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REDUCIBLE AND IRREDUCIBLE FORMS
OF STABILISED GRADIENT ELASTICITY IN DYNAMICS

HARM ASKES AND INNA M. GITMAN

The continualisation of discrete particle models has been a popular tool to for-
mulate higher-order gradient elasticity models. However, a straightforward con-
tinualisation leads to unstable continuum models. Padé approximations can be
used to stabilise the model, but the resulting formulation depends on the partic-
ular equation that is transformed with the Padé approximation. In this contri-
bution, we study two different stabilised gradient elasticity models; one is an
irreducible form with displacement degrees of freedom only, and the other is a
reducible form where the primary unknowns are not only displacements but also
the Cauchy stresses — this turns out to be Eringen’s theory of gradient elasticity.
Although they are derived from the same discrete model, there are significant
differences in variationally consistent boundary conditions and resulting finite
element implementations, with implications for the capability (or otherwise) to
suppress crack tip singularities.

1. Introduction

Gradient elasticity is a methodology to enrich the continuum equations of elasticity
with additional higher-order spatial (and occasionally temporal) derivatives of cer-
tain state variables. There are different versions of gradient elasticity, such as those
equipped with strain gradients, stress gradients and acceleration gradients; see for
instance [Askes and Aifantis 2011] for a recent (but by no means complete) review.

Certain formats of gradient elasticity bear a close relationship with discrete lat-
tice models of materials with microstructure; indeed, it is often possible to derive
gradient elasticity theories by continualising the response of a discrete model, for
instance using Taylor series approximations [Chang and Gao 1995; Mühlhaus and
Oka 1996; Suiker et al. 2001a; Suiker et al. 2001b; Ioannidou et al. 2001; Askes
and Metrikine 2005]. However, such models often suffer from intrinsic deficien-
cies, such as loss of stability in dynamics and loss of uniqueness in statics [Askes
et al. 2002]. This can be amended by applying Padé approximations or similar
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n− 2 n− 1 n n+ 1 n+ 2

Figure 1. One-dimensional chain of masses connected by springs.

techniques, as has for instance been demonstrated in [Rosenau 1984; Rubin et al.
1995; Chen and Fish 2001; Andrianov 2002; Andrianov et al. 2003; Charlotte and
Truskinovsky 2008]. Thus, stabilised gradient elasticity theories can be formu-
lated that maintain their close link with discrete lattice models, thereby facilitating
simple identification of the higher-order constitutive parameters (usually known as
“intrinsic length scales” or “microstructural length scales”).

In this paper, we compare two versions of stabilised gradient elasticity. Both
can be derived from the response of a discrete lattice model, which is shown for
the one-dimensional case. Variational formulations are presented for the multidi-
mensional extensions. Throughout, a distinction is made between the so-called
irreducible form where the only unknowns are the displacements and the reducible
form where the unknowns are the displacements as well as the Cauchy stresses.
The difference between these two forms has important consequences for the vari-
ationally consistent boundary conditions and finite element implementations. A
numerical example will show the ability (or otherwise) of the two formulations
to suppress singularities — this has historically been an important motivation for
using gradient elasticity theories, and certain formats have been demonstrated to
remove singularities even under restrictive conditions such as anisotropic material
behaviour and bimaterial interface cracks [Kwong and Gitman 2012]. We also
discuss the relation of the reducible form with Eringen’s [1983] differential theory
of nonlocal elasticity.

2. Continualisation of the response of a discrete chain

To illustrate the concepts of continualisation (this section) and stabilisation via Padé
approximations (Section 3), the one-dimensional chain of particles and springs in
Figure 1 is studied. All particles have mass M , and all springs have stiffness K .
Furthermore, the interparticle distance is denoted by d . The equation of motion of
particle n thus reads

Mün = K (un+1− 2un + un−1) (1)

where ui is the displacement of particle i . A continuum approximation is obtained
by replacing un with u(x) and un±1 with u(x ± d). Taylor series expansions are
applied according to

u(x ± d)= u(x)± d
∂u
∂x
+

1
2

d2 ∂
2u
∂x2 ±

1
6

d3 ∂
3u
∂x3 +

1
24

d4 ∂
4u
∂x4 ± · · · (2)
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so that (1) can be rewritten as

ρü = E
(
∂2u
∂x2 +

1
12

d2 ∂
4u
∂x4 + · · ·

)
(3)

where the mass density ρ = M/Ad and the Young’s modulus E = K d/A, with
A the (unit) cross-sectional area of the system. Multidimensional formulations in
the spirit of (3) have been derived by Chang and Gao [1995], Mühlhaus and Oka
[1996] and Suiker et al. [2001a; Suiker et al. [2001b], among others.

