mathematical formulation of the
theory, it was convenient to consider the entire algebra of matrices and not only
the “observable” ones.

The theory of matrices developed by Born, Heisenberg, and Jordan gave a ratio-
nal basis to very many problems in atomic physics.

At the same time, it made clear that classical mechanics and dynamics were
not a valid instrument for the description of the structure of the atomic world, in
spite of the fact that the description of the atomic reactions was given in classical
terminology. Indeed it was heavily stressed by N. Bohr that all relevant information
can only be transmitted and received within the formalism of classical mechanics.
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Roughly at the same time, E. Schrödinger developed wave mechanics adapting
ideas of L. de Broglie.

L. de Broglie had remarked that a quantal fraction of reality seemed to have
a particle-like behavior in some experimental instances and a wave-like behavior
(diffraction) in others.

Following an analogy with the variational principles of classical mechanics both
in the lagrangian and hamiltonian formulations, he proposed that a quantal fraction
of reality be described by a complex wave. It was complex because the analogy
with classical (hamiltonian) mechanics required the introduction of a “momentum”
and by the formalism of the Fourier transform a fraction of reality with definite mo-
mentum was represented by a monochromatic wave and therefore complex-valued.

Schrödinger adapted the de Broglie formalism to describe the structure of the
atoms, in particular the hydrogen atom. He modified the wave equation proposed
by de Broglie to take into account that the dynamics is nonrelativistic, and he pro-
posed an equation which replicates the hamiltonian structure of classical mechanics
and takes into account the intuition of de Broglie, i.e., that plane waves should be
representative of sharp values of the momentum.

The Fourier transform gives the relation between a representation in which the
position has a relevant role in the description and a representation in which the
relevant role is given to momentum.

Later Born postulated that the square of the modulus of the wave gives the
density of the probability that at a given time the system is in a spacial configuration
and that the square of the modulus of its Fourier transform gives the density of the
probability that the system is in a specific momentum configuration.

A great success of the analysis of Schrödinger was the proof that his time-
independent equation gave exactly the energy levels found for the hydrogen atom.
It was proven later by W. Pauli that this result can be obtained by purely algebraic
analysis.

For more complex atomic structure, the analysis is not so simple and requires
several approximations and estimates. Still the analysis of the atomic spectra
through a solution of the Schrödinger equation led to excellent results (and also
to interesting developments in the theory of partial differential equations).

With de Broglie and Schrödinger begins the formulation of quantum mechanics
as wave mechanics; immediately after it was proved by several people (including
Schrödinger himself) that the two formulations are equivalent (as a theory of oper-
ators in a separable Hilbert space).

Schrödinger’s formulation employs the representation of the Hilbert space as a
space of square-integrable functions over a measure space; Heisenberg’s formula-
tion chooses a specific orthonormal complete basis and looks at the operators as
“matrices” in this basis.
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Of course separable Hilbert spaces are isomorphic, and therefore, one can repre-
sent QM in any other realization of the Hilbert space, for example in the realization
as square-integrable functions on the unit interval of the real line. But in this repre-
sentation, the operators corresponding to simple physical quantities (e.g., position,
momentum, and energy) have a very complicated presentation.

A major role in the theory is played by the rule that describes the value of an
observable when the system is in a given state.

The structure of the formalism suggests that this operation be linear in the ob-
servables but sesquilinear in the wave function that represents the state, in order to
ensure that the result of any measurement is a real number. This is formalized in
Born’s rule, which we will discuss shortly.

This leads, as Schrödinger immediately remarked, to a characteristic feature of
the theory, the superposition principle which is better explained in the Schrödinger
representation.

If φ and ψ are unit vectors in the Hilbert space, 8= (φ+ψ)/|φ+ψ | is also a
unit vector but in general (φ, Aφ)+ (ψ, Aψ) 6= (8, A8).

There is therefore interference between the waves. This phenomenon is very
well known for water waves and for electromagnetic waves, but here it is counter-
intuitive since the waves are probability waves.

The superposition principle has a more involuted description in the formalism
of Heisenberg, but the two formulations are equivalent, and therefore, the super-
position principle also affects this representation. Independently of the formalism
chosen, this implies a relationship between states that cannot be explained in terms
of familiar classical physical concepts.

Some researchers tried to escape the problem posed by the superposition princi-
ple by searching for hidden variables (the wave functions does not fully describe
the state of the system).

The naive hidden variables theory turned out to not be practicable because they
lead to inequalities (Bell’s inequalities) that are disproved by experiments.

A totally different way out is the pilot wave theory (also named Bohm theory),
which was initiated by de Broglie himself. It is a non-Newtonian theory in which
particles move under the action of a vector field (pilot wave) which itself satisfies
a Schrödinger equation defined on the configuration space of all the particles.

It is a theory of particles and not a hidden variable theory because the (point)
particles are fully described by their position and momentum. It is not a Newtonian
theory because no reference is made to forces; the motion of the particles is ruled
by a vector field which is not associated to the particles.

Its presence is perceived only through its action on the particles. The evolution
of the field is independent of the particles and is determined by a Schrödinger
equation on the configuration space of all the points.
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We shall not further discuss this interesting theory (which is also mathematically
difficult as the vector field is singular) which, as remarked before, has its own
interpretation problems.

3. Ontology and epistemology: the quantum omelette

Bohr’s reaction to the difficulty of describing the ontological content of quantum
mechanics was to abandon the physical representation of quantum mechanics, i.e.,
regard the formalism of quantum mechanics as solely epistemological.

There is a difference between discussing what reality is and how humans acquire
knowledge from experience.

An ontological question is a question about the nature of existence and reality.
It presupposes the existence of reality and the possibility to represent it.

An epistemological answer is related to the way in which humans connect to
external reality. It is not regarded as a ground or goal of understanding. Its task is
to describe how humans relate to experience. Physical theories are economics of
human experience (Mach).

From this point of view, problems are not out there but are part of a definite view-
point with definite metaphysical assumptions and presuppositions without which
they cannot even be stated.

According to Jaynes [1990], our present the quantum-mechanical formalism is
not entirely ontic but at the same time not entirely epistemological. It is a peculiar
mixture describing in part nature and in part incomplete human information about
nature, all scrambled up by Heisenberg and Bohr into an omelette that nobody
knows how to unscramble.

Unscrambling the quantum omelette is a prerequisite for any advance in basic
interpretation of the theory.

Quantum mechanics, in its Copenhagen interpretation, makes a process end with
a choice, codified by Born’s probability rule.

But if we take an ontological point of view, there can be no choice which de-
termines what reality is: a subject cannot define by a choice, within a physical
representation of a theory, what is physically real. Physical reality can be repre-
sented in an objective manner only if the subject (the experimenter) plays no role
within that representation.

Einstein showed the inconsistencies with respect to physical reality (as under-
stood in classical physics, the setting in which experiments and their outcomes
are described) in which QM had been drawn through Bohr’s complementarity ap-
proach.

What is considered physically real according to quantum mechanics?
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Bohr’s epistemological approach escapes ontological debates. Bohr’s explained
how things had to be done. Following this set of rules, one could recover from QM
a rational account of classical phenomena [Bohr 1935; 1963].

When asked whether the quantum theory can be considered as somehow mir-
roring an underlying quantum reality, Bohr declared, “There is no quantum world.
There is only an abstract quantum physical description” [Petersen 1963]. It is
wrong to think that the task of physics is to find out what nature is. Physics
concerns what we can say about nature.

Later he wrote, “Physics is to be regarded not so much as the study of something
a priori given but as development of methods of ordering and surveying human expe-
rience which can be unambiguously communicated in ordinary human language”.

Bohr always stood on the epistemic side and never discussed questions related
to the ontology of the quantum realm.

It was Heisenberg, and later Born and Pauli, who, when stressing the successes
of the new theory, incoherently mixed the epistemological complementarity scheme
of Bohr with an ontological (Platonistic) approach which assumed a direct relation
between the mathematical formalism and reality itself.

This led to the cooking of the quantum omelette.
This quantum-unrealistic position was consolidated at the Solvay conference

(1927) and is now part of what every physicist learns and practices. It is the con-
ceptual background of all the brilliant successes of QM in atomic, nuclear, and
solid-state physics over the past ninety years.

Physicist have learned to think about the theory in a highly unrealistic way, to
be at ease with wave functions and operators. This (unrealistic) way has brought
about the most marvelous predictive successes in the history of science.

The triumph of this approach is exemplified by the fact that the Copenhagen in-
terpretation is taught in all universities around the globe, while the mathematically
equivalent pilot wave theory of de Broglie is seldom taught and is considered a
curiosity.

Our students manipulate and draw wave functions as if they had an objective
reality.

4. Copenhagen quantum mechanics

The quantum theory of Planck and Bohr was the basis on which one had to construct
a new theory to describe the dynamics of atomic systems.

Let us recall that a mathematical model, according to J. von Neumann, is a math-
ematical construction that, supplemented by a verbal language of correspondence,
provides a coherent basis for the description of a class of physical phenomena.
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A model originates from a combination of experimental evidence, theoretical
analysis, and mathematical analogies. A model obtains the status of a theory on the
basis of the amount of physical phenomena it helps to organize in a coherent way.

When the class of phenomena described by a model in a somewhat unified way
covers an entire field of physics, one speaks of a theory. A theory in general
provides a different perception of what is relevant, both conceptually and from the
point of view of the experiments, a different paradigm.

The passage from a model to a theory is also conditioned by cultural background,
versatility to adapt to applications, and also prejudgements.

A theory indicates what experiments are worth performing and what the ques-
tions that can be meaningfully asked are.

Form this point of view, QM deserves to be called a theory; it has changed
our perception of the world at the atomic scale, providing a unified physical and
mathematical picture, is at the basis of new technology, and has stimulated the
development of a relevant part of modern mathematics.

When a theory reaches acceptance by a majority, it tends to dismiss as “false”
or “irrelevant” any other attempt to construct an alternative model. Researchers
working in QM tend to dismiss alternative theories as irrelevant and mental con-
structions and have the tendency to dismiss as futile the research on the foundation
of the theory.

The consensus that comes from extraordinary successes is taken as a sign of truth.
Still there are conceptual problems that come partly, as N. Bohr emphasized,

from the fact that the language which is used is borrowed from classical physics
(N. Bohr went to the extreme of stating that classical physics is necessary to de-
scribe quantum mechanics) and partly from the difficulty of reconciling the intrinsic
probabilistic aspects of quantum mechanics with the deterministic features which
we are used to associating to physical phenomena.

For these reasons, quantum mechanics is a theory which is mathematically self-
consistent and very effective in its application, but not conceptually complete.

We have stated that the mathematical construction of a model (and of a theory)
requires

• stating axioms (or postulates), in general derived from phenomenology and
from some historical and cultural background (the structure of previous suc-
cessful theories),

• deduction of some nontrivial consequences, typically under the form of theo-
rems and equations, and

• determining a verbal language which associates the mathematical structures
to measurable quantities; this empirical description is in everyday language
and links the theory to experimental data.
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In classical physics, the mathematical constructions are, e.g., the variational
principles, the equations of hamiltonian or lagrangian dynamics of material points,
and the equations of the dynamics of the continuum and the equations of electro-
magnetism as formulated by Maxwell.

The (scientific) verbal language, i.e., the correspondence between mathemati-
cal entities and quantities that can be measured, is given for granted in classical
physics; this common agreement is a result of centuries of “experience” and is also
due to the fact that we have a daily experience of the classical world.

No one doubts the objective meaning of terms such as measure of a velocity
or measure of a magnetic field, and we regard the result of a measurement as
independent of the experimenter and of the apparatus used.

For the phenomena at the atomic scale as described by QM, this objectivity fails
and the very concept of measurement can become problematic.

One can try to overcome this problem by stating that macroscopic objects, such
as a measurement apparatus, must be regarded as classical objects, obeying the
laws of classical physics.

But this would divide the physical world into two separate incompatible parts,
and it would be difficult to make precise each time to which world one refers.

Many efforts have been made to solve the measurement problem (i.e., the de-
tailed description in QM of the process of measurement), and various mechanisms
have been proposed to explain why in (most) macroscopic bodies one does not
perceive the typical structures of QM.

In particular, they explain why it is difficult to perceive (outside specialized labo-
ratories) the superposition principle and the entanglement. Some of these attempts
have led to a better understanding of the conceptual structure of the formalism and
of its interpretation, but a satisfactory answer has yet to be found.

Let us stress again that from the empirical point of view QM has had outstand-
ing success in organizing, describing, and also in some cases predicting results of
experiments in its range of validity, namely the (nonrelativistic) physics of atoms
and molecules and their aggregates.

At the same time, the refinement of the formalism of QM has contributed greatly
to the development of modern mathematics.

Still it must be remembered that this theory has its own range of validity, in
particular that it is nonrelativistic and it is not applicable to phenomena which
occur at very high energies.

5. States and observables in QM

We review the basic structure with a mathematical description of the concepts of
states and observables.
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In general terms, a state of a system is the result of a preparation procedure. In
order to construct a model, one must think of an idealized procedure that results in
a well defined state.

One may think that the definition of a state is such that when a system is in
state “A” any experiment gives the same result if performed by different observers.

This is true in classical physics; a measurement can be done, at least in principle,
without altering the state of the system. And one can describe the state of a com-
posite system by separately describing its parts. To give an example, the “state”
of the solar system is described by giving the position and velocity of the single
planets.

This has led those in classical mechanics to consider as elementary states the
points in phase space M.

An observable is characterized by the value it takes on each state, i.e., by a real-
valued function on the phase space: if m ∈M and if f is continuous, the number
f (m) represents the result of the measurement of the observable described by f

when performed on a system in the state described by m.
From a mathematical point of view, therefore, the states in classical mechanics

are elements of the dual of the space of continuous functions, the duality given by
{m, f } → f (m).

The meaning of the word measurement and the role of the measurement appa-
ratus are not discussed further; their definitions are considered clearly established
and universally accepted. And it does not depend on the observer.

In classical statistical mechanics, one also introduces more general states rep-
resented by positive measures µ that are absolutely continuous with respect to
Lebesgue measure.

These states are linear positive functionals on essentially bounded functions;
as a consequence one can include in the theory a larger class of observables, i.e.,
functions in L1(M).

As can be seen from this brief reminder, the definition of pure state in classi-
cal mechanics is linked to the possibility of considering continuous functions as
observables.

Dynamics is given by means of differential equations for functions in phase
space which are required to be differentiable.

When one tries to develop QM and its dynamics keeping some analogy with
Hamiltonian mechanics, the first problem one faces is that in QM an equivalent of
phase space does not exist, and therefore, it is difficult to decide a priori how to
describe a pure state and characterize an observable.

This problem is solved differently in the two basic formulations of quantum
mechanics, which we shall denote Schrödinger QM and Heisenberg QM.
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Schrödinger quantum mechanics. In the formulation of quantum mechanics due
to Schrödinger, the primitive elements are the (pure) states which are represented
by (normalized) vectors in a separable complex Hilbert space (for one particle,
H≡ L2(Rd)) where d is the number of degrees of freedom of the corresponding
classical system.

This interpretation makes explicit use of the analogy between |φ(x)|2, x ∈ Rd ,
and the classical Liouville distribution ρ(x).

