
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA
S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI

LEONARDO DAVINCI

Mathematics and Mechanics
of

Complex Systems

msp

vol. 4 no. 3-4 2016

ALBERTO GANDOLFI AND PIETRO LENARDA

A NOTE ON GIBBS AND MARKOV RANDOM FIELDS WITH
CONSTRAINTS AND THEIR MOMENTS



MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
Vol. 4, No. 3-4, 2016

dx.doi.org/10.2140/memocs.2016.4.407
MM ∩

A NOTE ON GIBBS AND MARKOV RANDOM FIELDS WITH
CONSTRAINTS AND THEIR MOMENTS

ALBERTO GANDOLFI AND PIETRO LENARDA

This paper focuses on the relation between Gibbs and Markov random fields,
one instance of the close relation between abstract and applied mathematics so
often stressed by Lucio Russo in his scientific work.

We start by proving a more explicit version, based on spin products, of the
Hammersley–Clifford theorem, a classic result which identifies Gibbs and Markov
fields under finite energy. Then we argue that the celebrated counterexample of
Moussouris, intended to show that there is no complete coincidence between
Markov and Gibbs random fields in the presence of hard-core constraints, is not
really such. In fact, the notion of a constrained Gibbs random field used in the
example and in the subsequent literature makes the unnatural assumption that
the constraints are infinite energy Gibbs interactions on the same graph. Here we
consider the more natural extended version of the equivalence problem, in which
constraints are more generally based on a possibly larger graph, and solve it.

The bearing of the more natural approach is shown by considering identifi-
ability of discrete random fields from support, conditional independencies and
corresponding moments. In fact, by means of our previous results, we show iden-
tifiability for a large class of problems, and also examples with no identifiability.
Various open questions surface along the way.
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1. Introduction

Gibbs random fields are important models in equilibrium statistical mechanics,
and Markov random fields are fundamental models in applications. They can both
be defined in terms of a given graph, and they are almost two faces of the same
phenomenon: Gibbs fields are defined from microscopic interactions and Markov
fields by, in principle observable, conditional independencies.

Leaving the details for later, we can say in a nutshell that every Gibbs measure
is Markov; the question is whether the opposite is also true. A celebrated result
of Hammersley and Clifford [1971] states that with finite energy, i.e., the absence
of zero probability configurations, every Markov random field is Gibbs. On the
other hand, a famous example by Moussouris [1974] shows that in the presence of
hard-core constraints, which is to say without the finite energy assumption, there
are Markov fields which are not Gibbsian. Further studies have clarified that on a
chordal graph Gibbsianity is equivalent to the global Markov property, regardless
of finite energy [Lauritzen 1996], and that detailed algebraic conditions seem to
be needed on nonchordal graphs [Geiger et al. 2006]. These results would seem to
settle the issue.

There is, however, one weakness in this picture. When hard-core conditions,
which can also be graph-based, appear in the results above, they are defined in
terms of the same graph as the one used for the interactions. Such a choice seems
to be justified by two simple remarks: first, one can always take the union of the
two graphs, the one for interactions and the one for the hard-core conditions, as a
common graph for both (as larger graphs accommodate more interactions or less
conditional independence requirements); second, one can interpret the hard-core
conditions as unbounded interactions, that are thus subject to the same geometrical
dependence. In spite of these two remarks, however, the assumption of a unique
graph is physically unwarranted; in general, the mechanisms which induce hard-
core conditions are completely different from those generating interactions. For
gravitational fields, for instance, the interaction is long-range while hard-core con-
ditions can take care of the impenetrability of rigid bodies; on the other hand, in
a canonical ensemble of short range interacting particles, the hard-core condition
is long-range as opposed to the interaction. Even more importantly, the graph
of Markov conditional independencies is naturally related to the one on which
the interaction is based, which, as we just argued, has no relation to the one for
hard-core conditions. Assuming a unique range for hard-core conditions and in-
teractions hinders the more relevant relation between interactions and conditional
independencies, and leads to confusing results.

The first consequence of the remarks above is the need of a more careful analysis,
and of more explicit notation highlighting the importance of the graphs next to the
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notions of Markov or Gibbs; we present this in Section 2. Notice that a more careful
distinction of the role of interactions and hard-core constraints already appears (al-
beit with less explicit notation) in the literature, chiefly in Ruelle’s thermodynamic
formalism [Ruelle 1978].

With the more explicit and natural identification of the graphs, it is still the case
that a Gibbs random field is Markov, but the issue of whether a Markov random
field on a given finite graph can always be obtained as a Gibbs field on the same
graph with hard-core conditions based on a possibly larger graph falls outside the
scope of past researches. In Section 5 we provide an answer to this question.

