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REDUCIBLE AND IRREDUCIBLE FORMS
OF STABILISED GRADIENT ELASTICITY IN DYNAMICS

HARM ASKES AND INNA M. GITMAN

The continualisation of discrete particle models has been a popular tool to for-
mulate higher-order gradient elasticity models. However, a straightforward con-
tinualisation leads to unstable continuum models. Padé approximations can be
used to stabilise the model, but the resulting formulation depends on the partic-
ular equation that is transformed with the Padé approximation. In this contri-
bution, we study two different stabilised gradient elasticity models; one is an
irreducible form with displacement degrees of freedom only, and the other is a
reducible form where the primary unknowns are not only displacements but also
the Cauchy stresses — this turns out to be Eringen’s theory of gradient elasticity.
Although they are derived from the same discrete model, there are significant
differences in variationally consistent boundary conditions and resulting finite
element implementations, with implications for the capability (or otherwise) to
suppress crack tip singularities.

1. Introduction

Gradient elasticity is a methodology to enrich the continuum equations of elasticity
with additional higher-order spatial (and occasionally temporal) derivatives of cer-
tain state variables. There are different versions of gradient elasticity, such as those
equipped with strain gradients, stress gradients and acceleration gradients; see for
instance [Askes and Aifantis 2011] for a recent (but by no means complete) review.

Certain formats of gradient elasticity bear a close relationship with discrete lat-
tice models of materials with microstructure; indeed, it is often possible to derive
gradient elasticity theories by continualising the response of a discrete model, for
instance using Taylor series approximations [Chang and Gao 1995; Mühlhaus and
Oka 1996; Suiker et al. 2001a; Suiker et al. 2001b; Ioannidou et al. 2001; Askes
and Metrikine 2005]. However, such models often suffer from intrinsic deficien-
cies, such as loss of stability in dynamics and loss of uniqueness in statics [Askes
et al. 2002]. This can be amended by applying Padé approximations or similar

Communicated by Francesco dell’Isola.
MSC2010: 74-XX.
Keywords: gradient elasticity, mixed formulation, length scale, nonlocal elasticity.
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n− 2 n− 1 n n+ 1 n+ 2

Figure 1. One-dimensional chain of masses connected by springs.

techniques, as has for instance been demonstrated in [Rosenau 1984; Rubin et al.
1995; Chen and Fish 2001; Andrianov 2002; Andrianov et al. 2003; Charlotte and
Truskinovsky 2008]. Thus, stabilised gradient elasticity theories can be formu-
lated that maintain their close link with discrete lattice models, thereby facilitating
simple identification of the higher-order constitutive parameters (usually known as
“intrinsic length scales” or “microstructural length scales”).

In this paper, we compare two versions of stabilised gradient elasticity. Both
can be derived from the response of a discrete lattice model, which is shown for
the one-dimensional case. Variational formulations are presented for the multidi-
mensional extensions. Throughout, a distinction is made between the so-called
irreducible form where the only unknowns are the displacements and the reducible
form where the unknowns are the displacements as well as the Cauchy stresses.
The difference between these two forms has important consequences for the vari-
ationally consistent boundary conditions and finite element implementations. A
numerical example will show the ability (or otherwise) of the two formulations
to suppress singularities — this has historically been an important motivation for
using gradient elasticity theories, and certain formats have been demonstrated to
remove singularities even under restrictive conditions such as anisotropic material
behaviour and bimaterial interface cracks [Kwong and Gitman 2012]. We also
discuss the relation of the reducible form with Eringen’s [1983] differential theory
of nonlocal elasticity.

2. Continualisation of the response of a discrete chain

To illustrate the concepts of continualisation (this section) and stabilisation via Padé
approximations (Section 3), the one-dimensional chain of particles and springs in
Figure 1 is studied. All particles have mass M , and all springs have stiffness K .
Furthermore, the interparticle distance is denoted by d . The equation of motion of
particle n thus reads

Mün = K (un+1− 2un + un−1) (1)

where ui is the displacement of particle i . A continuum approximation is obtained
by replacing un with u(x) and un±1 with u(x ± d). Taylor series expansions are
applied according to

u(x ± d)= u(x)± d
∂u
∂x
+

1
2

d2 ∂
2u
∂x2 ±

1
6

d3 ∂
3u
∂x3 +

1
24

d4 ∂
4u
∂x4 ± · · · (2)
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so that (1) can be rewritten as

ρü = E
(
∂2u
∂x2 +

1
12

d2 ∂
4u
∂x4 + · · ·

)
(3)

where the mass density ρ = M/Ad and the Young’s modulus E = K d/A, with
A the (unit) cross-sectional area of the system. Multidimensional formulations in
the spirit of (3) have been derived by Chang and Gao [1995], Mühlhaus and Oka
[1996] and Suiker et al. [2001a; Suiker et al. [2001b], among others.

Apart from the lowest-order, standard terms, (3) also contains higher-order terms
proportional to d2, d4, etc. These additional terms capture the microstructural
effects that are present in the discrete model of (1) but that are absent in standard
continuum theories as retrieved by taking d = 0 in (3). The simplest continuum
model that incorporates microstructural effects is obtained by truncating the series
in (3) after the term that is proportional to d2; unfortunately, such a model is un-
stable and its solutions in a boundary-value problem may lack uniqueness [Askes
et al. 2002]. Although stability and uniqueness can be restored by incorporating the
next term, i.e., truncating after the d4 term, the numerical implementation of such
a model is complicated [Askes et al. 2002]; thus, alternative solution strategies are
explored here.

3. Stabilising the continuum equations

Unstable gradient theories can be turned into stable gradient theories by means of
Padé approximations, as has been explored in [Andrianov et al. 2003; Andrianov
and Awrejcewicz 2008; Andrianov et al. 2010]. However, there are various ways
to do this, and the format of the resulting equations depends on which equations
are transformed by the Padé approximation.

3.1. Irreducible form. Firstly, (3) is truncated after the first nonstandard term. The
various spatial derivatives are factorised as

ρü =
(

1+ 1
12

d2 ∂
2

∂x2

)
E
∂2u
∂x2 . (4)

A [0, 1]-Padé approximation is used according to

1+ a ≈
1

1− a
for a� 1. (5)

For a in (5), we will substitute the operator 1
12 d2∂2/∂x2, which allows us to rewrite

(4) as (
1− 1

12
d2 ∂

2

∂x2

)
ρü = E

∂2u
∂x2 . (6)
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The higher-order gradient term now appears on the inertia side of the equation, and
for this reason, it has been called microinertia, internal inertia or higher-order iner-
tia in the literature [Vardoulakis and Aifantis 1994; Wang and Sun 2002; Bennett
et al. 2007]. Equation (6), or slight variations thereof, has also been obtained by
various other researchers using asymptotic series equivalence; see for instance the
work of Rubin et al. [1995], Chen and Fish [2001] and Pichugin et al. [2008].

Note that the only unknown appearing in (6) is the displacement; for this reason,
this format is denoted as irreducible. Although at first sight it may appear that the
micromechanical background of the higher-order terms is lost through the Padé ap-
proximation, an alternative interpretation of the microinertia contribution in terms
of long-range interactions has been provided in [Askes and Gitman 2014].

3.2. Reducible form. It is also possible to extract a (one-dimensional) relation
between stress σ and strain ε from (3) such that

ρü =
∂σ

∂x
and ε =

∂u
∂x
. (7)

The stress-strain relation then follows as

σ = E
(
ε+

1
12

d2 ∂
2ε

∂x2

)
= E

(
1+ 1

12
d2 ∂

2

∂x2

)
ε (8)

where series have again been truncated after the first nonstandard term. Applying
the [0, 1]-Padé approximation to (8) yields(

1− 1
12

d2 ∂
2

∂x2

)
σ = Eε. (9)

Equations (7) and (9) can be combined into a system of coupled equations,

ρü =
∂σ

∂x
(10a)

together with

σ −
1
12

d2 ∂
2σ

∂x2 = E
∂u
∂x

(10b)

where the unknowns are the displacement u as well as the stress σ . In contrast to
the single fourth-order equation (6), (10) is a set of two second-order equations.
They are termed reducible because it is possible to eliminate one of the unknowns,
namely the stress σ . To do this, the second-order spatial derivative of (10a) must
be taken and, multiplied with 1

12 d2, subtracted from the original expression (10a):

ρ

(
ü− 1

12
d2 ∂

2ü
∂x2

)
=
∂

∂x

(
σ −

1
12

d2 ∂
2σ

∂x2

)
. (11)

If (10b) is substituted into the right-hand side of (11), the stress will disappear
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from the expressions and thus it is possible to retrieve (6). This reduction of the
number of unknowns, and its consequences, will be discussed in more depth below
in Section 4.2.

4. Energy functionals for the multidimensional case

Above, the governing equations have been derived from simple mechanical and
mathematical arguments in a one-dimensional context. Next, we will show how the
analogous multidimensional equations can be derived from variational principles.
Hamilton’s action S is defined as

S =
∫ t1

t0
L dt. (12)

The governing equations of the models can be derived by requiring stationarity
of S, that is, δS = 0. The energy functional (or Lagrangian function) L is defined
individually for the two different models below, but we will assume that L depends
on the displacements ui and their spatial and temporal derivatives, as well as on
the stresses σi j and their spatial derivatives:

L = L(ui ; ui, j ; u̇i ; u̇i, j ; σi j ; σi j,k). (13)

Substituting (13) into (12) and requiring δS = 0 yields∫ t1

t0
δL dt

=

∫ t1

t0

(
δui

∂L
∂ui
+δui, j

∂L
∂ui, j
+δu̇i

∂L
∂ u̇i
+δu̇i, j

∂L
∂ u̇i, j
+δσi j

∂L
∂σi j
+δσi j,k

∂L
∂σi j,k

)
dt

= 0, (14)

which, as usual, can be rewritten as∫ t1

t0
δui

(
∂L
∂ui
−

∂

∂x j

∂L
∂ui, j

−
∂

∂t
∂L
∂ u̇i
+

∂2

∂x j∂t
∂L
∂ u̇i, j

)
dt

+

∫ t1

t0

∂

∂x j

(
δui

∂L
∂ui, j

− δui
∂

∂t
∂L
∂ u̇i, j

)
dt +

∫ t1

t0

∂

∂t

(
δui

∂L
∂ u̇i
+ δui, j

∂L
∂ u̇i, j

)
dt

+

∫ t1

t0
δσi j

(
∂L
∂σi j
−

∂

∂xk

∂L
∂σi j,k

)
dt +

∫ t1

t0

∂

∂xk

(
δσi j

∂L
∂σi j,k

)
dt = 0. (15)

The third integral cancels through the requirement that δui = 0 and δui, j = 0 for
t = t0 and for t = t1. The first and fourth integrals will lead to field equations,
whereas the second and fifth will contribute to the natural boundary conditions.
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4.1. Irreducible form. The Lagrangian function of the irreducible form can be
written as

L irred =

∫
�

1
2ρ(u̇i u̇i + `

2u̇i, j u̇i, j ) dV −
∫
�

1
2 ui, j Ci jkluk,l dV

+

∫
�

ui bi dV +
∫
0n

ui ti dS (16)

where the first integral is the kinetic energy, the second integral is the stored strain
energy and the last two terms represent the work of the external forces. Thus, for
this model, the Lagrangian takes the usual format of “kinetic energy minus potential
energy”, whereby the nonstandard contributions are included in the kinetic energy
only [Lazar and Anastassiadis 2007; Polizzotto 2012]. Note that for the internal
length scale we have now used the generic notation ` rather than the notation d
that was used in the previous section in relation to the discrete model.

Substituting (16) into (15) and noting that δui = 0 on 0e leads to∫ t1

t0

∫
�

δui (bi +Ci jkluk, jl − ρüi + ρ`
2üi, j j ) dV dt

+

∫ t1

t0

∫
0n

δui (ti − n j (Ci jkluk,l + ρ`
2üi, j )) dS dt = 0, (17)

where, as usual, the boundary 0 of the domain � is decomposed into parts 0n and
0e associated with natural and essential boundary conditions: 0 = 0n ∪ 0e and
∅= 0n ∩0e.

A symmetric Hookean stress τH
i j = Ci jkluk,l can be identified in terms of which

the field equations and natural boundary conditions can be written as

ρ(üi − `
2üi, j j )= τ

H
i j, j + bi in �, (18a)

n j (τ
H
i j + ρ`

2üi, j )= ti on 0n. (18b)

In our opinion, Hookean stress is appropriate terminology for τH
i j , not Cauchy

stress, since the equations of motion and the natural boundary conditions contain
additional gradients of the acceleration that are not included in the definition of τH

i j .
In Appendix A this particular terminology is motivated.

Remark. A nonsymmetric stress tensor τB
i j can be identified as (see [Lazar and

Anastassiadis 2007])
τB

i j = Ci jkluk,l + ρ`
2üi, j (19)

This would enable one to write the equations of motion and natural boundary con-
ditions in terms of a stress tensor that is similar in role to a standard Cauchy stress
as explained in Appendix A. However, since τB

i j is nonsymmetric, using the term
Cauchy stress for this tensor is not obvious. This issue of nomenclature is left for
future debate and discussion.
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4.2. Reducible form. For the reducible form, the Lagrangian function adopts a
less common appearance, which, to the authors’ best knowledge, is novel:

L red =

∫
�

1
2ρu̇i u̇i dV −

∫
�

ui, jσi j dV +
∫
�

1
2(σi j Si jklσkl + `

2σi j,m Si jklσkl,m) dV

+

∫
�

ui bi dV +
∫
0n

ui ti dS, (20)

where Si jkl is the elastic compliance tensor. The first integral is again the kinetic
energy, whilst the last two integrals contain the external work. The third integral
contains the stored complementary energy with a positive rather than negative sign,
but the effects of the lower-order part are offset by the effects of the second integral,
which couples the effects of the two sets of unknowns, namely displacements and
stresses. In the reducible form, the displacement derivative ui, j is no longer energy-
conjugated to the (symmetric) stress σi j , unless ` = 0. Therefore, the second
integrand does not have the meaning of internal work. Expression (20) can also
be rewritten as a Hellinger–Reissner functional whereby the displacements act as
Lagrange multipliers to enforce balance of momentum in � and on 0 [Askes and
Gutiérrez 2006; Polizzotto 2015].

Again making use of δui = 0 on 0e, substitution of (20) into (15) yields∫ t1

t0

∫
�

δui (bi + σi j, j − ρüi ) dV dt +
∫ t1

t0

∫
0n

δui (ti − n jσi j ) dS dt

+

∫ t1

t0

∫
�

δσi j (−ui, j + Si jklσkl − `
2Si jklσkl,mm) dV dt

+

∫ t1

t0

∮
0

δσi j nm Si jklσkl,m dS dt = 0 (21)

so that the following set of coupled governing equations can be identified:

ρüi = σi j, j + bi in �, (22a)
n jσi j = ti on 0n, (22b)

Si jkl(σkl − `
2σkl,mm)=

1
2(ui, j + u j,i ) in �, (22c)

nm`
2Si jklσkl,m = 0 on 0. (22d)

From the format of (22a) and (22b), it is clear that the meaning of σi j in the re-
ducible model is that of the Cauchy stress. Equations (22) have also been derived,
using different arguments, by Eringen [1983]; see Appendix B for a discussion.

Equations (22) form a set of coupled equations with independent unknowns ui

and σi j , but they are reducible in the sense that it is possible to eliminate the stresses
σi j . To do so, firstly the Laplacian of (22a) is taken and multiplied with `2, after
which the result is subtracted from the original expression (22a). This gives

ρ(üi − `
2üi, j j )= σi j, j − `

2σi j,kk + bi − `
2bi, j j . (23)
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Next, (22c) is premultiplied with the elastic stiffness tensor Ci jkl and substituted
into (23), leading to

ρ(üi − `
2üi, j j )= Ci jkluk, jl + bi − `

2bi, j j , (24)

which is equivalent to (18a) except for the presence of the Laplacian of the body
forces bi, j j and a mismatch in the associated variationally consistent boundary
conditions. Note that the effect of the higher-order gradients disappears altogether
in statics in the case bi, j j = 0.

Remark. From (22c) it is clear that the gradient enrichment affects the constitu-
tive part of the field equations, and therefore the term “gradient elasticity” seems
appropriate for what is here denoted as the reducible form. In contrast, it could be
argued that using the term “gradient elasticity” is less suitable for the irreducible
format represented in (24), because the gradient enrichment operates on the ac-
celerations, not stresses or strains — i.e., the elasticity part of the irreducible form
retains its classical format. However, we still prefer to refer to the irreducible form
as a particular variant of gradient elasticity, because of the close relation between
the reducible form and the irreducible form. Due to the coupling between the
equations of motion and the constitutive equations, the gradient enrichment of the
accelerations will affect the stresses and strains, albeit indirectly.

5. Finite element equations

In order to obtain solutions of the relevant partial differential equations for domains
of arbitrary geometry, a numerical solution strategy is required. Here, the finite
element method will be used for the spatial discretisation, whereas the Newmark
time integrator will be adopted to progress the solution in the time domain. The
finite element equations of the irreducible form are well established and need not
be revisited here — the interested reader is referred to [Fish et al. 2002a; 2002b;
Askes and Aifantis 2011].

For the reducible form, we write u = Nu d and σ = Nσ s where u and σ are col-
umn vectors containing the relevant components of the displacements and Cauchy
stresses, respectively. Furthermore, the matrices Nu and Nσ contain the shape
functions for displacements and Cauchy stresses whereas d and s are the nodal
displacements and nodal Cauchy stresses. The spatial discretisation of (20) can
thus be written as

LFE
red =

∫
�

1
2ρ ḋT NT

u Nu ḋ dV −
∫
�

dT BT
u Nσ s dV

+

∫
�

1
2 sT

(
NT
σ SNσ+

3∑
i=1

`2 ∂NT
σ

∂xi
S
∂Nσ
∂xi

)
s dV+

∫
�

dTNT
u b dV+

∫
0n

dTNT
u t dS (25)
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where b and t contain the components of the distributed body and surface forces,
respectively. Furthermore, Bu is the standard strain-displacement matrix with
derivatives of the displacement shape functions Nu and S is the matrix counterpart
of the compliance tensor Si jkl .

Requiring δLFE
red = 0 leads to a system of finite element equations according to[

Muu 0
0 0

] [
d̈
s̈

]
+

[
0 Kuσ

Kσu Kσσ

] [
d
s

]
=

[
f
0

]
, (26)

where

Muu =

∫
�

ρNT
u Nu dV, (27a)

Kuσ = K T
σu =

∫
�

BT
u Nσ dV, (27b)

Kσσ =−
∫
�

(
NT
σ SNσ +

3∑
i=1

`2 ∂NT
σ

∂xi
S
∂Nσ
∂xi

)
dV . (27c)

Finite-element implementation of (26) was carried out using the recommendations
of the statics theory given in [Askes and Gutiérrez 2006], in particular the use of
quadratic shape functions for s and linear shape functions for d. This particular
choice of shape functions avoids oscillations in the displacement field, although a
formal investigation of the inf-sup condition may require further refinement of the
two sets of interpolations.

6. Numerical example

Although the reducible form can be transformed into the irreducible form as shown
in (23) and (24), the associated change in variationally consistent boundary con-
ditions has implications when it comes to the simulation of crack tip stresses.
This will be demonstrated by means of the numerical example shown in Figure 2.

u̇

u̇

L

L

L L
a a

Figure 2. Strip with central crack: geometry and loading conditions.
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A square strip with dimension 2L = 2 m has a central crack of length 2a = 0.5 m.
The material properties are mass density ρ = 1 kg/m3, Young’s modulus E =
100 N/m2 and Poisson’s ratio ν = 1

4 , whilst a plane stress assumption has been
made. Furthermore, the gradient elasticity length scale ` = 0.1 m. The strip is
subjected to outward vertical velocities u̇ = 10 m/s imposed on the top and bottom
edges, as indicated, which leads to stress waves propagating towards the centre of
the strip. Away from the crack, the stress waves will have the shape of a block
wave due to the nature of the loading conditions, but the presence of the crack
will disturb this pattern, and indeed in a classical elasticity setting, this will lead to
singular stresses and strains at the tips of the crack. It is the aim of this example to
verify whether these singularities can be avoided in the reducible and irreducible
formulations of gradient elasticity discussed above. For reasons of symmetry, only
the top quarter of the strip is modelled.

The irreducible format of gradient elasticity is implemented with four-noded
quadrilateral elements for the displacements. The reducible format is implemented
with eight-noded elements for the stresses and four-noded quadrilateral elements
for the displacements — see [Askes and Gutiérrez 2006] for details on this particu-
lar choice. Structured finite element meshes consisting of square elements are used,
and a sequence of uniformly refined meshes is taken to monitor the behaviour of
the stresses at the crack tip. Since in the irreducible format the stresses are postpro-
cessed from linear displacements whereas in the reducible format the stresses are
primary unknowns interpolated with quadratic shape functions, there is an obvious
mismatch in stress resolution between the two formats. To address this mismatch,
the meshes used range from 16× 16 to 128× 128 elements for the irreducible
format, whereas they range from 8× 8 to 64× 64 for the reducible format.

Regarding the imposition of traction boundary conditions, it must be realised
that the stresses are primary variables in the reducible formulation, whereas they
are derived quantities in the irreducible formulation. In the reducible formula-
tion, traction boundary conditions are thus essential boundary conditions and are
imposed by assigning prescribed values to the relevant stress components (e.g.,
σyy = 0 on the crack face). On the other hand, traction boundary conditions are
natural boundary conditions in the irreducible formulation; applying zero tractions
on the crack face means that the left-hand-side of (18b) is set equal to zero, which
is handled straightforwardly in a finite element context. Finally, and for the sake
of completeness, it is noted that displacement (and velocity) boundary conditions
have been implemented using Lagrange Multipliers in the reducible formulation.

The Newmark constant average acceleration scheme is used for the time in-
tegration. This scheme is unconditionally stable; therefore, the only criterion for
selecting the time step is accuracy. Following the recommendations given in [Askes
et al. 2008; Bennett and Askes 2009], the time step is chosen such that waves
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Figure 3. Vertical normal stress τH
yy (N/m2) versus x (m) for the irre-

ducible format — 16×16 elements (dotted), 32×32 elements (dashed),
64× 64 elements (dot-dashed) and 128× 128 elements (solid).

propagate approximately half an element per time step. Time domain simulations
were carried out from time t = 0 s to t = 0.2 s.

Figures 3 and 4 show the profiles of the vertical normal stress for both formats
and the indicated range of finite element meshes, where the origin of the coordinate
system is chosen at the centre of the crack. For the irreducible format (Figure 3),
we have plotted the Hookean stress τH

yy (see Section 4.1) whilst for the reducible
format the Cauchy stress σyy is plotted (Figure 4).

The stress profiles for the irreducible formulation appear to converge towards a
unique solution, except for the crack tip value. At the crack tip, the stress increases
significantly for every refinement of the mesh. This is an indication that a stress
singularity is present at the crack tip. To analyse this in more depth, Richardson
extrapolations have been carried out for the crack tip stresses. Table 1 reports the

mesh τH
yy extrapolation

16× 16 4.8077
32× 32 6.8091 8.8105
64× 64 9.6223 13.6438

128× 128 13.5923 20.0751

Table 1. Crack tip stress and Richardson extrapolation in N/m2

for irreducible form.
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Figure 4. Vertical normal stress σyy (N/m2) versus x (m) for the re-
ducible format — 8× 8 elements (dotted), 16× 16 elements (dashed),
32× 32 elements (dot-dashed) and 64× 64 elements (solid).

values of the crack tip stress and their extrapolations. (The first extrapolation is a
two-point extrapolation based on the coarsest two meshes, the second is a three-
point extrapolation based on the coarsest three meshes, and mutatis mutandis for
the last extrapolation.) The numerical results confirm that the crack tip stress grows
in a seemingly unbounded manner, whereas the difference between numerical
stress and extrapolated stress increases with refinement of the mesh. This confirms
the suggestion that a singularity is present. Thus, it must be concluded that the
irreducible format is not capable of avoiding stress singularities. This is reported
for the Hookean stress τH

yy but will carry over to the pseudo Cauchy stress τB
yy since

the latter quantity includes the former.
On the other hand, the results of the reducible format clearly converge towards

a unique, nonsingular solution, and the singularities that plague classical elasticity
formulations are avoided. However, it must be noted that the maximum stress
occurs not at the crack tip but further inside the material. This is in line with the
analysis and results reported in [Simone et al. 2004].

7. Conclusions

We have reviewed and systematically compared two formats of gradient elastic-
ity. Both formats can be derived by continualising a one-dimensional discrete
model and stabilising the resulting equations, but the models differ in respect of
which particular equation is stabilised — either the field equation (leading to what
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is denoted as the “irreducible format”) or the constitutive equation (leading to the
“reducible format”). The multidimensional case, including the associated boundary
conditions, has been derived from a variational principle. It is noted that the field
equations of the irreducible format can be retrieved from those of the reducible for-
mat (assuming that the Laplacian of the body forces vanishes), but the variationally
consistent boundary conditions are different for the two models.

This has implications for the solution of initial-boundary-value problems. We
have presented a crack problem, and it was demonstrated that the irreducible format
is not capable of avoiding singularities in the stress field. On the other hand, no sin-
gularities were found when the reducible format was used. Thus, for the dynamic
analysis of stresses around sharp cracks, the reducible format is to be preferred.

Appendix A: Nomenclature in gradient elasticity: Cauchy stress

In the literature, there is a lack of consistency in which quantity is denoted as
the Cauchy stress in gradient elasticity theories. Some eminent authors have used
this term to indicate the derivative of the strain energy density with respect to
the strain — see for instance [Mindlin 1964, p. 57] or [Shu et al. 1999, p. 375].
However, we have followed the arguments set out by Borino and Polizzotto [2003,
Remark 3], who state that the term Cauchy stress should be used for the total stress
quantity as it appears in the equilibrium equations; conversely, we have used the
term Hookean stress for the derivative of the strain energy density with respect to
the strain. We believe the former is in line with the conceptualisation of Cauchy
himself, who discussed stresses as forming equilibrium (or indeed accelerating)
systems by acting on surfaces, rather than as derivatives of energy functionals —
see for instance [Cauchy 1823; 1827; 1843].

However, it is also noted that extending the concept of Cauchy stress as “force
divided by area” to gradient-enriched continua leads, in general, to much more
complicated expressions. This is illustrated by the format of the natural boundary
conditions in Mindlin’s [1964, pp. 67–68] theory of gradient elasticity. Askes and
Metrikine [2005] as well as Froiio et al. [2010] have provided physical interpreta-
tions of the nonstandard boundary conditions.