In Schrödinger’s formulation, the observables are a dual structure; they are rep-
resented by operators on H.

Since H is concretely represented as L2(Rd), the observables are represented
by operations on functions, typically by multiplication by another function and by
differential operators.

In view of the analysis done by de Broglie, the operator −i ∂
∂xm

can be identi-
fied with the momentum of a particle. Also real functions of momentum space
represent observables. For these observables, one can expect to define a possible
measurement procedure.

Dynamics of the states is given by the Schrödinger equation; dynamics on the
observables is defined by duality.

Since the set of operators which are sums of a function of position and a function
of momentum is not invariant under time translations, in order to be able to describe
the dynamics, one is forced to increase the number of observables.

If we require the average value of any observable in any state to be a real number,
we should restrict ourselves to hermitian operators (more precisely to self-adjoint
operators in order to have a functional calculus).

One is therefore led to state that the observables are in one-to-one correspon-
dence with self-adjoint operators, in spite of the fact that for a generic self-adjoint
operator one is not able to exhibit the experimental apparatus which may be used
to measure the observable it represents.

According to Born’s rule,
∫
�⊂R3 |φ(x)|2 dx represents the probability that, per-

forming a position measurement of a particle in the state described by φ(x), the
outcome is that the particle is localized in the region �.

This implies that, if the observable A is represented by the function A(x) in
configuration space, then

(φ, Aφ)≡
∫
|φ(x)|2 A(x) dx

is the average of the results one obtains if one measures the outcomes of a mea-
surement of A.
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In the same way, if the observable B is represented by the function B(p) in
momentum space, then

(φ̂, Bφ̂)≡
∫
|φ̂|2(p)B(p) dp

(where φ̂(p) is the Fourier transform of φ(x)) is the average of the results of the
measurements of the observable B.

By polarization, one obtains the value of (φ, Aψ) for every observable A and
for any pair φ,ψ ∈H.

Heisenberg’s quantum mechanics. In the formulation given by Born, Jordan, and
Heisenberg (matrix mechanics), the primitive elements are the matrices that give
the probability of transition from an atomic state un to another state um under the
influence of an external field or under spontaneous decay

This leads one to consider as basic elements in the theory the observables rep-
resented by infinite matrices, i.e., linear operators on a separable Hilbert space.

The structure of the states plays a lesser role in this formulation of quantum
mechanics. They are considered the result of an initialization and are distinguished
by means of the value they give for the expected value of the observables.

This correspondence is linear for the matrices that represent observables, and so
the states are linear functions of the observables continuous in a suitable topology,
i.e., elements in a dual space.

Interference effects are not easy to describe in the Heisenberg formalism. A con-
crete analysis of entanglement and interference without reference to the Schrödinger
representation is difficult.

On equivalence. We have already seen that the two representations are equivalent
in the mathematical sense and correspond mathematically to dual structures.

The mathematical instruments used are different: mostly algebraic in Heisen-
berg’s presentation and mostly function-theoretical in Schrödinger’s.

A bridge between the physics of the two formulations of QM is given by Born’s
rule, which we will describe soon as an axiom.

In this rule, the states and the observables play equally important and symmetric
roles.

But Schrödinger’s formulation has special properties that come from the fact
that one was naturally led to use the representation of the Hilbert space as (square-
integrable) functions on the configuration space.

This special presentation introduces spurious elements which make QM more
visualizable in space (one draws on the blackboard the shape of the wave function)
at the price of introducing misunderstandings.
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Indeed the wave function is not a measurable quantity; it is rather an abstract
instrument which can be used to determine probabilities of real events.

Still some remnants of the visual picture survive. The use of periodic cells intro-
duces homology, and smooth functions can belong to different homology classes.

If, as usually assumed in regular crystals, the wave functions are coherent over
many cells, these homological properties are inherited by the state of the crystal
and may influence the expectation values of specific observables.

Therefore, the homology class of a wave function (a priori an abstract object)
may be measurable; indeed the topology of the wave function is at the root of the
use of geometrical and topological methods in solid-state theory.

As a consequence, one must be prepared to recognize that there are “geometric”
properties of the wave functions which correspond to measurable quantities.

6. The axioms

After these preliminaries, we can now state the axioms of quantum mechanics. In
choosing the order of the axioms, we shall follow the point of view of Schrödinger.

Axiom 1. Pure states are represented by unit vectors in a separable Hilbert space H.
Vectors that differ by a phase represent the same pure state.

It follows that the (pure) states are represented by projection operators Pφ =
|φ〉〈φ| (in Dirac’s notation).

Since a Hilbert space is a vector space, the superposition principle holds: if
φ,ψ ∈ H, then also aφ + bψ ∈ H for a, b ∈ C. We assume here that all Hilbert
space vectors represent states, i.e., there are no “superselection rules”.

Also in quantum mechanics, one can introduce nonpure states, called statistical
mixtures. They are represented by sums of projection operators

σ =
∑
n

cn Pφn , cn > 0,
∑
n

cn = 1.

Positive-trace class operators with trace 1 are called density matrices. Their
relation with the pure states is the same as in classical mechanics.

Contrary to what happens in classical mechanics, no pure state is dispersion-
free for all observables; this is due to the fact that their dual, the algebra B(H), is
not commutative.

Recall that the dispersion of a state σ relative to a (symmetric) operator A is

1σ (A)≡ σ(A2)− (σ (A))2.

A state σ is dispersion-free relative to A if and only if 1σ (A)= 0.
For comparison, notice that in classical mechanics, where the role of B(H) is

taken by continuous functions, all pure states are dispersion-free with respect to
each observable.
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The dual of the pure states, under the duality given by Pφ , A→ tr PφA, is B(H),
the set of bounded closed operators H.

Axiom 2. • The observables in quantum mechanics are represented by the self-
adjoint operators on a separable (complex) Hilbert space H.

• The mean value of the measurement of the observable represented by the self-
adjoint operator A in the state represented by Pφ (the projection operator on
the one-dimensional subspace spanned by the vector φ) is given by

〈A〉φ ≡ (φ, Aφ)≡ tr(APφ)

where the symbol tr stands for trace, a function defined as usual for finite-rank
matrices and extended by sum convergence in the case of infinite matrices.

Notice that in this in the formulation of Born’s rule we assumed that the
measurement is an abstract procedure that requires no further analysis. In this
respect also Axiom 2 is ontic.

Notice that if A ∈B(H) the correspondence

A→ tr(σ A)

defines a linear continuous functional on B(H).
Therefore, we could start, as in the Heisenberg point of view, with the definition

of the observables as the real part of the algebra of all bounded operators on a
complex Hilbert space H and consider the states as derived quantities by duality.

Axioms 1 and 2 describe the mathematical content of QM (and also its meta-
physical content).

We introduce now two axioms that represent the verbal part of the model, i.e.,
the rules which must be used to associate measurable quantities to the mathematical
entities in Axioms 1 and 2.

Axioms 3 and 4 connect the mathematical formalism to the outcome of labora-
tory experiments and are therefore of epistemic character.

A step in this direction has already been made in Axiom 2 by Born’s rule, but
nothing has been said so far about the description of a single measurement.

In particular until now we did not speak of the effect that has on a state described
by σ , the measurement of an observable a described by an operator A.

Axiom 3. Let the operator A describe the observable a, and assume that A has
purely discrete simple spectrum, i.e., the eigenvalues are different from each other
and the eigenfunctions ψ A

i form a complete orthonormal basis.
If one performs a measurement of the observable a in a state represented by a

vector φ ∈H, |φ|2= 1, the outcome can be only one of the eigenvalues ak of A. The
probability of the outcome ak is pA

k = |(ψ
A
k , φ)|

2, where ψ A
k is the eigenfunction

of the operator A associated to the k-th eigenvalue.
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We remark that this statement is compatible with Born’s rule. Indeed from
Axiom 3 it follows that the average of the results of the measurements of a when
the state is described by the vector φ is (φ, Aφ)≡ tr(PφA) where we have denoted
by Pφ the orthogonal projection on the vector φ.

For observables which are represented by operators with partly continuous spec-
trum, the formulation of Axiom 3 is slightly more complicated; we don’t detail
here the obvious modifications. Axiom 3 is probably too ambitious as formulated.
Given a generic symmetric bounded operator A, it is difficult even in principle to
give a prescription for the construction of a measuring instrument which measures
the observable associated to A.

For example it is difficult to indicate the instrument that measures the observable
associated to ξ�ξ̂6ξ�, where ξ� is the operator of multiplication by the indicator
function of the domain � in configuration space and ξ̂6 is multiplication by the
indicator function of the domain 6 in Fourier space.

Axiom 3 refers to the possible results of a measurement and to the probability
with which they are obtained.

There is no indication of the effect of the state of the system after measurement.
In classical mechanics, it is assumed that, at least in principle, it is possible to

perform measurements on a system without altering its state. In quantum mechan-
ics, this is not possible. The interaction with the measuring apparatus alters in
general the state of the system in a way that cannot be predicted. But one assumes:

Axiom 4 (projection postulate). If ai is a nondegenerate eigenvalue, with eigen-
function ψ A

i of the operator A associated to the observable a, and if the measure-
ment of a has given ai as a result, immediately after the measurement, the state of
the system is described by the vector ψ A

i .

The formulation immediately after, although imprecise, takes into account the
fact that the operator A may not commute with the hamiltonian and therefore the
eigenstates are not invariant in time.

Since the evolution under the Schrödinger equation is a continuous process in
time, this effect is negligible if the time elapsed between two measurements is
negligible.

We notice that Axiom 4 is needed to give objective meaning to the measurement
process, i.e., the measurement codifies an objective property of the system after the
measurement.

But Axiom 4 has far-reaching consequences since the algebra of the observables
is nonabelian in quantum mechanics.

Suppose that at time t1 > t0 we perform a second measurement now of the
observable b associated to the operator B which does not commute with A and has
eigenvectors {ψk}.
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According to the rules of quantum mechanics, we obtain the result bk with prob-
ability |(φ1, ψk)|

2; if the result is bk , we conclude, by Axiom 4, that the system
immediately after the new measurement is in state ψk .

Now we perform again a measurement of A at time t2 > t1. The result will be ah ,
h 6= 1, with probability |(ψh, φ1)|

2 < 1: the system has a finite probability to be in
a state different from φ1.

This implies that it is impossible to determine (even approximately) the state of
the system if one does not have complete control of the environment.

For comparison, notice that in classical mechanics all observables (i.e., all func-
tions on phase space) take at any given time a definite value on all pure states.

7. The semiclassical limit

The problem of finding a path relating the classical description and the quantum
one is an ontological problem which aims to provide a physical explanation of
what the relation between the classical and quantum realms is, both of which are
presupposed to be physically real.

This problem cannot be understood in epistemological terms alone because there
is no reference of the theory to something happening within physical reality. It is
occasionally referred to as the problem of the quantum-to-classical limit.

Apart from the mathematical formulation which we shall outline shortly, the
limit should be described in terms of a physical representation since it tries to
explain what is going on beyond abstract mathematical formalism.

Therefore, the path must be represented in physical terms. The question ana-
lyzed from the point of view of Bohr’s interpretation is ill posed: how can we
possibly argue that there is a limit that can be explained with physical reality?

The quantum-to-classical limit in quantum mechanics is not so much a mathe-
matical problem which seeks to relate incompatible formalisms but rather a phys-
ical problem which should provide a physical explanation for the connection be-
tween these seemingly incompatible descriptions.

The search of the physical explanation for the path from the classical to the
quantum (or conversely) is a strictly representative enterprise [Jaynes 1990].

In some ways, this problem is similar to the problem of the description of a
constrained system in mechanics. On one side is the classical microscopic point
of view (world), where all systems satisfy the classical equations of Hamilton and
Maxwell.

On the other side is the world in which constraints are considered as objective
elements, worthy of a classification and an explicit (physical) description.
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In this case, within classical dynamics, the connection between the two physical
worlds is made through approximations, stating the physical approximation scheme
as carefully as one is able.

The same view is taken in classical mechanics about statistical mechanics or
thermodynamics, which have their own strict internal rules. It is suggested that
there is a bridge to the world of classical mechanics; the bridge is made of approx-
imations and changes of scales.

One may wonder whether there is a comparable practical bridge between the
classical world and the quantum one.

Mathematically one can construct such a bridge provided one is willing to play
with Planck’s constant h̄, which appears in the quantum-mechanical formalism.

Since Planck’s constant has a well defined value (in suitable units) in our phys-
ical world, any such limit must be seen as a mathematical exercise.

One can prove mathematically that in a very precise sense two classes of so-
lutions of the Schrödinger equation have as its limit when h̄→ 0 two classes of
solutions of classical dynamics, of Liouville and Hamilton type, respectively.

Generally speaking, the initial data should be well localized both in configu-
ration space and in momentum space, compatibly with the rules of the Fourier
transform (semiclassical wave packets) or otherwise much more localized in mo-
mentum space, and depend smoothly on the spacial coordinates (WKB states)

Remark that due to the structure of the Schrödinger equation one can trade the
smallness of Planck’s constant for a large value of the mass.

As a consequence, the barycenter of a very massive quantum-mechanical body
(e.g., the earth) moves in a gravitational field roughly in the same way as a classical
point particle with the same mass. This saves classical celestial mechanics.

But in general the description of dynamics is entirely different in classical and
quantum mechanics.

8. Principle of decoherence

Taking for granted that the description of the motion of a stone is totally different
from that of very small bodies such as atoms and electrons, one may expect that
this difference is due to the (relative) complexity of the stone and that the peculiar
features of quantum mechanics, detectable at the level of atoms, is averaged out
and therefore no longer relevant for the motion of the stone.

This would prove a physical way to connect the classical and quantum worlds
and would imply that for all practical purposes quantum-mechanical bodies of
macroscopic size can be correctly described by classical physics.

The first problem of this approach is that apparently it is not only the size of the
body which determines whether it has a quantum behavior.
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Quantum-electronic devices, e.g., superconductors, can have the size of a meter
and still must be described by quantum mechanics. It is still debated whether
macromolecules can be described with classical mechanics or whether for them
the quantum-mechanical properties must be taken into account.

As for superconductors, their coherence (tendency to show a quantum behav-
ior) can be seen mathematically as a result of their almost pure periodic structure.
Mathematically this is translated into the fact that the wave function is correlated
over many elementary cells and therefore the analytic and topological structure is
stable over a long distance.

Amorphous materials are more subject to interference effects so that the quan-
tum structure is averaged out over a relatively short distance and is not effective
over a long distance.

This averaging out is at the basis of the principle of decoherence which is often
considered as a solution to the problem of the quantum-classical divide.

We shall briefly describe this principle through a typical example. We shall
see that, contrary to a statement which is often made, some traces of the quantum
behavior remain and in particular this principle does not solve the measurement
problem (intrinsic indeterminacy in the measurement process).

Decoherence should be regarded as a consequence of a continuous process of
correlations between the quantum system under study and the environment.

From a mathematical point of view, decoherence is linked to partial trace or
conditioning.

Conditioning in quantum mechanics has properties similar to those of the opera-
tion with the same name in classical probability theory, but one should notice that,
contrary to what happens in classical probability theory, in quantum mechanics
complete information about the state of the system does not imply knowledge of the
state of each component.

