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IVAN GIORGIO AND LUCA PLACIDI

In this paper we consider linear pantographic sheets, which in their natural
configuration are constituted by two orthogonal arrays of straight fibers inter-
connected by internal pivots. We introduce a continuous model by means of a
micro-macro identification procedure based on the asymptotic homogenization
method of discrete media. The rescaling of the mechanical properties and of
the deformation measures is calibrated in order to comply with the specific kine-
matics imposed by the quasi-inextensibility of the fibers together with the large
pantographic deformability. The obtained high-order continuum model shows
interesting and exotic features related to its extreme anisotropy and also to the
subcoercivity of its deformation energy. Some initial numerical simulations are
presented, showing that the model can account for experimental uncommon phe-
nomena occurring in pantographic sheets. The paper focuses on the precise anal-
ysis and the understanding of the effective behavior based on a well-calibration
of the extension and bending phenomena arising at the local scale. In an up-
coming work, the analysis will be extended to oblique arrays, some analytical
solutions to proposed equations and some further applications.

1. Introduction

In the study of generalized (multiscale or architectured) continua, two different and
complementary approaches can be identified:

(1) A phenomenological approach can be applied at the macroscopic scale: it
gives a general framework and in general it is based on variational principles
and methods [Mindlin 1965; Toupin 1964; Germain 1973; Gouin and De-
bieve 1986; Casal 1966; dell’Isola and Placidi 2011; dell’Isola et al. 2009;
Lekszycki 1991]; however, using this approach it is not possible to make the
influence of microstructure on macrophenomena become explicit. In other
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words, a model is established, but the microstructured material to which it
could be applied is unknown.

(2) Another approach involves a scale change, made possible through a homoge-
nization. This method has been developed in vast literature (see, e.g., [Boutin
and Auriault 1993; Pideri and Seppecher 1997; Bensoussan et al. 2011; Boutin
and Soubestre 2011; Auriault et al. 2009; Allaire 1992; Alibert and Della Corte
2015; dell’Isola et al. 2016b; 2016c]) but has not been applied too often to the
case of multiscale materials, in which a great contrast in physical properties
appears at microlevel (see [Soubestre and Boutin 2012; Boutin et al. 2010]).
Moreover, homogenization methods treat more particular cases and therefore
they are not supposed to cover all situations. However, a careful homogeniza-
tion technique gives the possibility of identifying the micromorphologies that
lead to the macroscopic behavior characteristic of generalized continua.

Recently the attention has been attracted by a particular class of microstructure:
that which produces so-called pantographic continua [dell’Isola et al. 2015b; 2016b;
2016c; 2016d; Giorgio et al. 2016; Madeo et al. 2015]. This kind of structure is
inspired by several natural examples; indeed, some biological tissues present fibers
that can be modeled in a similar way (see, e.g., [Melnik and Goriely 2013; Federico
and Grillo 2012; Grillo et al. 2015] for some possible applications). Their interest
was initially related to the possibility of proving the existence of purely second
gradient continua [Alibert et al. 2003], but subsequently their practical applicability
has been proven for woven fabrics and some “ad hoc” designed metamaterials (see,
e.g., [Del Vescovo and Giorgio 2014; Bîrsan et al. 2012; Eremeyev and Lebedev
2011; Altenbach et al. 2011; dell’Isola et al. 2015b; Eremeyev 2016]). On the other
hand, some interesting theoretical results were presented in [Chesnais et al. 2015;
Boutin et al. 2010; Boutin and Soubestre 2011]. In these papers, some suitable
homogenization methods were introduced to study the dynamics of periodic beam
structures and other evidence was presented concerning the need to introduce sec-
ond gradient continua when a high contrast of mechanical properties is present at
microlevel.

In all considered cases, directional (anisotropic) materials with a high contrast
in properties between shear and extension are studied. This paper, different to what
was done in [Rahali et al. 2015], considers the case of extensible fibers and gives a
more solid foundation to and generalizes the heuristic results presented in [Placidi
et al. 2017] based on an accurate analysis of the different and relative order of
magnitude of the involved physical phenomena.

In this paper we will use a micro-macro asymptotic identification method and
obtain the macroscopic equilibrium equations for pantographic lattices in the neigh-
borhood of a reference configuration. The analysis of the obtained equation is
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Figure 1. Topology of the pantographic lattice. The pivots are
equally distributed on the whole sheet. The black points are indi-
cating specific monitoring points during bias test experiments.

started and some equilibrium problems are solved by means of numerical simula-
tions.