Apart from the lowest-order, standard terms, (3) also contains higher-order terms
proportional to d2, d4, etc. These additional terms capture the microstructural
effects that are present in the discrete model of (1) but that are absent in standard
continuum theories as retrieved by taking d = 0 in (3). The simplest continuum
model that incorporates microstructural effects is obtained by truncating the series
in (3) after the term that is proportional to d2; unfortunately, such a model is un-
stable and its solutions in a boundary-value problem may lack uniqueness [Askes
et al. 2002]. Although stability and uniqueness can be restored by incorporating the
next term, i.e., truncating after the d4 term, the numerical implementation of such
a model is complicated [Askes et al. 2002]; thus, alternative solution strategies are
explored here.

3. Stabilising the continuum equations

Unstable gradient theories can be turned into stable gradient theories by means of
Padé approximations, as has been explored in [Andrianov et al. 2003; Andrianov
and Awrejcewicz 2008; Andrianov et al. 2010]. However, there are various ways
to do this, and the format of the resulting equations depends on which equations
are transformed by the Padé approximation.

3.1. Irreducible form. Firstly, (3) is truncated after the first nonstandard term. The
various spatial derivatives are factorised as

ρü =
(

1+ 1
12

d2 ∂
2

∂x2

)
E
∂2u
∂x2 . (4)

A [0, 1]-Padé approximation is used according to

1+ a ≈
1

1− a
for a� 1. (5)

For a in (5), we will substitute the operator 1
12 d2∂2/∂x2, which allows us to rewrite

(4) as (
1− 1

12
d2 ∂

2

∂x2

)
ρü = E

∂2u
∂x2 . (6)



4 HARM ASKES AND INNA M. GITMAN

The higher-order gradient term now appears on the inertia side of the equation, and
for this reason, it has been called microinertia, internal inertia or higher-order iner-
tia in the literature [Vardoulakis and Aifantis 1994; Wang and Sun 2002; Bennett
et al. 2007]. Equation (6), or slight variations thereof, has also been obtained by
various other researchers using asymptotic series equivalence; see for instance the
work of Rubin et al. [1995], Chen and Fish [2001] and Pichugin et al. [2008].

Note that the only unknown appearing in (6) is the displacement; for this reason,
this format is denoted as irreducible. Although at first sight it may appear that the
micromechanical background of the higher-order terms is lost through the Padé ap-
proximation, an alternative interpretation of the microinertia contribution in terms
of long-range interactions has been provided in [Askes and Gitman 2014].

3.2. Reducible form. It is also possible to extract a (one-dimensional) relation
between stress σ and strain ε from (3) such that

ρü =
∂σ

∂x
and ε =

∂u
∂x
. (7)

The stress-strain relation then follows as

σ = E
(
ε+

1
12

d2 ∂
2ε

∂x2

)
= E

(
1+ 1

12
d2 ∂

2

∂x2

)
ε (8)

where series have again been truncated after the first nonstandard term. Applying
the [0, 1]-Padé approximation to (8) yields(

1− 1
12

d2 ∂
2

∂x2

)
σ = Eε. (9)

Equations (7) and (9) can be combined into a system of coupled equations,

ρü =
∂σ

∂x
(10a)

together with

σ −
1

12
d2 ∂

2σ

∂x2 = E
∂u
∂x

(10b)

where the unknowns are the displacement u as well as the stress σ . In contrast to
the single fourth-order equation (6), (10) is a set of two second-order equations.
They are termed reducible because it is possible to eliminate one of the unknowns,
namely the stress σ . To do this, the second-order spatial derivative of (10a) must
be taken and, multiplied with 1

12 d2, subtracted from the original expression (10a):

ρ

(
ü− 1

12
d2 ∂

2ü
∂x2

)
=
∂

∂x

(
σ −

1
12

d2 ∂
2σ

∂x2

)
. (11)

If (10b) is substituted into the right-hand side of (11), the stress will disappear



REDUCIBLE AND IRREDUCIBLE FORMS OF GRADIENT ELASTICITY 5

from the expressions and thus it is possible to retrieve (6). This reduction of the
number of unknowns, and its consequences, will be discussed in more depth below
in Section 4.2.