Suppression of information relative to the environment should lead to writing
effective equations for a relevant subset of the measurable quantities of the subsys-
tem.

If the subset can be described in classical terms, we expect that these equations
are the equations of classical physics. The structure of the interaction should de-
termine the subset of observables for which this reduction is possible.

The dynamics that one obtains should describe the evolution of these observables
independently of the evolution of the environment for almost all its configurations
and for a sufficiently long time.

It must be said at the onset that this program, on the mathematical side, is still
in its infancy, in spite of its extreme conceptual interest.
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Roughly speaking, the mechanism of decoherence is as follows. Assume that
the initial state of the total system observed object+ environment is

9 ∈Htot =Hobs⊗Henv, 9 = ψ ⊗φ, ψ ∈Hobs, φ ∈Henv.

If one measures an observable A ∈ B(Hobs), the mean of the values will be
(8, (A⊗ I )8) (we have introduced the natural immersion of B(Hobs) in B(H)).

If the hamiltonian of the total system is H , at time t > 0, the measurement of A
in the state 8 will give

(8, ei t H (A⊗ I )e−i t H8).

Due to the interaction between the two systems, there does not exist in general
an operator K ∈B(Hobs) such that for all A ∈B(Hobs) and for a generic state 8

(8, ei t H (A⊗ I )e−i t H8)= (8, (ei t K Ae−i t K
⊗ I )8).

One can hope (maybe even expect) that, if the environment has a large number
of degrees of freedom and the interaction is very weak, the interaction has mainly
the effect of modifying the state of the system, making it appear as a classical
Liouville state.

In this case, the coherence which is at the root of the superposition principle is
hidden by the lack of control of the environment. This would provide the bridge
between the quantum world and the classical one.

This description scheme has not yet been developed; only special cases have
been treated rigorously, and only strong qualitative arguments have been given in
sufficiently general cases.

Strong qualitative arguments have been given, e.g., to show that decoherence for
a quantum system can be produced by the interaction with a large number of light
particles, and in this case position variables emerge as a “pointer basis” (variables
which have a classical behavior).

One finds an overview of these considerations, e.g., in [Robert 1998; Wheeler
and Zurek 1983].

Arguments have also been given to describe the decoherence for a quantum
system in a thermal bath, i.e., interacting with a large number of particles in ther-
modynamic equilibrium at fixed temperature. In this direction, an approach to the
mathematical description of decoherence has been pursued in [Hornberger 2009]
in the framework of the algebraic formulation of quantum mechanics.

In spite of these developments, there are still many unsettled points in a mathe-
matical theory of decoherence.
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9. Mechanisms of decoherence

As a possible mechanism of decoherence, consider the system composed of a case
of a great number of quantum particles of very small mass ε scattering one after
the other and independently off a quantum particle of mass 1.

Let φ(x), x ∈ R3, be the wave function of the quantum particle before collision,
and denote by y the coordinate of the first light particle.

The dynamics of the first collision is given by the Schrödinger equation (in units
h̄ = 1)

i
∂φ

∂t
= Hφ, H =−

1
2
1x −

1
2ε
1y + V (y− x),

where 1 is the laplacian and the potential V is regular and compactly supported.
The initial state of the system is 8≡ φ(x)ψ(y), and we are interested in

(ei t H8, (A⊗ I )ei t H8)

where A is an observable of the system which is represented by an operator with
kernel A(x, x ′).

Setting ξ = x − y and η = x + y/ε and noticing that all laplacians commute, it
is not difficult to see that ei t H has the form

ei t H
= ei(t/2)1x ei(t/2ε)1ηe−i(t/2ε)1y ei t (1/2M)1y+Vx (y), Vx(y)= V (y− x).

Consider now the case in which the particle with coordinate y is very light (ε is
very small), and set t = εs.

Keeping into account that A⊗ I commutes with H 0
y ,

(ei t H8, (A⊗ I )ei t H8)= (Ws8, (e−iεs H0
x Aeiεs H0

x ⊗ I )Ws,x8), H 0
x =−

1
21x ,

where
Ws,x = e−i(s/ε)(1/2)1y ei(s/ε)((1/2)1y+Vx (y)).

When ε→ 0, the operator Ws converges to the wave operator Wx for the scat-
tering of the light particle off the heavy one with a potential Vx(y).

One therefore has

(ei t H8, (A⊗ I )ei t H8)=

∫
at(x, x ′)ζt(x, x ′)φ(x)φt(x) dx dx ′

where at(x, x ′) is the integral kernel of e−i t H0
1 Aei t H0

1 and ζt(x, x ′) is a positive-type
function (i.e.,

∫
ζ(x, x ′) f (x ′) f (x) dx dx ′ ≥ 0 for all f ).

The function ζ is given explicitly as

ζt(x, x ′)= (Wx ′φ,Wx(t)φ).
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As a function of u = x − y and v = (x + y)/2, for each value it reaches its
maximum when u = 0.

Notice that ζ0(x, x ′)φ(x ′)φ(x) is the kernel of the density matrix before the
interaction.

The function ζt has the following properties:

(a) ζt(x, x)= 1.

(b) If t > 0, |ζt(x, x ′)|< 1 if 0< |x − x ′|< Kt where the constant Kt depends on
the initial datum and on the potential.

(c) ζ t(x, x ′)= ζt(x ′x).

Property (b) indicates that due to the interaction the integral kernel is slightly
(ε is very small) more concentrated on the diagonal and slightly more spread out
due to the dispersive properties of the Schrödinger equation.

After the interaction with the first particles, the kernel of the density matrix
will be

ρ ′(x ′, x)= ζt(x ′, x)ρ(x ′, x).

Assume now that the successive interaction with the N particles of the environ-
ment are independent and take place at times {Tk} with intervals of order ε−1 in
such a way that it is entirely a sequence of independent events.

In this case, the modifications to the kernel of the density matrix can be consid-
ered as independent and after N collisions the kernel of the density matrix will be

ρN (x,′ x)φ(x ′)φ(x)ζ1(x ′, x)ζ2(x ′, x) · · · ζN (x ′, x).

Since all functions ζk , k = 1, . . . , N , have the properties (a), (b), and (c), we
conclude that if N is very large the kernel of the density matrix after the very many
collisions is concentrated for all macroscopic times on the diagonal and therefore
is represented by a classical Liouville measure.

It is not difficult to show that under these conditions the propagation of the
heavy particle is described within a good approximation by the Lagrange equation
in configuration space.

In the terminology of the theory of decoherence, this may be described as the
choice of a preferred basis (the configuration space).

But notice that in general the support on the diagonal is not of the order
√

h̄ and
therefore the (approximate, classical) dynamics is that of a Liouville distribution.

The procedure we have described is largely heuristic, and to have a rigorous
result one should proceed much more carefully, establishing exact formulae and
giving accurate estimates of the terms which one neglects.

This is a very difficult task that nobody has completed so far.
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10. Experiments on decoherence

From the experimental point of view, interesting and very refined experiments have
been performed in particular by the group of S. Haroche at the École Normale
Supérieure. A typical experiment is described in [Raimond 2014].

In this experiment, rubidium atoms (mice) initially in a circular Rydberg state f
are injected one at a time in a photon box (cat), an open cavity with reflecting
walls that can keep for 1 millisecond a specified number of photons of wavelength
6 millimeters.

The electromagnetic field in the cavity is prepared in a state of 9 or 10 photons;
this state approximates reasonably well a coherent state for which a (semi)classical
description is possible.

In particular one can define the frequency of the radiation field. In this state the
cavity-cat is sleeping.

The field is prepared in a (quasi)monochromatic state with frequency resonating
with that of the transition between the f and the g states of the rubidium.

The rubidium atom (mouse) which is injected in the cavity is in a state “ f ”; this
state has small dipole momentum and therefore does not disturb the cat (change
the number of photons).

While crossing the cavity, the atom-mouse is subjected to a laser beam to induce
a transition to another state “g”; the superposition of the two states has a large
electric dipole.

This produces emission and absorption of photons and modifies the distribution
of the number of photons in the cavity-cat which is now suspended between two
normal states f and g (and this makes its presence visible to the cat).

The environment is in this case represented by the walls of the cavity that “in-
teract” with the field present in the cavity because of imperfections.

The number of photons in the cavity (the status of the cat) can be monitored
by sending into the cavity a second rubidium atom. If the cat has remained in a
suspended state, it will interact with the atom-mouse.

The apparatus therefore permits one to tell whether the cavity is in a coherent
state and thereby permits one to measure the decoherence induced by the environ-
ment (by impurities in the walls of the photon box). The experiment reveals that
the amount of decoherence depends on the delay with which the second atom is
injected into the cavity.

Call decoherence time the time after which the description of the photon box as
a coherent state produces a relative error of 1/104. The results of the experiment
which is roughly described above indicate that the decoherence time is on the order
of 0.1 milliseconds.
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Decoherence is therefore effective in a small time even in this carefully organized
experiment.

One can expect that in the case of a real cat the survival time of coherence is
several orders of magnitude smaller and therefore coherence cannot be seen under
normal everyday life conditions (i.e., for true cats).

This and related experiments show that a result (the cat suspended between two
physical states) that seems to be counterintuitive when one has little control of
the environment can be observed in a laboratory in which maximum control is
possible.

11. The measurement problem and tracks in a cloud chamber

The difficulty in unscrambling the quantum omelette is clearly shown in the mea-
surement problem, which cannot be solved by the theory of decoherence.

As Bohr emphasized, measurement is done with classical instruments and the
result is expressed in classical language.

One often says that the instrument interacts with the object to be measured, but
there is an ambiguity in this statement.

In mathematical terms, the term interaction refers to the description of the dy-
namics by means of the structure of the equations. It belongs therefore to the world
of mathematical quantum mechanics.

On the other hand, the word measurement (distinct from interaction) must refer
to a process that takes place in the real world and leads to unambiguous results.

According to Bohr [Robert 1998], the unambiguous interpretation of any mea-
surement must be essentially framed in terms of classical physics theories, and
we may say that the language of Newton and Maxwell remains the language of
physicists for all time.

Therefore, the analysis of the quantum measurement process is the key to recov-
ering a rational account of physical phenomena.

We have stated that the main problem in QM is the distinction between interac-
tion (a mathematical structure) and measurement (a physical process).

We exemplify these difficulties by considering a simple phenomenon, the occur-
rence of tracks in a cloud chamber. It is simple enough to admit an almost complete
mathematical description, and at the same time it contains all the interpretation
problems in QM.

A Wilson cloud chamber is a vessel that contains vapor which is in a supersat-
urated state. Under a small local perturbation, it can locally make a transition to a
liquid state (droplet).
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It is an experimental fact that an α-decay produces in a cloud chamber at most
one track (sequence of liquid droplets placed on a line that is straight or slightly
curved if a magnetic field is present (a trajectory of a classical particle)).

Different decay events produce tracks that point in random directions. This
seems to contradict the description of decay in QM: according to Gamow if the
decay takes place at rest, a spherical wave is produced and moves radially according
to Schrödinger’s equation.

The presence of the track makes the result appear as if the interaction with the
supersaturated vapor turned the wave into a particle. We want to place this effect
in the context of Schrödinger’s QM.

Notice that in this experiment the experimenter is the cloud chamber (or rather
the supersaturated gas).

The problem of justifying the presence of a track of droplets within Schrödinger’s
quantum mechanics goes back to the early days of QM together with the question
of whether the presence of the track can be considered proof that a real α-particle
is produced in the decay.

Mott [1929] was among the first to attempt a systematic description using prop-
erties of the solutions of the time-independent Schrödinger’s equation. A rather
detailed account of the history of the problem and of various attempts to find a
solution can be found in a recent book by Figari and Teta [2014].

The analysis given by Mott is based on stationary and nonstationary phase tech-
niques in the time-independent formulation of Schrödinger’s equation; it goes in
the right direction but is incomplete in several ways.

To improve the analysis, we rely on semiclassical theory [Dell’Antonio 2015].
We shall see that the properties of the initial wave function allow for the intro-

duction of a semiclassical formalism in which the interaction of the wave with a
single atom can be regarded as semiclassical inelastic scattering. We stress that
this description does not have a universal character and depends essentially on the
mathematical properties of the initial state.

In this mathematical formulation, the α-wave before the production of the first
droplet of the track can be regarded (mathematically) as fragmented into (coherent)
semiclassical wavelets, each of high momentum, moving radially away from the
point at which the decay has taken place.

The linear size of each wavelet is comparable to that of the atoms. Each wavelet
moves according to the laws of QM: its barycenter moves on a classical path (curvi-
linear if a constant magnetic field is present), and its dispersion is of order

√
h̄ (in

natural units) and increases slowly in time.
No physical significance should be attached to this mathematical exercise. One

can compare it to the description of light as composed of light rays with a major
difference: the α-wave is a probability wave.
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The α-wavelets move coherently; the entire wave keeps its spherical structure
in accordance to Huygens’ principle.

When one of the wavelets interacts with an atom, the coherence with the other
wavelets is lost: the combined system wavelet+ ion (+ emitted electron) belongs
now to a different subspace of the Hilbert space in which the entire system (emitted
wave and atoms of the vapor) is described.

If one regards the resulting subsystem as isolated, the result is an entangled state
of the wavelet, of the wave functions of an ion, and perhaps of the emitted electron.

The interaction wavelet-atom can be considered as independent of the environ-
ment, and mathematically it can be regarded as inelastic scattering.

Therefore, QM describes the system after the interactions but before the produc-
tion of the first droplet, as a collection of very many coherent triples each composed
of the wave function of an ionized atom, a semiclassical wavelet, and the wave
function of an electron.

Each triplet belongs to a different sector of the Hilbert space, and there is no
interference between them.

Note that mathematically the ionization of an atom is the result of an interaction
described in QM by a unitary propagation within a huge Hilbert space.

On the other hand, the production of the first droplet is a random macroscopic
event, the result of a chain of processes of magnification which can probably best
be described within statistical mechanics. The local phase transition is due to the
modification produced by the ion in the electronic structure of the nearby atoms.
QM can at most be used to determine the probability that a droplet be formed.

Its relation with the Hilbert space description in QM is the measurement prob-
lem; how does the quantum-mechanical system choose the (probability) wavelet
that produces the droplet? Is it a random choice?

After the production of the droplet, the remaining wavelets no longer enter the
description of the system. It is improper to say that they have disappeared because
as probability waves they had no physical existence even before the formation of
the droplet.

The selection process is probability preserving (since the outcome occurs with
probability 1) and nonlocal (since the initial wave function is extended and the final
result is localized in a small cone). It is not described by the Schrödinger equation.

Since the interaction provides strong entanglement among the component of
each of the triplets of probability waves indicated above, one may assume that
the process of measurement selects not only an ion but also the corresponding
α-wavelet, although no actual measurement of the wavelet is done.

After the interaction, the chosen wavelet is still a (semiclassical) probability
wave. It can interact with the atoms in its path. Since the wave function of the
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wavelet has support on the order of magnitude of the square root of Planck’s con-
stant, the interaction can be regarded by a macroscopic observer as having taken
place at one point.

The momentum of the wavelet is essentially concentrated along a vector that is
directed from the point of decay to the point at which the first droplet is formed.