Prior to this, we give an alternative proof of the Hammersley–Clifford theo-
rem, potentially more suitable for applications. One of the earlier proofs by Besag
[1974] expresses the interaction in terms of products of spins, but works only for the
binary case and has some problematic steps in the argument; the proof of Grimmett
[1973], on the other hand, is valid for all finite and countable state spaces, but does
not express the interaction as an explicit function of the spin values. The proof we
present here expresses the interaction in terms of spin products and holds for all
finite state spaces. In a sense, it exploits the fact that spin products are a basis of
the interaction space. In so doing, we get an explicit calculation in terms of inverse
Vandermonde matrices; we also get a more direct relation with the moments of the
distribution.

Another noticeable consequence of our work is explored in Section 7, where
we show that the statistical identifiability of a discrete random field by support,
conditional independencies and moments can be analyzed by a combination of the
moment related representation of Gibbs fields in Section 4, and of the clarification
of the role of the graphs in the Markov–Gibbs relation in Section 5.

2. Definitions

Let3 be a finite set of vertices, �x be a finite set for each x ∈3, and�=
∏

x∈3�x .
For a subset A ⊆3, ωA is a configuration in �A =

∏
x∈A �x ; the same notation is

used for the restriction of a configuration ω ∈� to A. Later on, we use the notation

[ω1, ∗, ω2, . . . , ∗] = {ω ∈� : ωi = ωi , for all i such that ωi 6= ∗}

for cylinders.
In this paper we consider probabilities, generally denoted as P, on (�,P(�)),

where for every finite set S, P(S) indicates the set of all subsets of S.
To express the notions of interest here, we consider a graph G = (3,B) in which

the set of undirected bonds is B⊆ {{x, y} | x 6= y, x, y ∈3}. Given a probability P,
we say that two sets A, B ⊆3 are conditionally independent given a third set C ,
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A ⊥⊥ B | C , if ωA and ωB are conditionally independent given ωC for all ωS ∈�S ,
and S = A, B,C .

A probability P is pairwise Markov with respect to the bonds B, or as we call
it from now on, B-pair-Markov, if

(1) for all pairs of vertices x, y ∈3 which are not neighbors on G, i.e., such that
{x, y} /∈ B, x ⊥⊥ y | (3 \ {x, y}),

and it is B-global-Markov with respect to the bonds B if

(1′ ) for all pairs of disjoint sets A, B ⊆ 3 which are not neighbors on G, i.e.,
such that there is no bond in B connecting a vertex of A to a vertex of B,
A ⊥⊥ B | (3 \ A∪ B).

P is B-pair-Markov>, or B-global-Markov>, if in addition

(2) P(ω) > 0 for all ω ∈�.

These are the notions of Markov probability or Markov random field generally used
in the literature [Grimmett 1973; Lauritzen 1996; Geiger et al. 2006].

A B-clique of the graph G is a maximal complete subgraph, possibly including
single vertices, of G. We denote by C`(B) the collection of subsets A ⊆3 which
are subsets of the vertex set of a clique of G = (3,B). A B-interaction is a function
φ : ∪A∈C`(B)�A→R. Next, we consider a further collection F ⊆P(3) of subsets of
3, and a (possibly empty) set�A of forbidden configurations for each A∈F ; notice
that some authors focus on the set of allowed configurations (see [Ruelle 1978]),
but our choice underlines the exceptionality of being forbidden and highlights the
role of F , as no restrictions can be imposed for sets not in F . In greater generality,
one can take as forbidden configurations those belonging to the set � of zeros of
a function ρ defined on �. It is convenient to deal with forbidden configurations
by assigning them a probability anyway, which is then required to be zero.

A probability P is Gibbs with respect to the graph G = (3,B) and the allowed
configurations on F , or B-F-Gibbs, as we call it from now on, if for all ω ∈�,

P(ω)= 1
Zφ

(
e
∑

A∈C`(B) φ(ωA)
∏
B∈F

I�B\�B
(ωB)

)
, (1)

where IS the indicator function of the set S, φ is a B-interaction, �B for B ∈ F is
a collection of forbidden configurations, and Zφ is a normalization factor. Notice
that B-∅-Gibbs means that all configurations have positive probability; ∅-∅-Gibbs
is a Bernoulli distribution; and ∅-F-Gibbs is a Bernoulli distribution constrained
to have some zero probabilities. Moreover, B-3-Gibbs means that the hard-core
constraints can be imposed on the entire configuration, and B-B-Gibbs indicates the
fact that both interaction and hard-core constraints are assigned on configurations
defined on subsets of the cliques of the same graph (3,B).
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In abstract terms, φ and � are measurable with respect to a σ -algebra of �, but
as the σ -algebra can be expressed in terms of set B of bonds (in the sense that the σ -
algebra is the one generated by ∪A∈C`(B)�A), we focus on B and F in the notation.

Finally, we sometimes use indices to distinguish the various collection of bonds
B. In general, we indicate it by Bm if m is the size of the largest clique. Notice that
if B ⊆ B′ and F ⊆ F ′, then B-pair(global)-Markov implies B′-pair(global)-Markov,
and B-F-Gibbs implies B′-F ′-Gibbs, so one is generally interested in the minimal
such graphs and collections.