Appendix B: Eringen’s 1983 differential theory of nonlocal elasticity

The reducible format presented in Section 4 has been derived earlier in [Eringen
1983] from an integral formulation. Because the coupled nature of the govern-
ing equations of Eringen’s theory is not always appreciated, it is worthwhile to
summarise Eringen’s theory. Adopting his notation unless stated otherwise, the
equations of motion are given by [Eringen 1983, (2.1)] as

tkl,k + ρ( fl − ül)= 0 (28)
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where tkl is the Cauchy stress tensor and fl is the body force density. With the
restriction to isotropic linear elasticity, a Hookean stress σ 0

kl is defined via [Eringen
1983, (2.3) and (2.4)] as

σ 0
kl = λδklu j, j +µuk,l +µul,k (29)

where a superscript 0 is included in σ 0 to avoid confusion with the Cauchy stress of
the reducible theory discussed in Section 4.2. Furthermore, λ and µ are the Lamé
constants and δkl is the Kronecker delta.

The field equations are completed by a differential relation between the Cauchy
stress tkl and the Hookean stress σ 0

kl . The particular relation that seems to have
attracted most interest in the literature is given in [Eringen 1983, (3.19)] as

tkl − `
2tkl, j j = σ

0
kl (30)

where the higher-order coefficient is simply indicated by `2 (Eringen uses a more
intricate notation with multiple symbols, which are not required in the present
discussion).

Eringen [1983, pp. 4704–4705] also discusses the elimination of the stress tkl

from the system of equations. Combining (3.13) and (3.18), he arrives at the irre-
ducible form

σ 0
kl,k + (1− `

2
∇

2)(ρ fl − ρül)= 0. (31)

Next, he notes that the particular case of statics with vanishing body forces leads to

σ 0
kl,k = 0. (32)

However, regarding natural boundary conditions, Eringen [1983, p. 4704] explic-
itly states that “[b]oundary conditions involving tractions [are] based on the stress
tensor tkl , not on σ 0

kl”, while Eringen [2002, p. 100] also emphasises that “the real
stress is not σ 0

kl but tkl” — in both quotations we have added the superscript 0 to
σ as explained above. This means that (32) cannot be used in isolation to solve
general boundary-value problems involving prescribed tractions.

In summary, in our opinion, a divergence-free Hookean stress σ 0 should not be
considered as a fundamental equation of the Eringen theory because, firstly, it can
only be retrieved by making the assumptions of zero body force and zero accelera-
tion and, secondly, it cannot be used to solve general equilibrium problems due to
a lack of associated traction boundary conditions. In this respect, we disagree with
Lazar and Polyzos [2015], who suggest that (32) is an equilibrium equation in its
own right — although these authors do confirm that the correct natural boundary
conditions are in terms of tkl rather than σ 0

kl .
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1. Introduction

Although in historical investigation it may appear meaningless to do experiments
on the basis of a preexisting theory — and in particular, it does not make sense to
prove theorems of history — it can make perfect sense to use forms of reasoning
typical of the exact sciences as an aid to increase the degree of reliability of a par-
ticular statement regarding a historical event. This paper deals with the problem of
dating the birth of a historical figure when the only information available about it is
indirect — for example, a set of testimonies, or scattered statements, about various
aspects of his/her life. The strategy is then based on the construction of a probability
distribution for the birth date out of each testimony and subsequently combining
the distributions so obtained in a sensible way. One might raise several objections
to this program. According to Charles Sanders Peirce [1901], a probability “is
the known ratio of frequency of a specific event to a generic event”, but a birth is
neither a specific event nor a generic event but an “individual event”. Nevertheless,
probabilistic reasoning is used quite often in situations dealing with events that can
be classified as “individual”. In probabilistic forecasting, one tries to summarize
what is known about future events with the assignment of a probability to each of
a number of different outcomes that are often events of this kind. For instance, in
sport betting, a summary of bettors’ opinions about the likely outcome of a race

Communicated by Francesco dell’Isola.
MSC2010: 01A20, 62C05, 62P99.
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is produced in order to set bookmakers’ pay-off rates. By the way, this type of ob-
servation lies at the basis of the theoretical formulation of the subjective approach
in probability theory [de Finetti 1931]. Although we do not endorse de Finetti’s
approach in all its implications, we embrace its severe criticism of the exclusive use
of the frequentist interpretation in the application of probability theory to concrete
problems. In particular, we feel entitled to look at an “individual” event of the
historical past with a spirit similar to that with which one bets on a future outcome
(this is a well known issue in the philosophy of probability; see, e.g., [Dubucs
1993]). Plainly, as the information about an event like the birth of an historical
figure is first extracted by material drawn from various literary sources and then
treated with mathematical tools, both our approach and goal are interdisciplinary
in their essence.

2. A probabilistic method for combining testimonies

Let X = [x−, x+] ⊂ Z be the time interval that includes all possible birth dates
of a given subject (terminus ad quem). X can be regarded as a set of mutually
exclusive statements about a singular phenomenon (the birth of a given subject
in a given year), only one of which is true, and can be made a probability space
(X,F, P0), with F the σ -algebra made of the 2|X | events of interest and P0 the
uniform probability measure on F (reference measure): P0(A)= |A|/|X | (where
|A| denotes the number of elements of A). In the context of decision theory, the
assignment of this probability space can be regarded as the expression of a basic
state of knowledge, in the absence of any information that can be used to discrimi-
nate among the possible statements on the given phenomenon, namely a situation
in which Laplace’s principle of indifference can be legitimately applied.

Now suppose we have k testimonies Ti , i = 1, . . . , k, which in first approx-
imation we may assume independent of each other, each providing some kind
of information about the life of the subject, and which can be translated into a
probability distribution pi on F so that pi (x) is the probability that the subject
is born in the year x ∈ X based on the information given by the testimony Ti ,
assumed true, along with supplementary information such as, e.g., life tables for
the historical period considered. The precise criteria for the construction of these
probability distributions depends on the kind of information carried by each testi-
mony and will be discussed case by case in the next section. Of course, we shall
also take into account the possibility that some testimonies are false, thereby not
producing any additional information. We model this possibility by assuming that
the corresponding distributions equal the reference measure P0.

The problem that we want to discuss in this section is the following: how can one
combine the distributions pi in such a way to get a single probability distribution Q
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that somehow optimizes the available information? To address this question, let us
observe that from the k testimonies taken together, each one with the possibility
to be true or false, one gets N = 2k combinations, corresponding to as many bi-
nary words σs = σs(1) · · · σs(k) ∈ {0, 1}k , which can be ordered lexicographically
according to s =

∑k
i=1 σs(i) · 2i−1

∈ {0, 1, . . . , N − 1}, and given by

Ps( · )=

∏k
i=1 pσs(i)

i ( · )∑
x∈X

∏k
i=1 pσs(i)

i (x)
, pσs(i)

i =

{
pi , σs(i)= 1,
P0, σs(i)= 0.

(2-1)

In particular, one readily verifies that P0 is but the reference uniform measure.
Now, if � denotes the class of probability distributions Q : X→ [0, 1], we look

for a pooling operator T :�N
→� that combines the distributions Ps by weighing

them in a sensible way. The simplest candidate has the general form of a linear
combination

T (P0, . . . , PN−1)=

N−1∑
s=0

ws Ps, ws ≥ 0,
N−1∑
s=0

ws = 1, (2-2)

which, as we shall see, can also be obtained by minimizing some information-
theoretic function.

Remark 2.1. The issue we are discussing here has been the object of a vast amount
of literature regarding the normative aspects of the formation of aggregate opinions
in several contexts (see, e.g., [Genest and Zidek 1986] and references therein).
In particular, it has been shown by McConway [1981] that, if one requires the
existence of a function F : [0, 1]N → [0, 1] such that

T (P0, . . . , PN−1)(A)= F(P0(A), . . . , PN−1(A)) for all A ∈ F (2-3)

with Ps(A) =
∑

x∈A Ps(x), then whenever |X | ≥ 3, F must necessarily have the
form of a linear combination as in (2-2). The above condition implies in particular
that the value of the combined distribution on coordinates depends only on the
corresponding values on the coordinates of the distributions Ps , namely that the
pooling operator commutes with marginalization.

However, some drawbacks of the linear pooling operator have also been high-
lighted. For example, it does not “preserve independence” in general: if |X | ≥ 5,
it is not true that Ps(A∩ B)= Ps(A)Ps(B), s = 0, . . . , N − 1, entails

T (P0, . . . , PN−1)(A∩ B)= T (P0, . . . , PN−1)(A)T (P0, . . . , PN−1)(B)

unless ws = 1 for some s and 0 for all others [Lehrer and Wagner 1983; Genest
and Wagner 1987].

(Another form of the pooling operator considered in the literature to overcome
the difficulties associated with the use of (2-2) is the log-linear combination
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T (P0, . . . , PN−1)= C
N−1∏
s=0

Pws
s , ws ≥ 0,

N−1∑
s=0

ws = 1, (2-4)

where C is a normalizing constant [Genest and Zidek 1986; Abbas 2009].)
On the other hand, in our context, the independence preservation property does

not seem so desirable: the final distribution T (P0, . . . , PN−1) relies on a set of
information much wider than that associated with the single distributions Ps , and
one can easily imagine how the alleged independence between two events can
disappear as the information about them increases.

2.1. Optimization. The linear combination (2-2) can also be viewed as the mar-
ginal distribution1 of x ∈ X under the hypothesis that one of the distributions
P0, . . . , PN−1 is the “true” one (without knowing which) [Genest and McConway
1990]. In this perspective, (2-2) can be obtained by minimizing the expected loss
of information due to the need to compromise, namely a function of the form

I (w, Q)=
N−1∑
s=0

ws D(Ps ‖ Q)≥ 0, (2-5)

where

D(P ‖ Q)=
∑
x∈X

P(x) log
(

P(x)
Q(x)

)
(2-6)

is the Kullback–Leibler divergence [1951], representing the information loss using
the measure Q instead of P . Note that the concavity of the logarithm and the
Jensen inequality yield

−

∑
x

P(x) log
P(x)
Q(x)

≤ log
∑

x

P(x)
Q(x)
P(x)

= 0

and therefore

D(P ‖ Q)≥ 0 and D(P ‖ Q)= 0 ⇐⇒ Q ≡ P. (2-7)

We have the following result.

Lemma 2.2. Given a probability vector w = (w0, w1, . . . , wN−1),

arg min
Q∈�

I (w, Q)= Qw ≡

∑
s

ws Ps . (2-8)

Moreover,

I (w, Qw)= H
(∑

s

ws Ps

)
−

∑
s

ws H(Ps), (2-9)

where H(Q)=−
∑

x∈X Q(x) log Q(x) is the entropy of Q ∈�.
1In the sense that a marginal probability can be obtained by averaging conditional probabilities.
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Proof. Equation (2-8) can be obtained using the method of Lagrange multipliers.
An alternative argument makes use of the easily derived “parallelogram rule”:∑

s
ws D(Ps ‖ Q)=

∑
s
ws D(Ps ‖ Qw)+ D(Qw ‖ Q) for all Q ∈�. (2-10)

From (2-7), we thus get I (w, Qw) ≤ I (w, Q) for all Q ∈ �. The uniqueness of
the minimum follows from the convexity of D(P ‖ Q) with respect to Q. Finally,
checking (2-9) is a simple exercise. �

Remark 2.3. It is worth mentioning that, if we took
∑

s ws D(Q ‖ Ps) (instead of∑
s ws D(Ps ‖ Q)) as the function to be minimized (still varying Q with w fixed),

then instead of the “arithmetic mean” (2-2), the “optimal” distribution would have
been the “geometric mean” (2-4) (see also [Abbas 2009]).

2.2. Allocating the weights. We have seen that for each probability vector w in the
N -dimensional simplex {ws ≥ 0 :

∑N−1
s=0 ws = 1} the distribution Qw =

∑
s ws Ps

is the “optimal” one. We are now left with the problem of determining a sensible
choice for w. This cannot be achieved by using the same criterion, in that by (2-7)
infw I (w, Qw)= 0 and the minimum is realized whenever ws = 1 for some s and
0 for all others.

A suitable expression for the weights ws can be obtained by observing that the
term

∑
x∈X

∏k
i=1 pσs(i)

i (x) is proportional to the probability of the event (in the
product space X [1,k]) that the birth dates of k different subjects, with the i-th birth
date distributed according to pσs(i)

i , coincide, and thus, it furnishes a measure of the
degree of compatibility of the distributions pi involved in the product associated
with the word σs .

It thus appears natural to consider the weights

ws =

∑
x∈X

∏k
i=1 pσs(i)

i (x)∑N−1
s=0

∑
x∈X

∏k
i=1 pσs(i)

i (x)
, (2-11)

which, once inserted in (2-2), yield the expression

T (P0, . . . , PN−1)( · )=

∑N−1
s=0

∏k
i=1 pσs(i)

i ( · )∑
x∈X

∑N−1
s=0

∏k
i=1 pσs(i)

i (x)
. (2-12)

Remark 2.4. There are at least k+ 1 strictly positive coefficients ws . They corre-
spond to the words σ (i)s with σ (i)s (i)= 1 for some i ∈ {1, . . . , k} and σ (i)s ( j)= 0 for
j 6= i , plus one to the word 0k , that is, to the distributions Ps(i) ≡ pi , i ∈ {0, 1, . . . , k},
where p0 ≡ P0.

2.3. Weights as likelihoods. A somewhat complementary argument to justify the
choice (2-11) for the coefficients ws can be formulated in the language of prob-
abilistic inference, showing that they can be interpreted as (normalized) average
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likelihoods associated with the various combinations corresponding to the words σs .
More precisely, with each pair of “hypotheses” of the form

De
i =

{
{Ti true}, e = 1,
{Ti false}, e = 0,

we associate its likelihood, given the event that the birth date is x ∈ X , with the
expression2

V (De
i | x)=

P(x | De
i )

P(x)
=

{
pi (x)/p0(x), e = 1,
1, e = 0,

(2-13)

with i ∈ {1, . . . , k} and p0 ≡ P0. In this way, the posterior probability P(De
i | x)

(the probability of De
i in light of the event that the subject was born in the year

x ∈ X ) is given by the product of V (De
i | x) with the prior probability P(De

i ),
according to Bayes’s formula.

If we now consider two pairs of “hypotheses” Dei
i and De j

j , which we assume
conditionally independent (without being necessarily independent), that is,

P(Dei
i , De j

j | x)= P(Dei
i | x)P(D

e j
j | x), ei , e j ∈ {0, 1},

then we find

P(Dei
i , De j

j | x)=
P(x | Dei

i , De j
j )

P(x)
=

P(Dei
i , De j

j | x)

P(Dei
i , De j

j )
=

P(Dei
i | x)P(D

e j
j | x)

P(Dei
i , De j

j )

=
P(Dei

i )P(D
e j
j )

P(Dei
i , De j

j )
· V (Dei

i | x)V (D
e j
j | x).

More generally, given k testimonies Ti , to each of which there corresponds the
pair of events De

i , and given a word σs ∈ {0, 1}k , if we assume the conditional
independence of the events (Dσs(1)

1 , . . . , Dσs(k)
k ), we get

V (Dσs(1)
1 , . . . , Dσs(k)

k | x)= ρs

k∏
i=1

V (Dσs(i)
i | x) (2-14)

where

ρs =

∏k
i=1 P(Dσs(i)

i )

P(Dσs(1)
1 , . . . , Dσs(k)

k )
. (2-15)

If, in addition, there is grounds to assume unconditional independence, i.e., ρs = 1,
then (2-14) simply reduces to the product rule. Under this assumption, we can

2Here the symbol P denotes either the reference measure P0 or any probability measure on X
compatible with it.



DATING HYPATIA’S BIRTH: A PROBABILISTIC MODEL 25

evaluate the average likelihood of the set of information (Dσs(1)
1 , . . . , Dσs(k)

k ) with
the expression

Vs =
1
|X |

∑
x∈X

V (Dσs(1)
1 , . . . , Dσs(k)

k | x)= |X |k−1
∑
x∈X

k∏
i=1

pσs(i)
i (x). (2-16)

Comparing with (2-11), we see that

ws =
Vs

N−1∑
s=0

Vs

. (2-17)

In other words, within the hypotheses made so far, the allocation of the coefficients
(2-11) corresponds to assigning to each distribution Ps a weight proportional to the
average likelihood of the set of information from which it is constructed.

3. Application to Hypatia

This method is now applied to a particular dating process, the one of Hypatia’s birth.
This choice stems from the desire to study a case both easy to handle and potentially
useful in its results. The problem of dating Hypatia’s birth is indeed open, in that
there are different possible resolutions of the constraints imposed by the available
data. According to the reconstruction given by Deakin [2007, p. 51], “Hypatia’s
birth has been placed as early as 350 and as late as 375. Most authors settle for
‘around 370’”. There are not many testimonies (historical records) concerning the
birth of the Alexandrian scientist (far more are about her infamous death), but they
have the desirable feature of being independent of one another, as will be apparent
in the sequel, so that the scheme discussed in the previous section can be directly
applied. The hope is to obtain something that is qualitatively significant when
compared to the preexisting proposals, based on a qualitative discussion of the
sources, and quantitatively unambiguous. A probability distribution for the year
of Hypatia’s birth is extracted from each testimony, the specific reasoning being
briefly discussed in each case. Eventually all distributions are combined according
to the criteria outlined in the previous section.

3.1. Hypatia was at her peak between 395 and 408. Under the entry ῾Υπατία,
the Suda (a Byzantine lexicon) informs us that she flourished under the emperor
Arcadius (ἤκμασεν ἐπί τῆς βασιλείας Ἀρκαδίου).3

It is well established that Arcadius, the first ruler of the Byzantine Empire,
reigned from 395 to 408. Guessing an age or age interval based on the Greek
ἤκμασεν, however, is less straightforward. The word is related to ἀκμή, ‘peak’,

3ϒ166. See http://www.stoa.org/sol-bin/search.pl?field=adlerhw_gr&searchstr=upsilon,166.

http://www.stoa.org/sol-bin/search.pl?field=adlerhw_gr&searchstr=upsilon,166
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Figure 1. The probability distribution f (x) assumed associated
with one’s peak years.
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Figure 2. The probability distribution ϒf (ξ) for Hypatia’s birth
based on her peak years.

and we follow the rule of thumb, going back to Antiquity, that it refers to the
period of one’s life around 40 years of age. Specifically, we adopt the probability
distribution f (x) in Figure 1 to model how old Hypatia would have been at her
“peak” in Arcadius’ reign.

Figure 2 shows ϒf (ξ), the probability distribution for the year of Hypatia’s birth
deduced from this historical datum; it is obtained by averaging fourteen copies of
the triangular f (x), each centered around one of the years from 355 through 368 —
the beginning and end points of Arcadius’s empire, shifted back by the 40 years
corresponding to the peak of f (x).

3.2. Hypatia was intellectually active in 415. The sources ascribe Hypatia’s mar-
tyrdom at the hands of a mob of Christian fanatics to the envy that many felt
on account of her extraordinary intelligence, freedom of thought, and political
influence, being a woman. Her entry in the Suda, already mentioned, states:
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Τοῦτο δὲ πέπονθε διὰ φθόνον καὶ τὴν ὑπερβάλλουσαν σοφίαν, καὶ

μάλιστα εἰς τὰ περὶ ἀστρονομίαν.
4

Socrates Scholasticus, in his Εκκλησιαστική Ιστορία, reports:

On account of the self-possession and ease of manner, which she had ac-
quired in consequence of the cultivation of her mind, she not infrequently
appeared in public in presence of the magistrates. Neither did she feel
abashed in coming to an assembly of men. For all men on account of
her extraordinary dignity and virtue admired her the more. Yet even she
fell a victim to the political jealousy which at that time prevailed. For as
she had frequent interviews with Orestes, it was calumniously reported
among the Christian populace, that it was she who prevented Orestes
from being reconciled to the bishop.5

Because of these and similar testimonies, it seems reasonable to mark 415 as a year
of intellectual activity in Hypatia’s life.

To get from this information a probability distribution for the year of birth, it
is necessary to have the probability distribution of being intellectually active at a
given age. This can be calculated given the probability of being alive at any given
age and of being active at any given age (if alive), by simple multiplication.

To derive the first of these probability distributions we have used data from a
1974 mortality table for Italian males,6 clipping off ages under 18 since the subject
was known to be intellectually active. The resulting probability distribution, a(x),
is shown in Figure 3.
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Figure 3. The probability distribution a(x) for an adult to reach
a given age. The life expectancy comes to 71.8 years.

4She suffered this [violent death] because of the envy for her extraordinary wisdom, especially in
the field of astronomy.

5Book VII, Chapter 15; translation from [Socrates Scholasticus, p. 160].
6All data are taken from http://www.mortality.org.

http://www.mortality.org
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Name Dates of birth and death Lifespan
Accius, Lucius 170–circa 86 BC ∼84

Adrianus (Hadrianus) of Tyre circa AD 113–193 ∼80
Aelian (Claudius Aelianus) AD 165/170–230/235 ∼65
Aeschines circa 397–circa 322 BC ∼65
Aeschylus 524/525–456/455 BC ∼70
Agathocles (2) (of Cyzicus) circa 275/265–circa 200/190 BC ∼75
Alexander of Tralles AD 525–605 80
Alexis circa 375–circa 275 BC ∼100
Ammianus Marcellinus circa AD 330–395 ∼65
Anaxagoras probably 500–428 BC ∼72
Anaximenes (2) of Lampsacus circa 380–320 BC ∼60
Andocides circa 440–circa 390 BC ∼50
Androtion circa 410–340 BC ∼70
Antiphon circa 480–411 BC ∼69
Apollonius of Citium circa 90–15 BC? ∼75
Arcesilaus 316/315–242/241 BC ∼74
Aristarchus of Samothrace circa 216–144 BC ∼72
Aristophanes of Byzantium circa 257–180 BC ∼77
Aristotle 384–322 BC 62
Arius circa AD 260–336 ∼76
Arrian (Lucius Flavius Arrianus) circa AD 86–160 ∼74
Aspasius circa AD 100–150 ∼50
Athanasius circa AD 295–373 ∼78
Atticus circa AD 150–200 ∼50
Augustine, Saint AD 354–430 76
Bacchius of Tanagra probably 275–200 BC ∼75
Bacchylides circa 520–450 BC ∼70
Basil of Caesarea circa AD 330–379 ∼49
Bion of Borysthenes circa 335–circa 245 BC ∼90
Carneades 214/213–129/128 BC ∼85
Cassius (1) 31 BC–AD 37 68
Cassius Longinus circa AD 213–273 ∼60
Cato (Censorius) 234–149 BC 85
Chrysippus of Soli circa 280–207 BC ∼73
Chrysostom, John circa AD 354–407 ∼53
Cinesias circa 450–390 BC ∼60
Claudius Atticus Herodes (2) Tiberius circa AD 101–177 ∼76
Cleanthes of Assos 331–232 BC 99
Clitomachus 187/186–110/119 BC ∼77
Colotes (RE 1) of Lampsacus circa 325–260 BC ∼65
Cornelius (RE 157) Fronto, Marcus circa AD 95–circa 166 ∼71
Crantor of Soli in Cilicia circa 335–275 BC ∼60
Crates (2) circa 368/365–288/285 BC ∼80
Demades circa 380–319 BC ∼61
Demochares circa 360–275 BC ∼85
Democritus (of Abdera) circa 460–370 BC ∼90
Demosthenes (2) 384–322 BC 62
Dinarchus circa 360–circa 290 BC ∼70
Dio Cocceianus circa 40/50–110/120 BC ∼70
Diodorus (3) of Agyrium, Sicily circa 90–30 BC ∼60
Diogenes (3) (of Babylon) circa 240–152 BC ∼88
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Diogenes (2) the Cynic circa 412/403–circa 324/321 BC ∼85
Duris circa 340–circa 260 BC ∼80
Empedocles circa 492–432 BC ∼60
Ennius, Quintus 239–169 BC 70
Ennodius, Magnus Felix AD 473/474–521 ∼48
Ephorus of Cyme circa 405–330 BC ∼75
Epicurus 341–270 BC 71
Epiphanius circa AD 315–403 ∼88
Erasistratus circa 315–240 BC ∼75
Eratosthenes of Cyrene circa 285–194 BC ∼91
Eubulus (1) circa 405–circa 335 BC ∼70
Euclides (1) of Megara circa 450–380 BC ∼70
Euripides probably 480s–407/406 BC ∼78
Eusebius of Caesarea circa AD 260–339 ∼79
Evagrius Scholasticus circa AD 535–circa 600 ∼65
Favorinus circa AD 85–155 ∼70
Fenestella 52 BC–AD 19 or 35 BC–AD 36 71
Galen of Pergamum AD 129–216 87
Gorgias (1) of Leontini circa 485–circa 380 BC ∼105
Gregory (2) of Nazianzus AD 329–389 60
Gregory (3) of Nyssa circa AD 330–395 ∼65
Gregory (4) Thaumaturgus circa AD 213–circa 275 ∼62
Hecataeus (2) of Abdera circa 360–290 BC ∼70
Hegesippus (1) circa 390–circa 325 BC ∼65
Hellanicus (1) of Lesbos circa 480–395 BC ∼85
Hellanicus (2) circa 230/220–160/150 BC ∼70
Herophilus of Chalcedon circa 330–260 BC ∼70
Hieronymus (2) of Rhodes circa 290–230 BC ∼60
Himerius circa AD 310–circa 390 ∼80
Horace (Quintus Horatius Flaccus) 65–8 BC 57
Idomeneus (2) circa 325–circa 270 BC ∼55
Irenaeus circa AD 130–circa 202 ∼72
Isaeus (1) circa 420–340s BC ∼75
Isocrates 436–338 BC 98
Ister circa 250–200 BC ∼50
Jerome (Eusebius Hieronymus) circa AD 347–420 ∼73
Laberius, Decimus circa 106–43 BC ∼63
Libanius AD 314–circa 393 ∼63
Livius Andronicus, Lucius circa 280/270–200 BC ∼75
Livy (Titus Livius) 59 BC–AD 17 or 64 BC–AD 12 76
Lucilius (1) Gaius probably 180–102/101 BC ∼75
Lucretius (Titus Lucretius Carus) circa 94–55/51 BC ∼41
Lyco circa 300/298–226/224 BC ∼74
Lycurgus (3) circa 390–circa 325/324 BC ∼65
Lydus AD 490–circa 560 ∼70
Lysias 459/458–circa 380 BC or circa 445–circa 380 BC ∼72
Malalas circa AD 480–circa 570 ∼90
Mantias circa 165–85 BC ∼80
Megasthenes circa 350–290 BC ∼60

Table 1. Life spans of the first 100 “ancient intellectuals” in The Ox-
ford Classical Dictionary. The average, 71.7 years, is taken as typical.



30 CANIO BENEDETTO, STEFANO ISOLA AND LUCIO RUSSO

18 25 70 100
0

0.2

0.4

0.6

0.8

1

Age

P
ro

b
a
b
ili

ty
 o

f 
H

y
p
a
ti
a
’s

 a
c
ti
v
it
y
, 
b
e
in

g
 a

liv
e

Figure 4. The probability distribution aa(x) for being active at a
given age, if alive.