The production of further droplets is again a macroscopic phenomenon not de-
scribed by the Schrödinger equation. Since the interaction is local, the incoming
(probability) wavelet is well localized and the exchange of momentum is negligible;
its barycenter has essentially a classical motion.

The wavelet therefore moves as a classical object (an α-particle) with roughly
the same energy and momentum of the wave emitted in the decay.

The question of whether after the production of the first droplet the remaining
droplets in the track are produced by a probability wavelet or by a particle is devoid
of objective meaning.

In any case the interaction of the wavelet-particle with the other atoms leads to
the formation of a straight line of droplets (or a curved line if a magnetic field is
present). Due to the semiclassical nature of the wavelet, the direction of the track
is determined by the position of the source and of the first droplet.

Notice that after each collision the shape of the wavelet may change and from
the point of view of mathematics at every interaction the wavelet changes sector
in the abstract Hilbert space.

The quantum aspects of this description are limited to the fact that, although the
initial state is completely known, one can give only the probability that a track is
produced in a given direction.

We stress that one sees droplets only if ionization takes place and the ion triggers
the magnification mechanism. Without this mechanism (which can be described at
most by quantum statistical mechanics), the event is not recognized by the macro-
scopic observer as a measurement and it must be considered only as an interaction.

One therefore has to invoke the presence of a step in which probability is turned
into occurrence. This step is beyond QM and has not been understood so far. This
ambiguity is at the heart of the measurement problem in QM.

Notice that also from a bayesian point of view (updating of information) this is
a difficult problem since the updating is (presumably) done by the supersaturated
gas. On the other hand, critics of the description of a measurement process have
always remarked that a Ph.D. is not required to a make a measurement.

12. Some mathematics

For completeness we give some details of the mathematics involved. More details
can be found in [Dell’Antonio 2015].
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According to quantum mechanics, the α-wave φ0 produced in the decay can
be presented as a complex-valued spherically symmetric function with support in
a small neighborhood of the origin and with a phase proportional to M |v0||x |/h̄
where M ∈ R+ and v0 ∈ R3 are the parameters (mass and radial velocity) which
characterize the wave produced in the decay.

We take natural units in which Planck’s constant h̄ is very small, and we assume
that |v0| is very large.

It is convenient to have a different (equivalent) presentation of the initial data as
a function on the product of a small interval I ⊂ R+ and a fibered two-dimensional
sphere S2, with fibers perpendicular at each point to the sphere.

This presentation is particularly adapted to the introduction of a semiclassical
structure since both the free evolution in time and the wave packets are obtained
by the convolution of the wave function with a gaussian kernel.

For concreteness we shall write

φ0(x)= Ce−|x |
2/(2h̄)

∫
S2

dω ei Mv0(ζ(ω),x)/h̄, x ∈ R3,

where C is a normalization constant and ζ(ω), ω ∈ S2, is the unit vector orthogonal
to S2 at the point ω and directed opposite to the center of the sphere. The wave is
produced with high momentum, and therefore, we take 1� v0.

If there are no interactions, the wave evolves according to the free Schrödinger
equation; the evolution is described by the convolution with a suitable gaussian
kernel.

Taking into account that |v0| is very large, it is easy to see that at a later time T
the wave is approximately localized in a corona of mean radius v0T and width on
the order of

√
h̄.

Therefore, up to a small error, the wave function φT (x) at time T can also be
presented as a function on the product of an interval on the positive real axis and
the fibered unit sphere.

We shall assume that the (mathematical) interaction of the wave with the atoms
is of very short range and is nontrapping. This will allow us to consider the result
of the interaction as an inelastic scattering event. If the atoms are sufficiently sep-
arated from each other, we can consider the interactions as independent scattering
events.

The fact that several further ionizations are seen (forming a track of droplets)
suggests that the interaction between the atom and the semiclassical wave is rather
strong, and therefore, it is advisable to avoid using perturbation theory (a contact
interaction may be a better choice).

The waves in the Schrödinger picture are probability waves and carry no objec-
tive reality; they are tools to give the probability distribution of the outcomes if
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a measurement of a given observable is performed. Understanding the process by
which this probability is turned into a specific outcome constitutes the measurement
problem that is still unsolved in spite of its conceptual relevance.

A detailed description in quantum mechanics of the interaction of the emitted
wave with the atoms in the cloud chamber is beyond reach. We therefore make
some simplifying assumptions and approximations. We use natural units in which
Planck’s constant h̄ is very small.

Before the interaction, the wave satisfies the free Schrödinger equation and there-
fore the solution at time T is given by the convolution of the initial data with a
gaussian kernel. Under the assumption that Mv0 is very large, the presentation we
have used provides the following description of the wave at any time T > 0:

φT (x)= F h̄
T (|x |)

∫
S2

dω ei Mv0(ζ(ω),x)/h̄ + RT (x), x ∈ R3.

The function F h̄
T (ρ) is supported in a spherical corona of depth

√
h̄ and radius

|v0|T . The residual term RT (x) has L2 norm of order
√

h̄ and decreases fast in
time. We will neglect this term in the following analysis and will take the L2 norm
of φT to be 1.

We make use of natural units in which Planck’s constant h is very small. The
essential support of the wave function of an atom has linear size of order

√
h̄. All

quantities will be evaluated up to a relative error of order
√

h̄.
One can consider separately the evolution of small fragments, wavelets, of the

α-wave, of linear size
√

h̄.
The density of the atoms in the cloud chamber is such that each fragment inter-

acts with at most one of the atoms.
In the presentation of the α-wave given in (2.2), the fragments are obtained using

elements of a smooth partition of the unit sphere. Each element ξ has support of
linear size O(

√
h̄), and its initial condition at time T is

φξ (x, T )=8ξ (x, T )+ RT , 8ξ (x, T )= FT (|x |)
∫

S2
ξ(ω)ei Mv0(ζ(ω),x)/h̄ dω.

FT (ρ) has support in a neighborhood of v0T of linear dimension O(
√

h̄), and
we shall neglect RT , which is smaller in norm by a factor O(

√
h̄) with respect

to 8ξ .
We prove now that the solution with initial condition 8ξ (x, T ) is localized to-

gether with its (quantum) Fourier transform in a domain of linear size
√

h̄ and
therefore represents a semiclassical wavelet. We take ξ to be localized around
the point (0, 0, 1). By construction the function 8ξ (x, T ) is then supported in a
neighborhood of linear size O(

√
h̄) of (0, 0, v0T ). Recall that the quantum Fourier

transform is the Fourier transform written in units of h̄−1. Notice that we make an
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error of order h̄ in substituting the support of ξ on the sphere of radius v0T with its
projection on the tangent plane. Up to an error of order h̄, we can therefore write

8̃ξ (x, T )=
∫
ξ̃ (y)FT (|x |)ei M(v0x3+y1x1+y2x2)/h̄ dy1 dy2

where ξ̃ (y) has support in |y|< C2
√

h̄.
The Fourier transform is easy to compute; it has support in the ball of radius

O(
√

h̄) and center (0, 0,Mv0). Therefore, under free evolution, 8ξ (x, T ) behaves
as a semiclassical wave packet. Since v0 is very large, if the interaction is not
trapping, the wave remains in the cloud chamber for a very short time 1.

We can use this semiclassical picture during the time in which the interaction
with the atoms takes place. Standard phase-space analysis shows that, if φξT and φηT
have supports separated by a finite distance d, the same is true (up to an error of
order h̄) for a time T ≤ t ≤ T +1.

If the phenomenon we describe were scattering of a semiclassical wavelet by a
potential V (x), regularity and no trapping properties of the potential would give
a description of the event as semiclassical scattering. Regularity conditions on
the potential must be imposed in order for dynamics to preserve the semiclassical
structure. In our case the scattering is inelastic because the final state also contains
an electron.

Consider first the interaction with a single atom with wave function ψY with
essential support in a neighborhood of linear size of the order

√
h̄ of a point Y ∈R3.

As a result of the interaction, ionization occurs; we assume that the wave function
of the resulting ion remains localized in a neighborhood of Y of linear size O(

√
h̄).

We have assumed that the interaction is not trapping and its range is of order
√

h̄.
Since the speed with which the wave moves is very large, the interval of time 1
in which the interaction takes place is very short. Due to our assumption on the
density of the atoms, we can assume that the fragmentation of the wave is such
that during the interval of time 1 only one of the fragments interacts with the atom
in Y . Under this assumption after the interaction, this fragment is localized again
in a region of linear size

√
h̄ near the atom in Y .

Since the momentum of the incoming fragment was localized around Mv0Ŷ in
units of 1/h̄ and the loss of momentum in the interaction is very small on this
scale (the ionization energy is comparatively small), energy-momentum conserva-
tion implies that also the momentum of the outgoing fragment is sharply localized
around Mv0Ŷ .

The outgoing fragment is therefore represented by a semiclassical wavelet, with
approximately the same mean momentum as the incoming wavelet and approxi-
mately the same variance.

Consider an atom localized near the point P ∈R3
≡ (0, 0, r0). Under free motion
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the wave function F h̄
T overlaps the wave function of the atom for a very small time

interval 10T . Since the interaction is of very short range and nontrapping, the
wave function with initial data F h̄

T overlaps the wave function for a very short time.
Therefore, only a small part of the incoming wave contributes to the interaction
with the atom in P .

This suggests a (mathematical) decomposition of the incoming spherical wave
into fragments (wavelets), each of which can interact with only one of the atoms.
We will prove that, due to the properties of the initial α-wave, the wave can indeed
be seen as decomposed into small (coherent) fragments (wavelets) each propagat-
ing as a semiclassical wave packet (its barycenter follows a classical path). The
dispersion is of order

√
h̄ both in space and momentum (the latter in units of

√
h̄).

Notice that we are manipulating mathematical objects (probability amplitudes)
that enter into the mathematical framework by which quantum mechanics describes
outcomes of experimental observations.

Before the formation of the first droplet (and after very many interactions), the
partition in wavelets is a mathematical exercise. The macroscopic production of
the droplet selects one the ions (the seed for the production of the droplet). This
selection process is nonlocal and is not described by the Schrödinger equation.

The measurement process also selects the wavelet associated to the ion (although
one measurement is performed on it). The selected wavelet is still a probability
wave. Momentum conservation together with the semiclassical approximation im-
ply that also this outgoing α-wavelet can be treated semiclassically (but its shape
may have been changed by the interaction).

The outgoing wavelet interacts with the atoms on its path giving rise to further
ionizations. Each ionized atom is a seed for production of a droplet; this originates
the track. All other probability wavelets now have probability 0; therefore, there is
only one track.

As already mentioned, the mathematical device of partitioning does not lead
per se to anything physical. It reveals a detectable phenomenon due to the macro-
scopic mechanism of production of a droplet.

Notice that in this description the semiclassical wave packet entangled with the
selected atom may lead to measurable effects although no measurement is per-
formed on it.

As a result of the measurement (a probability-preserving nonlocal map), one
of the ions is selected and the corresponding wavelet acquires probability 1. This
distinguishes measurement from interactions.

We now generalize the analysis to take into account that there are many atoms in
the cloud chamber, uniformly distributed and sufficiently separated so that each of
them interacts with at most one of the wavelets and the interactions can be regarded
as independent.
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Each wavelet interacts with at most one atom. The outcome of the interaction
is an entangled state made of the wave functions of an ion and of the outgoing
wavelet (and of an electron).

We conclude that the interaction of the α-wave with the atoms in the cloud
chamber can be mathematically described before the measurement as a sequence
of disjoint and independent interactions of semiclassical probability wavelets with
the atoms of the cloud chamber.

After the interaction, the wavelets move incoherently and the wave functions of
the atoms are turned into the wave function of an ion. The interaction time is so
short that we are justified in substituting the interaction with the scattering map.

The act of measurement (the cloud chamber measures the position of the first
droplet produced) selects, according to Born’s rule, one and only one of the ions
to be the seed of the process of formation of the first droplet of liquid. The exact
mechanism behind this selection has not been understood so far; it can be best
described within quantum statistical mechanics.

The ion selected modifies the wave function of the nearby atoms. Since the
vapor is supersaturated, this gives rise locally to a phase transition with production
of a liquid droplet.

We assume that the measurement process also has the effect of keeping, as part
of the description of the system after the measurement, also the wavelet entangled
with the selected ion (although no direct measurement is performed on the wavelet).

The wavelet which is selected may originate on its path further ionizations, and
this gives the visible track. Notice that the (position) measurement of the first
droplet in the path is the only one which is represented by a (unitary) nonlocal
transformation. The process of production of the remaining part of the track is
essentially local.

After the measurement only one of the wavelets enters in the description of the
system; it has essentially the energy-momentum of the entire incoming wave. Since
it is well localized in position, it can be described as a particle (the α-particle). The
remaining (probability) wavelets no longer enter the description of the system.

In conclusion, the analysis we have performed of the production of tracks in a
cloud chamber shows that interaction should not be confused with measurement.

We briefly note the relation of this analysis with the problem of decoherence.
Before the interaction with the atoms, the semiclassical wavelets were coherent.

After the interaction with an atom, the wavelet is entangled with the wave function
of an ion. The coherence with the rest of the wave is no longer detectable (it would
require a detailed knowledge of the wave functions of the atoms and of the emitted
electrons).

If the environment contains N atoms which are placed sufficiently far apart so
that the interaction of the wave with each atom can be treated as independent, the
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interaction produces N mutually incoherent triples each representing an entangled
state of an ion, a wavelet, and the emitted electron.

This decoherence between the triples is entirely different from the decoherence
of a slow-moving quantum wave as a result of very many interactions with the
ambient space. Decoherence in the cloud chamber experiment is related to a single
interaction with an atom.

13. Quantum mechanics: Born’s rule as conditional probability and
information-theory analysis

Combined with the projection postulate, Born’s rule says that, when one knows
that a measurement corresponding to an observable a associated to a symmetric
operator A with discrete spectrum has taken place but one does not know the result,
the following information is gained.

If the initial state is described by density matrix ρin, then the density matrix ρfin

of the final state is given by

ρfin =
∑

i
tr(Piρin Pi )

where A =
∑

i λi Pi is the spectral decomposition of the operator A. One has by
definition

∑
i Pi = I and A =

∑
i λi Pi .

This formulation no longer requires that the initial state of the system be pure.
It is interesting to notice that the formula can be interpreted in information

theory as saying that ρfin represents the most probable state that one may have after
a measurement of the observable a in the state described by ρin [Vedral 2002].

We clarify what this statement means.
According to von Neumann, information is measured by relative entropy, and

the most probable state is the state which corresponds to minimal entropy relative
to the initial state.

Following Wiener, we consider the amount of information to be the negative of
the quantity defined as entropy.

We therefore take the negative of the relative entropy function D(ρ, σ ) as a
measure of the relative information about the quantum state σ that can be derived
from knowledge of the quantum state ρ:

D(ρ, σ )≡ tr(ρ ln ρ− ρ ln σ).

The function D is nonnegative and can be considered a nonsymmetric distance.
The most probable outcome state is by definition the state which minimizes the

distance D(ρ, σ ) for all allowed σ .
In the case of measurement of the observable a which is represented by the

operator A =
∑
λi Pi , the reference states are the density matrices which belong
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to the set
6A ≡ {σ : [Pi , σ ] = 0} for all Pi .