3. Previous results and one ensuing question

Global Markov implies pairwise Markov, but one can easily construct an example
with enough configurations of zero probability showing that the opposite impli-
cation does not hold [Lauritzen 1996]. On the other hand, on some graphs there
is no difference between pairwise and global Markov, as the only sets which can
be separated are pairs. Such is, for instance, the graph with 3 = {1, 2, 3, 4} and
B2 = {(1, 2), (2, 3), (3, 4), (4, 1)}; this graph is used for several examples below.

B-F-Gibbs implies B-global-Markov for any F , which then implies B-pair-
Markov. The reversed implication is given for the case in which finite energy holds
by the celebrated Hammersley–Clifford theorem [1971], which in our terminology
can be phrased as follows:

Theorem 3.1 (Hammersley–Clifford). Given a graph G= (3,B), a random field P
is B-pair-Markov> if and only if it is B-∅-Gibbs for some potential φ.

There are various proofs of this result, probably starting from [Brook 1964]
and the unpublished paper [Hammmersley and Clifford 1971] (see also [Grimmett
2010]). An explicit dependence of φ from the spin values appears for the binary
case (i.e., |�x | = 2) in [Besag 1974] (with some unclear steps in the proofs); a
general version including countable state spaces was proven by Grimmett [1973],
but without the explicit dependence of φ from the spin values. A simpler statement,
in which conditional probabilities are known instead of unconditional ones, is pre-
sented in [Onural 2016] and very likely elsewhere. For completeness, we prove
Theorem 3.1 once again in Section 4 below; the proof we give is for all finite �x

but with φ explicitly expressed in terms of spin products. Our results can also be
indirectly obtained from [Grimmett 1973] by decomposing φ on the basis of spin
products.

The Hammersley–Clifford theorem has been generalized by Lauritzen [1996] by
means of chordal graphs: an undirected graph is said to be chordal if every cycle
of length 4 or more has a chord.

Theorem 3.2. If the graph G = (3,B) is chordal, then a random field P is B-
global-Markov if and only if it is B-B-Gibbs for some potential φ.
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An algebraic interpretation and a slight generalization of these results is given
in [Geiger et al. 2006].

In the opposite direction, Moussouris’ counterexample [1974] shows that it is
not true that every B-global-Markov random field is B-B-Gibbs. This happens
necessarily on a nonchordal graph.

Example 3.3 (Moussouris). Take 3= {1,2,3,4}, B2 = {(1,2), (2,3), (3,4), (4,1)}
and let PM be the uniform distribution on

�′ = {(0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,1,0),

(1,1,1,1), (0,1,1,1), (0,0,1,1), (0,0,0,1)}.

It is easily seen (and we will explicitly show a related statement in Lemma 5.2
below) that

{1} ⊥⊥ {3} | {2, 4} and {2} ⊥⊥ {4} | {1, 3}

so that PM is B2-pair-Markov, and is (on this graph) also B2-global-Markov. On
the other hand, PM cannot be B2-B2-Gibbs; if it was so, then

PM(ω)=
1
Z

∏
A∈C`(B2)

eφB(ωB)
∏

B∈B2

I3\�B
(ωB)

=c(ω)ψ(1,2)(ω1, ω2)ψ(2,3)(ω2, ω3)ψ(3,4)(ω3, ω4)ψ(4,1)(ω4, ω1)

for suitable, not necessarily nonnegative, functions ψ(i, j) and c(ω) > 0. But

PM(0, 1, 1, 0)= ψ(1,2)(0, 1)ψ(2,3)(1, 1)ψ(3,4)(1, 0)ψ(4,1)(0, 0)= 0,

PM(0, 1, 1, 1)= ψ(1,2)(0, 1)ψ(2,3)(1, 1)ψ(3,4)(1, 1)ψ(4,1)(1, 0)= 1
8 ,

PM(0, 0, 0, 0)= ψ(1,2)(0, 0)ψ(2,3)(0, 0)ψ(3,4)(0, 0)ψ(4,1)(0, 0)= 1
8 ,

PM(1, 1, 1, 0)= ψ(1,2)(1, 1)ψ(2,3)(1, 1)ψ(3,4)(1, 0)ψ(4,1)(0, 1)= 1
8 ,

are incompatible.

However, the probability in Moussouris example is B2-3-Gibbs, actually even
∅-3-Gibbs: to see this, it is enough to take the uniform Bernoulli distribution
P̂(ω) = 1/Ze0

= 1/24, with F = 3 and �3 = � \ �′; the graph of the hard-
core constraints can actually be further reduced (see Section 6 below), although
obviously not to B2. Moussouris’ example is thus clearly not a counterexample to
the following, more natural, question.

Question. Is every Markov random field a constrained Gibbs random field on the
same graph, in the more natural sense that every B-global-Markov random field is
B-3-Gibbs?

We take over this issue in Section 5 below.
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4. Markov–Gibbs equivalence with no constraints:
an explicit Hammersley–Clifford theorem

Before tackling the main question, we give a new proof of Theorem 3.1. We ac-
tually prove the following more explicit version, assuming that the possible states
�x are real numbers. It amounts to an explicit expansion of the interaction on the
basis of spin products.