The choice made for this distribution might appear questionable on two grounds:
Is it appropriate to use modern data in studying an Alexandrian scholar of the
fourth century AD? And assuming this is so, is the particular mortality table chosen
adequate?

Our chief justification for keeping this choice of a(x) is that its most important
feature for our purposes, the life expectancy, is in excellent agreement with a con-
trol value calculated for this purpose: the average lifespan of the first one hundred
(in alphabetical order) “well dated” intellectuals found in The Oxford Classical
Dictionary [Hornblower et al. 2012]7 (see Table 1). This suggests that using a(x)
as an approximation for the mortality distribution of the population of interest is
consistent with the available quantitative evidence.

To model the probability aa(x) of being intellectually active at a given age if
alive at that age we make some reasonable, if somewhat arbitrary, assumptions
reflected in the graph in Figure 4.

Combining the two distributions a(x) and aa(x) as explained, the probability of
being active at any given age is calculated and — knowing that Hypatia was so in
415 — the probability distribution ϒa(ξ) for the year of Hypatia’s birth deduced
from this historical datum is obtained in a straightforward manner (see Figure 5).

3.3. Hypatia reached old age. In his Χρονογραφία, John Malalas tells us that our
subject was an old woman when she died:

Κατ΄ ἐκεῖνον δὲ τὸν καιρὸν παρρησίαν λαβόντες ὑπὸ τοῦ ἐπισκόπου

οἱ Ἀλεξανδρεῖς ἔκαυσαν φρυγάνοις αὐθεντήσαντες ῾Υπατίαν τὴν περι-

7The cutoff at 100 gives a convenient sample size large enough to be representative. Using all
“ancient intellectuals” as the control population and not only those who lived in the third and fourth
centuries AD is necessary in order to obtain a statistically significant sample.
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Figure 5. The probability distribution ϒa(ξ) for Hypatia’s birth
based on her being active when she died.
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Figure 6. The probability distribution o(x) for being regarded as
an old woman.

βόητον φιλόσοφον, περὶ ἧς μεγάλα ἐφέρετο ἦν δὲ παλαιὰ γυνή.
8

In light of the average lifespan of ancient intellectuals (Table 1), even a conservative
interpretation of “old woman” would preclude an age much below 50.9 Hence we
model the probability distribution of someone being “old woman” by the function
o(x) shown in Figure 6. The resulting probability distribution, ϒo(ξ), for the year
of Hypatia’s birth based on this datum is then easily obtained; see Figure 7.

8At that time the Alexandrians, given free rein by their bishop, seized and burnt on a pyre of
brushwood Hypatia the famous philosopher, who had a great reputation and who was an old woman
[Malalas, XIV.12].

9This agrees with the authoritative opinion of many historians; thus Maria Dzielska [1995]: “John
Malalas argues persuasively that at the time of her ghastly death Hypatia was an elderly woman —
not twenty-five years old (as Kingsley wants), nor even forty-five, as popularly assumed. Following
Malalas, some scholars, including Wolf, correctly argue that Hypatia was born around 355 and was
about sixty when she died”.
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Figure 7. The probability distribution ϒo(ξ) for Hypatia’s birth
given that she reached old age.

3.4. Hypatia, daughter of Theon. Theon of Alexandria, best known for allowing
the transmission of Euclid’s Elements to the present day, was Hypatia’s father. By
knowing his birth year, one might think of deducing a probability distribution for
the year of Hypatia’s birth; sadly, this is unknown as well. Therefore, it is necessary
to calculate a probability distribution for the year of Theon’s birth first. To this end,
two recorded facts are useful:

• Theon was intellectually active between 364 and 377.10

• Hypatia overhauled the third book of Theon’s Commentary on the Almagest
(Theon refers to this in the Commentary itself).

This second datum makes it unlikely that Hypatia was born in Theon’s old age; it
also make it less probable that he stopped being intellectually active at a young
age, since he was still active while his daughter made her contribution to his work.
To quantify this reasoning, we define notation for the relevant events:

• Fi , Theon becomes a father at age i .

• AT/I
i , Theon/Hypatia is intellectually active at the age of i .

• C , Theon is able to collaborate with Hypatia (both are intellectually active).

• BT/I
k , Theon/Hypatia begins being intellectually active at age k.

• ST/I
k , Theon/Hypatia stops being intellectually active at age k.

The probability of Theon becoming a father at various ages is described approxi-
mately by the model distribution F(x) shown in Figure 8.

10In the Little Commentary on Ptolemy’s Handy Tables, Theon mentioned some astronomical
observations that can be dated with certainty: the two solar eclipses of June 15th and November 26th,
364 and an astral conjunction in 377. It is reasonable to assume that he was also active in the interval
between those two years.
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Figure 8. The probability distribution F(x) for Theon’s age at the
time of Hypatia’s birth.

The probability of a subject (Theon or Hypatia) beginning their intellectual ac-
tivity at a given age is described approximately by the model distribution B(x)
shown in Figure 9.

The probability distribution S(x) for the subject ending her intellectual activity
at a given age is taken to be, up to age 70, just the probability of dying (derived
from the distribution a(x) of Figure 3), while after that it is the probabily of dying
conditioned to that of being active, as obtained in Section 3.2. See Figure 10.

The probability of event C is therefore

P(C)=
∑

i

∑
k

P(AT
i+k ∩ Fi ∩ B I

k ).

By the definition of conditional probability,∑
i

∑
k

P(AT
i+k ∩ Fi ∩ B I

k )=
∑

i

∑
k

P(AT
i+k ∩ I I

k | Fi ) · P(Fi ),
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Figure 9. The probability distribution B(x) for the starting point
of one’s intellectual career.
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Figure 10. The probability distribution S(x) for the endpoint of
one’s intellectual career.

and since the beginning of the active life of Hypatia does not depend on her father’s
activity, the following simplification can be made:∑

i

∑
k

P(AT
i+k ∩ B I

k | Fi ) · P(Fi )=
∑

i

∑
k

P(B I
k ) · P(A

T
i+k | Fi ) · P(Fi ).

Without committing a large error, it is possible to confuse the probability of being
active at age i + k having had a daughter at age i , P(AT

i+k | Fi ), with the one of
being active at age i + k having been alive at age i (Vi ),11 P(AT

i+k | Vi ):

P(AT
i+k | Fi )≈ P(AT

i+k | Vi )=
P(AT

i+k)

P(Vi )
.

In the end, the following equation can be written:

P(C)=
∑

i

∑
k

P(B I
k ) ·

P(AT
i+k)

P(Vi )
· P(Fi ).

Based on the idea previously introduced, the next step is to calculate P(Fi | C) and
P(ST

k | C) (and so P(AT
i | C)= 1−

∑
k P(ST

k | C)):

P(Fi | C)=
P(Fi ∩C)

P(C)
=

∑
k P(B I

k ) · (P(A
T
i+k)/P(Vi )) · P(Fi )∑

i
∑

k P(B I
k ) · (P(A

T
i+k)/P(Vi )) · P(Fi )

,

P(ST
k | C)=

P(Sk ∩C)
P(C)

=

∑
i, j :i+ j≤k P(ST

k ) · P(Fi ) · P(B I
j )∑

i
∑

j P(B I
j ) · (P(A

T
i+ j )/P(Vi )) · P(Fi )

.

AT
C(x) is the probability distribution of Theon being active at a given age, condi-

tioned to the C event; see Figure 11.

11Vi is obtained from the above-mentioned 1974 Italian male mortality data set.
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Figure 11. The probability distribution AT
C(x) for Theon being active

at a given age, given that his and Hypatia’s periods of activity overlap.
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Figure 12. The probability distributions 364(ξ) and 377(ξ).

Keeping in mind the two years in which Theon was surely active (364 and
377), two distributions 364(ξ) and 377(ξ) for Theon’s year of birth are deduced
as previously shown in Section 3.2 (see Figure 12). Then, following the procedure
introduced in Section 2, a single distribution 2(ξ) is obtained (see Figure 13).

Finally, in order to calculate ϒd(ξ), the probability distribution for the year of
Hypatia’s birth based on her being Theon’s daughter, the probability of the various
events “the age difference between father and daughter is i years” conditioned
on event C must be known. This is indeed the above-calculated P(Fi | C), now
written as the function FC(x) (see Figure 14) so that ϒd(ξ) is straightforward to
calculate:12

ϒd(ξ)=
∑

x

2(ξ) · FC(ξ − ξ).

(See Figure 15.)

12The sum is taken over the whole domain of 2(ξ).
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Figure 13. The probability distribution 2(ξ) for Theon’s birth.
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Figure 14. The probability distribution FC(x) for the difference
in age between father and daughter, given that their periods of
activity overlap.
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Figure 15. The probability distribution ϒd(ξ) for Hypatia’s birth
based on her relationship to Theon.
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Figure 16. The probability distribution T (x) for the age gap be-
tween teacher and disciple.

3.5. Hypatia, teacher of Synesius. Synesius of Cyrene, neo-Platonic philosopher
and bishop of Ptolemais, was a disciple of Hypatia, as shown by a close correspon-
dence between the two.

For instance, from his deathbed, Synesius wrote:

Τῇ φιλοσόφῳ.

Κλινοπετὴς ὑπηγόρευσα τὴν ἐπιστολήν, ἣν ὑγιαίνουσα κομίσαιο, μῆτερ

καὶ ἀδελφὴ καὶ διδάσκαλε καὶ διὰ πάντων τούτων εὐεργετικὴ καὶ πᾶν

ὅ τι τίμιον καὶ πρᾶγμα καὶ ὄνομα.
13

The distribution T (x) is introduced as a model to describe the probability of a
difference of x years of age between teacher and pupil (see Figure 16).
ϒt(ξ), the probability distribution for the year of Hypatia’s birth deduced from

this historical datum, is obtained in a straightforward manner by taking 370 as the
year of birth of Synesius14 (see Figure 17).

3.6. Combined distribution. Combining the five probability distributions deduced
above for the year of Hypatia’s birth, one final distribution, ϒ(ξ), can be obtained
following the rules introduced in Section 2. This final distribution ϒ(ξ) can be
compared to the distribution given by the simple arithmetic mean of the various
distributions resulting from every possible combination of testimonies being con-
sidered true at the same time, ϒA(ξ) (see Figure 18).

Therefore, the most probable year for the birth of Hypatia is 355 (∼14.5%) with
a total probability of the interval [350, 360] of about 90%.

13To the Philosopher. I am dictating this letter to you from my bed, but may you receive it in
good health, mother, sister, teacher, and withal benefactress, and whatsoever is honored in name and
deed [Synesius of Cyrene, Incipit of Letter 16].

14See, for example, [Hornblower et al. 2012].
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Figure 17. The probability distribution ϒt(ξ) for Hypatia’s age
based on her having been a teacher of Synesius.
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Figure 18. The final probability distribution ϒ(ξ) calculated for
the birth of Hypatia using the method in Section 2 and an average
distribution ϒA(ξ) based on the same historical data.

4. Conclusions

The probabilistic dating model proposed in this work, structured in three steps,
could be summarized by making use of a culinary analogy. The first step is repre-
sented by the collection of enough raw ingredients (testimonies) to be refined or
“cooked” in the second step (turned into probability distributions) and — finally, in
the third step — put together following a recipe (provided in Section 2) so that they
blend well (as a single probability distribution).

Its application to the case of Hypatia proved to be satisfactory in that the final
probability distribution shows a marked peak, making it possible to give a date with
good precision. The result so obtained contradicts the prevalent opinion (cf. page
25) but is in agreement with the minority view held by some highly-regarded schol-
ars working on the issue. We have already mentioned the authoritative opinion
of Maria Dzielska, who deems that Hypatia died at about age 60, having been,
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consequently, born around the year 355. A similar opinion is expressed in [Deakin
2007, p. 52].

Future applications appear to be far-reaching as the method could serve not only
in cases strictly analogous to the one presented here but also in dating any event
provided with a sufficient number of testimonies able to be turned into probability
distributions.
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ON THE POSSIBLE EFFECTIVE ELASTICITY TENSORS
OF 2-DIMENSIONAL AND 3-DIMENSIONAL

PRINTED MATERIALS

GRAEME W. MILTON, MARC BRIANE AND DAVIT HARUTYUNYAN

The set GU f of possible effective elastic tensors of composites built from two
materials with elasticity tensors C1 > 0 and C2 = 0 comprising the set U =
{C1,C2} and mixed in proportions f and 1− f is partly characterized. The ma-
terial with tensor C2 = 0 corresponds to a material which is void. (For technical
reasons C2 is actually taken to be nonzero and we take the limit C2→ 0). Specifi-
cally, recalling that GU f is completely characterized through minimums of sums
of energies, involving a set of applied strains, and complementary energies, in-
volving a set of applied stresses, we provide descriptions of microgeometries
that in appropriate limits achieve the minimums in many cases. In these cases
the calculation of the minimum is reduced to a finite-dimensional minimization
problem that can be done numerically. Each microgeometry consists of a union
of walls in appropriate directions, where the material in the wall is an appro-
priate p-mode material that is easily compliant to p ≤ 5 independent applied
strains, yet supports any stress in the orthogonal space. Thus the material can
easily slip in certain directions along the walls. The region outside the walls
contains “complementary Avellaneda material”, which is a hierarchical laminate
that minimizes the sum of complementary energies.

1. Introduction

Here we consider what effective elasticity tensors can be produced in the limit
δ→ 0 if we mix in prescribed proportions two materials with positive definite and
bounded elasticity tensors C1 and C2 = δC0. In the limit δ→ 0 this represents a
mixture of an elastic phase and an extremely compliant phase. Thus we are given a
set U = {C1, δC0} and we are aiming to characterize as best we can the set GU f of
all possible effective tensors of composites having a volume fraction f of phase 1.
The elasticity tensor C1 need not be isotropic but if it is anisotropic we require that
it has a fixed orientation throughout the composite. Our results are summarized by
the theorems in Section 10.
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MSC2010: 74Q20, 35Q74.
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To get an idea of the enormity of the problem one has to recognize that in three
dimensions elasticity tensors can be represented by 6× 6 matrices and these have
21 independent elements. The set of possible elasticity tensors is thus represented
as a set in a 21-dimensional space. Even a distorted multidimensional cube in a 21-
dimensional space needs about 44 million real numbers to represent it (specifying
the position in 21-dimensional space of each of the 221 vertices). In the case where
the two phases are isotropic, one is free to rotate the material to obtain an equivalent
structure. Thus the set of possible elasticity tensors is invariant under rotations. As
rotations involve three parameters (the Euler angles) this reduces the number of
constants needed to describe the elasticity tensor from 21 to 21− 3 = 18, and
thus the elasticity tensor can be represented in an 18-dimensional space of tensor
invariants. For example, in the generic case, one can take these 18 invariants as
follows: the six eigenvalues of the elasticity tensor; the two independent elements
of the normalized eigenstrain associated with the lowest eigenvalue that can be
assumed to be diagonal by an appropriate choice of the coordinate axes (which
then fixes these axes); the four independent elements of the normalized eigenstrain
associated with the second lowest eigenvalue that is orthogonal to the first eigen-
strain; the three independent elements of the normalized eigenstrain associated
with the third lowest eigenvalue that is orthogonal to the first two eigenstrains; the
two independent elements of the normalized eigenstrain associated with the third
lowest eigenvalue that is orthogonal to the first three eigenstrains; and the one
independent element of the normalized eigenstrain associated with the third lowest
eigenvalue that is orthogonal to the first four eigenstrains. This brings the total to
6+ 2+ 4+ 3+ 2+ 1= 18. In the same way that it takes two parameters (the bulk
and shear moduli) to specify the elastic behavior of an isotropic material, it takes
18 parameters to specify the elastic behavior of a fully anisotropic material.

A distorted cube in this 18-dimensional space still requires about 4.7 million
numbers to represent it. This makes exploring the range of possible elasticity ten-
sors a daunting, if not impossible, numerical task. Some numerical exploration of
this space has been done by Sigmund [1994; 1995], but we emphasize that this
exploration covers only a tiny fraction of the number of possibilities.

Furthermore, the microstructures we found that lie near the boundary of GU f

have quite complicated multiscale architectures and thus would be difficult to find
numerically. Also, it is not clear whether there are significantly simpler microstruc-
tures that can do the job. The numerical route of Sigmund should provide some
simpler alternatives for the strut configurations in the multimode structures in the
walls, although even then one needs to make subtle multiscale replacements (such
as those appearing later in Figures 9 and 10) to achieve the desired performance.
Numerical tests need to be made to see whether one can achieve the same perfor-
mance with simpler structures. While strut configurations might be suitable at low
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volume fractions they are unlikely to be ideal at high volume fractions. Work by
Allaire and Aubry [1999] shows that sometimes optimal microstructures necessar-
ily have structure on multiple length scales. Even if one could numerically explore
the question, it is not clear how one could summarize the results in a concise way.

From the applied side there is growing interest in trying to characterize the ef-
fective elasticity tensors of microstructures that can be produced by 3-dimensional
or 2-dimensional printing. A dramatic example of such a microstructure is given in
Figure 1. Our results have obvious relevance to this problem in the case where the 3-
dimensional printed material uses only one isotropic material plus void. Although
our microstructures are somewhat extreme, they provide benchmarks that show
what is theoretically possible. What is possible in practice will be a subset of this.

The microstructures we consider involve taking three limits. First, as they have
structure on multiple length scales, the homogenization limit where the ratio be-
tween length scales goes to infinity needs to be taken. Second, the limit δ→ 0 needs
to be taken. Third, as the structure involves thin walls of width ε, along which the
material can “slip”, the limit ε→ 0 needs to be taken so the contribution to the
complementary energy of these walls goes to zero, when the structure supports an
applied stress. (Here ε should not be confused with the size of the unit cell, as
is common in homogenization theory). The limits should be taken in this order,
as, for example, standard homogenization theory is justified only if δ 6= 0, so
we need to take the homogenization limit before taking the limit δ→ 0. In the
walled structures the material may only occupy a small volume fraction, but this
is ultimately irrelevant as the thin walled structures themselves occupy only a very
small volume fraction in the final material (which goes to zero as ε→ 0).

The case, applicable to printed materials, when phase 2 is actually void, rather
than almost void, requires special care. To justify the homogenization steps taken
here one has to first replace the void phase 2 with a composite foam having a
small amount of phase 1 as the matrix phase, so that its effective elasticity tensor
is nonzero, but approaches zero as the proportion of phase 1 in it tends to zero. The
microgeometry in this composite needs to be much smaller than the scales in the
geometries discussed here, which would involve mixtures of it and phase 1.

We emphasize, too, that our analysis is valid only for linear elasticity, and ig-
nores nonlinear effects such as buckling. In reality the structures will easily buckle
under compression. This buckling will occur, for example, in the square beam
array structure of Figure 10. Additionally, some of the multimode materials are
constructed via a superposition of appropriately shifted and deformed pentamode
materials, and these substructures will interact under finite deformations. Also, in
practice it would be difficult to realize the delicate multiscale materials that come
close to attaining the bounds. Thus what is practically realizable will be just a
subset, dependent on the current state of technology, of the set GU f .
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While the title refers only to printed materials, the results are also applicable to
any periodic, or statistically homogeneous, material containing voids or pores in a
homogeneous material. Printed materials are more interesting than typical porous
materials as they allow one to explore a wider range of interesting structures.

In a companion paper [Milton et al. 2017] we consider the opposite limit δ→∞,
corresponding to a mixture of an elastic material and an almost rigid material.

2. Review of some bounds on the elastic moduli of two-phase composites
and geometries that attain them

Here we review a selection of results on sharp bounds on the elastic response of two-
phase composites and the associated problem of identifying optimal geometries
that attain them. The interested reader is encouraged to look at the books of Nemat-
Nasser and Hori [1998], Cherkaev [2000], Milton [2002], Allaire [2002], Torquato
[2002] and Tartar [2009], which provide a much more comprehensive survey.

The most elementary bounds on the elastic properties of composites are the
classical bounds of Hill [1952], who implicitly showed that

〈[C(x)]−1
〉
−1
≤ C∗ ≤ 〈C(x)〉. (2-1)

Here the angular brackets 〈 · 〉 denote a volume average, and the inequality holds
in the sense of quadratic forms, i.e., for fourth-order tensors A and B satisfying
the symmetries of elasticity tensors we say that A ≥ B if ε : Aε ≥ ε : Bε for all
matrices ε. While these bounds were not explicitly stated by Hill in his 1952 paper
they are an immediate and obvious consequence of his equation (2). If the two
phases are isotropic the spectral decomposition of the elasticity tensors C1 and C2

of the two phases is

C1 = 3κ13h + 2µ13s and C2 = 3κ23h + 2µ23s, (2-2)

where κ1 and κ2 are the bulk moduli of the two phases, µ1 and µ2 are the shear
moduli, and

{3h}i jk` =
1
3δi jδk`, {3s}i jk` =

1
2 [δikδ j`+ δi`δk j ] −

1
3δi jδk` (2-3)

act as projections. The tensor 3h projects onto the 1-dimensional space of matri-
ces proportional to the second-order identity matrix, while 3s projects onto the
5-dimensional space of trace-free matrices. Similarly if the effective elasticity ten-
sor C∗ is isotropic we have that C∗ = 3κ13h + 2µ13s , where κ∗ and µ∗ are the
effective bulk and shear moduli of the composite. In this paper we are interested
in the case where the two phases are well-ordered in the sense that

C1 ≥ C2, (2-4)
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and we will take the limit as C2 → 0, meaning that all the eigenvalues of C2

approach zero. In the case of isotropic components this well-ordering assumption
is satisfied if κ1 ≥ κ2 and µ1 ≥ µ2, and we will take the limit as κ2, µ2→ 0.

For isotropic composites of two well-ordered materials Hashin and Shtrikman
[1963] and Hill [1963] obtained the celebrated bounds

κ∗ ≥ f κ1+(1− f )κ2−
f (1− f )(κ1−κ2)

2

(1− f )κ1+ f κ2+4µ2/3
,

κ∗ ≤ f κ1+(1− f )κ2−
f (1− f )(κ1−κ2)

2

(1− f )κ1+ f κ2+4µ1/3
,

µ∗ ≥ f µ1+(1− f )µ2−
f (1− f )(µ1−µ2)

2

(1− f )µ1+ f µ2+µ2(9κ2+8µ2)/[6(κ2+2µ2)]
,

µ∗ ≤ f µ1+(1− f )µ2−
f (1− f )(µ1−µ2)

2

(1− f )µ1+ f µ2+µ1(9κ1+8µ1)/[6(κ1+2µ1)]
.

(2-5)

In fact these bounds (and the variational principles they derive from) hold even if
one component has a negative bulk modulus, so long as the composite is stable
[Kochmann and Milton 2014]. For 2-dimensional composites (fiber reinforced ma-
terials) analogous bounds on the effective elastic moduli were found by Hill [1964]
and Hashin [1965]. Bounds on the complex effective bulk and shear moduli of
isotropic two-phase 2-dimensional or 3-dimensional composites were also obtained
[Gibiansky and Milton 1993; Milton and Berryman 1997; Gibiansky et al. 1993;
1999; Gibiansky and Lakes 1993; 1997]: these are appropriate to the propagation
of fixed frequency elastic waves in composites when one or both of the phases is
viscoelastic, and when the wavelength is much larger than the microstructure.

An important “attainability principle” is that bounds obtained by substituting a
trial field in a variational principle will be attained when the geometry is such that
the actual field matches this trial field. This principle was used, for example, in
[Milton 1981c] to find geometries that attain the Hashin–Shtrikman bounds on the
effective bulk modulus of composites with three or more phases (see also [Gibian-
sky and Sigmund 2000]). The Hashin–Shtrikman variational principles involve a
minimization over trial polarization fields, and the actual polarization field depends
on the choice of the elasticity tensor C0 of a “reference medium” (typically chosen
to be positive definite) and is defined by

P(x)= (C(x)−C0)ε(x)= σ (x)−C0ε(x). (2-6)

The variational principles require that C(x)−C0 be either positive semidefinite or
negative semidefinite, so in the case of a well-ordered material natural choices of
C0 are C1 or C2 and correspondingly the field will be zero in phase 1 or phase 2,
respectively. The bounds are obtained by assuming it is constant in the other phase
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(proportional to the identity in case of the bulk modulus bounds, and trace-free
for the shear modulus bounds). Hashin and Shtrikman [1963] recognized that
the effective bulk modulus would be attained by the Hashin assemblage of coated
spheres [Hashin 1962]. A single coated sphere can be a neutral inclusion: if the
surrounding “matrix” material has an appropriate bulk modulus (with a specific
value between κ1 and κ2) one can insert it in the matrix material without disturbing
a surrounding hydrostatic field (this is the principle behind the unfeelability cloak
of Bückmann, Thiel, Kadic, Schittny and Wegener [Bückmann et al. 2014]). The
inclusion is invisible to the surrounding field and one can continue to insert similar
inclusions, scaled to sizes ranging to the very small, until one essentially obtains a
two-phase composite with effective bulk modulus the same as the original matrix
material. Due to radial symmetry the forces acting on the spherical inner core will
be equally distributed around the boundary and directed radially: thus the field
inside the core material is hydrostatic and constant, and hence by the attainability
principle, and due to their neutrality, sphere assemblages must attain the effective
bulk modulus bounds in (2-5).