The last equation is equivalent to the condition [A, σ ] = 0, i.e., the requirement
that the state is obtained as a consequence of the measurement of the observable a.

We must minimize D(ρ, σ ) over 6. This amounts to selecting the quantum
state that is least distinguishable from the original state among all the states that
satisfy the constraint of being produced by the measurement of a.

We consider only the case in which the Hilbert space is finite-dimensional. The
same results are obtained if A is compact.

The set 6A is defined by a linear relation, so it is a simplex.
D( · , · ) is jointly convex in both arguments so that ( · , ρ) is convex for all ρ.
Since the problem is finite-dimensional, the following holds: if the function f

is (Gateau) differentiable and strictly convex on a simplex, and the directional
derivatives (we are in a finite-dimensional setting) at a point b are all 0, then b is
the global minimum of f .

We can parametrize 6A noticing that every element is of the form

σ =U3U∗

where 3 is a trace-1 matrix with positive entries and U is a unitary operator U =
πiUi where Ui is the identity on the range of (I − Pi ).

This means that [U, Pi ] = 0= [3, Pi ].
Therefore, writing σi for σ restricted to the range of Pi , we have for every

function f on 6A

f (σ )=
⊕

i
f (σi )

(i.e., functions act blockwise on 6A).
Consider first the variation along the directions parametrized by U .
We look for the variation in the direction parametrized by one-parameter sub-

groups. Call L the generator.
We then compute

d
dt
φ∗t tr AU |t=0 =

d
dt

tr(Aet L)U |t=0 =
∑
i, j

Ai, j LUi, j = tr(ALU )

where we have denoted by φ∗t the adjoint action. In the same way, one computes

d
dt
φ∗ tr(AU BU∗)|t=0 = tr(ALU BU∗)− tr(AU BU∗L).

It is easy to verify that

[L i , Pj ] = 0, L i Pj = δi, j L i .
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The derivatives take the form

∂L i

∑
j

tr(PjρPjU j ln λ jU j ln λ jU∗j )= tr L i [ln σi , ρi ].

If σ and
∑

PiρPi can be diagonalized simultaneously, the derivatives vanish.
This is also a necessary condition since the commutator [ln σi , ρi ] is traceless

and Lk and i Lk span the all-traceless matrices in the i-th block.
We must consider next the variation with respect to 3 restricting to the case

when σ and σi PiρPi can be simultaneously diagonalized.
Let µσk and µρk be the eigenvalues of σ and of

∑
i Piσ Pi .

If µρi 6= 0 and µσi = 0, one has D(ρ, σ )=∞ so that this cannot be a minimum.
One has

∂λσk − ∂λ
µ
k

∑
m
λρm ln λσm = 0,

which implies that λρk /λ
µ
k is independent of k.

So the ratio of the eigenvalues of σ and of
∑

i Pσi P is fixed. Since they are
both of trace 1, they coincide.

It follows that the state σ =
∑

PiρPi is the unique minimum of the relative
entropy, i.e., it is the unique state that is least distinguishable from the original state
among all states which are compatible with the observation of the observable a.

The results was later generalized by Kostecki [2014], who proves that mini-
mization of the (Araki) quantum entropy is equivalent to the Lüders rule (a rule for
updating information)

ρ→

∑
j∈J PjρPj∑

j tr(PjρPj )

where J is a subset of a countable set corresponding to an orthogonal decompo-
sition and

∑
i Pi = I ∈B(H) (the spectral sequence of an operator A on H) and

the domain of this equation is restricted by the condition that
∑

i tr(Piρ) 6= 0 (the
measurement of A succeeded).

This result has a strong bayesian flavor, and this leads us to the next topic.

14. Quantum bayesianism (QB)

I close this paper with a brief discussion of quantum bayesianism.
This vision of quantum mechanics, put forward by C. Fuchs and A. Peres [2000]

and then by C. Fuchs, N. Mermin, and A. Schack [Fuchs et al. 2015], explores
further the path laid by Bohr.

The approach of these authors was to follow the Bayes–de Finetti interpretation
of probability as updating of information in order to account for QM. They call
this approach quantum bayesianism (in short QB-ism).
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They agree with Bohr that the primitive concept of experience is fundamental
for the understanding of QM, but contrary to Bohr, QB-ism explicitly takes the
subjective view of probability stressed by Bayes and de Finetti; i.e., probabilities
are assigned to an event by an agent and are particular to that agent.

These authors state that QM does not describe physical reality. It provides every
single agent with an algorithm for computing probabilities for macroscopic events
(such as detector clicks) that are consequences of the agent’s interactions with his
world.

The agent has in general no control of the reaction, and the result of the experi-
ences leads to an upgrading of the picture and of the expectations.

Still, an important component of the agent’s experience is the impact of the
efforts of other agents to communicate in speech or writing their own experiences.
Science is a collaborative effort to find, through individual actions and verbal com-
munications, a model for what is common to all our constructed external worlds.

To reify the (common) external world is a sound strategy for all practical pur-
poses, but when subtle scientific concept are at stake, such as quantum state, it
pays to trace back our description to our experience of the external world.

In a letter to Sommerfeld, Schrödinger [2011, p. 490] already stated, “Quan-
tum mechanics forbids statements about what really exists — statements about the
object. Its statements deal only with the object-subject relation”.

And Niels Bohr [1934, p. 18] added, “in our description of nature the purpose
is not to disclose the real essence of the phenomena but only to track down [. . . ]
relations between the manifold aspects of our experience”.

Failing to recognize the foundational role of personal experience creates puzzles
and paradoxes.

This strict definition of the scope of quantum theory is the only one ever needed
whether by experimenters or by theorists.

In a letter to Peierls, J. Bell commented, “One can learn quantum mechanics the
way one learns how to ride a bicycle, without really knowing what one is doing.
But it is impossible to make sense of either without taking into account of what
people actually do with them”.

QB-ism shares with the Copenhagen interpretation the statement that the quan-
tum state of a system is not an objective property of that system but only a mathe-
matical tool to think about it.

A fundamental difference is that QB-ism (like Bayes) explicitly introduces each
user of quantum mechanics into the story, together with the world external to the
user.

A measurement is any action that an agent takes to elicit a response. Given a
measurement outcome, the quantum formalism guides the agent in updating the
probabilities for subsequent measurements.
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From this point of view a measurement does not, as the term unfortunately sug-
gests, reveal a preexistent state of the system.

Quantum mechanics is a powerful tool that any agent can use to organize his
own experience. That this tool is used with spectacular success is an important
objective fact about the world we live in.

But quantum mechanics itself does not deal directly with the objective world: it
belongs to our experience of that objective world.

This is entirely different from the standard versions of quantum mechanics; for
example Landau and Lifshitz [1965, pp. 2–3] state, “By measurement [. . . ] we
understand any process of interaction between classical and quantum objects, oc-
curring [. . . ] independently of any observer”.

Bohr renounces this extreme attitude, but still individuals enter the story only as
proprietors of a large classical apparatus, and the apparatus objectifies the diverse
family of users. Replacing the single user with the apparatus introduces the ill
defined shifty split much criticized by J. Bell.

This is a split between classical and quantum, macroscopic and microscopic;
the split is shifty because its location can be freely shifted.

Because the outcomes of the Copenhagen experiments are classical, they are
considered automatically real. In this interpretation, words like macroscopic are
used to indicate the objective, nonquantum character of the outcome of a measure-
ment.

In QB-ism measurement has a broader meaning; every action constitutes a mea-
surement, and every outcome is a private experience that can be communicated
in classical terms. The famous story about Wigner’s friend is transformed from a
paradox to a basic dictum.

The Copenhagen school holds that a quantum state encapsulates our knowledge.
QB-ism replaces knowledge with belief, the belief of the person who made a state
assignment, the belief of the implications of further experiences.

An important difference is the meaning of “with probability 1”. As in the theory
of Bayes, it reflects only the willingness to accept bets. It does not imply the
existence of a deterministic mechanism.

This point was made long ago by D. Hume in his critique of induction: in physics
we believe in induction only because it has worked over and over again.

That probability-1 assignments are as any other assignment is essential for the
coherence of QB-ism.
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We review Russo’s original contributions to various fields of probability theory
and his parallel interest in history and the influence of Hellenistic science.

The work of Lucio Russo started in the early 1970s. I met him in Naples,
and it became immediately clear that I had met a very young and very promis-
ing scientist. And I had the privilege to collaborate with him on the problem of
the isomorphism between Ising model equilibrium probability distributions in the
convergence domain of the cluster expansion and Bernoulli schemes of the same
entropy [di Liberto et al. 1973].

Soon afterwards I left Naples, but I continued to follow his work. His study of
the isomorphism problem was pursued and led to a major result on coding theory;
he proved the existence of a finitary code between the simplest Markov process (the
one-dimensional Ising model with nearest neighbor interaction) and the Bernoulli
shift with the same entropy [Monroy and Russo 1975]. I saw the impact that
this work had on the complete solution of the general construction [Keane and
Smorodinsky 1977] of a code of a Markov chain into a Bernoulli shift and the
recognition that it received.

To carry out this work he learned in a short time the deep and innovative work
of Ornstein on the theory of Bernoulli shifts and was able to give a substantial
contribution to the applications of the theory.

He rapidly became internationally known as a leading probabilist, contribut-
ing to advances on the percolation problem beginning with studying the attractive
Ising model, establishing a close relation between the existence of infinite clusters
of spin + or − and the presence of spontaneous magnetization in the extremal
states µ±, with the remarkable result that in general dimension the spontaneous
magnetization in the state µ+ or µ− yields a lower bound to the percolation prob-
ability (i.e., existence of infinite clusters of + or −, respectively). Furthermore,
in 2D coexistence of infinite clusters of both types was excluded in all pure states
[Coniglio et al. 1976; 1977].

Communicated by Francesco dell’Isola.
Keywords: percolation, probability, Ising model, phase coexistence, coding theory, Markov

processes, Hellenistic science, infinite clusters.
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In the course of about three years, he worked intensely on percolation (in Bernoulli
sites distribution as well as in Ising model equilibria), employing the FKG and GHS
inequalities, first extending a result by Harris on critical percolation and proving
that mean size of the finite clusters is finite [Russo 1978]. This led, in a subsequent
work, to the proof, in the case of percolation on Z2, of the Essam–Sykes conjecture
on the critical probabilities of two “matching graphs” (pc+ p∗c = 1) [Russo 1981].

A result on the difficult problem of the (site) percolation in Z3 followed after a
series of studies (mostly in 2D). The first was on a proof that in 2D-Ising there is a
unique infinite cluster for T ≤ Tc and that the critical point and the percolation point
coincide (different from their already known noncoincidence in 3D) [Coniglio et al.
1976; 1977]; the smoothness, away from the critical point, of the 2D percolation
probability dependence on the occupation probability followed [Russo 1978]; the
Essam–Sykes conjecture was then proved [Russo 1981], obtaining also (on Z2) that
the site percolation probability is a continuous function of the site probability p.
Finally the methods, always based on inequalities known in statistical mechanics
and on several extensions developed in Russo’s works, have been applied to the
3D-percolation and to the 3D-Ising model: the critical site percolation is proved to
be < 1

2 , and in 3D-Ising at high temperature (and small field), coexisting infinite
clusters are shown to be possible [Campanino and Russo 1985].

The first results on percolation paved the way for a groundbreaking result, based
on the Ising model inequalities and relying also on ideas developed in the first few
percolation papers (which will also be further developed in the later works), on the
uniqueness of the translation-invariant Gibbs states in the two-dimensional Ising
model [Russo 1979]. It introduced a fresh view and a new method on the unique-
ness problem of the pure phases and proved that the states that were translation-
invariant in one direction were necessarily invariant under all translations. Imme-
diately after publication of his work, his result has been basic to the final solution
of the longstanding conjecture about the translation invariance of the equilibrium
states of the Ising model at all temperature and field values (independently in
[Higuchi 1981; Aizenman 1980]).

Percolation continued to be the focus of his interests; for the site percolation
problem, with site probability p, Russo proved that the probability of a given pos-
itive event A measurable at infinity (or close enough to be such) passes from 0 to
1 as p grows through a value p0, an extension of the Hewitt–Savage zero-one law
[Russo 1982]. This result was also shown to be useful in determining, by a new
method, the relation pc+ p∗c = 1 for the critical percolations on the square lattice
and its matching lattice.

A theory of a different kind of percolation, the (independently occupied with
probability p) plaquettes percolation on Zd , d ≥ 3, is studied. It was shown that in
d = 3 the existence of a phase transition in the dependence of the probability that
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the occupied plaquettes form a surface with given boundary decays exponentially
with the area of the surface for small p but at high plaquettes density, i.e., p close
to 1, the probability decays with the length of the boundary. The result, found in
[Aizenman et al. 1983], is obtained employing also the duality between plaquette
percolation and bond percolation, and the sharpness of the transition (as a function
of p) is related to a conjecture on the 3D bond percolation.

The problem of the uniqueness of infinite percolating clusters is then reexamined
first in the case of Bernoulli percolation and then in the 2D case of rather general
site distribution, subject to conditions of translation ergodicity in each direction
and to the monotonicity of µ(F ∩G)≥ µ(F)µ(G) [Gandolfi et al. 1988a; 1988b].

The attention to inequalities, an essential feature of most if not all of Russo’s
works, has generated a work on new inequalities related to the FKG inequalities
which have new applications to a variant of the Ising model, the “plaquette model”
[Cammarota and Russo 1991], considered in certain gauge theories.

Russo has also contributed to other fields of mathematics like dynamical sys-
tems and analysis, with the same uncompromising attention to mathematical rigor
transpiring from his probability works, providing insights and suggestions in the
normal seminars held in the departments where he has been a member [Frances-
chini and Russo 1981; 1983].

All the above results were obtained by Russo working alone or in collaboration
with other scientists. His sharp understanding of the probability theory of Bernoulli
distributions or of Ising distributions as always been an essential contribution. At
the end of the 1980s, Russo’s main interests switched to the history of science,
revealing a less known aspect of his personality which had remained hidden to most
of his colleagues. In a sense he really concentrated on the classic achievements
from the Hellenistic science to the 1600s.

This choice left little room to continue developing probability theory of perco-
lation (whether Bernoulli or Ising or other). I witnessed that this generated deep
regrets from several leading probabilists.

His involvement in the new task that he assigned himself was totalizing: to
study the few remnants of the Hellenistic age, he ended up gradually learning
classic Greek (starting from brushing up the Latin and Greek he had learned in high
school). The works that arise from this activity are for me difficult to comment on,
not having really worked on the ancient or modern history of science, and I will
try to mention briefly some of them; many are in Italian, and I expect that after
translation into English they will generate an even wider debate.