Lemma 4.1. Let G = (3,B) be a given finite graph; � =
∏

x∈3�x for finite
�x ⊆ R; and P be a B-pair-Markov> random field on (�,P(�)).

Next, let �̃x = {0, 1, . . . , |�x | − 1}; �̃=
∏

x∈3 �̃x ; and for σ ∈ �̃ and ω ∈�,
let ωσ :=

∏
x∈3 ω

σx
x (with the convention 00

= 1, if needed). Moreover, let �̃(B)
be the set of σ such that {x : σx 6= 0} is contained in a clique of B. Then

P(ω)= 1
Z

e
∑
σ∈�̃(B) Jσωσ (2)

with
Jσ =

∑
ω∈�

V−1
σ,ω log P(ω),

where V−1
σ,ω =

∏
x∈3 V−1

σx ,ωx
(x) and V−1

σx ,ωx
(x) is the element in position (σx , ωx) of

the inverse V−1(x) of the Vandermonde matrix V (x)= (r s)r∈�x ,s∈�̃x
.

Proof. The Vandermonde matrix is invertible as long as the elements of �x are all
different [Macon and Spitzbart 1958]. Next, for each ω ∈�,

e
∑
σ∈�̃ Jσωσ = e

∑
σ∈�̃ ω

σ
∑
ω∈� V−1

σ,ω log P(ω)

= e
∑
ω∈� log P(ω)

∑
σ∈�̃

∏
x∈3 ω

σx
x V−1

σx ,ωx (x)

= e
∑
ω∈� log P(ω)

∏
x∈3

(∑
σx∈�̃x ω

σx
x V−1

σx ,ωx (x)
)

= e
∑
ω∈� log P(ω)

∏
x∈3 δωx ,ωx

= elog P(ω)
= P(ω),

which gives (2) but with �̃ instead of �̃(B). We now need to show that if x ⊥⊥ y |
(3 \ {x, y}), then Jσ = 0 for all σ such that σxσy 6= 0; it would then follow that
for all σ ∈ �̃ such that Jσ 6= 0 we have that {x : σx 6= 0} is contained in a clique
of G, as required. Indeed, if x ⊥⊥ y | (3 \ {x, y}) then for all ωx ∈ �x , ωy ∈ �y ,
ω\x,y ∈�\x,y =

∏
z∈3\{x,y}�z and ω = (ωxωyω\x,y) we have

P(ωxω\x,y)P(ωyω\x,y)= P(ω\x,y)P(ωxωyω\x,y),

i.e.,

log P(ω)= log P(ωxωyω\x,y)= log P(ωxω\x,y)+ log P(ωyω\x,y)− log P(ω\x,y).

Therefore, if σ is such that σxσy 6= 0, we have
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Jσ =
∑
ω∈�

V−1
σ,ω log P(ω)

=

∑
ω\x,y∈�\x,y

∏
z∈3\{x,y}

V−1
σz,ωz

(z)
∑
ωx∈�x

∑
ωy∈�y

V−1
σx ,ωx

(x)V−1
σy ,ωy

(y)

(
log P(ωxω\x,y)+ log P(ωyω\x,y)− log P(ω\x,y)

)
, (3)

which vanishes for the following reason: We have∑
ωx∈�x

V−1
σx ,ωx

(x)=
∑
ωx∈�x

V−1
σx ,ωx

(x)1= [V−1(x)V (x)](σx ,1) = δσx ,0

since the first column of V (x) is constantly equal to 1; here, [A]i, j denotes the ele-
ment {i, j} of the matrix A. This way, if σxσy 6= 0 then both

∑
ωx∈�x

V−1
σx ,ωx

(x)= 0
and

∑
ωy∈�y

V−1
σy ,ωy

(y) = 0, so we always get 0 for the right-hand side of (3) by
taking the last two sums in the appropriate order.

It follows that if x and y are conditionally independent, then Jσ = 0 unless
σxσy = 0. This implies that all bonds between vertices in {x : σx 6= 0} belong to
G, and hence {x : σx 6= 0} is contained in a clique of G. Therefore, only σ ∈ �̃(B)
appear in (2), and the result is proven. �

Proof of Theorem 3.1. One direction is proven by Lemma 4.1. For the converse,
if P is B-∅-Gibbs then P(ω) = 1/Zφ(e

∑
A∈C`(B) φ(ωA)) and if A, B ⊆ 3 are two

disjoint sets which are not neighbors on G then the probability factorizes, hence
A ⊥⊥ B|(3 \ A∪ B). �

The interaction thus identified is unique, except for the value of Jσ(0), where
σ(0) denotes the configuration such that (σ (0))x = 0 for all x ∈3.

Lemma 4.2. If P(ω)= 1
Z

e
∑
σ∈�̃ Jσωσ , then∑

ω∈�

V−1
σ,ω log P(ω)= Jσ for all σ 6= σ(0).