One very important class of microgeometries for which the field is constant
in one phase are the sequentially layered laminates (first introduced by Maxwell
[1873]) built by layering phase 2 with phase 1 in a direction n1 (by which we mean
n1 is perpendicular to the layers), then taking this laminate and layering it again on
a much larger length scale with phase 1 in a direction n2 to obtain a “rank 2” lam-
inate, and continuing this process until one obtains a rank m laminate, containing
in a sense a “core” of phase 2 surrounded by layers of phase 1. The field is then
constant in the core material of phase 2. An explicit formula for the effective elas-
ticity tensor of such sequentially layered laminates was obtained by Francfort and
Murat [1986], generalizing the analogous formulas obtained by Tartar [1985] for
conductivity. Of course one can switch the roles of the phases in this construction
and thus obtain a material where the field is constant in phase 1. It then immediately
follows from the attainability principle (without requiring any calculation!) that
one can attain the Hashin–Shtrikman shear modulus bounds (2-5) (and simultane-
ously the bulk modulus bounds) if one can find a sequentially layered laminate
that has an isotropic elasticity tensor, and the easiest way to do this is to do the
lamination sequentially by adding infinitesimal layers in random directions. This
established the attainability of the Hashin–Shtrikman shear modulus bound [Milton
1986], also established independently and at the same time by Norris [1985], using
the differential scheme that was known to be realizable [Milton 1985; Avellaneda
1987a] — in fact Roscoe [1973] had earlier realized the differential approximation
scheme could produce the desired shear modulus — and at the same time elegantly
by Francfort and Murat [1986], using sequentially layered laminates with just five
directions of lamination (in the case of 3-dimensional composites).
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Hill [1963] proved that the bulk modulus bounds are valid also in the non-well-
ordered case where µ1 ≥µ2 but κ1 ≤ κ2. As far as we know, the tightest bounds on
the effective shear modulus of 3-dimensional composites in the non-well-ordered
case where µ1 ≥ µ2 but κ1 ≤ κ2 are those of Milton and Phan-Thien [1982]:

min
ζ

0≤ζ≤1

8〈6/µ+ 7/κ〉ζ + 15/µ2

2
(
〈21/µ+ 2/κ〉ζ/µ2+ 40〈1/µ〉ζ 〈1/κ〉ζ

)
≤

f (1− f )(µ1−µ2)
2

f µ1+ (1− f )µ2−µ∗
− (1− f )µ1− f µ2

≤ max
ζ

0≤ζ≤1

8µ1〈6κ + 7µ〉ζ + 15〈µ〉ζ 〈κ〉ζ
2
(
〈21κ + 2µ〉ζ + 40µ1

) , (2-7)

where for any quantity a taking values a1 and a2 in phase 1 and phase 2, respec-
tively, we define 〈a〉ζ ≡ ζa1+ (1− ζ )a2. These bounds are obtained by eliminating
the geometric parameters from the bounds of Milton and Phan-Thien [1982] and
are tighter than the better-known Walpole bounds [1966], and are in fact sharp (as
they coincide with the Hashin–Shtrikman formula, which corresponds to particular
geometries as we have discussed) when the moduli are slightly non-well-ordered.
Specifically, the first bound in (2-7) is sharp when the minimum over ζ is attained
at ζ = 0, which occurs when

κ1− κ2 ≥−
(3κ2+ 8µ2)

2

42κ2
2

κ1κ2

µ1µ2
(µ1−µ2), (2-8)

and the second bound in (2-7) is sharp when the maximum over ζ is attained at
ζ = 1, which occurs when

κ1− κ2 ≥−
(3κ1+ 8µ1)

2

42µ2
1

(µ1−µ2). (2-9)

The bounds (2-5) and (2-7) constrain the pair (κ∗, µ∗) to lie in a rectangular box.
Berryman and Milton [1988] obtained tighter coupled bounds which slice off two
opposing corner regions of the box by eliminating the geometric parameters from
the bulk modulus bounds of Beran and Molyneux [1966] (as simplified by Milton
[1981b]) and from the shear modulus bounds of Milton and Phan-Thien [1982].
There is good reason to believe these bounds can be improved as the analogous
2-dimensional bounds are not as tight as the bounds of Cherkaev and Gibiansky
[1993] coupling κ∗ and µ∗, which were derived using the translation method.

For anisotropic composites with an effective tensor C∗, the microstructure inde-
pendent bounds that are directly analogous to the Hashin–Shtrikman–Hill bounds,
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given by (2-5), are the “trace bounds”

f Tr[3h(C∗−C2)
−1
] ≤

1
3(κ1− κ2)

+
1− f

3κ2+ 4µ2
,

(1− f )Tr[3h(C1−C∗)−1
] ≤

1
3(κ1− κ2)

−
f

3κ1+ 4µ1
,

f Tr[3s(C∗−C2)
−1
] ≤

5
2(µ1−µ2)

+
3(κ2+ 2µ2)(1− f )
µ2(3κ2+ 4µ2)

,

(1− f )Tr[3s(C1−C∗)−1
] ≤

5
2(µ1−µ2)

−
3(κ1+ 2µ1) f
µ1(3κ1+ 4µ1)

,

(2-10)

obtained independently by Milton and Kohn [1988] and Zhikov [1988; 1991a;
1991b]. In these expressions the fourth-order tensors 3h multiply the fourth-order
tensors on their right, and

Tr[A] = Ai j i j (2-11)

defines the “trace” of a fourth-order tensor (see also [Francfort and Murat 1986]
and [Nemat-Nasser and Hori 1993] for related bounds). From the attainability
principle it follows that these bounds will be achieved whenever the composite is
a sequentially layered laminate, with a core of one phase, surrounded by layers
(on widely separated length scales) of the other phase. When C∗ is isotropic these
bounds (2-10) reduce to the Hashin–Shtrikman–Hill bounds (2-5). In the case
where the two phases, and hence the composite, are incompressible we can define
the five effective shear moduli µ∗1, µ

∗

2, µ
∗

3, µ
∗

4, µ
∗

5 to be the five finite eigenvalues
of 1

2 C∗, and the second pair of bounds in (2-10) reduce to

5∑
i=1

f
2(µ∗i −µ2)

≤
5

2(µ1−µ2)
+

3(κ2+ 2µ2)(1− f )
µ2(3κ2+ 4µ2)

,

5∑
i=1

1− f
2(µ1−µ∗i )

≤
5

2(µ1−µ2)
−

3(κ1+ 2µ1) f
µ1(3κ1+ 4µ1)

.

(2-12)

Lipton [1988] established that the analogous bounds for the two effective shear
moduli µ∗1 and µ∗2 of 2-dimensional composites of two incompressible isotropic
phases completely characterize GU f .

Earlier, Willis [1977] considered anisotropic composites and used the Hashin–
Shtrikman variational principle with a trial polarization that was zero in one phase
and constant in the other to obtain bounds on the elastic energy of a two-phase
composite. He found that these bounds are not microgeometry independent, but
rather involve the two-point correlation function, i.e., the probability that a rod
with fixed orientation lands with both ends in phase 1 when thrown randomly in a
composite. It follows from the attainability principle that the Willis bounds will be
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achieved when the composite is a sequentially layered laminate, with a core of one
phase, surrounded by layers (on widely separated length scales) of the other phase.

In a major advance, Avellaneda [1987b] recognized that for any composite of
two phases with well-ordered tensors not all the information contained in the two-
point correlation function was relevant to determining the bounds: what was rele-
vant was a “reduced two-point correlation function” that could be represented as a
positive measure µ(ξ) (with unit integral) on the sphere |ξ | = 1. Roughly speaking
one takes the Fourier transform of the two-point correlation function and integrates
it over rays k= kξ in “Fourier space” keeping ξ fixed and integrating over k from 0
to infinity. Most importantly, every such measure could be realized to an arbitrarily
high degree of approximation by the measure of a suitable sequentially layered lam-
inate. For example, a measure with weighted delta functions in directions ξ 1 and
ξ 2 would be realized by a second-rank sequentially layered laminate with layers
normal to ξ 1 and ξ 2. (We note in passing that these reduced two-point correlation
functions of Avellaneda are a special case of the H -measures introduced at the same
time by Tartar [1989; 1990], in terms of which he could calculate second-order cor-
rections to the effective tensor of a nearly homogeneous composite. H -measures
were also introduced independently by Gérard [1989; 1994] under the name of
microlocal defect measures. For composites of two isotropic phases the Hashin–
Shtrikman conductivity bounds, and indeed variational conductivity bounds at any
order, can be naturally expressed in terms of the series expansion coefficients of the
effective tensor up to a corresponding order for a nearly homogeneous composite,
as shown by Milton and McPhedran [1982].)

The fantastic implication was that by summing the Willis bounds [1977], and
then minimizing over all positive measures on the sphere, one would get sharp
bounds on the sum of elastic complementary energies

W 0
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6)= min

C∗∈GU f

6∑
j=1

σ 0
j : C

−1
∗
σ 0

j , (2-13)

and similarly one could get sharp bounds on the sum of elastic energies

W 6
f (ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6)= min

C∗∈GU f

6∑
i=1

ε0
i : C∗ε

0
i . (2-14)

Here some of the applied stresses σ 0
j or the applied strains ε0

i could be zero. So the
evaluation of the functions W 0

f (σ
0
1,σ

0
2,σ

0
3,σ

0
4,σ

0
5,σ

0
6) and W 6

f (ε
0
1,ε

0
2,ε

0
3,ε

0
4,ε

0
5,ε

0
6)

reduces to a finite-dimensional minimization problem which can be done numer-
ically. Hence we will treat the functions W 0

f (σ
0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6) as being

known, and we will call an “Avellaneda material” an associated sequentially lay-
ered laminate material with effective tensor C∗ = C A

f (ε
0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6) that
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attains the minimum in (2-14), and similarly we call a “complementary Avella-
neda material” an associated sequentially layered laminate material with effec-
tive tensor C∗ = C̃ A

f (σ
0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6) ∈ GU f that attains the minimum in

(2-13). Explicit analytical formulas for the tensors C A
f (ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6) and

C̃ A
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6) are not generally available, but rather have to be found

by numerical computation. When C1 ≥ C2 one needs to take the minimum in
(2-13) over the C∗ of sequentially layered laminates with a core material of phase 2.
Similarly, when C−1

1 ≥ C−1
2 the minimum in (2-14) also can be taken over the C∗

of sequentially layered laminates with a core material of phase 2. We remark that
although Avellaneda assumed the tensors C1 and C2 were isotropic, his analysis
easily extends to the case where the tensors are anisotropic but well-ordered (either
with C1 ≥ C2 or C2 ≥ C1) and with constant orientation throughout the composite:
see, for example, Section 23.3 in [Milton 2002].

These C∗ of sequentially layered laminates are given by the formula of Francfort
and Murat [1986] and Gibiansky and Cherkaev [1997b]:

(1− f )(C1−C∗)−1
= (C1−C2)

−1
− f

r∑
j=1

cj0(nj ), (2-15)

where r is the rank of the sequential laminate, the positive weights cj sum to 1, the
ni are the lamination directions, and 0(n) is the fourth-order tensor with elements
given by

{0(n)}hik` =
1
4

(
nh{C(n)−1

}ikn`+ nh{C(n)−1
}i`nk

+ ni {C(n)−1
}hkn`+ ni {C(n)−1

}h`nk
)
, (2-16)

in which C(n) = n · C1n is the 3× 3 matrix known as the acoustic tensor, with
elements

{C(n)}ik = {n ·C1n}ik = nh{C1}hik`n`. (2-17)

Thus the minimum needs to be taken over the rank r of the sequential laminate,
over the positive weights cj , which sum to 1, and over the lamination directions nj .
In the case where phase 1 is isotropic, with bulk modulus κ1 and shear modulus µ1,
C(n) can be easily calculated and one obtains

{0(nj )}hik`

=
3nhni nkn`
3κ1+ 4µ1

+
1

4µ1
(nhδikn`+nhδi`nk+niδhkn`+niδh`nk−4nhni nkn`). (2-18)

Francfort, Murat, and Tartar [Francfort et al. 1995] proved that when C1 is isotropic
it suffices to limit attention to laminates of rank r ≤ 6. When C1 is anisotropic we
extend an argument due to Avellaneda [1987b]. Consider the set A consisting of
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all fourth-order tensors A of the form

A=
∫
|n|=1

0(n)m(dn), (2-19)

where m(dn) is a nonnegative measure on the unit sphere having an integral of 1
over the sphere. Since A satisfies

{A}hik`{C1}hik` =

∫
|n|=1
{C(n)−1

}ik{C(n)}ik m(dn)= 3, (2-20)

it follows that A is a convex set in a space of dimension ν = 20 (with 20 of the
21 independent matrix elements of A as coordinates, and the remaining element
being determined by (2-20)). The extreme points correspond to point masses on
the unit sphere. Hence any tensor of the form (2-19) is a convex combination of at
most ν + 1 extreme points. Thus the sum (2-15) can be limited to r ≤ 21; i.e., it
suffices to consider laminates up to rank 21. Lipton [1991; 1992; 1994] obtained a
complete algebraic characterization of the possible sequentially layered laminates
having transverse or orthotropic symmetry and derived explicit expressions for
many of the associated bounds. The Avellaneda materials are of course difficult to
build in practice since they have structure on multiple length scales. However, if
f is small and one phase is void, Bourdin and Kohn [2008] showed that it suffices
to use a walled structure (similar to the structure on the right in Figure 4, but with
walls in many directions, not just two, and with the wall thickness depending on
orientation).

As observed by Avellaneda [1987b], the implications of course also apply to
2-dimensional elasticity. Define

W 0
f (σ

0
1, σ

0
2, σ

0
3)= min

C∗∈GU f

3∑
j=1

σ 0
j : C

−1
∗
σ 0

j (2-21)

and

W 3
f (ε

0
1, ε

0
2, ε

0
3)= min

C∗∈GU f

3∑
i=1

ε0
i : C∗ε

0
i . (2-22)

Then there is an Avellaneda material with effective tensor C∗ = C A
f (ε

0
1, ε

0
2, ε

0
3)

that attains the minimum in (2-22), and a complementary Avellaneda material with
effective tensor C∗ = C̃ A

f (σ
0
1, σ

0
2, σ

0
3) ∈ GU f that attains the minimum in (2-21).

In 2-dimensional elasticity, sequentially layered laminates have elasticity tensors
given by (2-15)–(2-17) when the tensor C1 is anisotropic. When the elasticity
tensor C1 of phase 1 is isotropic, the sequentially layered laminates of rank r
have effective compliance tensors S∗ = (C∗)−1 given by the Gibiansky–Cherkaev
formula

(1− f )(S1− S∗)−1
= (S1− S2)

−1
− f [(4κ2)

−1
+ (4µ2)

−1
]M (2-23)
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(see [Gibiansky and Cherkaev 1997b, equations (2.37) and (2.38)] and see also
[Lurie et al. 1982], in which Lurie, Cherkaev, and Fedorov derived an equivalent,
but less simple, formula), where S1 = (C1)

−1 and S2 = (C2)
−1 are the compliance

tensors of the two phases, occupying volume fractions f and 1− f , respectively,
and M has elements

{M}hik` =

r∑
j=1

cj t j h t j i t j k t j `, (2-24)

in which the t j are unit vectors perpendicular to the directions of lamination (i.e.,
parallel to the layer boundaries), and the cj are any set of positive weights, summing
to 1, giving the proportions of phase 1 laminated in the various directions. The
tensor M is clearly positive semidefinite and has the property that

{M}hkhk = {M}hhkk = 1. (2-25)

Conversely, Avellaneda and Milton [1989] have shown that given a positive semi-
definite fourth-order tensor M satisfying (2-25) there is a sequential layered lam-
inate of rank r ≤ 3 that corresponds to it, i.e., such that (2-23) holds for some
choice of unit vectors t j and weights cj (see also Theorem 2.2 of [Francfort et al.
1995]). Thus when C1 is isotropic, the computation of the complementary Avella-
neda tensor C̃ A

f (σ
0
1, σ

0
2, σ

0
3) reduces to a minimization over positive semidefinite

fourth-order tensors M satisfying (2-25). When C1 is anisotropic, by the same
argument as in the 3-dimensional case, it suffices to consider sequential layered
laminates of rank at most 6.

We also remark that aside from hierarchical laminates there are many other
structures that have a uniform field in one phase, sometimes only for certain ap-
plied fields. These include assemblages of confocal ellipses and ellipsoids [Milton
1980; 1981a; Grabovsky and Kohn 1995a], the periodic Vigdergauz geometries
[Vigdergauz 1986; 1994; 1996; 1999; Grabovsky and Kohn 1995b], the Sigmund
structures [2000], and the periodic E-inclusions of Liu, James, and Leo [Liu et al.
2007] (see also Section 23.9 of [Milton 2002]). Usually these attain the bounds
when the measure µ(ξ) minimizing the sum of Willis bounds is not required to be
a discrete measure. Allaire and Aubry [1999] have shown that sometimes the best
microstructure necessarily has structure on multiple length scales (like sequentially
layered laminates).

For single energies for anisotropic two-phase composites, the Hill bounds (2-1)
imply

ε0 : [ f C−1
1 +(1− f )C−1

2 ]
−1ε0≤ ε0 :C∗ε0≤ ε0 : [ f C1+(1− f )C2]ε0,

σ 0 : [ f C1+(1− f )C2]
−1σ 0≤ σ 0 :C−1

∗
σ 0≤ σ 0 : [ f C−1

1 +(1− f )C−1
2 ]σ 0.

(2-26)
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Improved, and in fact sharp, upper and lower bounds on the elastic energy ε0 : C∗ε0

in terms of the given applied strain ε0 and sharp upper and lower bounds on the com-
plementary elastic energy σ 0 : C−1

∗
σ 0 in terms of the given applied stress σ 0 were

obtained for isotropic component materials by Gibiansky and Cherkaev [1997a],
Kohn and Lipton [1988], and Allaire and Kohn [1993a; 1993b; 1994]. The paper
of Gibiansky and Cherkaev [1997a] was for the fourth-order plate equation, but
this can be mapped to the equivalent 2-dimensional elasticity problem considered
by Allaire and Kohn [1993b]. Their lower bounds on σ 0

: C−1
∗
σ 0 are equivalent to

the bounds that for any tensor C∗ ∈ GU f ,

σ 0
: C−1
∗
σ 0
≥ σ 0

: [C̃ A
f (σ

0, 0, 0)]−1σ 0, (2-27)

and they provided an explicit formula for the right-hand side for any 2× 2 sym-
metric matrix σ 0 representing the applied stress. This bound can be viewed in two
ways: in the way originally interpreted, i.e., as a bound on the possible (elastic
energy, average stress, volume fraction) triplets; or as a bound

σ 0
: ε0
≥ σ 0

: [C̃ A
f (σ

0, 0, 0)]−1σ 0 (2-28)

on the possible (average stress, average strain, volume fraction) triplets. Here ε0
=

C−1
∗
σ 0 is the strain associated with σ 0. Significantly, Milton, Serkov, and Movchan

[Milton et al. 2003] found that the inequality (2-28) completely characterizes the
possible (average stress, average strain, volume fraction) triplets in the limit in
which one phase becomes void, when the other phase is isotropic. Specifically,
given any triplet (σ 0, ε0, f ) satisfying (2-28) as an inequality, they give a recipe for
constructing a 2-dimensional microstructure with effective tensor C∗ and having
phase 1 occupy a volume fraction f such that σ 0

= C∗ε0.
For 3-dimensional composites explicit expressions for the optimal upper energy

bound were found by Gibiansky and Cherkaev [1997b] and Allaire [1994] for the
case of a two-phase composite where one of the phases is void or rigid [Gibiansky
and Cherkaev 1997b]. Grabovsky [1996] obtained energy bounds for two-phase
composites containing anisotropic phases, each with a constant orientation.

Another major advance was made by Milton and Cherkaev [1995], who showed
that any desired positive definite fourth-order tensor which has the symmetries of
an elasticity tensor could be realized as the effective elasticity tensor C∗ of a com-
posite of a sufficiently stiff isotropic material and a sufficiently compliant isotropic
material. One key to this advance was the realization that certain structures called
pentamode materials could be (arbitrarily) stiff to one applied stress σ 0

1 and yet have
five mutually orthogonal strains ε0

1, ε0
2, ε0

3, ε0
4, ε0

5, each orthogonal to σ 0
1 as five

(arbitrarily compliant) easy modes of deformations (hence the name pentamode).
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Figure 1. An electron micrograph of the pentamode structure cre-
ated by Kadic, Bückmann, Stenger, Thiel and Wegener [Kadic
et al. 2012] using a 3-dimensional lithography technique. (Used
with the kind permission of Martin Wegener.)

For such a pentamode

W 5
f (σ

0
1, ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5)= min

C∗∈GU f

[( 5∑
i=1

ε0
i : C∗ε

0
i

)
+ σ 0

1 : C
−1
∗
σ 0

1

]
(2-29)

approaches zero as the constituent stiff isotropic material becomes increasingly stiff
and the constituent compliant isotropic material becomes increasingly compliant.
The lattice structure of a pentamode is similar to that of diamond with a stiff double
cone structure replacing each carbon bond. This structure ensures that the tips
of four double cone structures meet at each vertex. This is the essential feature:
treating the double cone structures as struts, the tension in one determines uniquely
the tension in the other three. This is simply the balance of forces. Thus the
structure as a whole can essentially support only one stress. Pentamode structures
were experimentally realized by Kadic, Bückmann, Stenger, Thiel and Wegener
[Kadic et al. 2012] in an incredible feat of precision three-dimensional lithography.
One of their electron micrographs of the structure is shown in Figure 1. Pentamode
structures were also independently discovered in 1995 by Sigmund, although he
did not find the complete span of pentamode structures needed here: one needs
pentamodes that can support any chosen stress, not just a hydrostatic one. It is
this aspect of pentamodes that makes them more interesting than, for example,
a gel. Gels are examples of pentamodes as they are easy to shear, but difficult
to compress under a hydrostatic loading σ 1 = I . By contrast the pentamodes of
Milton and Cherkaev could be stiff to any desired stress σ 0

1: this desired stress
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may be a mixture of shear and compression, and may have eigenvalues of mixed
signs. A simple argument for seeing that these pentamodes can achieve any desired
elasticity tensor was given in the foreword of the book edited by Phani and Hussein
[2017]. To recapitulate that argument, one expresses the desired C∗ in terms of its
eigenvectors and eigenvalues,

C∗ =
6∑

i=1

λivi ⊗ vi . (2-30)

The idea, roughly speaking, is to find six pentamode structures each supporting a
stress represented by the vector vi for i = 1, 2, . . . , 6. The stiffness of the material
and the necks of the junction regions at the vertices need to be adjusted so each
pentamode structure has an effective elasticity tensor close to

C(i)
∗
= λivi ⊗ vi . (2-31)

Then one successively superimposes all these six pentamode structures, with their
lattice structures being offset to avoid collisions. Additionally one may need to
deform the structures appropriately to avoid these collisions as described in [Mil-
ton and Cherkaev 1995], and when one does this it is necessary to readjust the
stiffness of the material in the structure to maintain the value of λi . Then the
remaining void in the structure is replaced by an extremely compliant material.
(Its presence is needed just for technical reasons, to ensure that the assumptions of
homogenization theory are valid so that the elastic properties can be described by
an effective tensor.) But it is so compliant that essentially the effective elasticity
tensor is just a sum of the effective elasticity tensors of the six pentamodes, i.e.,
the elastic interaction between the six pentamodes is negligible. In this way we
arrive at a material with (approximately) the desired elasticity tensor C∗.

It is worth mentioning that with extremely high contrast materials the homoge-
nized equations are not necessarily the usual linear elasticity equations, but can also
include nonlocal terms. Nonlocal interactions can be obtained for example with an
extremely stiff dumbbell-shaped inclusion with the balls arbitrarily distant. If the
bar joining them is not only extremely stiff but also extremely thin, then it does
not directly couple with the surrounding elastic material (except in the very near
vicinity of the bar, where it is obviously deformed by it), but provides a nonlocal
interaction between the balls. In fact, amazingly, Camar-Eddine and Seppecher
[2003] have completely characterized all possible linear macroscopic behaviors of
any high contrast composite: they showed that any energetically stable behavior
can be obtained using materials with such dumbbell-shaped inclusions interacting
at many length scales. Some interesting examples of high contrast materials with
exotic effective behaviors have been given by Seppecher, Alibert, and dell’Isola
[Seppecher et al. 2011].
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n

c∗

f (n)

G

c∗ cA
n

G

Figure 2. Left: A convex set is the envelope of its tangent planes.
The positions of the two tangent planes with normal n are deter-
mined by the Legendre transform f (n) and f (−n) defined by
(3-1). Specifically f (n) and f (−n) give the distances of the tan-
gent planes from the origin. Right: An example highlighting an
interesting case discussed in the text that helps give a geometrical
interpretation of the results of the paper.

3. Characterizing convex sets and G-closures for elasticity

Let G be a convex set of real d-dimensional vectors, meaning that if c1, c2 ∈ G
then θ c1+ (1− θ)c2 ∈ G for all θ ∈ [0, 1]. As shown in Figure 2 (left) for d = 2
such a convex set can be completely characterized by its Legendre transform,

f (n)=min
c∈G

n · c. (3-1)

Clearly this function satisfies the homogeneity property that

f (λn)= λ f (n) for all λ > 0, (3-2)

and consequently it suffices to know f (n) for all unit vectors n to recover the
function f (n) for any vector n. The values of f (n) and f (−n) give the positions
of the two planes with normals ±n that are tangent to G: specifically | f (n)| and
| f (−n)| give the distances from these tangent planes to the origin. By varying n
and taking the intersection of the regions between the planes one recovers G: the
set G is the envelope of its tangent planes as illustrated in Figure 2 (left). Thus the
Legendre transform function f (n) with |n| = 1 completely characterizes G.

The example of Figure 2 (right) is also illuminating for the purposes of this
paper. Let n and m be the vectors

n=
(

0
1

)
, m =

(
1
0

)
, (3-3)

and consider f (n+αm) for α≥ 0 in the context of this example. (Of course n+αm
is only a unit vector when α = 0.) As the boundary of G contains a flat section
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orthogonal to n, the vector c which attains the minimum in (3-1) is not unique. In
the diagram both cA and c∗ are minimizers. However, for an infinitesimal value of
α > 0, c∗ is selected as the unique minimizer and remains the minimizer no matter
how large α > 0 becomes. Furthermore, since c∗ is orthogonal to m the value of
f (n+αm) remains constant for all α ≥ 0.

If G is a convex set of, say, real d × d matrices it can be similarly characterized
by its Legendre transform,

f (N)= min
C∈G

(N,C), (3-4)

defined for all d × d matrices N , where (N,C) is an inner product on the space of
matrices which we may take to be

(N,C)= Ni j Ci j ≡ N : C, (3-5)

where we have adopted the Einstein summation convention that sums over repeated
indices are assumed, and the double dot “:” denotes a double contraction of indices.
This is exactly equivalent to (3-1) if we think of the matrix C being represented
by the vector c of its matrix elements. Note that if G only contains symmetric
matrices, then it suffices to take N as a symmetric matrix since (A,C)= 0 if C is
symmetric and A is antisymmetric.

Similarly, if G is a convex set of fourth-order elasticity tensors C satisfying the
usual symmetries

Ci jk` = C j ik` = Ck`i j , (3-6)

then it can be characterized by the Legendre transform (3-4) with an inner product

(N,C)= Ni jk`Ci jk`, (3-7)

and again it suffices to assume N has the same symmetries as C , i.e., those in (3-6).
However, G-closures (i.e., sets of all possible effective tensors) are not gen-

erally convex sets. Nevertheless, they do have some convexity properties as a
consequence of their stability under lamination. In the case of the set GU f where
U = {C1, δC2}, we can take two materials with effective tensors C∗1,C∗2 ∈ GU f

and laminate them together in a direction n (representing the vector perpendicular
to the layers) in proportions θ and 1− θ to obtain an effective tensor C∗(n, θ)
which necessarily lies in the set GU f for all θ ∈ [0, 1]. While C∗(n, θ) is not a
linear average of C∗1 and C∗2, there exist fractional linear transformations Tn of
fourth-order tensors such that lamination in direction n reduces to a linear average
[Backus 1962; Milton 1990] (see also [Tartar 1979]):

Tn(C∗(n, θ))= θTn(C∗1)+ (1− θ)Tn(C∗2) for all θ ∈ [0, 1]. (3-8)

Thus Tn(GU f ) must be a convex set of fourth-order tensors. In the particular case
where a set of effective tensors has no interior, i.e., is constrained to lie on a mani-
fold of dimension m smaller than the dimension of the space of fourth-order tensors
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satisfying the symmetries of elasticity tensors (i.e., m < 21 for 3-dimensional com-
posites and m < 6 for 2-dimensional composites), then as recognized by Grabovsky
[1998] (see also [Grabovsky and Sage 1998]) Tn must map this manifold to a subset
of a hyperplane of dimension m for any value of n. This places rather severe
constraints on the form of such manifolds. Identifying such manifolds is important
as they represent exact relations satisfied by effective tensors, no matter what the
geometry of the composite happens to be. Thus these constraints provide necessary
conditions for an exact relation. Later, sufficient conditions for an exact relation to
hold were obtained [Grabovsky et al. 2000].