He began, around 1990, with a critique of the authenticity of the geometric enti-
ties in the definitions at the beginning of Euclid’s Elements. The analysis appeared
in the Bollettino dei Classici of the Accademia dei Lincei, and a revised English
version in the Archive for History of Exact Sciences [Russo 1992; 1998a]. The
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thesis is that, in the several centuries elapsed since Euclid to the present version
of the Elements, the introductory definitions were added to the original work, or
“simplified”. The thesis is developed by a detailed logical analysis of the defini-
tions; they are certainly captivating and lead to meditation on the subject. They
are often not accepted on the grounds that some incompetent scholar should have
dared to “simplify” Euclid’s work [Artmann 1998]. Personally I see no reason to
rule out the possibility of distortion in the transmission of the definitions: the work
of Boltzmann (whose original sources are still available) is a compelling example
of how scientific ideas may be misinterpreted, and nevertheless be useful, just a
few years (not even centuries) after most scientists proceeded to make use of their
consequences relying on expositions rather than relying on the original.

Several essays followed: with sharp critiques of modern interpretations of Hel-
lenistic achievements in astronomy, geography, mechanics, dynamics [Russo 1993b;
1994], gravitation and tidal theory [Russo 1993a; 1993c]. In [Russo and Medaglia
1996] he convincingly refuted the common wisdom that Aristarchus was accused
of “impiety” because of his heliocentric system.

His essays have often been collected and extended in books, starting with The
Forgotten Revolution, whose Italian original [Russo 1996] went through three edi-
tions, was then revised as it was translated into English [Russo 2004], and from
there into German and Polish. The book is captivating, with several new readings of
Greek and Roman texts which are often very convincing (showing the contribution
that practicing scientists can make to historical research). In the final chapters of
the book, he defends the view that the development of science in the Renaissance
benefited from access to ancient works that circulated in Europe after the fall of
Constantinople — to a far greater extent that is usually recognized, because some
of those works have since been lost. The notion that Renaissance scholars might
have concealed their inspiration in ancient sources has faced skepticism or outright
rejection in many quarters (see [Pambuccian 2001; Ewing 2004; Greene 2004;
Rowan-Robinson 2004] for example), though others have been more open to that
possibility [Graffi 1998; Netz 2002]. However controversial Russo’s views on the
development of modern science may be, his discussion of the classic achievements
and of the imperial decay of science is fascinating and rich in new insights.

The Forgotten Revolution is a seminal and stimulating work whose theses will
long generate debate and further studies. An example that illuminates the kind
of critical examination of sources (here Pliny and Vitruvius) that Russo excels at
considers the motion of the moon [Russo 1996, §10.6, p. 319; Russo 2004, §10.8].
He advanced this argument elsewhere as well: for instance in an essay on the
astronomy of Hipparchus [Russo 1994] and other pre-Ptolemaic sources.

Russo has since written more essays, eventually coherently organized and col-
lected into books. For instance, the book Flussi e riflussi on the history and the
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origins of the theory of tides, expanding [Russo 1995], gives a detailed and docu-
mented analysis of the developments in the modern period and its roots in antiquity
[Bonelli and Russo 1996; Russo 2003], stressing that the theory was developed
with apparently independent contributions repeatedly discovered and lost or for-
gotten, influencing many thoughts and ending to be eventually attributed only to
particular scientists (Newton, Laplace, Kelvin and G. H. Darwin). And we list only
a few essays: a discussion on the nature of and relation between mathematics and
physics and its evolution from Hellenism to contemporary science or a paper on
the “case” of Aristarchus [Russo 2002], which goes back to the impiety accusation
and further clarifies its unfoundedness, shown to be due to a misunderstanding of
a text of Plutarch. He discusses also the important contributions of Seleucus to
heliocentrism and to theories of tides [Russo 2002] and an essay on Archimedes
and on the myths about him [Russo 2013a].

A more unorthodox book is L’America dimenticata [Russo 2013b], where he
develops the idea (briefly suggested in the Revolution) that America was visited
over an extended period of time by sailors from the ancient Mediterranean, includ-
ing the Carthaginians both before and after the downfall of their city. The book
focuses on the thesis that civilization is not deterministically controlled by human
genes, and independent human communities might evolve very differently rather
than proceeding, deterministically, in parallel through the same stages, only up to
random time delays. In particular major calamities might completely stop, pull
back by centuries or divert the evolution: one of them was the Roman destruction
of Carthage, which cut earlier links between Europe and Central America, as Russo
contends, and caused the loss of knowledge of the Atlantic navigation practiced at
least by Phoenicians and Carthaginians, with the result that scanty vestiges remain
of the link between the evolution of European and American civilizations.

The case is discussed in detail, expanding [Russo 2013c], and taking the opportu-
nity to analyze a debated geography question and to offer a new interpretation of the
related work of Ptolemy. The highlight is a scientific analysis of the reduction of the
Earth’s circumference from 252 000 to 180 000 stadia: from the value established
by Eratosthenes and used by Hipparchus to the value documented, more than three
centuries later, by Ptolemy.

According to Russo, the problem was not, as often thought, that Ptolemy mis-
took the length of the “Eratosthenes stadium” (thinking it to be 1.43 times smaller
than that used afterwards, well into the next millennium). Instead, the error can
be traced to the misidentification of the extreme western point of the known world
with the Canary Islands, rather than the Lesser Antilles.

To be precise, according to Ptolemy, the latitude of this western limit (expressed
in today’s coordinates) was around 5.5◦, and it belonged to what he called the
Blessed Isles. He identified them with the Canary Islands; but he states that the
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longitudinal extent of the Blessed Isles is 1◦, while the Canaries archipelago is close
to 5◦ wide, and there is also a 15◦ difference in latitude between the two. A better
fit for the Blessed Isles of Ptolemy’s sources, Russo contends, would be the Lesser
Antilles, which match the latitude and longitudinal extent reported by Ptolemy, and
also match the longitude deduced from other information that Ptolemy provides:
that the western and eastern edges of the known world lie on opposite meridians,
and that the eastern edge is at a certain (relatively short) distance from the capital
of China, whole location in Hellenistic times we know (Xi’an).

Russo’s conclusion and proposal is that Ptolemy, taking as given the 180◦ width
of the known world — a datum apparently inherited from earlier scientists (the
evidence is analyzed) — and its eastern limit, unwittingly moved east its western
limit, because the Blessed Isles had become associated with the Canary Islands,
their earlier identity having been forgotten in the wake of Carthage’s destruction
(further arguments can be found in [Russo 2016]). A consequence seems to be
that Ptolemy had several correct distances along (some) parallels but no accurate
astronomical determination of longitudes for at least a few known sites1 to fit the
known distances: giving the Canaries as the extreme limit and 180◦ degrees the
width of the inhabited world, a shorter Earth radius and a dilation of the longitudes
resulted.

The analysis also solves another mystery arising from Ptolemy’s Geography:
the location of Thule. Showing that the most common accepted proposals do not
fit all available facts, Russo places Thule, after reinterpreting Ptolemy’s value of its
longitude, on the east coast of Greenland, which is consistent with what we know
of Pytheas’ explorations.

The book contains a dense set of footnotes to document the statements taken
from the literature (mostly classical) and a captivating analysis of them. Unfortu-
nately the notes have been relegated to the end of the chapters (as done also in
the next book by Russo, a choice increasingly made by printers), which is very
inconvenient for the readers because the footnotes are really essential here.

In a third book Stelle, atomi e velieri (Stars, atoms and sailing ships) [Russo
2015], the basic idea on the nondeterministic evolution of science and its depen-
dence on continuous interaction, through possibly tenuous temporal or spatial links
between different scientists, is taken up again and further developed. Here Russo
puts together all his previous arguments and offers a rapid and synthetic view of
some of the major events in the history of science, always paying attention and

1Longitude could have been only determined by on-site astronomical observations, which require
(good instruments and) a physical presence to observe the exact moment of an expected celestial
event, e.g., a lunar eclipse or an equinox, and either the exact local solar hour or the concomitant
equatorial coordinates of a star. Such observations were possible in antiquity (and positively men-
tioned and appreciated by Ptolemy [Russo 2013b, p. 158]) but there are few clear traces of them.
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adding evidence to reinforce the main idea that can be found in his earlier books
and papers. For instance it is interesting to see collected and organized in a wider
context the analysis of the roles of Copernicus and Bruno and the violent opinions
of Voltaire on Aristarchus, which will make at least some readers wish that Voltaire
had been more careful in his judgment; see also [Bonelli and Russo 1996; Russo
2002]. The book expands all themes treated earlier, adding substantial remarks on
science after the Renaissance, with arguments in favor of one of his main theses, i.e.,
the cultural interdependence between many scientists, starting with Hellenic and
Hellenistic science, and that major discoveries are often only attributed to “giants”.
He acutely examines the evolution of the disciplines called mathematics, physics
and mathematical physics, expressing judgments which will, likely, generate lively
debates.

Recently Russo has proposed a probabilistic approach to the determination of
the dates of events known to have occurred in a time interval [Benedetto et al. 2016],
a return to probability theory, applied to the date of birth of Hypatia and Theon. A
further book is dedicated to the history of science in Italy [Russo and Santoni 2010].
The editorial activity of Russo also led him to write, perhaps under the influence of
his personal history with parents deeply dedicated to high school teaching (hence
with an early direct knowledge of the problems and issues), an essay on education
criticizing, often harshly, the modern methods of teaching science in the Italian
high schools [Russo 1998b], a critique which hopefully will be heard, sooner or
later.
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AN ATTEMPT TO LET THE “TWO CULTURES” MEET:
RELATIONSHIP BETWEEN SCIENCE AND ARCHITECTURE

IN THE DESIGN OF GREEK TEMPLES.

CLAUDIO D’AMATO

Editor’s note: This unusual paper appears by invitation as an illustration of
Lucio Russo’s far-reaching influence. The author writes:

The present contribution is aimed at stimulating some reflections on the frac-
ture existing (and enlarging) between what were famously called “the two cul-
tures” by C. P. Snow in his influential book (Snow, C. P., The two cultures and
the scientific revolution: The Rede Lecture. Cambridge Univ. P., 1959). The
focus is on the architecture of Greek temples of Classical and Hellenistic age.
At the same time, some possibility to fill the gap is described, based on my ex-
perience and my scientific interaction with Lucio Russo, to whom this editorial
is dedicated.

Introduction

One of the theoretical issues which my cultural action in the Architecture School
of Bari has been focused on, was the definition of a curriculum able to realize a
conceptual unity of teachings of different nature (technical-scientific and historical-
artistic) that contribute to train students. An action aimed at countering the glob-
alization and the specialization of knowledge. In this strategy a major role was
assigned, starting from the very first year of the course, to teaching classical ar-
chitecture, in particular Greek, from which all of the theoretical principles and
language of Western architecture until the nineteenth century derived. My relation-
ship with Lucio Russo has to be considered within this cultural action: I owe to
him a significant step in my teaching and research activities, about which I will
speak in these pages.

I met Lucio Russo for the first time in January 2000, after reading his pamphlet
Segmenti e Bastoncini, in which I immediately found a convergence of ideas on the
importance of “classical” education in Higher School and on the criticism to the de-
conceptualization promoted by the reform of the (then) Minister Luigi Berlinguer.
It was for me a very important meeting. He spoke me about the journal Punti
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critici (which he founded), and about the cultural action in which he was engaged
at that time with many lectures in high schools. We also talked about La rivoluzione
dimenticata, which I did not know, and that a few months later he came to present
in Bari1.

In the following part of this editorial I will show some examples of the research
approach I was used to before meeting Lucio Russo and later I will show how the
scientific interaction with him changed this approach and the related results.

My way of working before meeting Lucio Russo Case study 1: the replica of
the capital 9A of the temple of Apollo Epicurius at Bassae2

In 2000, from April to September, I was busy with my research group3 in the real-
ization of the replica of the capital 9A of the temple of Apollo Epicurius (rescuer) in
Bassae (Messenia). An experiment with which I was searching for a satisfactory
transition from traditional techniques of cutting stones to those using numerical
control machines. The goal was to improve the performance of architecture with
load-bearing masonry systems (in terms of energy performance, cost, etc.) in com-
parison with that of reinforced concrete frame.

1May 22, 2000, Politecnico di Bari, Aula Magna “Attilio Alto”.
2Tradition attributes its design to Ictinus (for a non-specialist approach to the problem, see the

popular book by Rhys Carpenter, The Architects of the Parthenon, Penguin Books, 1970). The temple
was dedicated to Apollo, who had come to the rescue (Epicurius = rescuer) of the village of Bassae
in Messenia victim of an epidemic. The temple constituted a prototype that spread in the following
century beyond the geographical limits of the Peloponnesus, extending up to the boundaries of the
Greek world. As concerns the exceptional nature of this temple W. B. Dinsmoor writes: “I believe
we can say that within the perimeter of the peristyle may be found more fascinating problems than
in any other building in the world of ancient Greece” (W. B. Dinsmoor, The temple of Apollo at
Bassae, Metropolitan Museum Studies IV, New York, 1932–33). The temple is peripteral-hexastyle
(6× 15 columns) distinguished by the contemporary presence of the Doric order on the outside, in the
peristyle, the pronaos and the opisthodome; and Ionic and Corinthian orders on the inside. Ionic are
the columns standing against the spurs, which articulate the interior space of the cell and the frieze
at the top, while the column placed on the axis of the cell is instead Corinthian.

3The experimental nature of the research project allowed us to:

• select as material Carrara marble, suitable for its degree of hardness to the technical character-
istics of the set of tools (milling cutter and tips) available at the time of realization;

• produce a half capital, in consideration of its weight (approx. 1500 kg for a mean size of approx.
100× 60× 120).

The time required for study (defining the laws of composition and examination) and designing the
three-dimensional model was approximately 30 days (April 2000); the time required for realization,
about 5 days (September 2000). A large and detailed account of this experience is in C. D’Amato
(2003). The formal unity of the Greek Temple. The realization of the 9A capital replica of Apollo
epicurius’ Temple at Bassai. In: First International Congress on Construction History, Madrid, 20–
24 January 2003, vol. I / 84-9728-071-7, p. 683–691, ISBN: 84-9728-070-9.
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We chose as a case study the Doric capital because in its seeming simplicity it is
one of the most difficult and complex model, for its capacity to clearly demonstrate
the thesis, since the apparent simplicity of its form, tolerates no imperfection in
design or execution. And among the many possible, we choose that of the temple
of Apollo Epicurius for its very urgent problems of restauration.

Replace it with a replica? We accepted the challenge, because we felt it was
possible to accomplish the goal with the help of new technologies. But the real
challenge were the conceptual problems beyond the specific case of the restoration
until to the core of contemporary architectural design with its new modes of design
and production.

In September, we presented the replica of the capital 9A at MarmoMacc of
Verona4. We wanted to demonstrate the possibility of “replicating” (not copying)
architectural elements irreparably damaged, of which it was perfectly known the
shape and the geometric model.

We were convinced that it was possible to go back to the original design model,
starting from the conceptual horizon and from the production way of classical
Greece, that is from the design geometry and from their concrete “constructabil-
ity”5.

The Greek Temple could be easily considered as a paradigm in this sense: here
stone, used as unique material for the definition of the aesthetic character, expresses
directly the structural and decorative geometrical texture, and also defines the for-
mal unity of the architectural system as a whole. Moreover it is characterized by
an exact design and perfection in execution, aspects that make it exemplary.

As I said, the damaged capital 9/A of Apollo Epicurius’ Temple at Bassae, has
been chosen for the elaboration of cad/cam processing software, and associated
3D virtual simulations for its realization with a CNC machining center.