In a forthcoming paper we treat the generalized case of reference configurations
constituted by two oblique arrays of straight beams, some semianalytical solutions
and some further application.

2. Hypotheses and notations

Let us consider a periodic pantograph network of fibers (which we also call a
pantographic lattice or pantographic sheet) formed of two families of continuous
fibers arranged perpendicularly and along the axes x and y. The fibers oriented
along x are identical, as well as those oriented along y. However, the two families
may differ from one another. These fibers are connected by perfect pivots, with
an axis perpendicular to the {x, y} plane. The fibers oriented along x are spaced
periodically by the length `y . Those oriented along y are spaced by `x . This
defines the rectangular mesh, which is constituted by those two elements that are
the portions of the orthogonal fibers that cross a pivot. Each pivot is referenced by
two integers nx and m y , which are simply its discrete coordinates along the axes x
and y, respectively. We will model each segment of fiber between two consequent
nodes as a beam. The four beam elements connected to the pivot {nx ,m y} are
denoted by [nx − 1, nx ] and [nx , nx + 1] for the two elements oriented along x ,
or by [m y − 1,m y] and [m y,m y + 1] for the two elements oriented along y. The
understanding of the reader is helped by Figure 1.

The parameters of the beam elements are their Young’s modulus E j , the area
A j of their sections and the moments of inertia I j of their sections, where j = x, y.
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The dimensions of the sections
√

A j are assumed small with respect to the lengths
` j . Accordingly, the behavior of the interpivot elements can be effectively mod-
eled by the Euler beam model. It is further assumed that the geometrical and the
mechanical parameters of both types of beams are of the same order of magnitude:
to be more precise, the period is characterized by the length ` =

√
`x`y in such

a way that O(`x) = O(`y) = `. We also introduce the following dimensionless
quantities: `?x = `x/` and `?y = `y/` so that `?x`

?
y = 1 and O(`?x)= O(`?y)= O(1).

Note that the specificity of the adopted assumption of beam behavior is that the
length of the arrays is not considered (i.e., the fibers are not treated as beams) but
instead, this is the topology of the pantographic lattice that leads to a local beam
description.

We study in the {x, y} plane the quasistatic small deformations of the lattice
in the neighborhood of its initial equilibrium position where the lattice is periodic
and has a rectangular period. It is also assumed that the spatial variations of the
deformation and placement fields occur at large-scale and have a characteristic
variation length L that is large compared to the size of period `; in other words, to
have a relevant variation of the deformation fields, the space variables must have
a large increment relative to `.

These considerations naturally introduce the small parameter to be used for spec-
ifying scale separation:

ε = `/L � 1.

The macroscopic description of the system, valid at the dominant order, is reached
for ε→ 0.

3. Homogenization method: multiscale asymptotic heuristic approach

Let us construct the global behavior from the local behavior of beam elements
connected by pivots. To do this, the problem is first discretized exactly and then it
is converted into a continuum macroscopic formulation by an asymptotic homoge-
nization procedure.

Using the balance laws of an Euler beam, the contact actions (normal and shear
forces and moments) at the ends of each beam element are explicitly expressed
in terms of the kinematic variables (displacements and rotations) evaluated at the
same ends. The balance of each element is thereby assured. We will consider the
cases in which the beam elements between the nodes deform in a quasistatic regime.
In other words, our treatment will be applicable when, in considered phenomena,
there is a (quasi-)instantaneous equilibrium, at the level of the periodic cell, of the
interconnected beams. Sometimes this assumption is referred to as the assumption
of local microscopic instantaneous equilibrium. This approach is relevant when
dealing with phenomena of slow-time evolution.
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As a consequence of the exact discretization, to specify the conditions of the
global equilibrium conditions, it is necessary and sufficient to focus on the equi-
librium of each one of the pivots, which will play the role of material points of
the homogenized continuum. It is therefore expressed, in each pivot, the balance
of forces and moments applied by the four elements therein connected (belong-
ing to the two orthogonal fibers that intersect at each pivot). This gives an exact
representation of the original problem in a discrete form of finite difference type,
with the variables being the kinematic variables and the actions of each element,
evaluated at the pivot-locations. One has to explicitly remark that in the set of
the aforementioned four elements, one can distinguish two pairs (parallel in the
reference configuration) which are indeed part of the same fiber: moving from one
to the other elements belonging to the same fiber, the displacements and rotations
are continuous (see Figure 1, x-fiber and y-fiber).