Unfortunately, the use of Legendre transforms of the convex set Tn(GU f ) is
not useful to us as we are unaware of any direct variational principles for Tn(C∗).
An alternative approach was prompted by work of Cherkaev and Gibiansky [1992;
1993], who found that bounding sums of energies and complementary energies
could lead to very useful bounds on G-closures. It was proved by Francfort and
Milton [Francfort and Milton 1994; Milton 1994] that minimums over C∗ ∈GU f of
such sums of energies and complementary energies completely characterize GU f

in much the same way that Legendre transforms characterize convex sets: the sta-
bility under lamination of GU f is what allows one to recover GU f from the values
of these minimums (see also Chapter 30 in [Milton 2002]). Figure 3 captures the
idea of this characterization.

sum of energies and
complementary
energies

sum of complementary
energies

G-closure

sum of energies

Figure 3. G-closures are characterized by minimums of sums of
energies and complementary energies. The coordinates here rep-
resent the elements of the effective elasticity tensor C∗. Then a
plane represents a surface where a sum of energies is constant, and
when this sum takes its minimum value the plane is tangent to the
G-closure. The convexity properties of the G-closure guarantee
that the surfaces corresponding to the minimums of sums of ener-
gies and complementary energies wrap around the G-closure and
touch each point on its boundary. (Reproduction of Figure 30.1 in
[Milton 2002].)
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Specifically, in the case of 3-dimensional elasticity, the set GU f is completely
characterized if we know the seven “energy functions”,

W 0
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, σ

0
6)= min

C∗∈GU f

6∑
j=1

σ 0
j : C

−1
∗
σ 0

j ,

W 1
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, ε

0
1)= min

C∗∈GU f

[
ε0

1 : C∗ε
0
1+

5∑
j=1

σ 0
j : C

−1
∗
σ 0

j

]
,

W 2
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, ε

0
1, ε

0
2)= min

C∗∈GU f

[ 2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j

]
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W 3
f (σ

0
1, σ

0
2, σ

0
3, ε

0
1, ε

0
2, ε

0
3)= min

C∗∈GU f

[ 3∑
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ε0
i : C∗ε

0
i +

3∑
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σ 0
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−1
∗
σ 0

j

]
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ε0
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(3-9)

In fact, it suffices [Milton and Cherkaev 1995] to know these functions for sets of
applied strains ε0

i and applied stresses σ 0
j that are mutually orthogonal:

(ε0
i , σ

0
j )= 0, (ε0

i , ε
0
k)= 0, (σ 0

j , σ
0
`)= 0,

for all i, j, k, ` with i 6= j , i 6= k, j 6= `. (3-10)

Each of these terms in the minimums has a physical significance. For example, in
the expression for W 2

f ,

2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j (3-11)

has the physical interpretation of being the sum of energies per unit volume stored
in the composite with effective elasticity tensor C∗ when successively subjected to
the two applied strains ε0

1 and ε0
2 and then to the four applied stresses σ 0

1, σ 0
2, σ 0

3
and σ 0

4. To distinguish the terms ε0
i : C∗ε

0
i and σ 0

j : C
−1
∗
σ 0

j , the first is called an
energy (it is really an energy per unit volume associated with the applied strain ε0

i )
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and the second is called a complementary energy, although it too physically repre-
sents an energy per unit volume associated with the applied stress σ 0

j . Note that
the quantity (3-11) can be equivalently written as

(C∗, N)+ (C−1
∗
, N ′), (3-12)

where

N =
2∑

i=1

ε0
i ⊗ ε

0
i , N ′ =

4∑
j=1

σ 0
j ⊗ σ

0
j , (3-13)

in which for any d × d symmetric matrix A, the tensor A⊗ A is defined to be the
fourth-order tensor with elements

{A⊗ A}i jk` = {A}i j {A}k`. (3-14)

If we decompose the positive semidefinite tensors N and N ′ into their spectral
decompositions

N =
2∑

i=1

λivi ⊗ vi , N ′ =
4∑

j=1

λ′jv
′

j ⊗ v
′

j , (3-15)

with eigenmatrices vi and v′j and corresponding nonnegative eigenvalues λi and λ′j ,
then, with the orthogonality constraints (3-10), we can make the identifications

ε0
i =

√
λivi , σ 0

j =

√
λ′jv j . (3-16)

Note that due to the orthogonality conditions (3-10) the fourth-order tensors N
and N ′ have the property that the product N N ′ is zero. Here the product of two
fourth-order tensors C and C ′ is given by

{CC ′}i jk` = {C}i jmn{C ′}mnk`. (3-17)

Thus in the same way that convex sets are the envelope of planes, the G-closure
GU f is the envelope of special surfaces parametrized by positive semidefinite
fourth-order tensors N and N ′ satisfying the symmetries of elasticity tensors, and
having zero product N N ′= N ′N = 0 (i.e., the range of N ′ is in the null space of N,
and conversely the range of N is in the null space of N ′). These special surfaces
consist of all positive definite fourth-order tensors C satisfying

(C, N)+ (C−1, N ′)= c, (3-18)

where c is a positive real constant. In the case N ′ = 0 this does represent a hy-
perplane, but its orientation is restricted by the fact that the outward normal to the
surface N is restricted to be a positive definite fourth-order tensor (by outward nor-
mal we mean the normal pointing away from the origin). Knowledge of the seven



ON THE POSSIBLE EFFECTIVE ELASTICITY TENSORS OF PRINTED MATERIALS 61

functions W i
f given by (3-9) is clearly equivalent to knowledge of the function

W f (N, N ′)= min
C∗∈GU f

(C∗, N)+ (C−1
∗
, N ′) (3-19)

for all positive semidefinite fourth-order tensors N and N ′ satisfying the symme-
tries of elasticity tensors and having N N ′ = 0. The formula for recovering GU f

from W f (N, N ′) is then⋂
N,N ′≥0
N N ′=0

{
C : (C, N)+ (C−1, N ′)≥W f (N, N ′)

}
= GU f . (3-20)

More generally if we replace GU f in (3-19) by another set G of positive definite
matrices, and if the left-hand side of (3-20) is again G, then we may say G is
“W-convex”.

An explicit definition of W-convexity is as follows: a set G of positive definite
symmetric matrices is said to be strictly W-convex if G is simply connected and
if for every pair of positive semidefinite symmetric matrices N and N ′, not both
zero, the minimum in

min
C∈G

(C, N)+ (C−1, N ′) (3-21)

is uniquely attained by only one C ∈ G. Geometrically, G is strictly W-convex
if for all positive semidefinite symmetric matrices N and N ′, not both zero, the
surface that consists of all positive definite matrices C satisfying

(C, N)+ (C−1, N ′)= k, (3-22)

where k is chosen as the smallest value for which this surface touches G, has the
property that it touches G at only one point. A set G is W-convex if it is a limit of
strictly W-convex sets. If the set G has a smooth boundary, then the condition for
W-convexity can be expressed in terms of the curvature of the boundary of G: when
G is a set of matrices, this curvature at each point on the surface of G is a fourth-
order tensor; when G is a set of fourth-order elasticity tensors, this curvature is an
eighth-order tensor. (See equation (3.51) in [Milton 1994], or equation (30.11) in
[Milton 2002], for the explicit inequalities that the curvature must satisfy.)

The stability of GU f under lamination implies it is W -convex, but W -convexity
probably does not imply stability under lamination, as stability under lamination
depends on the underlying partial differential equations. Associated with any set G
of symmetric positive definite matrices C is its W -transform, defined as

W (N, N ′)= min
C∈G

(C, N)+ (C−1, N ′), (3-23)

where N and N ′ are symmetric positive semidefinite matrices satisfying N N ′ = 0,
and the inner product of two symmetric matrices A and B can be taken as (A, B)=
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Tr(AB), where Tr denotes the trace (sum of diagonal elements) of a matrix. To see
some of the properties of W -transforms it is helpful to extend the definition of the
transform to allow for matrices N and N ′ that have a nonzero product, N N ′ 6= 0.
The defining equation, (3-23), remains the same. Then consider a weighted average
of (N1, N ′1) and (N2, N ′2), with weights θ and 1− θ , where the four matrices
N1, N ′1, N2, N ′2 are positive semidefinite. Then for any θ ∈ (0, 1), we have

W (θN1+(1−θ)N2,θN ′1+(1−θ)N
′

2)

= min
C∈G

{
θ [(C,N1)+(C−1,N ′1)]+(1−θ)[(C,N2)+(C−1,N ′2)]

}
≥ θ

{
min
C∈G

(C,N1)+(C−1,N ′1)
}
+(1−θ)

{
min
C∈G

(C,N2)+(C−1,N ′2)
}

≥ θW f (N1,N ′1)+(1−θ)W f (N2,N ′2), (3-24)

which (by definition) implies W (N, N ′) is a jointly concave function of N and N ′.
This concavity is a well-known property of Legendre transforms.

4. Variational principles

Upper bounds on the sums of energies and complementary energies can easily be
obtained from classic energy minimization variational principles. For example, in
the case of the sum (3-11), we have

2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j

= min
ε1,ε2,σ 1,σ 2,σ 3,σ 4

〈 2∑
i=1

εi (x) :C(x)εi (x)+
4∑

j=1

σ j (x) : [C(x)]−1σ j (x)
〉
, (4-1)

where the minimum is over a set of two trial strain fields ε1(x) and ε2(x) and a set
of four trial stress fields σ 1(x), σ 2(x), σ 3(x), and σ 4(x) that have the prescribed
average values

〈εi 〉 = ε
0
i for i = 1, 2, 〈σ j 〉 = σ

0
j for j = 1, 2, 3, 4, (4-2)

and are subject to the differential constraints that

εi (x)= 1
2

(
∇ui (x)+ (∇ui (x))T

)
for i = 1, 2,

∇ · σ j (x)= 0 for j = 1, 2, 3, 4,
(4-3)

where T denotes the transpose (reflecting the matrix about its diagonal) and ui (x)
is the trial displacement field associated with the trial stress field εi (x). The trial
strain fields εi (x) and the trial stress fields σ j (x) (but not the trial displacement
fields) should be chosen to be periodic (if the composite is periodic), quasiperiodic
(if the composite is quasiperiodic), or statistically homogeneous (if the composite
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is statistically homogeneous). It may be the case that the material has structure
on widely separated length scales. Maybe it can be viewed as a mixture of two
composites, one with effective tensor C1

∗
and a second with effective tensor C2

∗
,

so that at the mesoscale it has a geometry described by a characteristic function
χ∗(x), where χ∗(x) is 1 in the composite with effective tensor C1

∗
and 0 in the

material with effective tensor C2
∗
. Naturally the length scale, or length scales, of

variations in χ∗(x) should be much larger than the variations in the microstructure
of the materials that have the effective tensors C1

∗
and C2

∗
. Then we can treat the

material having effective tensor as a composite of the materials C1
∗

and C2
∗

and we
have the variational principle

2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j

= min
ε1,ε2,σ 1,σ 2,σ 3,σ 4

〈 2∑
i=1

εi (x) :
[
χ∗(x)C1

∗
+ (1−χ∗(x))C2

∗

]
εi (x)

+

4∑
j=1

σ j (x) :
[
χ∗(x)C1

∗
+ (1−χ∗(x))C2

∗

]−1
σ j (x)

〉
, (4-4)

where again the minimum is over fields subject to the appropriate average values
and differential constraints. Particular choices of trial fields will then lead to an
upper bound on this sum of energies and complementary energies. To bound the
quantities on the right one may again use variational principles. When x is in the
material Ck

∗
for k = 1 or 2, one has the variational principles

εi (x) : Ck
∗
εi (x)=min

εi

〈
εi (x, y) : Ck( y)εi (x, y)

〉
y,

σ j (x) : [Ck
∗
]
−1σ j (x)=min

σ j

〈
σ j (x, y) : [Ck( y)]−1σ j (x, y)

〉
y,

(4-5)

where 〈 · 〉 y now denotes an average over the y variable (x is the “slow variable”
and y is the “fast variable”) and

Ck( y)= χ k( y)C1+ (1−χ k( y))C2, (4-6)

in which χ k( y) is the characteristic function representing the geometry associated
with the effective tensor Ck

∗
, taking a value 1 in the material with tensor C1 and 0 in

the material with tensor C2. Here the trial fields have the prescribed average values

〈εi (x, y)〉 y = εi (x) for i = 1, 2, 〈σ j (x, y)〉 y = σ j (x) for j = 1, 2, 3, 4, (4-7)

and are subject to the differential constraints

εi (x, y)= 1
2

(
∇y ui (x, y)+ (∇ui (x, y))T

)
for i = 1, 2,

∇ ·y σ j (x, y)= 0 for j = 1, 2, 3, 4,
(4-8)
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where ∇y and ∇·y are the gradient and divergence with respect to the y variables.
We call the step of replacing the variational principle (4-1) by the variational prin-
ciples (4-4) and (4-5) the “homogenization at intermediate scales step”.

In this paper we will choose trial fields that satisfy the local orthogonality con-
dition that

εi (x) : σ j (x)= 0, for all x. (4-9)

Using the differential constraints satisfied by the trial fields, and integration by
parts, one sees that the associated average fields are necessarily orthogonal too:

ε0
i : σ

0
j = 〈εi (x)〉 : 〈σ j (x)〉 = 〈εi (x) : σ j (x)〉 = 0. (4-10)

5. Finding most of the energy functions

Recall from Section 2 that an complementary Avellaneda material is a sequentially
layered laminate material with phase 1 occupying a volume fraction f and with
effective tensor

C̃ A
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, 0)

that attains equality in (2-13). It is found by minimizing the right-hand side of
(2-13) as C∗ varies within the class of tensors given by (2-15)–(2-17) with C2 = 0,
as the rank r , the positive weights cj which sum to 1, and the unit vectors ni are
varied. Here some of the applied stresses σ 0

j could be zero. Since the energy
σ 0

j : C
−1
∗
σ 0

j associated with any applied stress σ 0
j is necessarily nonnegative, we

obtain from (3-9) the bounds
5∑

j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, 0)]−1σ 0

j ≤W 1
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, σ

0
5, ε

0
1),

4∑
j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, 0, 0)]−1σ 0

j ≤W 2
f (σ

0
1, σ

0
2, σ

0
3, σ

0
4, ε

0
1, ε

0
2),

3∑
j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, σ

0
3, 0, 0, 0)]−1σ 0

j ≤W 3
f (σ

0
1, σ

0
2, σ

0
3, ε

0
1, ε

0
2, ε

0
3),

2∑
j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, 0, 0, 0, 0)]−1σ 0

j ≤W 4
f (σ

0
1, σ

0
2, ε

0
1, ε

0
2, ε

0
3, ε

0
4),

σ 0
1 : [C̃

A
f (σ

0
1, 0, 0, 0, 0, 0)]−1σ 0

1 ≤W 5
f (σ

0
1, ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5),

0≤W 6
f (ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5, ε

0
6).

(5-1)

The last inequality is clearly sharp, being attained when the composite consists of
islands of phase 1 surrounded by a phase 2 (so that C∗ approaches 0 as δ→ 0).
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The objective of this paper is to show that many of the other inequalities are also
sharp in the limit δ→ 0, at least when the spaces spanned by the applied strains
ε0

j for j = 1, 2, . . . , p satisfy certain properties. This space of applied strains Vp,
associated with W p

f , has dimension p and is spanned by ε0
1, ε

0
2, . . . , ε

0
p.

The recipe for doing this is to simply insert into a relevant complementary Ave-
llaneda material a microstructure occupying a thin walled region, such that the ma-
terial can slip along the walls when the applied strain lies in appropriate spaces Vp,
yet which is such that the combination of Avellaneda material and walled material
can support without slip any applied stress in the subspace orthogonal to Vp. This
will be possible only when Vp is spanned by symmetrized rank 1 matrices, taking
the form

ε(k) = 1
2(aknT

k + nk aT
k ), for k = 1, . . . , p. (5-2)

The existence of such matrices ε(k) is proved in Section 7. The proof uses small
perturbations of the applied stresses and strains. But, due to the continuity of
the energy functions W k

f established in Section 9, the small perturbations do not
modify the generic result. The vectors nk determine the orientation of the walls in
the structure. For each nk there is a set of parallel walls perpendicular to nk that
allow slip given by the strain ε(k). We say slip but it should be recognized that ε(k)

is not generally a pure shear, but rather a combination of dilation and shear, since
it does not generally have zero trace.

To define the thin walled structure, introduce the periodic function Hc(x) with
period 1 which takes the value 1 if x − [x] ≤ c, where [x] is the greatest integer
less than x , and c ∈ [0, 1] gives the thickness of each wall relative to the spacing
between walls (which is unity). Then for the unit vectors n1, n2, . . . , np appearing
in (5-2), and for a small relative wall thickness c = ε, define the characteristic
functions

ηk(x)= Hε(x · nk + k/p). (5-3)

This characteristic function defines a series of parallel walls, as shown on the left in
Figure 4, each perpendicular to the vector nj , where η j (x)= 1 in the wall material.
The additional shift term k/p in (5-3) ensures the walls associated with k1 and k2

do not intersect when it happens that nk1 = nk2 , at least when ε is small. Note
that ε is a volume fraction, not a homogenization parameter. We will be taking the
limit ε→ 0 after taking the homogenization limit.

Now define the characteristic function

χ∗(x)=
p∏

k=1

(1− ηk(x)). (5-4)

If p ≤ 3, this is usually a periodic function of x, an exception being if p = 3 and
there are no nonzero integers z1, z2, and z3 such that z1n1+ z2n2+ z3n3 = 0. More
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Figure 4. Example of walled structures. On the left we have a
“rank 1” walled structure and on the right a “rank 2” walled struc-
ture. The generalization to walled structures of any rank is obvious,
and precisely defined by the characteristic function (5-4) that is 0
in the walls, and 1 in the remaining material.

generally, χ∗(x) is a quasiperiodic function of x. The walled structure is where
χ∗(x) takes the value 0. In the case p = 2 the walled structure is illustrated on the
right in Figure 4.

Recall that a p-mode material is a material for which there are p independent
strains to which the material is easily compliant, yet the material is much more
resistant to any strain in the (6−p)-dimensional orthogonal subspace. In this sense
the microstructure of Figure 1 is a pentamode material. We consider a subclass of
multimode materials which can still support stresses in the limit δ→ 0. We say a
composite with effective tensor C∗ built from the two materials C1 and C2 = δC0

is easily compliant to a strain ε0
i if the elastic energy ε0

i :C∗ε
0
i goes to zero as δ→ 0,

and supports a stress σ 0
j if the complementary energy σ 0

j : C
−1
∗
σ 0

j has a nonzero
limit as δ→ 0. We desire p-mode materials for which there are p independent
strains to which the material is easily compliant, yet for which the material supports
any stress in the (6−p)-dimensional orthogonal subspace. The pentamode struc-
ture of Figure 1 needs to be modified as all its elastic moduli go to zero as δ→ 0.
The multimode structures we will introduce have structure on multiple length scales
and it is important that one takes the limit of an infinite separation of length scales
(so one can apply homogenization theory) before taking the limit δ→ 0.

Inside the walled structure, where χ∗(x) = 0, we put a p-mode material with
effective tensor C2

∗
= C∗(Vp) that supports any applied stress σ 0 in the space

orthogonal to Vp and which is easily compliant to any strain ε0 in the space Vp.
When we take the six matrices

v1= σ
0
1/|σ

0
1|, . . . , v6−p = σ

0
6−p/|σ

0
6−p|, v7−p = ε

0
1/|ε

0
1|, . . . , v6= ε

0
p/|ε

0
p| (5-5)

as an orthonormal basis for the space of 6× 6 matrices, we need to find a p-mode
material for which the elasticity tensor C2

∗
in this basis is such that

lim
δ→0

C2
∗
=

(
A 0
0 0

)
, (5-6)
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where A represents a (strictly) positive definite (6−p)× (6−p) matrix and the 0
on the diagonal represents the p× p zero matrix.

Outside the walled structure, where χ∗(x)= 1, we put the complementary Ave-
llaneda material with effective elasticity tensor

C1
∗
= C̃ A

f (σ
0
1, . . . , σ

0
6−p, 0, . . . , 0).

In a variational principle similar to (4-4) (i.e., treating the complementary Ave-
llaneda material and the p-mode material both as homogeneous materials with
effective tensors C1

∗
and C2

∗
, respectively) we choose trial stress fields that are

constant,
σ j (x)= σ 0

j , (5-7)

thus trivially fulfilling the differential constraints, and trial strain fields of the form

εi (x)=
p∑

k=1

εi,kηk(x)/ε, (5-8)

which are required to have the average values

ε0
i = 〈εi 〉 =

p∑
k=1

εi,k, (5-9)

and the matrices εi,k have the form

εi,k = ai,kε
(k), (5-10)

for some choice of constants ai,k which ensures they are symmetrized rank 1 ma-
trices lying in the space Vp (so they cost very little energy), and which ensures that
the ε0

i given by (5-9) are orthogonal. This symmetrized rank 1 form ensures that
εi (x) derives from a displacement field. Specifically we have

εi (x)= 1
2

(
∇ui (x)+ (∇ui (x))T

)
, (5-11)

with

ui (x)=
p∑

k=1

ai,k ak
{
(nk · x)ηk(x)/ε+ ([nk · x] + 1)(1− ηk(x))

}
, (5-12)

where, as before, [nj · x] is the greatest integer less than nj · x. One can easily
check that this displacement field is continuous at the wall interfaces.

To find upper bounds on the energy associated with this trial strain field, first
consider those parts of the walled structure that are outside of any junction regions,
i.e., where for some k we have ηk(x) = 1, while ηs(x) = 0 for all s 6= k. An
upper bound for the volume fraction occupied by the region where ηk(x)= 1 while
ηs(x)= 0 for all s 6= k is of course ε, as this represents the volume of the region
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where ηk(x) = 1. The associated energy per unit volume of the trial strain field
in those parts of the walled structure that are outside of any junction regions is
bounded above by

p∑
k=1

εi,k : C∗(Vp)εi,k/ε. (5-13)

We will see in Section 8 that with an appropriate choice of multimode material,
εi,k : C∗(Vp)εi,k is bounded above by a quantity proportional to δ, essentially
because all the strain is concentrated in phase 2. So we require that the limits
δ→ 0 and ε→ 0 be taken so that δ/ε→ 0 to ensure that the quantity (5-13) goes
to zero in this limit.

Next, consider those junction regions where only two walls meet, i.e., where for
some k1 and k2 > k1, x is such that ηk1(x)= ηk2(x)= 1 while ηs(x)= 0 for all s
not equal to k1 or k2. Provided nk1 6= nk2 , an upper bound for the volume fraction
occupied by each such junction region is ε2. Then the associated energy per unit
volume of the trial strain field in these junction regions where only two walls meet
is bounded above by

p∑
k1=1

p∑
k2=k1+1

(εi,k1 + εi,k2) : C∗(Vp)(εi,k1 + εi,k2). (5-14)

Thus, the powers of ε cancel and this energy density goes to zero if the multimode
material is easily compliant to the strains εi,k1 + εi,k2 for all k1 and k2 with k2 > k1.

Finally, consider those junction regions where three or more walls meet, i.e.,
for some k1, k2 > k1, and k3 > k2, x is such that ηki (x) = 1 for i = 1, 2, 3. For
a given choice of k1, k2 > k1, and k3 > k2 such that the three vectors nk1 , nk2 ,
and nk3 are not coplanar, an upper bound for the volume fraction occupied by this
region is ε3. In the case that the three vectors nk1 , nk2 , and nk3 are coplanar, we can
ensure that the volume fraction occupied by this region is ε3 or less by appropriately
translating one or two wall structures, i.e., by replacing ηkm (x) with ηkm (x+αi nkm )

for m = 2, 3, for an appropriate choice of α2 and α3 between 0 and 1. Since the
energy density of the trial field in these regions scales as ε3/ε2

= ε, we can ignore
this contribution in the limit ε→ 0 as it goes to zero too.

From this analysis of the energy densities associated with the trial fields it
follows that one does not necessarily need the pentamode, quadramode, trimode,
bimode, and unimode materials as appropriate for the material inside the walled
structure. Instead, by modifying the construction, it suffices to use only unimode
and bimode materials. In the walled structure we now put unimode materials in
those sections where for some k we have ηk(x)= 1 while ηk′(x)= 0 for all k ′ 6= k.
Each unimode material is easily compliant to the single strain ε(k) appropriate to the
wall under consideration. A prescription for constructing 3-dimensional unimode
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materials that are multiple rank laminates, and which are easily compliant under
any desired single strain, is given in Section 5.1 of [Milton and Cherkaev 1995].
In each junction region of the walled structure where ηk1(x)= ηk2(x)= 1 for some
k1 6= k2 while ηk(x)= 0 for all k not equal to k1 or k2, we put a bimode material
which is easily compliant to any strain in the subspace spanned by ε(k1) and ε(k2)

as appropriate to the junction region under consideration. At present we do not
know of any recipe in three dimensions for constructing bimode materials that
have any desired pair of strains as their easy modes of deformation, other than to
superimpose four pentamode structures as described in Section 8. In the remaining
junction regions of the walled structure (where three or more walls intersect) we
put phase 1. The contribution to the average energy of the fields in these regions
vanishes as ε→ 0 as discussed above.

By these constructions we effectively obtain materials with elasticity tensors C∗
such that

lim
δ→0

C∗ = (I −5p)C̃
A
f (I −5p), (5-15)

where I is the fourth-order identity matrix, 5p is the fourth-order tensor that
is the projection onto the space Vp, I −5p is the projection onto the orthogonal
complement of Vp, and C̃ A

f is the relevant complementary Avellaneda material. In
the basis (5-5) I −5p is represented by the 6× 6 matrix that has the block form

I −5p =

(
I6−p 0

0 0

)
, (5-16)

where I6−p represents the (6−p)×(6−p) identity matrix and the 0 on the diagonal
represents the p× p zero matrix.