This is a chance only if we know all the original project, not just its individual
components; and also if we have the technology to run a perfect workmanship.
Only if these conditions exist, we can speak of “replicas.”

435th MarmoMacc, International Exhibition of Marble, Stone and Technology, Veronafiere, Sat-
urday, September 30, 2000. Panel discussion: Stone-cutter of the twenty-first century. The replica
of the capital 9A of the temple of Apollo at Bassae. Participants: C. D’Amato, S. Alevridis (Epho-
ria Z, Olympia), B. Cache (ETSAB, Barcelona), P. Marconi (Università Roma Tre), G. Margheriti
(CMS), G. Rocco (Università di Chieti), J. Tzedakis (Ephoria Z, Olympia). This experience was the
junction of all the research and practice of construction previously initiated by me in the School of
Architecture of Bari (that can be defined “traditional”) with the “stereotomic” one, favored by the
use of numerical control machines and 3D modeling software.

5The geometric knowledge of the classical age was at the basis of Euclid’s Elements. From it
also were derived the instruments and methods used in the building site, such as e.g. the jigs and the
rotation process.
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Case study 2: the modelling of the capital 9A: structural geometries and
computerized modelling techniques

The “electronic” modelling of the capital 9A and of the eighth drum of its column,
was conducted by processing the data derived from traditional survey (manual) on
a scale of 1 : 1.

Capital 9A consists of a square-based parallelepiped abacus, an echinus whose
contour is defined by a polycentric or spline curve, by a collarino and by the end
of the fluting which is joined to the collarino through a complex surface.

The eighth drum 9A consists of a truncated cone with fluting and engraved end
(hypotrachelion).

The identification of the different parts of the capital was done through comput-
erized polygonal CAD modelling by “surfaces” and not by the parametrizing of
“primitives” or “extrusion” of polygons, for the purpose of facilitating manipulation
of the 3D object.

The abacus, a square-based parallelepiped volume, was obtained by the mutual
and orthogonal composition of flat surfaces (“2D faces”).

The echinus and the collarino, a single volume of rotation, are the result of a
surface of revolution, obtained by rotating the profile of these elements for 360◦

around an axis of radial symmetry.
The collarino, serving as union between the end of the fluting and the echinus,

mathematically defined as quadric surface, was obtained through a “polar series”
of a bilinear curved surface consisting of 20 elements through an angle of 360◦.
This surface was modelled in two successive stages: the first by interpolating a
“Coon surface” for four spatial curves: the first of these is the portion of convex
circumference termination of the annuli, contained in the horizontal plane included
in an angle of 9◦ (half of 360◦/20); the second is the profile of the fluting, contained
in the vertical plane passing through the axis of radial symmetry; the third is the
section measured at the centreline of the fluting, contained in the vertical plane
passing through the axis of radial symmetry; the fourth is the portion of concave cir-
cumference at the base of the fluting contained in the horizontal plane. The surface
determined in this way represents half of the global surface, which is completed,
in the second stage, by “mirroring” the surface found according to the axis passing
through the centre point of the fluting, perpendicular to the axis of radial symmetry.

The drum consists of a surface passing through three sections contained in hor-
izontal and parallel planes, measured at different heights. The hypotrachelion has
been obtained by generating a surface having as generatrix the raised profile (saw-
tooth section) contained in the vertical plane passing through the axis of radial
symmetry, and as directrix the section of the drum, contained in the horizontal
plane, at that height with the fluting.
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Figure 1. View of the temple of Apollo at Bassae from the north-
west, before restoration work (Archive of the Ephoria Z, Olympia).

In October 2000 I gave start to a final synthesis course, whose topic was De-
signing and building with dry stone6: the case study was the temple of Apollo at
Bassae, and its theme of design was the remaking of its roof, in accordance with
the procedures of anastylosis and integration with replicas of the missing pieces
(whose geometric shape was known) or heavily damaged. On that occasion the
idea of a seminar with Lucio Russo on design issues of the Greek temples of the
classical age and the Hellenistic period was born.

How my research approach changed after meeting Lucio Russo:
the relationship between science and architecture in the design of

Greek temples of the classical age and the Hellenistic period

On 12 March 2001, Lucio Russo gave a seminar concerning the relationship between

6Tutors: Claudio D’Amato (Architectural design), Angelo Ambrosi (Architectural Drawing),
Mauro Mezzina (Structure and construction); Students: M. Alicino, F. Aulicino, C. Carone,
F. Cavone, V. Chieti, G. Dell’Aquila, S. Dentico, L. Donatelli, A. Paresce with the assistance of
the PhD students Giuseppe Fallacara and Annalisa Di Roma. A campaign of surveys was carried out
on April 9–12, 2001 in agreement with Ephoria Z of Olympia and in collaboration with the architect
Sofoklis Alevridis of the Temple Commission.
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science and architecture in the design of Greek temples7. It was mainly focused on
the “rules of correspondence” between the architectural project and its transfer, first
“on paper” and then in its construction. So, a seminar that explored the Euclidean
geometry as a tool which admits only geometric entities constructible with ruler
and compass, on the basis of postulates.

Below there is a synthesis of some excerpts from the seminar of Lucio Russo.

The theorems: deductive method and theoretical entities of thinking. Let us fo-
cus on some methodological characteristics of the Hellenistic scientific theories,
in the belief that some of these features are still valid in contemporary culture.
Hellenistic science is an absolute novelty in the history of mankind, but if you take
the books of history of science this novelty does not always emerge.

The scientific method has its roots in the culture of classical period, but emerges
substantially in the 4th century B.C., and is characterized by two elements which
are the deductive method and the existence of a purely theoretical level of thinking.

A typical case is that of the rational geometry of Euclid’s Elements, where there
are theoretical entities (triangles, circles, etc. in which no one stumbles walking
in the street), and where the propositions can be proved with theorems, i.e. by
means of arguments that logically link the statements to previously accepted ones,
starting from the well-known five postulates. It is very interesting to think to the
origin of the deductive method, which is an absolute novelty compared to earlier
civilizations. In Greek civilization, the deductive method was prepared by other
events that have to do with logic, in particular the analysis of the syllogism in
Aristotle.

Deductive method and rhetoric. The aspect that should be emphasized is that there
is a direct relationship between the demonstrative method and rhetoric. It is very
interesting to read Aristotle’s Rhetoric, in which it is clear that rhetorics gave rise
to logic and not the converse. The syllogism, in particular, is identified as the only
reasoning which resists to any confutation attempt. This was indeed an essential
step in the development of logic.

Theoretical entities. There is a close relationship between the two components of
Hellenistic science that are the logical reasoning within the theoretical model, i.e.
the systematic use of the demonstrative method, and the theoretical nature of the
entities. How were the theoretical entities thought? It is important to reflect on the
fact that the Greeks did not have available a special language for the construction of
a scientific theory, like the Greek language will be for the other civilizations. The
later peoples have built the entire scientific terminology taking heavily from Greek

7Politecnico di Bari, AA 2000-2001 (XI), School of Architecture, via E. Orabona 4, Monday,
March 12, 2001.
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Figure 2. Floor plan and transverse section of the temple.

language, and this provided an additional tool to distinguish the technical term used
from the conventional meaning that it used to have in the common language.

The Greeks of course could not do it: using the terms of their daily language,
the process of abstraction had to be carried out in a somehow more conscious way.
A simple example: when a student speaks, today, of a trapezium (or trapezoid, in
North America), or when we talk of a circus trapeze, these words lack more mun-
dane meanings. By contrast, a student in Euclid’s time who spoke of a trapezium
[το τραπέζιον], used a word that in the Greek language meant primarily a small
bench, and this required a more conscious level of abstraction.

Then how do you go from a real word to its abstraction? For example, with the
word “straight line” it is obvious that we are referring to a geometric entity and
not to a real object. So, in which way from a “straight line” that is a real object,
which can be traced with a stylus, with a pen on a papyrus or on a sheet of paper,
was born the straight line of geometry? A possible answer is that it arises precisely
from the strictly deductive structure of the theory.

Deductive theory. A deductive theory consists of a set of propositions, all based
on a few, basic assumptions that in the case of the Euclidean geometry are the “pos-
tulates”. Considering admissible not all the statements but only those deductible
rigorously with a deductive method from “postulates”, narrows the semantic field
of the term of ordinary language.

The “real” straight line can be green or red or can have any possible attribute;
however, because none of the five postulates of Euclid speaks of colors, it is clear
that no color will ever appear in any theorem. Nothing about colors is deducible
from the postulates; colors are used in other contexts. Similarly there is no mention
of thickness, and the thickness of a line will never appear in geometry.
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Figure 3. Proportional studies of the Doric order (external peris-
tasis) of the temple of Apollo at Bassae (by G. Fallacara).

Theoretical concepts or postulates, and their constructability. Thus in this way
a new concept arises that is the theoretical concept. But it is important to note
that the postulates retain a role (that for instance the axioms have not in modern
mathematics) in connecting the theory and the practical use of the language. The
postulates have indeed a dual nature: from the point of view of the theory they
are statements about theoretical entities, born thanks to their function; but in any
case, they continue to be phrases with an “ordinary” meaning. For instance we
are accustomed to think, thanks to the first postulate of Euclid, that the statement
that a straight line passes through two points is seen an internal statement of the



SCIENCE IN THE DESIGN OF GREEK TEMPLES 479

Figure 4. Constructive geometries of capital 9A (by G. Fallacara).

geometric theory which relates those abstract entities which are the points and the
straight lines. If we make a literal translation of the first postulate of Euclid’s
Elements, namely that between two “signs” you can always draw a straight line,
this statement has a meaning both from the point of view of the theory, but also
refers to a real activity of drawing, and this allows a concrete application of the
theory. When this connection is broken, you cannot understand anymore what is
the relationship between theory and the real world.

The diffusion of the deductive method and the building of models. Eg. The
hidraulycs, the astronomy. Another important aspect is the changes that these
concepts experienced in the modern era, escaping to the original meanings. The
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scientific theories we are talking about are not mathematical theories in the current
sense of the word mathematics; they have a much broader scope of application:
for example, in his mechanics works, Archimedes uses exactly the same demon-
stration scheme we are talking about, but there he talks about machines and not
of geometric drawings. And of course also the drawings are something real that
is built like machines; think to the hydrostatic theories of Archimedes, or to the
Treaty On Floating Bodies, which is concerned with a number of theorems on
bodies floating in a fluid.

But the floating bodies of Archimedes are not the real and concrete bodies that
float in the life of every day: with these they have the same ratio that the Euclidean
straight line has with the straight line of the drawing. Indeed the floating bodies
of Archimedes never undergo gusts of wind, the water does not swell, there is no
surface tension, and so on. In other words, only those features of the floating bodies
are maintained which are mentioned in the hydrostatic postulates. Everything else
is automatically neglected. Ultimately, a model is built that considers only the
consequences of a part of the characteristics chosen from the real world. The same
thing happens in astronomy.

Hypotheses and postulates. A crucial point of these scientific theories is that they
consist of theorems proved rigorously starting from some statements that are often
defined “hypotheses” rather than postulates (the word often is regarded as synony-
mous of “postulates”). The term hypothesis derives from a Greek word that has a
different meaning from the modern terminology, namely it is “the basis”, what it
is placed under, the foundation.

It is important to understand how you choose the hypotheses, how you choose
the postulates. There are a number of statements which are very easily verifiable,
but generally the postulates are neither simple nor verifiable. For instance, in the
way in which Archimedes explains the heliocentric theory in the “Sand Reckoner”,
it is not at all easy to verify Aristarchus’ “hypothesis” that the Earth moves and
that the Sun is stationary, because all the experience through the millennia seems
to say the opposite. So the postulates are not something whose truth is obvious.
This also applies to the postulates of geometry, if only for their being so general:
how do you verify that for any pair of signs you can always draw a straight line?

Nor we can assume the criterion of simplicity. The idea to start from the simple
is a pre-Euclidean idea, coming from the Pythagorean School: if you want to build
a geometry starting from the simplest entities, these should be the points. But it has
never succeeded to build a geometry starting from the points, because aporias were
always arising, because always there had been some problems. And then Euclid
decided to start halfway, directly from the concepts of circles and straight lines,
without starting from the concept of point, and this was a tremendous idea.
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The starting hypotheses are neither the easiest nor the most verifiable. But there
is another fundamental criterion that must be satisfied, that is: from them it must be
possible to deduce what is observed with a deductive method — what Plato called
“saving the phenomena” [σώζειν τὰ φαινόμενα].

It is important to note that the phenomena are not intended here in the modern
meaning of the word. There are two different starting points of the theory: one is
the logical starting point that is the postulates of the theory; and then there is the
starting point of the phenomena, that is all that you can immediately perceive with
the senses.

In the case of astronomy, the starting point of the modern theory is the assump-
tion that the sun is stationary and the earth moves, while the phenomenological
starting point is the observation of planetary motions, in particular their retrograde
movement. That is, we observe the motion of the planets, and notice that they
move some times “forward” and sometimes “backward”: here appearances are very
complex and we try to save them, deducing the theory from simple hypotheses.

So, if we have some simple hypotheses from which it is possible to deduce what
appears, then we have been able to build a valid scientific theory.

Hellenistic science and its applications. Hellenistic science was what it was pre-
cisely because, despite it changed the object of investigation compared to the clas-
sical philosophy, focusing in a sense “on the parts” rather than “on the entire”, it
kept the spirit of the old philosophy, the contemplative spirit that the Greeks called
theoretical. Greek science was animated by the theoretical and contemplative force,
which urges us to consider visible things as chinks through which you can access
to the ones that are not directly accessible. This is an approach that the pragmatic-
technological modern mentality seems to have lost, or at least marginalized. The
explicit description of the process of abstraction that leads to the formation of
geometric entities is typical of Greek culture. The idea of solving problems with
theorems is a typical Greek cultural product, that no other civilization had con-
ceived.

So, the superiority of the Greeks on other peoples on this particular point, is not
purely quantitative but qualitative, because what they created, establishing philos-
ophy, is a novelty in some absolute sense. Indeed, it was the philosophy, because
of its rational categories, to make possible the birth of science and, in a sense, to
generate it.

Constructible geometric entities. Let us go back to theorems. In order to create
theorems you must first have developed the logic, as Greeks did analyzing the
forms of reasoning used in speeches; and then you have to try to derive a large
number of logical propositions from very few propositions, chosen as postulates.
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Figure 5. Left: virtual reconstruction of capital 9A and its drum
(by G. Fallacara). Right: virtual reconstruction of horizontal sec-
tion of capital 9A with its empolion (from bottom).

Figure 6. 3D view of capital 9A, from above and below.

It must then be determined which geometric entities are possible subject of
mathematical proofs. The choice made by Euclid is to admit only constructible
geometric entities on the basis of the postulates, that is, with a ruler and a compass.