Remark also that the action of a pivot on the two continuous fibers which the
pivot itself is interconnecting is modeled here as concentrated (in a point) force
and couple; of course, by the action and reaction principle, the action of the pivot
on the fiber of one array is opposite to the action exerted by the same pivot on the
fiber of the other array.

The passage from the exact discrete formulation to the macroscopic continuous
description, valid at the dominant order, is performed as follows [Caillerie 1984].
We assume that the overall behavior of the system can be described by a set of
macroscopic fields, the generic element of which is denoted by Q(x, y).

Discrete variables q(nx ,m y) at the pivots are considered as the values at these
points of continuous functions Q(x, y).

This procedure has been described in general already in the works by Piola
[2014] (he seems to us to be among the first scientists having introduced such
a heuristic method of homogenization; see [dell’Isola et al. 2016d; Rahali et al.
2015]); however, he applied it specifically only to the case of fluids.

We therefore set

q(nx ,ny) = Q(xn, ym), xn = nx`x , ym = m y`y .

Consistent with the hypothesis of separation of scale, these continuous functions
vary at large scales, such as O(L). Consequently, the increments of the interpivot
distance O(`) can be expressed by the Taylor expansions of macroscopic fields.
Thus, the finite difference of the discrete formulation is converted into series by
introducing successive gradients of the macroscopic functions. As the distances
between the pivots are constant due to the periodicity, the terms of such series are
of the type, for example, `k

x∂
k Q/∂xk

= O(`k
x/Lk)O(Q)= εk O(Q), with a multi-

plication factor. They therefore involve the orders of magnitude in powers of ε. As
we are interested in situations where ε→ 0, we need the following specification for
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the consistency of the orders of magnitude, i.e., we need to represent the functions
Q(x, y) in the form of asymptotic expansions of the type:

Q(x, y)=
∞∑

k=0

εk Q(k)(x, y), O(Q(k))= O(Q(0)).

These asymptotic expansions are to be used in the equations of equilibrium ex-
pressed via Taylor expansions. The dimensionless parameters that emerge from
this formulation must be weighted in powers of ε to translate correctly the dominant
mechanisms in the studied system [Boutin and Hans 2003; Hans and Boutin 2008].
This normalization of the balance equations preserves the same local physics during
the transition to the limit ε→ 0. Consequently, the macroscopic model in the limit
preserves — at the dominant order — the same local physics than that prevailing in
the real system, where the scale ratio `/L takes small but finite values.

After the aforementioned normalization, we obtain a series of equilibrium con-
ditions in terms of the powers of ε, which may be solved term by term. The
macroscopic description, at the dominant order, is constituted by the first nontrivial
differential system on the macroscopic variables.

4. Micromodeling of pantographic lattices

In the literature, much attention has been paid to lattices of beams interconnected
by clamping constraints and to trusses [Németh and Kocsis 2014; Liew et al. 2000;
Noor et al. 1978]. However, the existence of so called “floppy modes” at the mi-
crolevel in the pantographic structures requires the most attentive consideration. To
be more precise: what we call a floppy mode is a deformation of the microstructure
to which is associated a vanishing energy (for more details, see [Alibert et al. 2003;
Seppecher et al. 2011]). An intuitive consequence of the existence of floppy modes
is that for the effective medium, the standard condition of coerciveness is not veri-
fied and therefore this concept needs to be modified or generalized. Actually one
can decompose the space of deformations into a coercive subspace plus the space
of floppy modes and the role of the boundary condition becomes more determinant
in well-posed problems.

We used these microscopic floppy modes to prove that, in general, the class of
first-gradient continua (those introduced by Cauchy and usually considered in con-
tinuum mechanics; see, e.g., [dell’Isola et al. 2016a; 2015c]) is not enough to de-
scribe, at a macrolevel, all conceivable physical systems. In particular, when there
is high contrast (see [Camar-Eddine and Seppecher 2001; Pideri and Seppecher
1997; Hans and Boutin 2008; Boutin and Soubestre 2011; Cecchi and Rizzi 2001])
in physical properties at the microlevel, it may become necessary at the macrolevel
to introduce higher-order continua (see [dell’Isola et al. 2012; 2016e]).
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The analysis which we present adapts the studies presented in [Boutin et al.
2010; Boutin and Soubestre 2011; Hans and Boutin 2008; Soubestre and Boutin
2012] to the case of pantographic lattices to take into account their behavior, which
can be regarded as being somehow exotic.