Proof. For σ 6= σ(0),∑
ω∈�

V−1
σ,ω log P(ω)

=

∑
ω∈�

V−1
σ,ω

(
log e

∑
σ∈�̃ Jσωσ − log Z

)
=

∑
ω∈�

V−1
σ,ω

(∑
σ∈�̃

Jσωσ − log Z
)

=

∑
σ∈�̃

Jσ
∑
ω∈�

V−1
σ,ωω

σ
−

∑
ω∈�

V−1
σ,ω log Z

=

∑
σ∈�̃

Jσ
∑
ω∈�

∏
x∈3

V−1
σx ,ωx

(x)ωσ x
x − (log Z)δσ=σ(0)

=

∑
σ∈�̃

Jσ
∏
x∈3

∑
ωx∈�x

V−1
σx ,ωx

(x)ωσ x
x =

∑
σ∈�̃

Jσ
∏
x∈3

δσx=σ x =

∑
σ∈�̃

δσ=σ Jσ = Jσ . �
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5. Markov–Gibbs with hard-core constraints

We go back to our Question formulated on page 412 and answer it.
For a probability P on some (3,P(3)), P̂ is a strictly positive extension of P

if P̂(ω) > 0 for all ω ∈�, and

P̂(ω)= 1
Ẑ

P(ω), (4)

for some constant Ẑ , for all ω ∈� for which P(ω) > 0.

Lemma 5.1. On a graph G = (3,B), a probability P is B-3-Gibbs if and only if
it has a B-global-Markov strictly positive extension P̂.

Proof. If P is B-3-Gibbs, then define P̂(ω) := 1/(Z(P̂))e
∑

A∈C`(B) φ(ωA), for a
suitable constant Z(P̂), which is B-∅-Gibbs (and hence B-global-Markov). More-
over, P̂ is strictly positive; if P(ω) > 0 then P(ω) = 1/Zφ(e

∑
A∈C`(B) φ(ωA)) =

(Z(P̂)/Zφ)P̂(ω) so that (4) holds with Ẑ = Z(P̂)/Zφ .
Vice versa, if P has a B-global-Markov strictly positive extension P̂ , then by

the Hammersley–Clifford Theorem, P̂ is a B-∅-Gibbs random field, i.e., P̂(ω)=
1/(Z(P̂))(e

∑
A∈C`(B) φ(ωA)) for some suitable φ. By (4),

P(ω)= Ẑ
1

Z(P̂)

(
e
∑

A∈C`(B) φ(ωA)
∏
B∈F

I�B\�B
(ωB)

)
,

which is B-3-Gibbs with Zφ = Z(P̂)/Ẑ . �

Our Question has a negative answer.

Lemma 5.2. There is a graph G = (3,B) and a B-global-Markov random field
(with hard-core constraints) which is not B-3-Gibbs.

Proof. In fact, we can take the same graph as Moussouris, with bond set B2. As
support of the probability we take

�′′ = {(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (0, 0, 1, 1),

(1, 1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 0)};

hence, we assume that all configurations in � = � \�′′ have zero probability:
this is a F = 3 (or possibly a subgraph, see the next section below) constraint.
This time, however, the probability P∗ is taken as follows: P∗(1, 1, 1, 1)= 2

9 , and
P∗(ω)= 1

9 for all other ω ∈�′′ \ {(1, 1, 1, 1)}.
We first show that

{1} ⊥⊥ {3} | {2, 4} and {2} ⊥⊥ {4} | {1, 3}.
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For each x, y ∈3, if ω = ω3\{x,y} has nonzero probability, then x ⊥⊥ y |3 \ {x, y}
under a probability P is equivalent to

P(ωx = 1, ωy = 1, ω3\{x,y} = ω)P(ωx = 0, ωy = 0, ω3\{x,y} = ω)

= P(ωx = 1, ωy = 0, ω3\{x,y} = ω)P(ωx = 0, ωy = 1, ω3\{x,y} = ω),

as easily seen by elementary calculations [Moussouris 1974; Lauritzen 1996]. To
verify the claimed conditional independencies we the have to verify the following
equalities [Lauritzen 1996; Geiger et al. 2006], in which x = 1, y = 3 in the first
four equalities, and x = 2, y = 4 in the others:

(I ) P(1, 1, 1, 1)P(0, 1, 0, 1)= P(0, 1, 1, 1)P(1, 1, 0, 1),

(II ) P(1, 0, 1, 1)P(0, 0, 0, 1)= P(0, 0, 1, 1)P(1, 0, 0, 1),

(III ) P(1, 1, 1, 0)P(0, 1, 0, 0)= P(0, 1, 1, 0)P(1, 1, 0, 0),

(IV ) P(1, 0, 1, 0)P(0, 0, 0, 0)= P(0, 0, 1, 0)P(1, 0, 0, 0),

(V ) P(1, 1, 1, 1)P(1, 0, 1, 0)= P(1, 0, 1, 1)P(1, 1, 1, 0),

(VI ) P(0, 1, 1, 1)P(0, 0, 1, 0)= P(0, 0, 1, 1)P(0, 1, 1, 0),

(VII ) P(1, 1, 0, 1)P(1, 0, 0, 0)= P(1, 0, 0, 1)P(1, 1, 0, 0),

(VIII ) P(0, 1, 0, 1)P(0, 0, 0, 0)= P(0, 0, 0, 1)P(0, 1, 0, 0),

(5)

with none having four zero values, so that the condition P(ω) > 0 is valid. These
relations are easily seen to hold for P∗, as in each row there is exactly one config-
uration in � on the right-hand side and one on the left-hand side of the equality.
So, P∗ is B2-pair-Markov; since on this graph the two notions coincide, P∗ is also
B2-global-Markov.