4. Energy functionals for the multidimensional case

Above, the governing equations have been derived from simple mechanical and
mathematical arguments in a one-dimensional context. Next, we will show how the
analogous multidimensional equations can be derived from variational principles.
Hamilton’s action S is defined as

S =
∫ t1

t0
L dt. (12)

The governing equations of the models can be derived by requiring stationarity
of S, that is, δS = 0. The energy functional (or Lagrangian function) L is defined
individually for the two different models below, but we will assume that L depends
on the displacements ui and their spatial and temporal derivatives, as well as on
the stresses σi j and their spatial derivatives:

L = L(ui ; ui, j ; u̇i ; u̇i, j ; σi j ; σi j,k). (13)

Substituting (13) into (12) and requiring δS = 0 yields∫ t1

t0
δL dt

=

∫ t1

t0

(
δui

∂L
∂ui
+δui, j

∂L
∂ui, j
+δu̇i

∂L
∂ u̇i
+δu̇i, j

∂L
∂ u̇i, j
+δσi j

∂L
∂σi j
+δσi j,k

∂L
∂σi j,k

)
dt

= 0, (14)

which, as usual, can be rewritten as∫ t1

t0
δui

(
∂L
∂ui
−

∂

∂x j

∂L
∂ui, j

−
∂

∂t
∂L
∂ u̇i
+

∂2

∂x j∂t
∂L
∂ u̇i, j

)
dt

+

∫ t1

t0

∂

∂x j

(
δui

∂L
∂ui, j

− δui
∂

∂t
∂L
∂ u̇i, j

)
dt +

∫ t1

t0

∂

∂t

(
δui

∂L
∂ u̇i
+ δui, j

∂L
∂ u̇i, j

)
dt

+

∫ t1

t0
δσi j

(
∂L
∂σi j
−

∂

∂xk

∂L
∂σi j,k

)
dt +

∫ t1

t0

∂

∂xk

(
δσi j

∂L
∂σi j,k

)
dt = 0. (15)

The third integral cancels through the requirement that δui = 0 and δui, j = 0 for
t = t0 and for t = t1. The first and fourth integrals will lead to field equations,
whereas the second and fifth will contribute to the natural boundary conditions.
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4.1. Irreducible form. The Lagrangian function of the irreducible form can be
written as

L irred =

∫
�

1
2ρ(u̇i u̇i + `

2u̇i, j u̇i, j ) dV −
∫
�

1
2 ui, j Ci jkluk,l dV

+

∫
�

ui bi dV +
∫
0n

ui ti dS (16)

where the first integral is the kinetic energy, the second integral is the stored strain
energy and the last two terms represent the work of the external forces. Thus, for
this model, the Lagrangian takes the usual format of “kinetic energy minus potential
energy”, whereby the nonstandard contributions are included in the kinetic energy
only [Lazar and Anastassiadis 2007; Polizzotto 2012]. Note that for the internal
length scale we have now used the generic notation ` rather than the notation d
that was used in the previous section in relation to the discrete model.

Substituting (16) into (15) and noting that δui = 0 on 0e leads to∫ t1

t0

∫
�

δui (bi +Ci jkluk, jl − ρüi + ρ`
2üi, j j ) dV dt

+

∫ t1

t0

∫
0n

δui (ti − n j (Ci jkluk,l + ρ`
2üi, j )) dS dt = 0, (17)

where, as usual, the boundary 0 of the domain � is decomposed into parts 0n and
0e associated with natural and essential boundary conditions: 0 = 0n ∪ 0e and
∅= 0n ∩0e.

A symmetric Hookean stress τH
i j = Ci jkluk,l can be identified in terms of which

the field equations and natural boundary conditions can be written as

ρ(üi − `
2üi, j j )= τ

H
i j, j + bi in �, (18a)

n j (τ
H
i j + ρ`

2üi, j )= ti on 0n. (18b)

In our opinion, Hookean stress is appropriate terminology for τH
i j , not Cauchy

stress, since the equations of motion and the natural boundary conditions contain
additional gradients of the acceleration that are not included in the definition of τH

i j .
In Appendix A this particular terminology is motivated.