6. Simplifications for 2-dimensional printed materials

For 2-dimensional printed materials, or any 2-dimensional two-phase composite
with one phase being void, the analysis simplifies as then the space of 2×2 symmet-
ric matrices has dimension 3, so there are only four energy functions to consider:

W 0
f (σ

0
1, σ

0
2, σ

0
3)= min

C∗∈GU f

3∑
j=1

σ 0
j : C

−1
∗
σ 0

j ,

W 1
f (σ

0
1, σ

0
2, ε

0
1)= min

C∗∈GU f

[
ε0

1 : C∗ε
0
1+

2∑
j=1

σ 0
j : C

−1
∗
σ 0

j

]
,

W 2
f (σ

0
1, ε

0
1, ε

0
2)= min

C∗∈GU f

[( 2∑
i=1

ε0
i : C∗ε

0
i

)
+ σ 0

1 : C
−1
∗
σ 0

1

]
,

W 3
f (ε

0
1, ε

0
2, ε

0
3)= min

C∗∈GU f

3∑
i=1

ε0
i : C∗ε

0
i .

(6-1)
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Again W 0
f (σ

0
1, σ

0
2, σ

0
3) is attained for a “complementary Avellaneda material” con-

sisting of a sequentially layered laminate geometry having an effective tensor C∗ =
C̃ A

f (σ
0
1, σ

0
2, σ

0
3) ∈ GU f , and we have the inequalities

2∑
j=1

σ 0
j : [C̃

A
f (σ

0
1, σ

0
2, 0)]−1σ 0

j ≤W 1
f (σ

0
1, σ

0
2, ε

0
1),

σ 0
1 : [C̃

A
f (σ

0
1, 0, 0)]−1σ 0

1 ≤W 2
f (σ

0
1, ε

0
1, ε

0
2),

0≤W 3
f (ε

0
1, ε

0
2, ε

0
3),

(6-2)

where, as before, the last inequality is sharp in the limit δ→ 0 being attained when
the material consists of islands of phase 1 surrounded by a phase 2.

The recipe for showing that the bound (6-1) on W 1
f (σ

0
1, σ

0
2, ε

0
1) is sharp for

certain values of ε0
1 and that the bound (6-1) on W 2

f (σ
0
1, ε

0
1, ε

0
2) is sharp for certain

values of ε0
1 and ε0

2 is almost exactly the same as in the 3-dimensional case: insert
into the complementary Avellaneda material a thin walled structure of respectively
unimode and bimode materials so that slips can occur along these walls, allowing
with very little energetic cost the average strain ε0

1 in the case of W 1
f , or any strain

in the space spanned by ε0
1 and ε0

2 in the case of W 2
f .

7. The algebraic problem: characterizing those symmetric matrix pencils
spanned by symmetrized rank 1 matrices

We are interested in the following question: Given k linearly independent sym-
metric d × d matrices A1, A2, . . . , Ak , find necessary and sufficient conditions
such that there exist linearly independent matrices {Bi }

k
i=1 spanned by the basis

elements Ai so that each matrix Bi is a symmetrized rank 1 matrix, i.e., there exist
vectors ai and bi , with |bi | = 1, such that

Bi =
1
2(bi aT

i + ai bT
i ).

It is assumed that d = 2 or 3 and 1 ≤ k ≤ kd , where k2 = 2 and k3 = 5. Here we
are working in the generic situation, i.e., we prove the algebraic result for a dense
set of matrices. The continuity result of Section 9 will allow us to conclude for
the whole set of matrices. Actually, the proof below also shows that the algebraic
result holds for the complement of a zero measure set of matrices.

Theorem 7.1. The above problem is solvable if and only if the matrices Ai for
i = 1, . . . , k satisfy the following conditions:

(i) det(A1)≤ 0, if k = 1, d = 2, (7-1)

A1 has two eigenvalues of opposite signs and one zero eigenvalue,
or has two zero eigenvalues, if k = 1, d = 3. (7-2)
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(ii) If k = d = 2,
det(A1) < 0

or
f (t)= det(A1+ t A2) is quadratic and has two distinct roots for t,

or is linear in t with a nonzero coefficient of t . (7-3)

(iii) If k = 2 and d = 3, defining A(η, µ)= ηA1+µA2, the numbers

det(A(η, µ)), {A(η, µ)}11{A(η, µ)}22−{A(η, µ)}212, {A(η, µ)}11 (7-4)

are never simultaneously nonnegative for any choice of η and µ not both
zero (equivalently A(η, µ) is never strictly positive definite for any values of
η and µ), and

4= 18 det(A1) det(A2)S1S2− 4S3
1 det(A2)+ S2

1 S2
2 − 4S3

2 det(A1)

− 27 det(A1)
2 det(A2)

2 > 0, (7-5)

where Si =
∑3

j=1 si j for i = 1, 2 and si j is the determinant of the matrix
obtained by replacing the j-th row of Ai by the j-th row of Ai+1, where by
convention we have A3 = A1 (equivalently A(η, µ) has three distinct roots).

(iv) Always solvable if k ≥ 3, d = 3. (7-6)

Remark. In fact, the condition (7-2) and the last condition in (7-3), that f (t) is
linear in t , could be withdrawn since we are considering the generic case. They
are inserted because we can treat them explicitly.

Proof. Case (i): k = 1, d = 2 or 3. In this case A1 must be a multiple of B1 and
hence must be a symmetrized rank 1 matrix. To see more clearly the condition for a
matrix B to be a symmetrized rank 1 matrix, i.e., have the form B= 1

2(baT
+abT ),

let us, without loss of generality, choose our coordinates so that b= [1, 0]T when
d = 2 and b= [1, 0, 0]T when d = 3. Then B has the representation

B =

(
a1

1
2a2

1
2a2 0

)
when d = 2, B =

 a1
1
2a2

1
2a3

1
2a2 0 0
1
2a3 0 0

 when d = 3. (7-7)

These have eigenvalues

λ=
1
2

(
a1±

√
a2

1 + a2
2

)
when d = 2,

λ=
1
2

(
a1±

√
a2

1 + a2
2 + a2

3

)
and λ= 0 when d = 3.

(7-8)

So, clearly B is a symmetrized rank 1 matrix in two dimensions if and only if
det(B)≤ 0, and is a symmetrized rank 1 matrix in three dimensions if and only if
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it has two eigenvalues of opposite signs and one zero eigenvalue, or has two zero
eigenvalues.

Case (ii): k = 2, d = 2. In this case there should be two distinct values of t such
that det(A1+ t A2) < 0, which by continuity of this determinant as a function of t
is guaranteed if any of the conditions in (7-3) are met. Note that the case where
det(A1+ t A2)= 0 for all t can be ruled out from consideration since this can only
happen when A2 is proportional to A1, as can be easily seen by working in a basis
where A2 is diagonal.

Case (iii): k = 2, d = 3. Consider the matrix pencil (over reals η and µ) A(η, µ)=
ηA1 +µA2. Assuming that det A(η, µ) is not zero for all η and µ, there are at
least two matrices on the pencil which have nonzero determinant. Let us relabel
them as A1 and A2. Then the equation det(A(1, µ))= 0 must have either two or
three roots µ= zi for i = 1, 2 or i = 1, 2, 3, where the zi are obtained by changing
the sign of the generalized eigenvalues. This gives Cardan’s condition:

4= 18 det(A1) det(A2)S1S2− 4S3
1 det(A2)+ S2

1 S2
2 − 4S3

2 det(A1)

− 27 det(A1)
2 det(A2)

2
≥ 0. (7-9)

Suppose that A1+µA2 contains a symmetric matrix with two zero eigenvalues (a
rank 1 matrix) as µ is varied. Then by redefining A2 we can assume A2 is this
matrix, now with zero determinant, and by using a basis where A2 is diagonal, we
see that det(A1+µA2) depends linearly on µ and det(A1+µA2) can only have
one root: (7-9) must be violated. So we can exclude this possibility: A1+µA2 has
at most one zero eigenvalue for any value of µ. Now consider the eigenvalues of
A(θ)≡ A(cos θ, sin θ) as θ is varied. As A(−θ)=−A(θ) it suffices to consider
the interval of θ between 0 and π . Some scenarios for the eigenvalue trajectories
are plotted in Figure 5. At the values θi = arctan−1(zi ) at least one of the eigen-
values must be zero, and the favorable situation is when there are two remaining
eigenvalues of opposite signs or only one nonzero eigenvalue. Such angles θi are
marked by the vertical dashed lines in the figure. The unfavorable situation is when
there are two nonzero eigenvalues of the same sign, marked by the red vertical lines
in Figure 5 (left). First suppose that A(θ) is positive definite for some θ = θ0. By
refining θ as the old θ minus θ0, let us suppose A(0) is positive definite. Then the
scenario is that in Figure 5 (left), or some variant of it in which eigenvalues cross,
which is unfavorable. The only way to avoid this is for A(θ) to have two zero
eigenvalues at the smallest and largest values of θ ∈ [0, π] for which det A(θ)= 0,
as in Figure 5 (middle), but we have ruled out the possibility that A(θ) has two
zero eigenvalues for any value of θ . We are left with Figure 5 (right) as being the
only possible suitable scenario. In conclusion, we require that the matrix A(θ) not
be positive semidefinite for any choice of θ ; i.e., the three quantities
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λ λ λ

θ θ θ

Figure 5. Some scenarios for the eigenvalues λ of A(θ) =
cos θ A1+ sin θ A2 as θ is varied.

det(A(η, µ)), {A(η, µ)}11{A(η, µ)}22−{A(η, µ)}212, {A(η, µ)}11 (7-10)

are never simultaneously nonnegative for any choice of η and µ not both zero. This
condition could be made explicit by using the formula for the roots of a cubic to
determine the generalized eigenvalues −zi .

Case (iv): k ≥ 3, d = 3. The case k = 3 is a straightforward consequence of
Lemma 7.2 below.

It remains to consider k≥ 4 and d = 3. By the previous step, in the space spanned
by A1, A2, and A3 there are three matrices A′1, A′2, and B3 = A3+ η3 A′1+µ3 A′2
that are linearly independent, symmetrized and of rank 1. Then, again by the
previous step, we can find linearly independent matrices B1, . . . , Bk that have the
form B1 = A′1, B2 = A′2, and Bi = Ai + ηi A′1+µi A′2 for 3 ≤ i ≤ k and that are
of rank 1. �

In the sequel we write

a⊗ b := abT and a� b := 1
2(a⊗ b+ b⊗ a) for a, b ∈ R3. (7-11)

Lemma 7.2. Let A, B,C be three symmetric matrices of R3×3.

(i) Up to small perturbations of A, B,C, there exist a basis (x, y, z) of R3 and
three vectors a, b, c of R3 satisfying

a ∈ {Ax, Bx,Cx}⊥ \ {0},
b ∈ {A y, B y,C y}⊥ \ {0},
c ∈ {Az, Bz,C z}⊥ \ {0},

(7-12)

or equivalently,

a� x, b� y, c� z ∈ {A, B,C}⊥ \ {0}. (7-13)

(ii) Up to small perturbations of A, B,C , there exist three independent symmetrized
rank 1 matrices in the space {A, B,C}⊥.

Proof. (i) Let F be the cubic function defined by

F(x) := det(Ax, Bx,Cx) for x ∈ R3. (7-14)
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If F ≡ 0 in R3, then condition (7-12) is immediately satisfied. Otherwise, there
exists a basis (x0, u0, v0) of R3 in the nonempty open set {F 6= 0}. Since we have

F(x0+ su0)
|s|→∞
∼ s3 F(u0)

|s|→∞
−→ ±∞, (7-15)

there exists s, t ∈ R \ {0} such that x := x0 + su0 and y := x0 + tv0 are two
independent vectors in the set {F = 0}.

First, assume that the set {F = 0} is not contained in the plane Span{x, y}. Then
there exists a basis (x, y, z) of R3 in the set {F = 0}. Therefore, there exist three
vectors a, b, c of R3 satisfying (7-12), or equivalently (7-13).

Now, assume that {F = 0} ⊂ Span{x, y}. First of all, up to small perturbations
we can assume that the matrices A, B,C are invertible. Since B−1C is a 3× 3
real matrix, it has at least a real eigenvalue λ. The perturbation procedure is now
divided into two cases.

First case: The matrix B−1C has two complex conjugate eigenvalues.

Then the eigenspace Ker(B−1C − λ I3) is a line of R3 spanned by e ∈ R3
\ {0}.

Consider a basis (x0, u0, v0) of R3 in the set {F 6= 0} such that (e, x0, u0) and
(e, x0, v0) are also two bases of R3. As previously there exist s, t ∈ R \ {0} such
that x := x0+su0 and y := x0+ tv0 are two independent vectors of the set {F = 0}.
Moreover, since (e, x) and (e, y) are two families of independent vectors and Re
is the unique real eigenspace of the matrix B−1C, we have

Bx×Cx 6= 0 and B y×C y 6= 0. (7-16)

Now, consider a vector u ∈ {x, y}⊥ \ {0} and the matrix M ∈ R3×3 defined by

Mx = ξ , M y = η, Mu = 0, (7-17)

where the vectors ξ , η will be chosen later. Define for τ > 0 the perturbed function

Fτ (z) := det(Az+ τ M z, Bz,C z) for z ∈ R3. (7-18)

We have {
Fτ (x+ τu)= τ ξ ·

(
Bx×Cx+ O(τ )

)
+ O(τ ),

Fτ ( y+ τu)= τ η ·
(
B y×C y+ O(τ )

)
+ O(τ ),

(7-19)

where the O(τ ) denote some first-order vectors in τ and O(τ ) some first-order real
numbers in τ which are independent of ξ , η. Condition (7-16) then allows us to
choose ξ = ξ τ and η = ητ such that Fτ (x + τu) = Fτ ( y+ τu) = 0. Therefore,
since (x, y, u) is a basis of R3, (x, x+ τu, y+ τu) is also a basis of R3, which in
addition lies in the set {Fτ = 0}. This leads us to condition (7-12) with the matrices
A+ τ M, B,C .
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Second case: The matrix B−1C has only real eigenvalues.

Then there exists a small perturbation Cτ of C such that the perturbed matrix
B−1Cτ has three distinct real eigenvalues. Hence, the matrix B−1Cτ admits a
basis (x, y, z) of eigenvectors, which implies that

Cτ x− λBx = Cτ y− λB y = Cτ z− λBz = 0. (7-20)

Therefore, the perturbed function

Fτ (u) := det(Au, Bu,Cτu) for u ∈ R3 (7-21)

satisfies Fτ (x)= Fτ ( y)= Fτ (z)= 0, which again leads us to condition (7-12) with
the matrices A, B,Cτ .

(ii) We will distinguish four cases according to whether the following conditions
are satisfied by the basis (x, y, z) of R3 and the vectors a, b, c ∈ R3

\ {0} obtained
in step (i): 

a ∈ Span{x, y} ∩Span{x, z},
b ∈ Span{ y, x} ∩Span{ y, z},
c ∈ Span{z, x} ∩Span{z, y}.

(7-22)

First case: a, b and c satisfy conditions (7-22).

Then, since (x, y, z) is a basis of R3, we have necessarily a ∈ R x, b ∈ R y, c ∈ R z.
Therefore, x� x, y� y, z� z are clearly three independent matrices of {A, B,C}⊥.

Second case: b and c satisfy conditions (7-22) but a does not.

Then, for example, (a,x, y) is a basis of R3, and b∈R y, c∈R z. Let u∈{ y, z}⊥\{0},
and let α, β, γ ∈ R be such that α a� x+ β y� y+ γ z� z = 0. Multiplying by
u we get that α(x · u)a+α(a · u)x = 0; hence α = 0 since x · u 6= 0. We deduce
immediately that β = γ = 0. Therefore, a� x, y� y, z� z are three independent
matrices of {A, B,C}⊥.

Third case: a and b do not satisfy conditions (7-22), with a /∈ Span{x, y} and
b /∈ Ra∪R x (respectively a /∈ Span{x, z} and c /∈ Ra∪R x).

Then (a, x, y) is a basis of R3. Let u ∈ {x, y}⊥ \ {0}, and let α, β ∈ R be such that
α a� x + β b� y = 0. Multiplying by u we get that α(a · u)x + β(b · u) y = 0;
hence α = 0 since a · u 6= 0, and thus β = 0. Therefore, a � x, b� y are two
independent matrices of {A, B,C}⊥, which have two eigenvalues of opposite sign
and one 0 eigenvalue.

Let us prove by contradiction that

∃ t ∈ R \ {0}, det(a� x+ t b� y) 6= 0. (7-23)



76 GRAEME W. MILTON, MARC BRIANE AND DAVIT HARUTYUNYAN

Otherwise, for any t 6= 0, there exists zt ∈ Ker(a� x+ t b� y) \ {0}; hence

(x · zt)a+ (a · zt)x+ t ( y · zt)b+ t (b · zt) y = 0. (7-24)

Since (a, x, y) is a basis of R3 and zt 6= 0, we have necessarily y · zt 6= 0, which
implies that

−b=
x · zt

t ( y · zt)
a+

a · zt

t ( y · zt)
x+

b · zt

y · zt
y = α a+β x+ γ y, (7-25)

where α, β, γ are independent of t , and

(x−αt y) · zt = (a−βt y) · zt = (b− γ y) · zt = 0. (7-26)

Since zt 6= 0 there exists (pt , qt , rt) ∈ R3
\ {0} such that

pt(x−αt y)+ qt(a−βt y)+ rt(b− γ y)
= (qt −αrt)a+ (pt −βrt)x− (αtpt +βtqt + 2γ rt) y = 0, (7-27)

which implies that qt = αrt , pt = βrt and rt(αβt + γ )= 0. Since (pt , qt , rt) 6= 0,
we have rt 6= 0 and αβt + γ = 0 for any t 6= 0; hence αβ = 0 and γ = 0. This
yields a contradiction between (7-25) and b /∈ Ra∪R x.

By virtue of (7-23) there exist two nonzero real numbers α 6= β such that the
matrices

M := a� x+α b� y and N := a� x+β b� y (7-28)

are invertible. The function p(t) := det(βM − t N) is a polynomial of degree 3
whose α, β are two distinct roots. Then the polynomial p(t) must change sign by
crossing α, for example (the conclusion is similar for β). Let λ1(t)≤ λ2(t)≤ λ3(t)
be the well-ordered eigenvalues of the symmetric matrix βM − t N . Since the
vectors a, x are independent, a� x has two eigenvalues of opposite sign and one
0 eigenvalue; hence λ1(α) < λ2(α)= 0< λ3(α).

Now, let Pτ for a small τ > 0 be a symmetric matrix in the space {A, B,C}⊥,
such that |Pτ − a� x| = O(τ ), and such that the three matrices a� x, b� y, Pτ
are independent (note that the dimension of {A, B,C}⊥ is ≥ 3). Define the two
perturbed matrices

Mτ := Pτ +α b� y and Nτ := Pτ +β b� y. (7-29)

Since the well-ordered eigenvalues of a real symmetric matrix S are Lipschitz-
continuous with respect to S (see, e.g., [Ciarlet 1989], Theorem 2.3-2), the eigen-
values λτ1(t) ≤ λ

τ
2(t) ≤ λ

τ
3(t) of βMτ − t Nτ converge uniformly as τ → 0 to the

eigenvalues λ1(t)≤ λ2(t)≤ λ3(t) of βM− t N , with respect to t in a neighborhood
of α. Hence, for τ > 0 small enough, there exist ατ close to α such that ατ 6= β and
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λτ1(ατ ) < λ
τ
2(ατ )= 0< λτ3(ατ ). Then by (7-29) there exist cτ , zτ ∈ R3 such that

βMτ−ατ Nτ = cτ� zτ = (β−ατ )Pτ+β(α−ατ )b� y, with β−ατ 6= 0. (7-30)

Therefore, a� x, b� y, cτ � zτ are three independent symmetrized rank 1 matrices
in the space {A, B,C}⊥.

Fourth case: a and b do not satisfy conditions (7-22), with a /∈ Span{x, y} and
b ∈ Ra∪R x (respectively a /∈ Span{x, z} and c ∈ Ra∪R x).

For example, we have b∈Ra. We thus start from the matrices a�x and a� y in the
space {A, B,C}⊥, where (a, x, y) is a basis of R3. We will consider a perturbation
of A, B,C for leading us to the third case.

Let t ∈ {a, x}⊥ \ {0}, let d ∈ R3
\ (Ra+R x), and consider, for a small τ > 0,

the perturbed vector bτ := a+ τ d /∈ Ra∪R x and the perturbed matrices

Aτ := A+ τ t � uτ , Bτ := B+ τ t � vτ , Cτ := C + τ t �wτ , (7-31)

where the vectors uτ , vτ ,wτ will be chosen later. Clearly, a� x ∈ {Aτ , Bτ ,Cτ }
⊥.

On the other hand, we have

Aτ : bτ � y = τ(A : d� y+ t � uτ : a� y+ τ t � uτ : d� y). (7-32)

Since 2 t � uτ : a� y = (t · y)a · uτ with t · y 6= 0, we can choose uτ = O(1)
with respect to τ such that Aτ : bτ � y = 0. Hence, choosing vτ and wτ similarly,
we get that bτ � y ∈ {Aτ , Bτ ,Cτ }

⊥. Therefore, the vectors a, bτ , x, y satisfy the
conditions of the third case with the perturbed matrices Aτ , Bτ ,Cτ . �

8. Constructing suitable multimode materials for the wall microstructure

Let us specify the construction of the desired multimode materials in two dimen-
sions and then move to three dimensions. We begin by constructing bimode ma-
terials that can only support one stress. One could use the fourth-rank laminate
structure described in detail in Section 30.7 of [Milton 2002]. The analysis would
then be essentially a repeat of that analysis, which builds the appropriate trial stress
and strain fields at each length scale. The key feature is that these trial fields need
to be chosen so the trial stress associated with the average stress σ 0 we want to
achieve at the macroscopic scale is concentrated entirely in phase 1 (apart from
boundary layers that we ignore, whose contribution to the energy vanishes in the
homogenization limit), and so the trial strain associated with an average strain that
is orthogonal to σ 0 is concentrated entirely in phase 2.

Rather than doing this, it is more instructive to build trial stress and strain fields
that are concentrated in phase 1 and phase 2, respectively, for the honeycomb and
inverted honeycomb bimode structures of Figure 6, as the ideas here carry over
to pentamode materials. The trial stress is easy. It is taken to be macroscopically
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J0 J1
a0

a1

a2
a0

a1

a2

Figure 6. 2-dimensional bimode materials that can only support
one average stress field σ 0, and which are easily compliant to any
strain orthogonal to σ 0. Here the red struts are laminates of the
two phases with the interfaces in the laminate parallel to the di-
rection of the struts. The geometry on the left is appropriate if
det σ 0 > 0, the geometry on the right is appropriate if det σ 0 < 0,
and if det σ 0

= 0 it suffices to use a simple laminate with the layer
surfaces perpendicular to the null vector of σ 0.

constant with a value αi ai aT
i in each strut which is parallel to the unit vector ai in

Figure 7. Let wi denote the width of the strut parallel to ai , for i = 0, 1, 2. Since
the net “force” on the black junction regions in the top left and top right of Figure 7
must be zero, we obtain

0=−
2∑

k=0

wi (αi ai aT
i )ai =−

2∑
k=0

wiαi ai . (8-1)

Since w1 = w2 and a0 points in the horizontal direction, while a1 and a2 have the
same horizontal component and equal but opposite vertical components, we get

α1 = α2 =−w0α0/[2w1(a1 · a2)]. (8-2)

The symmetry of the trial stress field implies there is no associated torque acting
on the junction regions. The trial stress in the junction regions is really not that
important. One choice is the stress field that satisfies the elasticity equations ap-
propriate to phase 1 filling the junction region when constant tractions act on the
three sides. The average value of the trial stress does not depend on the choice of
trial stress in the junctions. Indeed, since ∇ · (σ ) = 0 it follows from integration
by parts of ∇ · (σ x) (where σ x is a third-order tensor) that∫

�

σ dx =
∫
∂�

t xT d S, where t = σn is the surface traction, (8-3)

in which � is any region with boundary ∂�. For example, the boundary of � could
be the outermost boundary of the shape in the top left or top right of Figure 7, where
we include the dashed lines as part of the boundary.
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Figure 7. The honeycomb structure of Figure 6 (left) can be taken
to have the unit cell shown at top left. Similarly the inverted hon-
eycomb structure of Figure 6 (right) can be taken to have the unit
cell shown at top right. The space outside the struts and junction
regions (which is occupied by phase 2) has been triangulated with
boundaries marked by the dashed lines to make the construction
of the trial stress fields easy.

In passing, we remark that if σ 0 is proportional to the identity matrix, then the
microstructure of Figure 7 (top left) resembles a Sigmund microstructure (see the
last subfigure in Figure 2 in [Sigmund 2000]). However, we do not require the
tuning of layer widths in the struts that makes his structure optimal. Suboptimal
structures are perfectly fine in the walls, since the walls ultimately occupy a van-
ishingly small volume fraction in the final material.

To obtain a trial easy strain it suffices to specify the trial displacement in the unit
cell. We only choose motions so the junction regions (triangular in Figure 7 (bottom
left) and quadrilateral in Figure 7 (bottom right)) undergo rigid body translations,
so there is no strain inside them. Thus associated with Figure 7 (bottom left) one
can clearly identify two independent macroscopic modes of motion. The first is
where the line RS moves vertically upwards while the line PU remains fixed, and
Q and T move in such a way that the lengths QR, QP, TS, and TU remain equal and
preserved in length. One can choose the displacement to be linear in each of the
three regions A, B, and C so that it matches the displacement on the boundary. The
second is where the line RS moves horizontally while the line PU remains fixed,
and Q and T move in such a way that the lengths QR, QP, TS, and TU remain equal
and preserved in length. In either case inside the horizontal laminate arm there is no
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Figure 8. 2-dimensional unimode materials that are easily compli-
ant to one average strain field ε0, and which can support any stress
orthogonal to ε0. In both, the red region represents a laminate as
indicated by the inserts. The second-rank laminate geometry on
the left is appropriate if det ε0 < 0 and the third-rank geometry on
the right is appropriate for any ε0.

strain, while inside the inclined laminate arms there is an infinitesimal shear so the
junction at P remains fixed, while the junction at Q moves perpendicular to a1 and
the junction at V moves perpendicular to a2. We also note that there is also an easy
microscopic motion which results in no macroscopic motion. Define the center of
each triangular junction to be the point which is at the junction of the perpendicular
bisector of the three faces. Then if all the triangular junctions undergo the same
infinitesimal rotation about these centers while the laminate material in the struts
shears at the same time, it will cost very little energy. The trial strain field is
bounded and nonzero only in phase 2, and therefore the associated upper bound
on the elastic energy scales in proportion to δ.