We now verify that P∗ does not admit a B2-global-Markov strictly positive ex-
tension so that it cannot be B2-3-Gibbs. If such extension P̂ existed, then all
the above equalities would have to hold for P̂ as well, as it would have to be B2-
global-Markov; since P̂ is an extension of P∗, it would have to be P̂(ω)/P̂(ω′)=
P∗(ω)/P∗(ω′) for all ω,ω′ ∈�′′. From the first equality above we would have

P̂(0, 1, 0, 1)

P̂(1, 1, 0, 1)
=

P̂(0, 1, 1, 1)

P̂(1, 1, 1, 1)
=

P∗(0, 1, 1, 1)
P∗(1, 1, 1, 1)

=
1
2
. (6)

On the other hand, from the seventh equality

P̂(1, 1, 0, 1)

P̂(1, 0, 0, 1)
=

P̂(1, 1, 0, 0)

P̂(1, 0, 0, 0)
=

P∗(1, 1, 0, 0)
P∗(1, 0, 0, 0)

= 1, (7)

or P̂(1, 1, 0, 1)= P̂(1, 0, 0, 1); the second and eighth equality would give

P̂(1, 0, 0, 1)= P̂(0, 0, 0, 1) and P̂(0, 0, 0, 1)= P̂(0, 1, 0, 1),
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respectively. Hence, it would be P̂(1, 1, 0, 1) = P̂(0, 1, 0, 1), which would be a
contradiction with (6) above. �

6. Examples of minimal graphs

Given a graph G = (3,B), it would be interesting to classify B-global-Markov or
B-pair-Markov random fields P in terms of the minimal graphs B′ = B′(�,B, P)
and B′′ = B′′(�,B, P) so that P is B′-B′′-Gibbs; this problem can be given an
explicit algebraic form, following the lines of [Geiger et al. 2006]. We have not
been able to develop relevant results in this direction though, and therefore we limit
ourselves to a review of the previous examples from this point of view.

Example 6.1 (minimal graphs in Moussouris’ example). �=�\�′ is measurable
with respect to the σ -algebra generated by the cylinders

[10 ∗ 1], [01 ∗ 0], [∗101], [∗010],

where we use the previously introduced notation for cylinders. Therefore, a mini-
mal collection F is {1, 2, 4}, {2, 3, 4}, which corresponds to the graph with bonds
B3 = B2 ∪ {{2, 4}}. As we already observed, to define the uniform probability we
can take bonds B0 =∅; hence, PM is B2-global-Markov and B0-B3-Gibbs.

We see now that even changing the probability in Moussouris’ example would
not have yielded a counterexample to our Question.

Example 6.2 (minimal graphs in a modified Moussouris example). Consider the
same graph with bonds B2 and�′ as in Moussouris’ example, but with any probabil-
ity P strictly positive on �′. We can construct a B2-global-Markov strictly positive
extension P̂ as follows. Start from some configuration ([0101] for instance), let
P̂(0, 1, 0, 1) = c, and notice that the conditions for B-global-Markov are those
in (5). From relation (I ), any B2-global-Markov strictly positive extension has

P̂(1, 1, 0, 1)=
P(1, 1, 1, 1)
P(0, 1, 1, 1)

c;

next, from equality (VII ), one gets

P̂(1, 0, 0, 1)=
P(1, 0, 0, 0)
P(1, 1, 0, 0)

P̂(1, 1, 0, 1)=
P(1, 0, 0, 0)
P(1, 1, 0, 0)

P(1, 1, 1, 1)
P(0, 1, 1, 1)

c;

recursively, we get all probabilities as function of c, and finally c from normaliza-
tion. This generates an extension P̂ of P. We know P̂ is strictly positive as P was
strictly positive on �′ and the above operations preserve positivity; furthermore, it
is B2-global-Markov as the relations in (5) are all valid for P̂ as well. As such, the
Hammersley–Clifford theorem applies to P̂, which is then B2-∅-Gibbs. We have
seen in Example 6.1 that the constraints are generated by the graphs with bonds B3;



418 ALBERTO GANDOLFI AND PIETRO LENARDA

therefore, any absolutely continuous modification P of Moussouris’ example is B2-
B3-Gibbs.

Example 6.3 (minimal graphs for P∗). The configurations in � = � \ �′′ are
generated by the cylinders

[∗ ∗ 10], [∗ ∗ 01];

hence, a minimal collection F is {3, 4}, which corresponds to the graph with bonds
B′2 = {{3, 4}}.