Remark. A nonsymmetric stress tensor τB
i j can be identified as (see [Lazar and

Anastassiadis 2007])
τB

i j = Ci jkluk,l + ρ`
2üi, j (19)

This would enable one to write the equations of motion and natural boundary con-
ditions in terms of a stress tensor that is similar in role to a standard Cauchy stress
as explained in Appendix A. However, since τB

i j is nonsymmetric, using the term
Cauchy stress for this tensor is not obvious. This issue of nomenclature is left for
future debate and discussion.
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4.2. Reducible form. For the reducible form, the Lagrangian function adopts a
less common appearance, which, to the authors’ best knowledge, is novel:

L red =

∫
�

1
2ρu̇i u̇i dV −

∫
�

ui, jσi j dV +
∫
�

1
2(σi j Si jklσkl + `

2σi j,m Si jklσkl,m) dV

+

∫
�

ui bi dV +
∫
0n

ui ti dS, (20)

where Si jkl is the elastic compliance tensor. The first integral is again the kinetic
energy, whilst the last two integrals contain the external work. The third integral
contains the stored complementary energy with a positive rather than negative sign,
but the effects of the lower-order part are offset by the effects of the second integral,
which couples the effects of the two sets of unknowns, namely displacements and
stresses. In the reducible form, the displacement derivative ui, j is no longer energy-
conjugated to the (symmetric) stress σi j , unless ` = 0. Therefore, the second
integrand does not have the meaning of internal work. Expression (20) can also
be rewritten as a Hellinger–Reissner functional whereby the displacements act as
Lagrange multipliers to enforce balance of momentum in � and on 0 [Askes and
Gutiérrez 2006; Polizzotto 2015].

Again making use of δui = 0 on 0e, substitution of (20) into (15) yields∫ t1

t0

∫
�

δui (bi + σi j, j − ρüi ) dV dt +
∫ t1

t0

∫
0n

δui (ti − n jσi j ) dS dt

+

∫ t1

t0

∫
�

δσi j (−ui, j + Si jklσkl − `
2Si jklσkl,mm) dV dt

+

∫ t1

t0

∮
0

δσi j nm Si jklσkl,m dS dt = 0 (21)

so that the following set of coupled governing equations can be identified:

ρüi = σi j, j + bi in �, (22a)
n jσi j = ti on 0n, (22b)

Si jkl(σkl − `
2σkl,mm)=

1
2(ui, j + u j,i ) in �, (22c)

nm`
2Si jklσkl,m = 0 on 0. (22d)

From the format of (22a) and (22b), it is clear that the meaning of σi j in the re-
ducible model is that of the Cauchy stress. Equations (22) have also been derived,
using different arguments, by Eringen [1983]; see Appendix B for a discussion.

Equations (22) form a set of coupled equations with independent unknowns ui

and σi j , but they are reducible in the sense that it is possible to eliminate the stresses
σi j . To do so, firstly the Laplacian of (22a) is taken and multiplied with `2, after
which the result is subtracted from the original expression (22a). This gives

ρ(üi − `
2üi, j j )= σi j, j − `

2σi j,kk + bi − `
2bi, j j . (23)
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Next, (22c) is premultiplied with the elastic stiffness tensor Ci jkl and substituted
into (23), leading to

ρ(üi − `
2üi, j j )= Ci jkluk, jl + bi − `

2bi, j j , (24)

which is equivalent to (18a) except for the presence of the Laplacian of the body
forces bi, j j and a mismatch in the associated variationally consistent boundary
conditions. Note that the effect of the higher-order gradients disappears altogether
in statics in the case bi, j j = 0.

Remark. From (22c) it is clear that the gradient enrichment affects the constitu-
tive part of the field equations, and therefore the term “gradient elasticity” seems
appropriate for what is here denoted as the reducible form. In contrast, it could be
argued that using the term “gradient elasticity” is less suitable for the irreducible
format represented in (24), because the gradient enrichment operates on the ac-
celerations, not stresses or strains — i.e., the elasticity part of the irreducible form
retains its classical format. However, we still prefer to refer to the irreducible form
as a particular variant of gradient elasticity, because of the close relation between
the reducible form and the irreducible form. Due to the coupling between the
equations of motion and the constitutive equations, the gradient enrichment of the
accelerations will affect the stresses and strains, albeit indirectly.