We start by using the framework of local microscopic instantaneous equilibrium
to formulate a mesolevel model where the lattice is described as a set of nodes (the
pivots) interconnected by beam element.

4.1. Characterization of the mechanical behavior of a beam element. Let the
section of the considered straight (in the reference configuration) beam be A, its
moment of inertia being I , and let the material constituting it be elastic, isotropic
and with Young’s modulus E . We denote (referring to the beam planar reference
configuration) by v the axial displacement, by w the transverse displacement, by
N the normal force, by T the shear force and by M the bending moment (we will
be using the French convention for the orientation of axes). These contact actions
are defined as that of the part s < 0 on part s > 0, where s designates the abscissa
along the axis of the beam. Consider a portion of the beam between two points B
and C , spaced apart by a distance ` that is large enough compared to the size

√
A

of the beam section. The Euler beam theory can therefore be used. Accordingly,
the rotation of the section is related to the transverse displacement via the relation
θ(s)= dw(s)/ds. The constitutive equations of the beam are the following:

N (s)= E A
dv
ds
, M(s)=−E I

d2w

ds2 , (1)

and, in the quasistatic regime, the equilibrium equations in differential form are
expressed by

dN
ds
= 0,

dT
ds
= 0,

dM
ds
+ T = 0. (2)

Suppose that for the point B (and C), the displacements and the rotation are vB ,
wB and θ B (respectively vC , wC and θC ). The forces and moment at B and at C
are determined using the equations of beams. They are expressed as a function of
the kinematic variables as follows:

N B
= N C

=
E A
`
(vB
− vC), (3)

T B
= T C

=
12E I
`3

(
wB
−wC

+
1
2`(θ

B
+ θC)

)
, (4)

M B
=

6E I
`2

(
wB
−wC

+
1
3`(2θ

B
+ θC)

)
, (5)

MC
=−

6E I
`2

(
wB
−wC

+
1
3`(θ

B
+ 2θC)

)
. (6)
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Expressions of N involve the axial E A/` rigidities, while T and M involve bending
12E I/`3 rigidities. The beam’s slenderness hypothesis

√
A� ` implies that such

rigidities differ significantly. In fact, considering beams of regular section (for in-
stance, the rectangular section of length’s sides a and b, with b= O(a)= O(

√
A)),

then A = ab, I = ba3/12 and 12I/A = a2
= O(A), and consequently the rigidity

ratio R is

R =
12E I
`3

`

E A
=

12I
`2 A
= O

(
A
`2

)
� 1. (7)

This strong stiffness contrast plays an essential role in the functioning of the system.
Hereafter we take into account explicitly that the aspect ratio of the elements is
√

A/`= O(ε) which leads to

R =
12E I
`3

`

E A
= O(ε2). (8)

4.2. Discrete kinematic variables and equilibrium at pivots. Because of the op-
erating principle of an internal pivot, the ends of the four elements connected to it
undergo the same displacement ux (u y) along the axis x (y), but rotations of those
elements belonging to fibers with distinct orientations are not identical; the coin-
ciding ends of the two elements oriented along x (y) undergo the same rotation θx

(θy). Thus, each pivot {nx ,m y} is described by four kinematic variables ux(nx ,m y),
u y(nx ,m y), θx(nx ,m y) and θy(nx ,m y).

The equilibrium at a pivot results:

(i) in the balances of force (exerted on the pivot) along x and y, and

(ii) in the continuity of both moment fields arising in the beam elements oriented
either along x or along y.

These four equations expressed at the pivot {nx ,m y} take the following forms:

• balance of force along x :

−T C
[m y−1,m y ]

+ T B
[m y ,m y+1]+ N C

[nx−1,nx ]
− N B

[nx ,nx+1] = 0, (9)

• balance of force along y:

T C
[nx−1,nx ]

− T B
[nx ,nx+1]+ N C

[m y−1,m y ]
− N B

[m y ,m y+1] = 0, (10)

• balance of moments for the elements along x :

MC
[nx−1,nx ]

−M B
[nx ,nx+1] = 0, (11)

• balance of moments for the elements along y:

MC
[m y−1,m y ]

−M B
[m y ,m y+1] = 0. (12)
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Here, we have denoted by the symbol Q D
[p,q] the value of the field Q at the extremity

D=C or D= B of the beam element connecting the node p and the node q , where
p and q are consecutive in either the x or y direction.