Next, observe that is not possible to express the probability in terms of a B2-
Markov probability, as otherwise P∗ would be B2-B2-Gibbs, and we know from
Lemma 5.2 that it is not. On the other hand, as on B3 pairwise Markov is the same
as global Markov, and B3 produces a separable graph, the result in [Lauritzen 1996]
implies that P∗ is B3-B3-Gibbs. Hence, P∗ is certainly factorizable on B3. A simple
calculation shows that all such factorizations have interactions

J{3} = x3, J{4} = x4, J{3,4} =−(x3+ x4),

J{4,1} = log 3
2 , J{1,2,3} = log 2, J{3,4,1} = log 2

3 ,

and JA = 0 for all other sets A. Therefore, taking

B′3 = {{3}, {4}, {3, 4}, {4, 1}, {1, 2, 3}, {3, 4, 1}},

we have that P∗ is B′3-B3-Gibbs. As we have already noticed that the hard-core
constraints are generated by B′2, we have that P∗ is B′3-B′2-Gibbs.

Back to the question and notation at the beginning of this section, it is not easy
at this point to elaborate on the relationship between B and B′ and B′′. For instance,
in all the previous examples, one of the two graphs B′ or B′′ was always contained
in B; but not even this holds in general.

Example 6.4. Consider 3 as in the examples above, and identical copies 3(1)
and 3(2); in each copy consider a copy B2(1) and B2(2), respectively, of the edges
in B2, in each copy between the appropriate vertices. The graph we consider is then
G = (3(1)∪3(2),B2(1)∪B2(2)). The configuration space is �=�(1)×�(2),
where�(i) is the copy over3(i) of the configurations of {0, 1}3. The probability P
is taken to be the product P = PM × P∗. It is easily seen that P is (B2(1) ∪
B2(2))-global-Markov. On the other hand, the hard-core constraints are generated
by cylinders in Examples 6.1 and 6.3 in the two copies, so that the graph of hard-
core conditions is B′′3 = B3(1)∪B′2(2). However, the interactions are generated by
the graph B′′′3 = B0(1)∪B′3(2). So, altogether, P is (B2(1)∪B2(2))-global-Markov
and B′′3 - B′′′3 -Gibbs, but neither B′′3 nor B′′′3 are contained in B2(1)∪B2(2).
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7. Identifiability of statistical models by support, moments and
conditional independencies

As an application of our results, we turn to an identifiability problem in statistics.
Suppose that of a discrete random field P on the configuration space �3, for some
finite set 3, we have observations that determine the support of the distribution,
the pairwise (or global) conditional independencies, leading to a dependency graph
G = (3,B) with bonds B, and finally the collection of moments determined by the
cliques of B, that is, all moments

mσ = EP(ω
σ ) (8)

where σ ∈ �̃ is such that {x : σx 6= 0} is contained in a clique of B. If (8) holds
then we say that P satisfies the B-moments.

We start by combining the results of Sections 4 and 5 to show that these are,
in general, sufficient statistics to determine the distribution. Later we verify, how-
ever, that the counterexample of Lemma 5.2 leads to exceptional cases in which
identifiability by the above statistics breaks down.

The result about identifiability is given in two steps. First, we assume that P is
known to B-F-Gibbs for some F .

Lemma 7.1. Given B,F , the �A for A ∈ F , and B-moments mσ , there is at most
one B-F-Gibbs random field P satisfying the B-moments.

Proof. Suppose there are two B-F-Gibbs random fields P and P ′ satisfying the B-
moments. Each has a B-global-Markov strictly positive extension by Lemma 5.1,
which can be expressed as in Lemma 4.1 with interactions J and J ′, respectively.
Now consider

f (t)= EP(t)

( ∑
σ∈�̃(B)

ωσ (J ′σ − Jσ )
)
,

where P(t)= 1
Z e

∑
σ∈�̃(B) ω

σ (Jσ+t (J ′σ−Jσ )) for t ∈ [0, 1]. We have

f (0)=
∑

σ∈�̃(B)

EP(0)(ω
σ )(J ′σ − Jσ )=

∑
σ∈�̃(B)

EP(1)(ω
σ )(J ′σ − Jσ )= f (1)

by equality of B-moments. Moreover, f ′(t)= VarPt

(∑
σ∈�̃(B) ω

σ (J ′σ − Jσ )
)
≥ 0.

Combined with f (0)= f (1) this implies f ′(t)= 0 for all t ∈ [0, 1]. Hence, 0=
f ′(0)=VarP0

(∑
σ∈�̃(B) ω

σ (J ′σ−Jσ )
)
≥0, which implies

∑
σ∈�̃(B) ω

σ (J ′σ−Jσ )≡0
and that the two extensions of P and P ′ coincide. This implies that also the two
random fields coincide. �

Theorem 7.2. Let B and B-moments mσ be given.
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(1) If finite energy holds then there is at most one B-global-Markov random field
P satisfying the B-moments; in particular, P is B-∅-Gibbs.