The situation in Figure 7 (bottom right) is basically similar. The two black
quadrilateral junction regions at the bottom of the figure can remain fixed. Then one
mode is the symmetric one, where the region A undergoes uniaxial compression
in the horizontal direction and at the same time moves downwards. The second is
where the region A undergoes pure shear, so the junction on the left side of it moves
up, while the right side moves down. The strain field can be taken constant in the
regions A, B, C , D, and E , and in the inclined laminate strut arms is also constant
and corresponds to pure shear. These strains are easily determined from the value
of the trial displacement field at the boundaries of each region. Again, the trial
strain field is bounded and nonzero only in phase 2, and therefore the associated
upper bound on the elastic energy scales in proportion to δ.

The structures of Figure 8 give suitable 2-dimensional unimode materials. We
will not specify the appropriate trial stress and strain fields which prove that these
structures have the desired elastic behavior, as they are exactly the same as those
given in Section 30.6 of [Milton 2002].

We now describe the pentamodes and the trial fields in them. Given four vectors
a0, a1, a2, and a4 (no longer required to be unit vectors) we position a point P at
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(a) (b) (c) (d)
a0

a1

a2

a3

P

Figure 9. The procedure for constructing the desired pentamodes.
In (d) a shearable section is inserted into each strut. This section,
shown in red, has the structure of parallel square fibers, as illus-
trated in Figure 10, with the fibers aligned parallel to the strut.

the origin, and join P to the four points x = ai for i = 0, 1, 2, 3, with four infinites-
imally thin rods, as in Figure 9(a). We then take as our unit cell of periodicity
the parallelepiped with the eight points x = ai , x = a1 + a2 + a3 − ai − a0

for i = 0, 1, 2, 3 (the three vectors vi = ai − a0 for i = 1, 2, 3 are the primitive
lattice vectors). We require that a0, a1, a2, a4 be chosen so P lies within this
parallelepiped. After periodically extending the rod structure (with rods joining
k1v1+ k2v1+ k3v1 with the four points k1v1+ k2v1+ k3v1+ ai for i = 0, 1, 2, 3,
for any integers k1, k2, and k3), we then coat this periodic rod structure with phase 1,
as illustrated in Figure 9(b), so that any point x is in phase 1 if and only if it is
within a distance r of the rod structure. Here r should be chosen appropriately
small so that the coatings of each rod contain a cylindrical section that we refer to
as a strut. Figure 9(b) is misleading as it suggests that the unit cell only contains
one junction region. The true structure which should be periodically repeated (by
making copies shifted by vectors k1v1+k2v1+k3v1 for all combinations of integers
k1, k2, and k3) is shown in Figure 9(c) and contains the junction of Figure 9(b) plus
the one obtained by inverting it under the transformation x→−x. The final step,
illustrated in Figure 9(d), is to take a cylindrical subsection of each cylindrical
section between junctions and replace it with a pentamode material that supports
any stress proportional to ai aT

i . It is convenient to take end faces of the cylindrical
subsection to be perpendicular to the cylinder axis, i.e., perpendicular to the vector
ai that is parallel to the cylinder axis. Now we define the junction regions to be
those connected regions of phase 1 that are bounded by the cylindrical subsections.

To obtain the trial stress field, we first solve for the tensions in the rods of
Figure 9(a) when the rods are completely rigid and supporting a stress. These are
found just by balance of forces at the junctions. If the rods parallel to ai have a
tension Ti (which could be negative) then we take in the cylindrical subsection of
the corresponding strut of the final pentamode a trial stress field Ti ai aT

i /(|ai |
2πr2)

giving rise to a net force Ti pulling (pushing if Ti is negative) on the adjacent
junction regions. Inside the junction region we take a stress field that satisfies the
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a n1

n2

Figure 10. A detailed view of the square beam array microstruc-
ture which is used as the easily shearable section in the pentamode
cylindrical struts. The vector a is chosen to be one of the four vec-
tors ak for k = 0, 1, 2, 3, as appropriate to each pentamode strut
orientated parallel to ak . The square beams can support tension
(or compression) in the direction of the beam, and in particular
can support a constant macroscopic stress σ B

k = αk ak aT
k . As we

are working in the framework of linear elasticity, we ignore the
very real possibility that the beams will buckle.

elasticity equations appropriate to phase 1 filling the junction region when constant
tractions Ti/(πr2) act on the four disks that border the cylindrical subsections, and
there are no forces on the remaining surface of the junction regions.

Obtaining appropriate trial strain fields is also not too difficult. We first consider
an infinitesimal motion that the rod model with Figure 9(a) as the unit cell can
undergo when the rods are rigid but the pin junctions are flexible. Then in the final
pentamode the junction regions are taken to undergo a rigid body translation which
is the same as that of the corresponding pin junction in the rod model. The cylindri-
cal subsections undergo appropriate shears to ensure continuity of the displacement.
The trial displacement in the remaining multiconnected region of phase 2 bordered
by the junction regions and the cylindrical subsection can be somewhat arbitrary,
and is not really important. One could take it as the solution for the displacement
field when phase 2 has some nonzero elastic moduli, and the displacement at the
boundary of the junctions and cylindrical subsections matches that of the trial field
just specified. The trial strain field is bounded and nonzero only in phase 2, and
therefore the associated upper bound on the elastic energy scales in proportion to δ.

It is clear from the choice of these trial stress and strain fields that the macro-
scopic stress the material supports and the easy motions it permits are exactly the
same as those for the ideal model with rods and pin junctions that has the unit cell
pictured in Figure 9(a), and which provided the basis for our construction. That this
structure can support any desired average stress, and only that average stress, is then
a direct consequence of the analysis in Section 5.2 of [Milton and Cherkaev 1995].
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Figure 11. Some of the replacements that are needed to obtain
desired unimode, bimode, trimode, or quadramode materials.

To obtain any desired unimode, bimode, trimode, or quadramode material, having
respectively p = 1, 2, 3, 4 independent easy modes of deformation, and supporting
respectively 6− p applied stresses σ 0

j for j = 1, . . . , 6− p, we follow the prescrip-
tion given by Milton and Cherkaev [1995]. That is, we superimpose, one at a time,
6− p pentamode structures, each supporting one of the stresses σ 0

j , with struts
which are sufficiently thin to ensure that one can (with appropriate modification
specified below) superimpose the structures without collision. When doing this
superimposition we first remove phase 2 and shift the lattice structures to try to
avoid unwanted intersections of phase 1. This may not always be possible, so in
the event two vertices clash we make the replacement in Figure 11 (left) in one of
the structures (which may of course then cause additional unwanted intersections
of the struts). Then if two (or more) struts intersect we make the replacement
in Figure 11 (right) in all but one of the struts (which then passes through each
hole). The remaining possibility we want to avoid is that two pentamode struts
are parallel and intersect when we superimpose the structures. Due to the freedom
in the choice of the ak that give a desired σ 0

j , we can always choose our 6− p
pentamode structures to avoid such clashes. Finally, the shearable section in each
pentamode strut should be placed in a section that has not been modified, so it still
is parallel to one of the ak . At the very end any remaining space that is not filled
by phase 1 should be filled by the extremely compliant phase 2.

9. Continuity of the energy functions

It follows from the preceding analysis that we can determine the three energy func-
tions

W 3
f (σ

0
1, σ

0
2, σ

0
3, ε

0
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0
2, ε

0
3),

W 4
f (σ

0
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0
2, ε

0
3, ε

0
4),

W 5
f (σ

0
1, ε

0
1, ε

0
2, ε

0
3, ε

0
4, ε

0
5)

in the limit δ→ 0 for almost all combinations of applied fields. Here we establish
that these energy functions are continuous functions of the applied fields in the
limit δ→ 0, and therefore we obtain expressions for the energy functions for all
combinations of applied fields in this limit.
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Recall that the set GU f is characterized by its W -transform. For example, part
of it is described by the function

W 4
f (σ

0
1, σ

0
2, ε

0
1, ε

0
2, ε

0
3, ε

0
4)= min

C∗∈GU f

[ 4∑
i=1

ε0
i : C∗ε

0
i +

2∑
j=1

σ 0
j : C

−1
∗
σ 0

j

]
. (9-1)

Here we want to show that such energy functions are continuous in their arguments.
Let the tensor C∗(σ 0

1, σ
0
2, ε

0
1, ε

0
2, ε

0
3, ε

0
4) be a minimizer of (9-1), and suppose we

perturb the applied stress fields σ 0
j by δσ 0

j and the applied strain fields ε0
i by δε0

i .
Now consider the walled material with a geometry described by the characteristic
function

χw(x)=
3∏

k=1

(1− Hε′(x · nk)), (9-2)

where n1, n2, and n3 are the three orthogonal unit vectors

n1 =

1
0
0

 , n2 =

0
1
0

 , n3 =

0
0
1

 , (9-3)

and ε′ is a small parameter that gives the thickness of the walls. Inside the walls,
where χw(x)= 0, we put an isotropic composite of phase 1 and phase 2, mixed in
the proportions f and 1− f with isotropic effective elasticity tensor C(κ0, µ0),
where κ0 is the effective bulk modulus and µ0 is the effective shear modulus,
which are assumed to have nonzero limits as δ → 0. (The isotropic composite
could consist of islands of void surrounded by phase 1.) Outside the walls, where
χw(x)= 1, we put the material that has an effective tensor

C1
∗
= C∗(σ 0

1, σ
0
2, ε

0
1, ε

0
2, ε

0
3, ε

0
4).

Let C ′
∗

be the effective tensor of the composite. We have the variational principle

4∑
i=1

(ε0
i + δε

0
i ) : C

′

∗
(ε0

i + δε
0
i )+

2∑
j=1

(σ 0
j + δσ

0
j ) : (C

′

∗
)−1(σ 0

j + δσ
0
j )

= min
ε1,ε2,ε3,ε4,σ 1,σ 2

〈 4∑
i=1

εi (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]εi (x)

+

2∑
j=1

σ j (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]

−1σ j (x)
〉
, (9-4)

where the minimum is over fields subject to the appropriate average values and
differential constraints. We choose constant trial strain fields

εi (x)= ε0
i + δε

0
i , i = 1, 2, 3, 4, (9-5)
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and trial stress fields

σ j (x)= σ 0
j + δσ j (x), j = 1, 2, (9-6)

where δσ j (x) has average value δσ 0
j and is concentrated in the walls. Specifically,

if {δσ 0
j }k` denote the matrix elements of δσ 0

j , and letting

δσ 1
j =

0 0 0

0 0 {δσ 0
j }23

0 {δσ 0
j }32 {δσ

0
j }33

 ,

δσ 2
j =

{δσ
0
j }11 0 {δσ 0

j }13

0 0 0

{δσ 0
j }31 0 0

 ,

δσ 3
j =

 0 {δσ 0
j }12 0

{δσ 0
j }21 {δσ

0
j }22 0

0 0 0

 ,

(9-7)

then we choose

δσ j (x)=
3∑

k=1

δσ k
j Hε′(x · nk)/ε

′, (9-8)

which has the required average value δσ 0
j and satisfies the differential constraints

appropriate to a stress field because δσ k
j nk = 0.

Hence, there exist positive constants α and β such that for sufficiently small ε′

and for sufficiently small variations δσ 0
j and δε0

i in the applied fields, we have

〈 4∑
i=1

εi (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]εi (x)

+

2∑
j=1

σ j (x) : [χw(x)C1
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+ (1−χw(x))C(κ0, µ0)]

−1σ j (x)
〉
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0
4)+αε

′
+βK/ε′, (9-9)

where K represents the norm

K =

√√√√ 4∑
i=1

δε0
i : δε

0
i +

2∑
j=1

δσ 0
j : δσ

0
j , (9-10)
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of the field variations. Choosing ε′ =
√
βK/α to minimize the right-hand side of

(9-9), we obtain
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In obtaining the bound (9-9) we have used the fact that K 2 is less than K for
sufficiently small K , specifically K < 1. Clearly the right-hand side of (9-11)
approaches W 4
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4) as K → 0. On the other hand, by repeating

the same argument with the roles of
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reversed, and with
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we deduce that
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This, together with (9-11), establishes the continuity of W 4
f (σ

0
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0
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0
2, ε

0
3, ε

0
4).

The continuity of the other energy functions follows by the same argument.

10. Conclusion

We have established the following two theorems.

Theorem 10.1. Consider composites in three dimensions of two materials with
positive definite elasticity tensors C1 and C2 = δC0 mixed in proportions f and
1− f . Let the seven energy functions W k

f , for k = 0, 1, . . . , 6, that characterize
the set GU f (with U = (C1, δC0)) of possible elastic tensors be defined by (3-9).
These energy functions involve a set of applied strains ε0

i and applied stresses σ 0
j

meeting the orthogonality condition (3-10). The energy function W 0
f is given by
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j (10-1)
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(as proved by Avellaneda [1987b]). Here C̃ A
f (σ
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0
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0
6) is the effec-

tive elasticity tensor of a complementary Avellaneda material that is a sequentially
layered laminate with the minimum value of the sum of complementary energies
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Additionally, we now have
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for all combinations of applied stresses σ 0
j and applied strains ε0

i . When det ε0
1 = 0

but ε0
1 is not positive semidefinite or negative semidefinite, we have
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while when the equation det(ε0
1 + tε0

2) has at least two distinct roots for t (the
condition for which is given by (7-5)), and additionally, the matrix pencil ε(t) =
ε0

1 + tε0
2 does not contain any positive definite or negative definite matrices as t

is varied (which requires that the quantities in (7-4) are never all positive, or all
negative), we have
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Theorem 10.2. For 2-dimensional composites, the four energy functions W k
f , for

k = 0, 1, 2, 3, are defined by (6-1), and these characterize the set GU f , with U =
(C1, δC0), of possible elastic tensors C∗ of composites of two phases with positive
definite elasticity tensors C1 and C2 = δC0. These energy functions involve a set
of applied strains ε0

i and applied stresses σ 0
j meeting the orthogonality condition

(3-10). The energy function W 0
f is given by
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(as proved by Avellaneda [1987b]), where C̃ A
f (σ

0
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0
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0
3) is the effective elastic-

ity tensor of a complementary Avellaneda material that is a sequentially layered
laminate with the minimum value of the sum of complementary energies
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∗
σ 0

j . (10-7)

We also have the trivial result that

lim
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When det ε0
1 ≤ 0 we have
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while when det ε0
1 < 0 or when f (t) = det(ε0

1 + tε0
2) is quadratic in t with two

distinct roots, or when f (t) is linear in t with a nonzero t coefficient, we have

lim
δ→0
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These theorems, and the accompanying microstructures, help define what sort
of elastic behaviors are theoretically possible in 2- and 3-dimensional printed ma-
terials. They should serve as benchmarks for the construction of more realistic
microstructures that can be manufactured. We have found the minimum over all
microstructures of various sums of energies and complementary energies. More
realistic designs can be obtained by adding to this sum a term that penalizes the sur-
face area as done for a single energy minimization by Kohn and Wirth [2014; 2016].

It remains an open problem to find expressions for the energy functions in the
cases not covered by these theorems. Even for an isotropic composite with a bulk
modulus κ∗ and a shear modulus µ∗, the set of all possible pairs (κ∗, µ∗) is still not
completely characterized either in the limit δ→ 0 or in the limit δ→∞. In these
limits the bounds of Berryman and Milton [1988] and Cherkaev and Gibiansky
[1993] decouple and provide no extra information beyond that provided by the
Hashin–Shtrikman–Hill bounds [Hashin and Shtrikman 1963; Hashin 1965; Hill
1963; 1964]. While the results of this paper show that in the limit δ→ 0 one can
obtain 2- or 3-dimensional structures attaining the Hashin–Shtrikman–Hill upper
bound on κ∗, while having µ∗ = 0, it is not clear what the maximum value for µ∗
is, given that κ∗ = 0.

One important corollary of this work is that it gives a complete characterization
of the possible triplets (ε0, σ 0, f ) of average strain ε0, average stress σ 0, and volume
fraction f that can occur in 2-dimensional and 3-dimensional printed materials in
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the limit δ→ 0. This will be discussed in a separate paper [Milton and Camar-
Eddine 2016].
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TOWARDS A COMPLETE CHARACTERIZATION
OF THE EFFECTIVE ELASTICITY TENSORS OF MIXTURES

OF AN ELASTIC PHASE AND AN ALMOST RIGID PHASE

GRAEME W. MILTON, DAVIT HARUTYUNYAN AND MARC BRIANE

The set GU f of possible effective elastic tensors of composites built from two
materials with positive definite elasticity tensors C1 and C2 = δC0 comprising
the set U = {C1, δC0} and mixed in proportions f and 1− f is partly character-
ized in the limit δ→∞. The material with tensor C2 corresponds to a material
which (for technical reasons) is almost rigid in the limit δ →∞. This paper,
and the underlying microgeometries, has many aspects in common with the
companion paper “On the possible effective elasticity tensors of 2-dimensional
and 3-dimensional printed materials”. The chief difference is that one has a
different algebraic problem to solve: determining the subspaces of stress fields
for which the thin walled structures can be rigid, rather than determining, as in
the companion paper, the subspaces of strain fields for which the thin walled
structure is compliant. Recalling that GU f is completely characterized through
minimums of sums of energies, involving a set of applied strains, and comple-
mentary energies, involving a set of applied stresses, we provide descriptions of
microgeometries that in appropriate limits achieve the minimums in many cases.
In these cases the calculation of the minimum is reduced to a finite-dimensional
minimization problem that can be done numerically. Each microgeometry con-
sists of a union of walls in appropriate directions, where the material in the wall
is an appropriate p-mode material that is almost rigid to 6− p ≤ 5 independent
applied stresses, yet is compliant to any strain in the orthogonal space. Thus
the walls, by themselves, can support stress with almost no deformation. The
region outside the walls contains “Avellaneda material”, which is a hierarchical
laminate that minimizes an appropriate sum of elastic energies.

1. Introduction

This paper is a companion to “On the possible effective elasticity tensors of 2-
dimensional and 3-dimensional printed materials” [Milton et al. 2017], which gives
a partial characterization of the set GU f of effective elasticity tensors that can be

Communicated by Robert P. Lipton.
MSC2010: 74Q20, 35Q74.
Keywords: elasticity G-closure, composites, metamaterials.
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produced in the limit δ→ 0 if we mix in prescribed proportions f and 1− f two ma-
terials with positive definite and bounded elasticity tensors C1 and C2 = δC0. Here
we consider the opposite limit δ→∞, which corresponds to mixing in prescribed
proportions an elastic phase and an almost rigid phase. Our results are summarized
in the theorem in the conclusion section. For a complete introduction and summary
of previous results the reader is urged to read at least the first three sections of the
companion paper. The essential ideas presented here are much the same as those
contained in the companion paper. However, the algebraic problem relevant to this
paper, of determining when the set of walls can support a set of stress fields, is
quite different from the algebraic problem encountered in the companion paper of
determining when the set of walls is compliant to a set of strain fields.

The microstructures we consider involve taking three limits. First, as they have
structure on multiple length scales, the homogenization limit where the ratio be-
tween length scales goes to infinity needs to be taken. Second, the limit δ→∞
needs to be taken. Third, as the structure involves walls of width ε, which are very
stiff to certain applied stresses, the limit ε→ 0 needs to be taken so the contribution
to the elastic energy of these walls goes to zero, when the structure is compliant to
an applied strain. The limits should be taken in this order, as, for example, standard
homogenization theory is justified only if δ is positive and finite, so we need to take
the homogenization limit before taking the limit δ→∞.

As in the companion paper we emphasize that our analysis is valid only for
linear elasticity, and ignores nonlinear effects such as buckling, which may be
important even for small deformations. It is also important to emphasize that to
apply our results when phase 2 is perfectly rigid (rather than almost rigid) requires
special care. Indeed, if phase 2 is perfectly rigid, then many of the microgeometries
considered here do not permit the kind of motions that are permitted for any finite
value of δ, no matter how large. In particular, the structures considered in Figures
6, 8, and 9(d) of the companion paper would be completely rigid if phase 2 was
perfectly rigid. To permit the required motions, one has to first replace the rigid
phase 2 with a composite with a small amount of phase 1 as the matrix phase, so
that its effective elasticity tensor is finite but approaches infinity as the proportion
of phase 1 in it tends to zero. The microgeometry in this composite needs to be
much smaller than the scales in the geometries discussed here, which would involve
mixtures of it and phase 1.

2. Characterizing G closures through sums of energies
and complementary energies

Cherkaev and Gibiansky [1992; 1993] found that bounding sums of energies and
complementary energies could lead to very useful bounds on G-closures. It was
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subsequently proved in [Francfort and Milton 1994; Milton 1994] that minimums
over C∗ ∈ GU f of such sums of energies and complementary energies completely
characterize GU f in much the same way that Legendre transforms characterize
convex sets: the stability under lamination of GU f is what allows one to recover
GU f from the values of these minimums (see also Chapter 30 in [Milton 2002]).
Specifically, in the case of 3-dimensional elasticity, the set GU f is completely
characterized if we know the seven “energy functions”,

W 0
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0
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(2-1)

In fact, Milton and Cherkaev [1995] showed it suffices to know these functions for
sets of applied strains ε0

i and applied stresses σ 0
j that are mutually orthogonal:

(ε0
i , σ

0
j )= 0, (ε0

i , ε
0
k )= 0, (σ 0

j , σ
0
` )= 0,

for all i, j, k, ` with i 6= j , i 6= k, j 6= `. (2-2)

The terms appearing in the minimums have a physical significance. For example,
in the expression for W 2

f ,

2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j (2-3)

has the physical interpretation of being the sum of energies per unit volume stored
in the composite with effective elasticity tensor C∗ when successively subjected to
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the two applied strains ε0
1 and ε0

2 and then to the four applied stresses σ 0
1 , σ 0

2 , σ 0
3 ,

and σ 0
4 . To distinguish the terms ε0

i : C∗ε
0
i and σ 0

j : C
−1
∗
σ 0

j , the first is called an
energy (it is really an energy per unit volume associated with the applied strain ε0

i )
and the second is called a complementary energy, although it too physically repre-
sents an energy per unit volume associated with the applied stress σ 0

j .
For well-ordered materials with C2 ≥ C1 (or the reverse), Avellaneda [1987]

showed that there exist sequentially layered laminates of finite rank having an ef-
fective elasticity tensor C∗= C A

f (ε
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that attains the minimum in the above expression for W 6
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The effective tensor C∗ = C A
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0
6) of the Avellaneda material is

found by finding a combination of the parameters entering the formula for the effec-
tive tensor of sequentially layered laminates that minimizes the sum of six elastic
energies. In general this has to be done numerically, but it suffices to consider
laminates of rank at most 6 if C1 is isotropic [Francfort et al. 1995], or, using an
argument of Avellaneda [1987], to consider laminates of rank at most 21 if C1 is
anisotropic (see Section 2 in the companion paper).

In the case of 2-dimensional elasticity, the set GU f is similarly completely char-
acterized if we know the 4 “energy functions”,
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Again W 3
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3) is attained for an “Avellaneda material” consisting of a se-

quentially layered laminate geometry having an effective tensor C∗=C A
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i.e.,
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The effective tensor C∗ = C A
f (ε

0
1 , ε

0
2 , ε

0
3) of the Avellaneda material is found by

finding a combination of the parameters entering the formula for the effective tensor
of sequentially layered laminates that minimizes the sum of three elastic energies.
In general this has to be done numerically, but it suffices to consider laminates of
rank at most three if C1 is isotropic [Avellaneda and Milton 1989], or, using an
argument of Avellaneda [1987], to consider laminates of rank at most 6 if C1 is
anisotropic (see Section 2 in the companion paper).

3. Microgeometries which are associated with sharp bounds on many sums
of energies and complementary energies

The analysis here of mixtures of an almost rigid phase mixed with an elastic phase
is very similar to the analysis in the companion paper for mixtures of an extremely
compliant phase and an elastic phase. The roles of stresses and strains are inter-
changed and now the challenge is to identify matrix pencils that are spanned by
matrices with zero determinant, rather than symmetrized rank 1 matrices. We now
have the inequalities
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The first inequality is clearly sharp, being attained when the composite consists
of islands of phase 1 surrounded by a phase 2 (so that (C∗)−1 approaches 0 as
δ→∞). Again the objective is to show that many of the other inequalities are also
sharp in the limit δ→∞, at least when the spaces spanned by the applied stresses
σ 0

j for j = 1, 2, . . . , 6− p satisfy certain properties. This space of applied stresses
associated with W p

f has dimension 6− p and its orthogonal complement defines
the p-dimensional space Vp.

The recipe for doing this is to simply insert into a relevant Avellaneda material
a microstructure occupying a thin walled region containing a p-mode material,
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such that the walled structure, by itself, is very stiff when the applied stress lies
in the (6− p)-dimensional subspace spanned by the σ 0

j , yet allows strains in the
orthogonal p-dimensional subspace Vp spanned by the ε0

i . We say a composite
with effective tensor C∗ built from the two materials C1 and C2 = δC0 is very stiff
to a stress σ 0

j if the complementary energy σ 0
j : C

−1
∗
σ 0

j goes to zero as δ→∞, and
allows a strain ε0

i if the elastic energy ε0
i : C∗ε

0
i has a finite limit as δ→∞. These

p-mode materials have exactly the same construction as that specified in Section 8
of the companion paper, only now the region that was occupied by the elastic
phase is now occupied by the rigid phase, and the material that was occupied by the
extremely compliant phase (which becomes void in the limit δ→ 0) is occupied by
the elastic phase. If we happened to choose C0 = C1, all the moduli (and effective
moduli) are simply rescaled, i.e., for any δ, and in particular for large values of δ, if
a mixture of two materials with effective tensors C1 and C1/δ has effective tensor
C∗, then when rescaling the elasticity tensors of the two phases to δC1 and C1, the
resulting effective elasticity tensor will be δC∗. Thus, the analysis of the response
of the p-mode materials is essentially the same as in the companion paper. Exactly
the same trial fields can be chosen to bound the response of the p-mode material.
Hence we do not repeat this analysis but instead the reader is referred to Section 8
of the companion paper.

The subspace orthogonal to Vp is now required to be spanned by matrices σ (k),
for k = 1, . . . , 6− p, such that

σ (k)nk = 0 (3-2)

for some unit vector nk . Thus the identifying feature of these matrices σ (k) is that
they have zero determinant, and then nk can be chosen as a null vector of σ (k). The
existence of such matrices σ (k) is proved in Section 4. The proof uses small per-
turbations of the applied stresses and strains. But, due the continuity of the energy
functions W k

f established in Section 5, the small perturbations do not modify the
generic result. The vectors nk determine the orientation of the walls in the structure
since a set of walls orthogonal to n can support any stress σ such that σn= 0.