5. Finite element equations

In order to obtain solutions of the relevant partial differential equations for domains
of arbitrary geometry, a numerical solution strategy is required. Here, the finite
element method will be used for the spatial discretisation, whereas the Newmark
time integrator will be adopted to progress the solution in the time domain. The
finite element equations of the irreducible form are well established and need not
be revisited here — the interested reader is referred to [Fish et al. 2002a; 2002b;
Askes and Aifantis 2011].

For the reducible form, we write u = Nu d and σ = Nσ s where u and σ are col-
umn vectors containing the relevant components of the displacements and Cauchy
stresses, respectively. Furthermore, the matrices Nu and Nσ contain the shape
functions for displacements and Cauchy stresses whereas d and s are the nodal
displacements and nodal Cauchy stresses. The spatial discretisation of (20) can
thus be written as

LFE
red =

∫
�

1
2ρ ḋT NT

u Nu ḋ dV −
∫
�

dT BT
u Nσ s dV

+

∫
�

1
2 sT

(
NT
σ SNσ+

3∑
i=1

`2 ∂NT
σ

∂xi
S
∂Nσ
∂xi

)
s dV+

∫
�

dTNT
u b dV+

∫
0n

dTNT
u t dS (25)
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where b and t contain the components of the distributed body and surface forces,
respectively. Furthermore, Bu is the standard strain-displacement matrix with
derivatives of the displacement shape functions Nu and S is the matrix counterpart
of the compliance tensor Si jkl .

Requiring δLFE
red = 0 leads to a system of finite element equations according to[

Muu 0
0 0

] [
d̈
s̈

]
+

[
0 Kuσ

Kσu Kσσ

] [
d
s

]
=

[
f
0

]
, (26)

where

Muu =

∫
�

ρNT
u Nu dV, (27a)

Kuσ = K T
σu =

∫
�

BT
u Nσ dV, (27b)

Kσσ =−
∫
�

(
NT
σ SNσ +

3∑
i=1

`2 ∂NT
σ

∂xi
S
∂Nσ
∂xi

)
dV . (27c)

Finite-element implementation of (26) was carried out using the recommendations
of the statics theory given in [Askes and Gutiérrez 2006], in particular the use of
quadratic shape functions for s and linear shape functions for d. This particular
choice of shape functions avoids oscillations in the displacement field, although a
formal investigation of the inf-sup condition may require further refinement of the
two sets of interpolations.

6. Numerical example

Although the reducible form can be transformed into the irreducible form as shown
in (23) and (24), the associated change in variationally consistent boundary con-
ditions has implications when it comes to the simulation of crack tip stresses.
This will be demonstrated by means of the numerical example shown in Figure 2.

u̇

u̇

L

L

L L
a a

Figure 2. Strip with central crack: geometry and loading conditions.
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A square strip with dimension 2L = 2 m has a central crack of length 2a = 0.5 m.
The material properties are mass density ρ = 1 kg/m3, Young’s modulus E =
100 N/m2 and Poisson’s ratio ν = 1

4 , whilst a plane stress assumption has been
made. Furthermore, the gradient elasticity length scale ` = 0.1 m. The strip is
subjected to outward vertical velocities u̇ = 10 m/s imposed on the top and bottom
edges, as indicated, which leads to stress waves propagating towards the centre of
the strip. Away from the crack, the stress waves will have the shape of a block
wave due to the nature of the loading conditions, but the presence of the crack
will disturb this pattern, and indeed in a classical elasticity setting, this will lead to
singular stresses and strains at the tips of the crack. It is the aim of this example to
verify whether these singularities can be avoided in the reducible and irreducible
formulations of gradient elasticity discussed above. For reasons of symmetry, only
the top quarter of the strip is modelled.

The irreducible format of gradient elasticity is implemented with four-noded
quadrilateral elements for the displacements. The reducible format is implemented
with eight-noded elements for the stresses and four-noded quadrilateral elements
for the displacements — see [Askes and Gutiérrez 2006] for details on this particu-
lar choice. Structured finite element meshes consisting of square elements are used,
and a sequence of uniformly refined meshes is taken to monitor the behaviour of
the stresses at the crack tip. Since in the irreducible format the stresses are postpro-
cessed from linear displacements whereas in the reducible format the stresses are
primary unknowns interpolated with quadratic shape functions, there is an obvious
mismatch in stress resolution between the two formats. To address this mismatch,
the meshes used range from 16× 16 to 128× 128 elements for the irreducible
format, whereas they range from 8× 8 to 64× 64 for the reducible format.