Conclusions: a research paradigm was changed due to the meeting
of the “two cultures”

As a conclusion, I want to come back to the impact of Russo’s way of thinking on
my work by briefly mentioning a few research products of the aforementioned lines
of thought. In 2001–2003 the author supervised the PhD Thesis: Serial production
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Figure 7. Comparison between the real capital and its virtual reconstruction.

in the architectonic ornamentations: from Hellenistic age to prototyping processes
with CAD-CAM techniques8. This research object was a result of the investigation
on the diversity between the mode of production of the Greek classic architecture
and the Hellenistic one, developed also through the comments of Lucio Russo to
our observations on the Hellenistic building site, to its methods and to the tech-
niques of cutting the stone. A year later the seminar on the temple of Apollo at
Bassae, it was promoted a symposium devoted to architecture in cut stone and to
the stereotomy.9 The title was Architecture and stereotomy, tradition and innova-
tion.10 This was an important moment of transition between the previous research

8PhD Student: Annalisa Di Roma.
9“Stereotomy, from the Greek words στερεo = solid and τoµη = cutting, is the science of

cutting the solids (stone and wood) that through projective graphic techniques is able to determine
the exact forms of the elements constituting the architectural system, and to realize them.

It combines the set of geometric codified procedures, consistent and repeatable, able to design
and to represent whole buildings, or parts thereof, made of stone or wood. . . . By extension of
meaning, stereotomy stood to indicate during the 16th, 17th and 18th centuries the Art of Building,
or Baukunst or Art de Batir.” In C. D’Amato, Studiare l’architettura, Roma, Gangemi, 2014, p. 27.

10The initiative was taken by the Department of Civil Engineering and Architecture of Politecnico
di Bari and the Department of Representation and Survey of the University of Rome “La Sapienza.”
The sessions were:

1) From survey to model (M. Docci, A. Ambrosi);
2) Mathematical model and numerical model (R. Migliari, Trevisan C.);
3) Idea, design, construction (C. D’Amato, S. Alevridis);
4) The replica of capital 9A of the temple of Apollo at Bassae (CMS);
5) Practical applications (G. Falcone, G. Valenti, V. Cascione, G Fallacara, A. Di Roma);
6) Theories, methods and instrumentation of contemporary stereotomy (L. Nisi, M. Curuni,

M. Ciammaichella, E. Guglielmotti);
7) Theories, methods and tools of traditional stereotomy (E. Rabasa Diaz, M. Greco and

M. Sganga, C. Bianchini, M. Fasolo, M. Alicino and V. Chieti, A. Di Roma, E. De Nichilo, G. Fal-
lacara, G. Pinto, G. Radicchio, C. Zaccaria, P. Perfido).
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on architecture in cut stone, both with traditional methods and CNC machines, and
the study of stereotomic architecture that would characterize my research in the
following years.

Finally, I want to mention that the mature fruit of this season was the birth of
Classic curriculum in the degree course in architecture of the School of architecture
of Bari.

Since the academic year 2005–2006 the School of Architecture of Bari offers,
together with a General curriculum, a Classical one. This is mostly inspired by the
archeologic studies and by the Bauforschung, the consolidated tradition of studies
in the Germanic world between 19th and 20th centuries about the knowledge of
ancient architecture. Today this curriculum is not offered by other Schools of
Architecture all over the world. In this School scientific knowledge, mathematical
thought and physical theories are highlighted as fundamental ingredients for the
basic education of young architects.

Received 7 Nov 2016. Revised 10 Oct 2017. Accepted 27 Oct 2017.

CLAUDIO D’AMATO: claudio.damatoguerrieri@poliba.it

MM ∩
msp

mailto:claudio.damatoguerrieri@poliba.it
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org


Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the submission page.

Originality. Submission of a manuscript acknowledges that the manuscript is original and and is not,
in whole or in part, published or under consideration for publication elsewhere. It is understood also
that the manuscript will not be submitted elsewhere while under consideration for publication in this
journal.

Language. Articles in MEMOCS are usually in English, but articles written in other languages are
welcome.

Required items. A brief abstract of about 150 words or less must be included. It should be self-
contained and not make any reference to the bibliography. If the article is not in English, two versions
of the abstract must be included, one in the language of the article and one in English. Also required
are keywords and a Mathematics Subject Classification or a Physics and Astronomy Classification
Scheme code for the article, and, for each author, postal address, affiliation (if appropriate), and email
address if available. A home-page URL is optional.

Format. Authors are encouraged to use LATEX and the standard amsart class, but submissions in other
varieties of TEX, and exceptionally in other formats, are acceptable. Initial uploads should normally
be in PDF format; after the refereeing process we will ask you to submit all source material.

References. Bibliographical references should be complete, including article titles and page ranges.
All references in the bibliography should be cited in the text. The use of BIBTEX is preferred but
not required. Tags will be converted to the house format, however, for submission you may use the
format of your choice. Links will be provided to all literature with known web locations and authors
are encouraged to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need to submit the
original source files in vector graphics format for all diagrams in your manuscript: vector EPS or
vector PDF files are the most useful.

Most drawing and graphing packages — Mathematica, Adobe Illustrator, Corel Draw, MATLAB,
etc. — allow the user to save files in one of these formats. Make sure that what you are saving is
vector graphics and not a bitmap. If you need help, please write to graphics@msp.org with as many
details as you can about how your graphics were generated.

Bundle your figure files into a single archive (using zip, tar, rar or other format of your choice)
and upload on the link you been provided at acceptance time. Each figure should be captioned and
numbered so that it can float. Small figures occupying no more than three lines of vertical space
can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with all
figures at the end, if their placement is specified in the text by means of comments such as “Place
Figure 1 here”. The same considerations apply to tables.

White Space. Forced line breaks or page breaks should not be inserted in the document. There is no
point in your trying to optimize line and page breaks in the original manuscript. The manuscript will
be reformatted to use the journal’s preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corresponding author) at
a Web site in PDF format. Failure to acknowledge the receipt of proofs or to return corrections within
the requested deadline may cause publication to be postponed.



Mathematics and Mechanics of Complex Systems

vol. 4 no. 3-4 2016

Special issue in honor of
Lucio Russo

197Lucio Russo: A multifaceted life
Raffaele Esposito and Francesco dell’Isola

199The work of Lucio Russo on percolation
Geoffrey R. Grimmett

213“Mathematics” and “physics” in the science of harmonics
Stefano Isola

235From quantum to classical world: emergence of trajectories in a quantum system
Rodolfo Figari and Alessandro Teta

255Propagation of chaos and effective equations in kinetic theory: a brief survey
Mario Pulvirenti and Sergio Simonella

275What decides the direction of a current?
Christian Maes

297A remark on eigenvalue perturbation theory at vanishing isolation distance
Fiorella Barone and Sandro Graffi

311Some results on the asymptotic behavior of finite connection probabilities in percolation
Massimo Campanino and Michele Gianfelice

327Correlation inequalities for the Potts model
Geoffrey R. Grimmett

335Quantum mechanics: some basic techniques for some basic models, I: The models
Vincenzo Grecchi

353Quantum mechanics: some basic techniques for some basic models, II: The techniques
Vincenzo Grecchi

373On stochastic distributions and currents
Vincenzo Capasso and Franco Flandoli

407A note on Gibbs and Markov random fields with constraints and their moments
Alberto Gandolfi and Pietro Lenarda

423Quantum mechanics: light and shadows (ontological problems and epistemic solutions)
Gianfausto Dell’Antonio

461Lucio Russo: probability theory and current interests
Giovanni Gallavotti

471An attempt to let the “two cultures” meet: relationship between science and architecture in the design of Greek temples.
Claudio D’Amato

MEMOCS is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems
at the Università dell’Aquila, Italy.

MM ∩

2326-7186(2016)4:3;1-A

M
A

T
H

E
M

A
T

IC
S

A
N

D
M

E
C

H
A

N
IC

S
O

F
C

O
M

P
L

E
X

SY
ST

E
M

S
vol.

4
no.

3-
4

2
0

1
6


	 vol. 4, no. 3-4, 2016
	Masthead and Copyright
	Raffaele Esposito and Francesco dell'Isola
	Geoffrey R. Grimmett
	1. A personal appreciation
	2. Scientific summary
	3. Russo's formula
	4. Russo–Seymour–Welsh inequalities
	5. Approximate zero–one law
	6. Percolation in dimension d3
	7. Uniqueness of the infinite open cluster
	8. Ising model
	Acknowledgements
	Mathematical publications of Lucio Russo
	References

	Stefano Isola
	1. The rambling route of the ancient scientific method
	2. Acoustic-musical phenomena
	Acknowledgments
	References

	Rodolfo Figari and Alessandro Teta
	1. Introduction
	2. Mott's analysis of the cloud chamber problem
	3. A model of cloud chamber
	References

	Mario Pulvirenti and Sergio Simonella
	1. The paradigm of kinetic theory
	2. Mean-field limit and Vlasov equation
	3. The Boltzmann equation
	4. The weak-coupling limit and the Landau equation
	5. Some historical remarks
	Acknowledgment
	References

	Christian Maes
	1. Introduction
	2. Traditional arguments
	2A. Phenomenology
	2B. Stochastic lattice gas

	3. Problematic cases
	3A. Ratchet currents
	3A1. Triangula
	3A2. Parrondo game

	3B. Multiple cycles
	3C. Nonequilibrium internal degrees of freedom
	3D. Wrong direction!

	4. Low temperature analysis
	5. Conclusion
	Acknowledgment
	References

	Fiorella Barone and Sandro Graffi
	1. Introduction and formulation of the result
	2. Proof of the result
	References

	Massimo Campanino and Michele Gianfelice
	1. Introduction
	1.1. Notation
	1.2. A note on the multidimensional renewal process
	1.3. Possible developments

	2. Ornstein–Zernike behavior for the finite connectivity function in highly supercritical percolation models
	2.1. Bernoulli percolation and the FK random-cluster model
	2.2. Results
	2.3. Analysis of connectivities
	2.4. The independent percolation case
	2.5. The case of the FK random-cluster model

	References

	Geoffrey R. Grimmett
	1. Introduction
	2. The Potts model with external field
	3. The correlation inequalities
	4. Proof of 0=equation.81=Theorem 3.5
	5. Proof of 0=equation.91=3.6
	6. Proof of 0=equation.131=3.7
	Acknowledgements
	References

	Vincenzo Grecchi
	1. Introduction
	2. Essentials of quantum mechanics
	3. Some solvable models
	4. The quartic oscillator
	5. PT operators: a short story
	6. The cubic single-well Hamiltonian
	(a). The first thing to prove is the absence of the essential spectrum. Thus, we prove the compactness of the resolvent
	(b). The second thing to prove is the isolation of the nodes or the confinement and the stability of the nodes for the parameter on the cut plane
	(c). The third thing to prove is the absence of nonperturbative levels
	(d). Now we prove that the levels are Stieltjes functions

	7. The cubic PT-symmetric double well
	8. A simple model for the racemization
	References

	Vincenzo Grecchi
	1. Introduction and some techniques
	1a. Quadratic estimates
	1b. The method of Loeffel and Martin for the confinement of the zeros
	1c. The exact quantization condition GG1
	1d. The generalized changes of representation AC
	1e. The Stokes sectors, the asymptotic behavior, the Riccati equation JR and the semiclassical series expansion
	1f. The Stokes lines and the classical trajectories
	1g. The theory of the regular perturbations
	1h. Perturbation expansion of a simple isolated eigenvalue
	1i. Divergent perturbation series

	2. Divergent power series regular sum: a short story 
	2a. The Taylor expansion of a function
	2b. A divergent power series asymptotic to a function (Poincaré)
	2c. Strong asymptotics and uniqueness of the function (Carleman)
	2d. Direct methods of sum
	2e. The Stieltjes series and the Stieltjes moment problem
	2f. Definition of orthonormal polynomials
	2g. The determination of the moment problem and the essential self-adjointness of an operator!

	References

	Vincenzo Capasso and Franco Flandoli
	1. Introduction: preliminaries and notation
	2. Densities as linear functionals
	2.1. The deterministic case
	2.1.1. Paths: 1-dimensional sets

	2.2. The stochastic case
	2.2.1. Random Radon measures
	2.2.2. Random linear functionals

	2.3. Random functionals associated with random closed sets
	2.3.1. Absolutely continuous (in mean) random sets
	2.3.2. Example: an absolutely continuous 1-regular random set

	2.4. More on random functionals

	3. Currents
	3.1. Differential forms
	3.2. Line integrals of differential forms
	3.3. 1-currents
	3.4. Random 1-currents and their mean densities
	3.4.1. The mean of a 1-current

	3.5. Example of a random 1-current in the strict sense and its expectation
	3.6. Example of a random 1-current in the broad sense and its expectation

	4. Advanced applications and open problems
	4.1. A mathematical model for tumor induced angiogenesis
	4.1.1. Vessel branching
	4.1.2. Anastomosis

	4.2. Turbulence
	4.3. Pathwise stochastic analysis

	Acknowledgements
	References

	Alberto Gandolfi and Pietro Lenarda
	1. Introduction
	2. Definitions
	3. Previous results and one ensuing question
	4. Markov–Gibbs equivalence with no constraints:  an explicit Hammersley–Clifford theorem
	5. Markov–Gibbs with hard-core constraints
	6. Examples of minimal graphs
	7. Identifiability of statistical models by support, moments and conditional independencies
	8. Conclusions
	References

	Gianfausto Dell'Antonio
	1. Introduction
	2. Origins of QM
	3. Ontology and epistemology: the quantum omelette
	4. Copenhagen quantum mechanics
	5. States and observables in QM
	6. The axioms
	7. The semiclassical limit
	8. Principle of decoherence
	9. Mechanisms of decoherence
	10. Experiments on decoherence
	11. The measurement problem and tracks in a cloud chamber
	12. Some mathematics
	13. Quantum mechanics: Born's rule as conditional probability and information-theory analysis
	14. Quantum bayesianism (QB)
	References

	Giovanni Gallavotti
	References

	Claudio D'Amato
	Introduction
	My way of working before meeting Lucio Russo Case study 1: the replica of the capital 9A of the temple of Apollo Epicurius at BassaeTradition attributes its design to Ictinus (for a non-specialist approach to the problem, see the popular book by Rhys Carpenter, The Architects of the Parthenon, Penguin Books, 1970). The temple was dedicated to Apollo, who had come to the rescue (Epicurius = rescuer) of the village of Bassae in Messenia victim of an epidemic. The temple constituted a prototype that spread in the following century beyond the geographical limits of the Peloponnesus, extending up to the boundaries of the Greek world. As concerns the exceptional nature of this temple W. B. Dinsmoor writes: ``I believe we can say that within the perimeter of the peristyle may be found more fascinating problems than in any other building in the world of ancient Greece'' (W. B. Dinsmoor, The temple of Apollo at Bassae, Metropolitan Museum Studies IV, New York, 1932–33). The temple is peripteral-hexastyle (615 columns) distinguished by the contemporary presence of the Doric order on the outside, in the peristyle, the pronaos and the opisthodome; and Ionic and Corinthian orders on the inside. Ionic are the columns standing against the spurs, which articulate the interior space of the cell and the frieze at the top, while the column placed on the axis of the cell is instead Corinthian.
	Case study 2: the modelling of the capital 9A: structural geometries and computerized modelling techniques
	How my research approach changed after meeting Lucio Russo:the relationship between science and architecture in the design ofGreek temples of the classical age and the Hellenistic period
	Conclusions: a research paradigm was changed due to the meetingof the ``two cultures''

	Guidelines for Authors
	Table of Contents