(2) If G = (3,B) is chordal then there is at most one B-global-Markov random
field P satisfying the B-moments; in particular, P is B-B-Gibbs.

Proof. (1) If a random field is B-global-Markov and completely positive then it is
B-∅-Gibbs by Theorem 3.1, and uniqueness follows from Lemma 7.1.

(2) If G= (3,B) is chordal then P is B-B-Gibbs by Theorem 3.2, hence uniqueness
follows from Lemma 7.1. �

Identifiability can break down. We first observe that in Moussouris’ example
identifiability still holds, and then show that it does not hold for P∗ in Lemma 5.2.

Example 7.3. B2-moments in Moussouris’ example are E(ωi )=
1
2 , i = 1, . . . , 4;

E(ωiωi+1)=
3
8 , i = 1, . . . , 3; E(ω4ω1)=

1
8 . With some algebra one can see that

if a random field P satisfies these B2-moments then

P(1,0,1,1)=−P(0,0,1,0)− P(0,1,0,0)− P(0,1,0,1)

− P(0,1,1,0)− P(1,0,0,1)− P(1,0,1,0)− P(1,1,0,1),

which implies that �′ is the support of P ; some further algebra shows that the other
linear relations imply then that P is uniform on �′, so that P = PM.

Example 7.4. The random field P∗ in the proof of Lemma 5.2 has B2-moments
E(ωi ) =

5
9 , i = 1, . . . , 4; E(ωiωi+1) =

3
9 , i = 1, 2, 4; E(ω3ω4) =

5
9 . We see

that there is not a unique random field which has the same support �′′ of P∗, is
B2-global-Markov, and satisfies the above B2-moments. With a little algebra one
can easily verify that every random field P with support in �′′ and

P(1,0,1,1)= 1
3 − λ, P(1,1,0,0)= 1

3 − λ, P(1,0,0,0)=− 1
9 + λ,

P(0,1,1,1)= 1
3 − λ, P(0,1,0,0)=− 1

9 + λ, P(0,0,1,1)=− 1
9 + λ,

P(0,0,0,0)= 1
3 − λ,

with λ = P(1, 1, 1, 1) ∈
[1

9 ,
1
3

]
, satisfies the above B2-moments and is also B2-

global-Markov (as it is absolutely continuous with respect to P∗).
By Lemma 7.1, there is a unique B2-3-Gibbs satisfying the above B2-moments,

namely the one with λ≈ 0.2119 equal to the real root of λ
(
λ− 1

9

)3
−
( 1

3 − λ
)4
=

−9+ 107x − 459x2
+ 729x3

= 0; one can get this equation directly by explicitly
writing out the conditions for P to be B2-3-Gibbs, or indirectly by noticing that
this must be the only value of λ which does not lead to a contradiction in (6) and
(7). For all other values of λ∈

[ 1
9 ,

1
3

]
, including λ= 2

9 as in Lemma 5.2, the random
fields are not B2-3-Gibbs, so they constitute a family of counterexamples to our
Question, all with the same B2-moments.
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Remarks. (1) The last example raises the question (related to that of the minimal
graph mentioned in Section 6) of the minimal set of moments which can identify
a B-Markov random field with hard-core constraints.

(2) The results above about identifiability of random fields from Markov proper-
ties and moments can be interpreted as follows. B-moment conditions identify a
simplex of probability measures, as described in detail in [Pitowsky 1989] for the
violation of correlation conditions in quantum mechanics. When the B-Markov
conditional independencies are added, then the resulting algebraic variety reduces
to a point in the interior of the simplex, or to a (possibly nontrivial) variety con-
tained in the boundary of the original simplex. We do not know which additional
observations could guarantee uniqueness.

8. Conclusions

We have reviewed the Hammersley–Clifford Theorem, which states the equiva-
lence of Markov and Gibbs random fields when there are no hard-core conditions,
giving a more explicit proof than usual with the interaction expressed in terms of
spin products.

We then addressed the same problem when there are hard-core constraints. We
argued that the hard-core constraints are more naturally represented in terms of
a separate graph from that used to determine the interactions; in this respect, the
counterexample of Moussouris as well as the subsequent literature on constrained
Markov random fields do not address the appropriate issues.

We have shown that even allowing the largest possible graph for the hard-core
constraints, there are cases in which it is not possible to restrict the graph of the
interactions to the one for the Markov conditional independence.

This, in turn, has opened the question of finding minimal graphs for the hard-
core conditions and the interactions given the graph of the Markov conditional
independencies. We have not been able to address this issue, but we have provided
examples of minimal graphs.

Finally, we discussed the statistical identifiability of a random field in terms of
support, conditional independencies and moments, with the last two requirements
based on the same graph. Our proof of the Hammersley–Clifford theorem allows us
to easily show identifiability if finite energy is ascertained or the graph is chordal;
while our counterexample allows us to exhibit a case in which support, conditional
independencies and moments do not uniquely determine the random field.
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