Regarding the imposition of traction boundary conditions, it must be realised
that the stresses are primary variables in the reducible formulation, whereas they
are derived quantities in the irreducible formulation. In the reducible formula-
tion, traction boundary conditions are thus essential boundary conditions and are
imposed by assigning prescribed values to the relevant stress components (e.g.,
σyy = 0 on the crack face). On the other hand, traction boundary conditions are
natural boundary conditions in the irreducible formulation; applying zero tractions
on the crack face means that the left-hand-side of (18b) is set equal to zero, which
is handled straightforwardly in a finite element context. Finally, and for the sake
of completeness, it is noted that displacement (and velocity) boundary conditions
have been implemented using Lagrange Multipliers in the reducible formulation.

The Newmark constant average acceleration scheme is used for the time in-
tegration. This scheme is unconditionally stable; therefore, the only criterion for
selecting the time step is accuracy. Following the recommendations given in [Askes
et al. 2008; Bennett and Askes 2009], the time step is chosen such that waves
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Figure 3. Vertical normal stress τH
yy (N/m2) versus x (m) for the irre-

ducible format — 16×16 elements (dotted), 32×32 elements (dashed),
64× 64 elements (dot-dashed) and 128× 128 elements (solid).

propagate approximately half an element per time step. Time domain simulations
were carried out from time t = 0 s to t = 0.2 s.

Figures 3 and 4 show the profiles of the vertical normal stress for both formats
and the indicated range of finite element meshes, where the origin of the coordinate
system is chosen at the centre of the crack. For the irreducible format (Figure 3),
we have plotted the Hookean stress τH

yy (see Section 4.1) whilst for the reducible
format the Cauchy stress σyy is plotted (Figure 4).

The stress profiles for the irreducible formulation appear to converge towards a
unique solution, except for the crack tip value. At the crack tip, the stress increases
significantly for every refinement of the mesh. This is an indication that a stress
singularity is present at the crack tip. To analyse this in more depth, Richardson
extrapolations have been carried out for the crack tip stresses. Table 1 reports the

mesh τH
yy extrapolation

16× 16 4.8077
32× 32 6.8091 8.8105
64× 64 9.6223 13.6438

128× 128 13.5923 20.0751

Table 1. Crack tip stress and Richardson extrapolation in N/m2

for irreducible form.
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3

2.5

2

1.5

1

0.5

0
0 0.25 0.5 0.75 1

x

σyy

Figure 4. Vertical normal stress σyy (N/m2) versus x (m) for the re-
ducible format — 8× 8 elements (dotted), 16× 16 elements (dashed),
32× 32 elements (dot-dashed) and 64× 64 elements (solid).

values of the crack tip stress and their extrapolations. (The first extrapolation is a
two-point extrapolation based on the coarsest two meshes, the second is a three-
point extrapolation based on the coarsest three meshes, and mutatis mutandis for
the last extrapolation.) The numerical results confirm that the crack tip stress grows
in a seemingly unbounded manner, whereas the difference between numerical
stress and extrapolated stress increases with refinement of the mesh. This confirms
the suggestion that a singularity is present. Thus, it must be concluded that the
irreducible format is not capable of avoiding stress singularities. This is reported
for the Hookean stress τH

yy but will carry over to the pseudo Cauchy stress τB
yy since

the latter quantity includes the former.
On the other hand, the results of the reducible format clearly converge towards

a unique, nonsingular solution, and the singularities that plague classical elasticity
formulations are avoided. However, it must be noted that the maximum stress
occurs not at the crack tip but further inside the material. This is in line with the
analysis and results reported in [Simone et al. 2004].

7. Conclusions

We have reviewed and systematically compared two formats of gradient elastic-
ity. Both formats can be derived by continualising a one-dimensional discrete
model and stabilising the resulting equations, but the models differ in respect of
which particular equation is stabilised — either the field equation (leading to what
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is denoted as the “irreducible format”) or the constitutive equation (leading to the
“reducible format”). The multidimensional case, including the associated boundary
conditions, has been derived from a variational principle. It is noted that the field
equations of the irreducible format can be retrieved from those of the reducible for-
mat (assuming that the Laplacian of the body forces vanishes), but the variationally
consistent boundary conditions are different for the two models.