To define the thin walled structure, introduce the periodic function Hc(x) with
period 1 which takes the value 1 if x − [x] ≤ c, where [x] is the greatest integer
less than x , and c ∈ [0, 1] gives the relative thickness of each wall. Then for the
unit vectors n1, n2, . . . , n6−p appearing in (3-2), and for a small relative thickness
c = ε, define the characteristic functions

ηk(x)= Hε(x · nk + k/p). (3-3)

This characteristic function defines a series of parallel walls, as shown on the left
in Figure 1, each perpendicular to the vector n j , where η j (x) = 1 in the wall
material. The additional shift term k/p in (3-3) ensures the walls associated with
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Figure 1. Example of walled structures. On the left we have a
“rank 1” walled structure and on the right a “rank 2” walled struc-
ture. The generalization to walled structures of any rank is obvious,
and precisely defined by the characteristic function (3-4) that is 0
in the walls, and 1 in the remaining material.

k1 and k2 do not intersect when it happens that nk1 = nk2 , at least when ε is small.
We emphasize that ε is not a homogenization parameter, but rather represents a
volume fraction of walls.

Now define the characteristic function

χ∗(x)=
p∏

k=1

(1− ηk(x)). (3-4)

If p ≤ 3, this is usually a periodic function of x, an exception being if p = 3 and
there are no nonzero integers z1, z2, and z3 such that z1n1+ z2n2+ z3n3 = 0. More
generally, χ∗(x) is a quasiperiodic function of x. The walled structure is where
χ∗(x) takes the value 0. In the case p = 2 the walled structure is illustrated on the
right in Figure 1.

The walled structure is where χ∗(x) given by (3-4) takes the value 0. Inside
it we put a p-mode material with effective tensor C2

∗
= C∗(Vp) that allows any

applied strain ε0 in the space Vp but which is very stiff to any stress σ 0 orthogonal
to the space Vp. Using the six matrices

v1 = σ
0
1 /|σ

0
1 |, . . . , v6−p = σ

0
6−p/|σ

0
6−p|, v7−p = ε

0
1/|ε

0
1 |, . . . , v6 = ε

0
p/|ε

0
p| (3-5)

as our basis for the 6-dimensional space of 3× 3 symmetric matrices, the compli-
ance tensor [C∗(Vp)]

−1 in this basis takes the limiting form

lim
δ→∞
[C∗(Vp)]

−1
=

(
0 0
0 B

)
, (3-6)

where B represents a (strictly) positive definite p × p matrix and the 0 on the
diagonal represents the (6−p)× (6−p) zero matrix. Inside the walled structure,
where χ∗(x)= 1, we put the Avellaneda material with effective elasticity tensor

C1
∗
= C A

f (0, . . . , 0, ε0
1 , . . . , ε

0
p).
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In a variational principle similar to (4-4) in the companion paper (i.e., treating
the Avellaneda material and the p-mode material both as homogeneous materials
with effective tensors C1

∗
= C A

f and C2
∗
= C∗(Vp), respectively) we choose trial

strain fields that are constant,

εi (x)= ε0
i , for i = 1, 2, . . . , p, (3-7)

thus trivially fulfilling the differential constraints, and trial stress fields of the form

σ j (x)=
6−p∑
k=1

σj,kηk(x)/ε, (3-8)

which are required to have the average values

σ 0
j = 〈σ j 〉 =

6−p∑
k=1

σj,k, (3-9)

and the matrices σi, j are additionally required to lie in the space orthogonal to Vp

(so they cost very little energy) and satisfy

σj,k = c j,kσ
(k), (3-10)

for some choice of parameters c j,k to ensure that σj,knk = 0 and hence that σ j (x)
satisfies the differential constraints of a stress field — this requires σ j (x)nk to be
continuous across any interface with normal nk . Additionally, the c j,k in (3-10)
should be chosen so the σ 0

j given by (3-9) are orthogonal.
To find upper bounds on the energy associated with this trial stress field, first

consider those parts of the walled structure that are outside of any junction regions,
i.e., where for some k we have ηk(x) = 1, while ηs(x) = 0 for all s 6= k. An
upper bound for the volume fraction occupied by the region where ηk(x)= 1 while
ηs(x)= 0 for all s 6= k is of course ε, as this represents the volume of the region
where ηk(x) = 1. The associated energy per unit volume of the trial stress field
in those parts of the walled structure that are outside of any junction regions is
bounded above by

6−p∑
k=1

σj,k : [C∗(Vp)]
−1σj,k/ε. (3-11)

With an appropriate choice of multimode material, one can construct bounded
trial stress fields that are essentially concentrated in phase 2, and consequently,
σj,k : [C∗(Vp)]

−1σj,k is bounded above by a quantity proportional to 1/δ. Our
assumption that we take the limit δ→∞ before taking the limit ε→ 0 ensures
that 1/(δε)→ 0, and thus ensures that the quantity (3-11) goes to zero in this limit.
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Next, consider those junction regions where only two walls meet, i.e., where for
some k1 and k2 > k1, x is such that ηk1(x)= ηk2(x)= 1 while ηs(x)= 0 for all s
not equal to k1 or k2. Provided nk1 6= nk2 , an upper bound for the volume fraction
occupied by each such junction region is ε2. Then the associated energy per unit
volume of the trial stress field in these junction regions where only two walls meet
is bounded above by

6−p∑
k1=1

6−p∑
k2=k1+1

(σi,k1 + σi,k2) : [C∗(Vp)]
−1(σj,k1 + σj,k2). (3-12)

Thus, the powers of ε cancel and this energy density goes to zero if the multimode
material is easily compliant to the strains σj,k1 +σj,k2 for all k1 and k2 with k2 > k1.

Finally, consider those junction regions where three or more walls meet, i.e., for
some k1, k2 > k1, and k3 > k2, x is such that ηki (x)= 1 for i = 1, 2, 3. For a given
choice of k1, k2> k1, and k3> k2 such that the three vectors nk1 , nk2 , and nk3 are not
coplanar, an upper bound for the volume fraction occupied by this region is ε3. In
the case that the three vectors nk1 , nk2 , and nk3 are coplanar, we can ensure that the
volume fraction occupied by this region is ε3 or less by appropriately translating
one or two walled structures, i.e., by replacing ηkm (x) with ηkm (x + αi nkm ) for
m = 2, 3, for an appropriate choice of α2 and α3 between 0 and 1. Since the energy
density of the trial field in these regions scales as ε3/ε2

= ε, we can ignore this
contribution in the limit ε→ 0 as it goes to zero too.

From this analysis of the energy densities associated with the trial fields it
follows that one does not necessarily need the pentamode, quadramode, trimode,
bimode, and unimode materials as appropriate for the material inside the walled
structure. Instead, by modifying the construction, it suffices to use only pentamode
and quadramode materials. In the walled structure we now put pentamode materials
in those sections where for some k, we have ηk(x) = 1 while ηk′(x) = 0 for all
k ′ 6= k. Each pentamode material is very stiff to the single stress σ (k) appropriate
to the wall under consideration. In each junction region of the walled structure
where ηk1(x) = ηk2(x) = 1 for some k1 6= k2 while ηk(x) = 0 for all k not equal
to k1 or k2, we put a quadramode material which is very stiff to any stress in the
subspace spanned by σ (k1) and σ (k2) as appropriate to the junction region under
consideration. In the remaining junction regions of the walled structure (where
three or more walls intersect) we put phase 1. The contribution to the average
energy of the fields in these regions vanishes as ε→ 0 as discussed above.

By these constructions we effectively obtain materials with elasticity tensors C∗
such that

lim
δ→∞

(C∗)−1
=5p(C A

f )
−15p, (3-13)

where I is the fourth-order identity matrix, 5p is the fourth-order tensor that is the
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projection onto the space Vp, and C A
f is the relevant Avellaneda material. In the

basis (3-5), 5p is represented by the 6× 6 matrix that has the block form

5p =

(
0 0
0 Ip

)
, (3-14)

where Ip represents the p× p identity matrix and the 0 on the diagonal represents
the (6− p)× (6− p) zero matrix.

In the case d = 2 the analysis simplifies in the obvious way. We have the
inequalities

0≤W 0
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0
3 ),

ε0
1 : [C
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f (0, 0, ε0

1)]ε
0
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0
2 , ε
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1 , ε

0
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the first one of which is sharp in the limit δ→∞ being attained when the material
consists of islands of phase 1 surrounded by phase 2. The recipe for showing that
the bound (3-15) on W 1

f (σ
0
1 , σ

0
2 , ε

0
1) is sharp for certain values of σ 0

1 and σ 0
2 and

that the bound (2-5) on W 2
f (σ

0
1 , ε

0
1 , ε

0
2) is sharp for certain values of σ 0

1 is almost
exactly the same as in the 3-dimensional case: insert into the Avellaneda material
a thin walled structure of unimode and bimode materials, respectively, so that it is
very stiff to any stress in the space spanned by σ 0

1 and σ 0
2 in the case of W 1

f , or so
that it is very stiff to the stress σ 0

1 in the case of W 2
f .

4. The algebraic problem: characterizing those symmetric matrix pencils
spanned by zero determinant matrices

Now we are interested in the following question: Given k linearly independent
symmetric d × d matrices A1, A2, . . . , Ak , find necessary and sufficient conditions
such that there exists linearly independent matrices {Bi }

k
i=1 spanned by the basis

elements Ai such that det(Bi ) = 0. It is assumed that d = 2 or 3 and 1 ≤ k ≤ kd ,
where k2 = 2 and k3 = 5. Here we are working in the generic situation, i.e., we
prove the algebraic result for a dense set of matrices. The continuity result of
Section 5 will allow us to conclude for the whole set of matrices. Actually, the
proof below also shows that the algebraic result holds for the complement of a
zero measure set of matrices.

Theorem 4.1. The above problem is solvable if and only if the matrices Ai for
i = 1, . . . , k satisfy the following conditions:

(i) det(A1)= 0, if k = 1, d = 2, 3. (4-1)
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(ii) (α1γ2+α2γ1− 2β1β2)
2 > 4 det(A1) det(A2), if k = d = 2, (4-2)

where
Ai =

(
αi βi

βi γi

)
. (4-3)

(iii) 4= 18 det(A1) det(A2)S1S2− 4S3
1 det(A2)+ S2

1 S2
2 − 4S3

2 det(A1)

− 27 det(A1)
2 det(A2)

2 > 0, if k = 2, d = 3, (4-4)

where Si =
∑3

j=1 si j for i = 1, 2 and si j is the determinant of the matrix
obtained by replacing the j-th row of Ai by the j-th row of Ai+1, where by
convention we have A3 = A1.

(iv) Always solvable if k ≥ 3, d = 3. (4-5)

Remark. In fact, the condition (4-1), that det(A1) = 0, could be excluded since
we are considering the generic case. It is inserted because we can treat it explicitly.

Proof. We consider all the cases separately.

Case (i): k = 1. In this case one must obviously have det(A1)= 0.

Case (ii): k = 2, d = 2. We can without loss of generality assume that (by small
perturbations) det(Ai ) 6=0 for i =1, 2. For η, µ∈R2, denote A(η, µ)=ηA1+µA2,
and thus for the equality

det(A(η, µ))= det(A1)η
2
+ (α1γ2+α2γ1− 2β1β2)ηµ+ det(A2)µ

2 (4-6)

to happen, one must first of all have µ 6= 0; thus, dividing by µ2 and setting t = η/µ,
we get that the quadratic equation

1
µ2 det(A(η, µ))= det(A1)t2

+ (α1γ2+α2γ1− 2β1β2)t + det(A2)= 0 (4-7)

must have two different solutions, i.e., the discriminant is strictly positive, which
amounts to exactly (4-2).

Case (iii): k = 2, d = 3. Again, we can without loss of generality assume that
det(Ai ) 6= 0 for i = 1, 2. Set again A(η, µ)= ηA1+µA2; thus we must have that
the equation

det(A(η, µ))= det(A1)η
3
+ S1η

2µ+ S2ηµ
2
+ det(A2)µ

3
= 0 (4-8)

has at least two different real roots, which by Cardan’s condition gives

4= 18 det(A1) det(A2)S1S2− 4S3
1 det(A2)+ S2

1 S2
2

− 4S3
2 det(A1)− 27 det(A1)

2 det(A2)
2 > 0, (4-9)

which is exactly (4-4).
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Case (iv): k ≥ 3, d = 3. Let us consider the case k = 3 first. Let us show that
we can assume, without loss of generality, that det(A1)= det(A2)= 0, by proving
that there exist numbers ηi 6= 0 for i = 1, 2 such that the matrices B1 = η1 A1+ A2

and B2 = η2 A1+ A3 have zero determinant. Indeed, we assume without loss of
generality that det(Ai ) 6= 0 for i = 1, 2, 3. We would then like to have

det(B1)(η1)= η
3
1 det(A1)+ η

2
1( · )+ η1( · )+ det(A2)= 0, (4-10)

which has a nonzero root η1, being a cubic equation with det(B1)(0)= det(A2) 6= 0.
Similarly, the equation det(B2)(η2)= 0 has a nonzero solution η2. The matrices
B1, B2, and A1 are linearly independent, because the linear independence of B1,
B2, and A1 is equivalent to the condition

det

η1 1 0
η2 0 1
1 0 0

= 1 6= 0. (4-11)

Assume now that A1, A2, and A3 are linearly independent and

det(A1)= det(A2)= 0. (4-12)

For any η, µ ∈ R, consider the matrix

B3 = B(η, µ)= A3+ ηA1+µA2.

It is clear that the triple A1, A2, B3 is linearly independent, so we would like to
show that there exist η, µ ∈ R, such that det(B3)= 0. Assume, by contradiction,
that

det(B3) 6= 0, for all η, µ ∈ R. (4-13)

Let us then show that the condition (4-13) implies that c1 = c2 = 0, where, taking
into account the condition (4-12), we have that

det(B3)= c1η
2µ+ c2ηµ

2
+ c3ηµ+ c4η

2
+ c5µ

2
+ c6η+ c7µ+ det(A3). (4-14)

Indeed, if c1 6= 0, then taking η = µ2 we get that the equation det(B(µ2, µ))= 0
would have a solution µ ∈ R, being a fifth-order equation; thus, we get c1 = c2 = 0.
Next, by perturbing the elements of A1 and A2 if necessary, we can reach the
situation where no entries and second-order minors of both A1 and A2 vanish, by
first reaching the situation where A1 and A2 have no zero entries. If we now perturb
any i j and ik elements of A1 by small numbers ε and δ, where j 6= k, then to keep
the condition det(A1)= 0, we must have ε and δ satisfying

ε · cofi j (A1)+ δ · cofik(A1)= 0. (4-15)
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On the other hand, the condition c2 = 0 must not be violated by that perturbation,
thus we must have as well

ε · cofi j (A2)+ δ · cofik(A2)= 0. (4-16)

The last two conditions then imply that the cofactor matrix cof A1 is a multiple of
the cofactor matrix cof A2, i.e.,

cof(A2)= t · cof(A1), t 6= 0. (4-17)

Again, a small perturbation of the 11 and 12 elements of A1 by ε and δ satisfying
(4-15) with i = j = 1, k = 2 does not violate the condition det(A1) = 0, thus it
must not violate the condition (4-16). Observe that the above perturbation does
not change the cofactor cof11(A1), but it changes the cofactor element cof33(A1),
which means that the desired condition det(B3)= 0 can be reached by small per-
turbations. The case k = d = 3 is now done.

Assume now k ≥ 4 and d = 3. By the previous step, in the space spanned by
A1, A2, and A3 there are three matrices A′1, A′2, and B3 = A3+η3 A′1+µ3 A′2 that
are linearly independent with zero determinant. Then, again by the previous step,
we can find linearly independent matrices B1, . . . , Bk that have the form B1 = A′1,
B2= A′2, and Bi = Ai+ηi A′1+µi A′2 for 3≤ i ≤ k and that are linearly independent
and have zero determinant. �

5. Continuity of the energy functions

It follows from the preceding analysis that we can determine the three energy func-
tions

W 1
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , σ

0
5 , ε

0
1),

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2),

W 3
f (σ

0
1 , σ

0
2 , σ

0
3 , ε

0
1 , ε

0
2 , ε

0
3)

in the limit δ→∞ for almost all combinations of applied fields. Here we establish
that these energy functions are continuous functions of the applied fields in the
limit δ→∞, and therefore we obtain expressions for the energy functions for all
combinations of applied fields in this limit.

Recall that the set GU f is characterized by its W -transform. For example, part
of it is described by the function

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)= min

C∗∈GU f

[ 2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j

]
. (5-1)

Here we want to show that such energy functions are continuous in their arguments.
Let the compliance tensor [C∗(σ 0

1 , σ
0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)]
−1 be a minimizer of (5-1),
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and suppose we perturb the applied stress fields σ 0
j by δσ 0

j and the applied strain
fields ε0

i by δε0
i . Now consider the walled material with a geometry described by

the characteristic function

χw(x)=
3∏

k=1

(1− Hε′(x · nk)), (5-2)

where n1, n2, and n3 are the three orthogonal unit vectors

n1 =

1
0
0

 , n2 =

0
1
0

 , n3 =

0
0
1

 , (5-3)

and ε′ is a small parameter that gives the thickness of the walls. Inside the walls,
where χw(x) = 0, we put an isotropic composite of phase 1 and phase 2, mixed
in the proportions f and 1− f with isotropic effective elasticity tensor C(κ0, µ0),
where κ0 is the effective bulk modulus and µ0 is the effective shear modulus, which
are assumed to have finite limits as δ→∞. (The isotropic composite could consist
of islands of void surrounded by phase 1.) Outside the walls, where χw(x) = 1,
we put the material that has effective compliance tensor

[C1
∗
]
−1
= [C∗(σ 0

1 , σ
0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)]
−1.

Let C ′
∗

be the effective tensor of the composite. We have the variational principle

2∑
i=1

(ε0
i + δε

0
i ) : C

′

∗
(ε0

i + δε
0
i )+

4∑
j=1

(σ 0
j + δσ

0
j ) : (C

′

∗
)−1(σ 0

j + δσ
0
j )

= min
ε1,ε2,ε3,ε4,σ 1,σ 2

〈 2∑
i=1

εi (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]εi (x)

+

4∑
j=1

σ j (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]

−1σ j (x)
〉
, (5-4)

where the minimum is over fields subject to the appropriate average values and
differential constraints. We choose constant trial stress fields

σ j (x)= σ 0
j + δσ

0
j , j = 1, 2, 3, 4, (5-5)

and trial strain fields

εi (x)= ε0
i + δεi (x), i = 1, 2, (5-6)

where δεi (x) has average value δε0
i and is concentrated in the walls. Specifically,
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if {δε0
i }k` denote the matrix elements of δε0

i , and letting

δε1
i =

{δε
0
i }11 {δε

0
i }12 0

{δε0
i }21 0 0
0 0 0

 ,

δε2
j =

0 0 0
0 {δε0

i }22 {δε
0
i }23

0 {δε0
i }32 0

 ,

δε3
j =

 0 0 {δε0
i }13

0 0 0
{δε0

i }31 0 {δε0
i }33

 ,

(5-7)

then we choose

δεi (x)=
3∑

k=1

δεk
i Hε′(x · nk)/ε

′, (5-8)

which has the required average value δσ 0
j and satisfies the differential constraints

appropriate to a strain field because δεk
i = ai,knT

k + nk aT
i,k for some vector ai,k .

Hence, there exist constants α and β such that for sufficiently small ε′ and for
sufficiently small variations δσ 0

j and δε0
i in the applied fields, we have〈 2∑

i=1

εi (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]εi (x)

+

4∑
j=1

σ j (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]

−1σ j (x)
〉

≤W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)+αε

′
+βK/ε′, (5-9)

where K represents the norm

K =

√√√√ 2∑
i=1

δε0
i : δε

0
i +

4∑
j=1

δσ 0
j : δσ

0
j (5-10)

of the field variations. Choosing ε′ =
√
βK/α to minimize the right-hand side of

(5-9), we obtain

W 2
f (σ

0
1 + δσ

0
1 , σ

0
2 + δσ

0
2 , σ

0
3 + δσ

0
3 , σ

0
4 + δσ

0
4 , ε

0
1 + δε

0
1 , ε

0
2 + δε

0
2)

≤W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)+ 2

√
αβK . (5-11)
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Clearly the right-hand side approaches W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2) as K → 0. On

the other hand, by repeating the same argument with the roles of

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)

and

W 2
f (σ

0
1 + δσ

0
1 , σ

0
2 + δσ

0
2 , σ

0
3 + δσ

0
3 , σ

0
4 + δσ

0
4 , ε

0
1 + δε

0
1 , ε

0
2 + δε

0
2)

reversed, and with the compliance tensor

[C∗(σ 0
1 + δσ

0
1 , σ

0
2 + δσ

0
2 , ε

0
1 + δε

0
1 , ε

0
2 + δε

0
2 , ε

0
3 + δε

0
3 , ε

0
4 + δε

0
4)]
−1

replacing the compliance tensor

[C∗(σ 0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)]
−1,

we deduce that

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)

≤W 2
f (σ

0
1 + δσ

0
1 , σ

0
2 + δσ

0
2 , σ

0
3 + δσ

0
3 , σ

0
4 + δσ

0
4 , ε

0
1 + δε

0
1 , ε

0
2 + δε

0
2)

+ 2
√
αβK . (5-12)

This, together with (5-11), establishes the continuity of W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2).

The continuity of the other energy functions follows by the same argument.

6. Conclusion

We have established the following theorems.

Theorem 6.1. Consider composites in three dimensions of two materials with pos-
itive definite elasticity tensors C1 and C2 = δC0 mixed in proportions f and 1− f .
Let the seven energy functions W k

f , for k = 0, 1, . . . , 6, that characterize the set
GU f (with U = (C1, δC0)) of possible elastic tensors be defined by (2-1). These
energy functions involve a set of applied strains ε0

i and applied stresses σ 0
j meeting

the orthogonality condition (2-2). The energy function W 6
f is given by

W 6
f (ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5 , ε

0
6)=

6∑
i=1

ε0
i : C

A
f (ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5 , ε

0
6)ε

0
i (6-1)

(as established by Avellaneda [1987]), where C A
f (ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5 , ε

0
6) is the ef-

fective elasticity tensor of an Avellaneda material that is a sequentially layered
laminate with the minimum value of the sum of elastic energies

6∑
i=1

ε0
j : C∗ε

0
j . (6-2)
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Again some of the applied stresses σ 0
j or applied strains ε0

i could be zero. Addi-
tionally, we have

lim
δ→∞

W 0
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , σ

0
5 , σ

0
6 )= 0,

lim
δ→∞

W 1
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , σ

0
5 , ε

0
1)= ε

0
1 : [C

A
f (0, 0, 0, 0, 0, ε0

1)]ε
0
1 ,

lim
δ→∞

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)=

2∑
i=1

ε0
i : [C

A
f (0, 0, 0, 0, ε0

1 , ε
0
2)]ε

0
i ,

lim
δ→∞

W 3
f (σ

0
1 , σ

0
2 , σ

0
3 , ε

0
1 , ε

0
2 , ε

0
3)=

3∑
i=1

ε0
i : [C

A
f (0, 0, 0, ε0

1 , ε
0
2 , ε

0
3)]ε

0
i ,

(6-3)

for all combinations of applied stresses σ 0
j and applied strains ε0

i . In the case that
det(σ 0

1 )= 0, we have

lim
δ→∞

W 5
f (σ

0
1 , ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5)=

5∑
i=1

ε0
i : [C

A
f (0, ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5)]ε

0
i , (6-4)

while, when f (t)= det(σ 0
1 + tσ 0

2 ) has at least two roots (the condition for which is
given by (4-4)),

lim
δ→∞

W 4
f (σ

0
1 , σ

0
2 , ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4)=

4∑
i=1

ε0
i : [C

A
f (0, 0, ε0

1 , ε
0
2 , ε

0
3 , ε

0
4)]ε

0
i . (6-5)

Theorem 6.2. For 2-dimensional composites, the four energy functions W k
f , for

k = 0, 1, 2, 3, are defined by (2-5), and these characterize the set GU f , with
U = (C1, δC0), of possible elastic tensors C∗ of composites of two phases with
positive definite elasticity tensors C1 and C2 = δC0. These energy functions in-
volve a set of applied strains ε0

i and applied stresses σ 0
j meeting the orthogonality

condition (2-2). The energy function W 3
f is given by

W 3
f (ε

0
1 , ε

0
2 , ε

0
3)=

3∑
i=1

ε0
i : C

A
f (ε

0
1 , ε

0
2 , ε

0
3)ε

0
i (6-6)

(as proved by Avellaneda [1987]), where C A
f (ε

0
1 , ε

0
2 , ε

0
3) is the effective elasticity

tensor of an Avellaneda material that is a sequentially layered laminate with the
minimum value of the sum of elastic energies

3∑
j=1

ε0
j : C∗ε

0
j . (6-7)

We also have the trivial result that

lim
δ→∞

W 0
f (σ

0
1 , σ

0
2 , σ

0
3 )= 0. (6-8)
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When det σ 0
1 = 0, we have

lim
δ→∞

W 2
f (σ

0
1 , ε

0
1 , ε

0
2)=

2∑
i=1

ε0
i : [C

A
f (0, ε

0
1 , ε

0
2)]ε

0
i , (6-9)

while when f (t)= det(σ 0
1 + tσ 0

2 ) has exactly two roots (the condition for which is
given by (4-2)),

lim
δ→∞

W 1
f (σ

0
1 , σ

0
2 , ε

0
1)= ε

0
1 : [C

A
f (0, 0, ε0

1)]ε
0
1 . (6-10)

These theorems, and the accompanying microstructures, help define what sort
of elastic behaviors are theoretically possible in 2- and 3-dimensional materials
consisting of a very stiff phase and an elastic phase (possibly anisotropic, but with
fixed orientation). They should serve as benchmarks for the construction of more
realistic microstructures that can be manufactured. We have found the minimum
over all microstructures of various sums of energies and complementary energies.

It remains an open problem to find expressions for the energy functions in the
cases not covered by these theorems. Notice that for 3-dimensional composites
the function W 5

f is only determined when the special condition det(σ 0
1 ) = 0 is

satisfied exactly. Similarly, for 2-dimensional composites the function W 2
f is only

determined when the special condition det σ 0
1 = 0 is satisfied exactly. Thus these

functions are only known on a set of zero measure.
Even for an isotropic composite with a bulk modulus κ∗ and a shear modulus

µ∗, the set of all possible pairs (κ∗, µ∗) is still not completely characterized either
in the limit δ→∞. In these limits the bounds of Berryman and Milton [1988] and
Cherkaev and Gibiansky [1993] decouple and provide no extra information beyond
that provided by the Hashin–Shtrikman–Hill bounds [Hashin and Shtrikman 1963;
Hashin 1965; Hill 1963; 1964]. While the results of this paper show that in the limit
δ→∞ one can obtain 3-dimensional structures attaining the Hashin–Shtrikman–
Hill lower bound on κ∗, while having µ∗ =∞, it is not clear what the minimum
value for µ∗ is, given that κ∗ = ∞, nor is it clear in two dimensions what the
minimum value of κ∗ is when µ∗ =∞.
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