This has implications for the solution of initial-boundary-value problems. We
have presented a crack problem, and it was demonstrated that the irreducible format
is not capable of avoiding singularities in the stress field. On the other hand, no sin-
gularities were found when the reducible format was used. Thus, for the dynamic
analysis of stresses around sharp cracks, the reducible format is to be preferred.

Appendix A: Nomenclature in gradient elasticity: Cauchy stress

In the literature, there is a lack of consistency in which quantity is denoted as
the Cauchy stress in gradient elasticity theories. Some eminent authors have used
this term to indicate the derivative of the strain energy density with respect to
the strain — see for instance [Mindlin 1964, p. 57] or [Shu et al. 1999, p. 375].
However, we have followed the arguments set out by Borino and Polizzotto [2003,
Remark 3], who state that the term Cauchy stress should be used for the total stress
quantity as it appears in the equilibrium equations; conversely, we have used the
term Hookean stress for the derivative of the strain energy density with respect to
the strain. We believe the former is in line with the conceptualisation of Cauchy
himself, who discussed stresses as forming equilibrium (or indeed accelerating)
systems by acting on surfaces, rather than as derivatives of energy functionals —
see for instance [Cauchy 1823; 1827; 1843].

However, it is also noted that extending the concept of Cauchy stress as “force
divided by area” to gradient-enriched continua leads, in general, to much more
complicated expressions. This is illustrated by the format of the natural boundary
conditions in Mindlin’s [1964, pp. 67–68] theory of gradient elasticity. Askes and
Metrikine [2005] as well as Froiio et al. [2010] have provided physical interpreta-
tions of the nonstandard boundary conditions.

Appendix B: Eringen’s 1983 differential theory of nonlocal elasticity

The reducible format presented in Section 4 has been derived earlier in [Eringen
1983] from an integral formulation. Because the coupled nature of the govern-
ing equations of Eringen’s theory is not always appreciated, it is worthwhile to
summarise Eringen’s theory. Adopting his notation unless stated otherwise, the
equations of motion are given by [Eringen 1983, (2.1)] as

tkl,k + ρ( fl − ül)= 0 (28)
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where tkl is the Cauchy stress tensor and fl is the body force density. With the
restriction to isotropic linear elasticity, a Hookean stress σ 0

kl is defined via [Eringen
1983, (2.3) and (2.4)] as

σ 0
kl = λδklu j, j +µuk,l +µul,k (29)

where a superscript 0 is included in σ 0 to avoid confusion with the Cauchy stress of
the reducible theory discussed in Section 4.2. Furthermore, λ and µ are the Lamé
constants and δkl is the Kronecker delta.

The field equations are completed by a differential relation between the Cauchy
stress tkl and the Hookean stress σ 0

kl . The particular relation that seems to have
attracted most interest in the literature is given in [Eringen 1983, (3.19)] as

tkl − `
2tkl, j j = σ

0
kl (30)

where the higher-order coefficient is simply indicated by `2 (Eringen uses a more
intricate notation with multiple symbols, which are not required in the present
discussion).

Eringen [1983, pp. 4704–4705] also discusses the elimination of the stress tkl

from the system of equations. Combining (3.13) and (3.18), he arrives at the irre-
ducible form

σ 0
kl,k + (1− `

2
∇

2)(ρ fl − ρül)= 0. (31)

Next, he notes that the particular case of statics with vanishing body forces leads to

σ 0
kl,k = 0. (32)

However, regarding natural boundary conditions, Eringen [1983, p. 4704] explic-
itly states that “[b]oundary conditions involving tractions [are] based on the stress
tensor tkl , not on σ 0

kl”, while Eringen [2002, p. 100] also emphasises that “the real
stress is not σ 0

kl but tkl” — in both quotations we have added the superscript 0 to
σ as explained above. This means that (32) cannot be used in isolation to solve
general boundary-value problems involving prescribed tractions.

In summary, in our opinion, a divergence-free Hookean stress σ 0 should not be
considered as a fundamental equation of the Eringen theory because, firstly, it can
only be retrieved by making the assumptions of zero body force and zero accelera-
tion and, secondly, it cannot be used to solve general equilibrium problems due to
a lack of associated traction boundary conditions. In this respect, we disagree with
Lazar and Polyzos [2015], who suggest that (32) is an equilibrium equation in its
own right — although these authors do confirm that the correct natural boundary
conditions are in terms of tkl rather than σ 0

kl .
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