The component ux (u y) of the pivot displacement is:

(i) the axial displacement of the ends of the beam element oriented along x (y),
and

(ii) the opposite transverse (direct) displacement of the ends of the beam element
along y (along x). The change of sign results from different orientations of
the global frame and of the local frame of the y-oriented fibers.

Thus, by substituting in (9)–(12) the forces by their expressions in terms of the
displacement fields (3)–(6), the balance of force along x is obtained as

12Ey Iy

`3
y

(
(ux(nx ,m y−1)− 2ux(nx ,m y)+ ux(nx ,m y+1))

+
1
2`y(−θy(nx ,m y−1)+ θy(nx ,m y+1))

)
+

Ex Ax

`x
(ux(nx−1,m y)− 2ux(nx ,m y)+ ux(nx+1,m y))= 0. (13)

The continuity at the nodes of bending moments of the elements oriented along y
(after the simplification by 2Ey Iy/`y) reads

3
`y
(ux(nx ,m y−1)−ux(nx ,m y+1))− (θy(nx ,m y−1)+4θy(nx ,m y)+ θy(nx ,m y+1))= 0, (14)

the balance of force along y reads

12Ex Ix

`3
x

(
(u y(nx−1,m y)− 2u y(nx ,m y)+ u y(nx+1,m y))

+
1
2`x(−θx(nx−1,m y)+ θx(nx+1,m y))

)
+

Ey Ay

`y

(
u y(nx ,m y−1)− 2u y(nx ,m y)+ u y(nx ,m y+1)

)
= 0, (15)

and finally the continuity at the nodes of bending moments of the elements oriented
along x (after the simplification by 2Ex Ix/`x ) reads

3
`x
(−u y(nx−1,m y)+u y(nx+1,m y))−(θx(nx−1,m y)+4θx(nx ,m y)+θx(nx+1,m y))= 0. (16)

These four equations are split into two independent groups of equations: (13)–(14)
couples the variables ux and θy; while (15)–(16) couples the variables u y and θx .
Thus, it is sufficient to treat (13)–(14), being that the results of (15)–(16) are easily
deduced by changing the roles of axes x and y.
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4.3. Continuous formulation and asymptotic expansions. Let us introduce con-
tinuous kinematic descriptors (denoted by uppercase letters) coinciding with the
discrete kinematic variables of the pivots {nx ,m y} with coordinates xn = n`x and
ym = m`y :

ux(nx ,m y) =Ux(xn, ym), θy(nx ,m y) =2y(xn, ym), (17)

u y(nx ,m y) =Uy(xn, ym), θx(nx ,m y) =2x(xn, ym), (18)

and use Taylor series expansions to express the terms of the finite difference equa-
tions (13)–(14). By introducing the dimensionless variables x? = x/L and y? =
y/L , we have (for comparison, see [Piola 2014; Carcaterra et al. 2015])

ux(nx ,m y−1)− 2ux(nx ,m y)+ ux(nx ,m y+1)

= `2
y
∂2Ux

∂y2 (xn, ym)+
2
4!
`4

y
∂4Ux

∂y4 (xn, ym)+ O
(
`6

y
∂6Uy

∂y6

)
= ε2`?2y

∂2Ux

∂y?2
+ ε4`?4y

2
4!
∂4Ux

∂y?4
+ ε6`?6y

2
6!
∂6Ux

∂y?6
+ O(ε8), (19)

ux(nx−1,m y)− 2ux(nx ,m y)+ ux(nx+1,m y)

= ε2`?2x
∂2Ux

∂x?2
+ ε4`?4x

2
4!
∂4Ux

∂x?4
+ ε6`?6x

2
6!
∂6Ux

∂x?6
+ O(ε8), (20)

similarly,

− θy(nx ,m y−1)+ θy(nx ,m y+1)

= 2ε`?y
∂2y

∂y?
+ ε3`?3y

2
3!
∂32y

∂y?3
+ ε5`?5y

2
5!
∂52y

∂y?5
+ O(ε7), (21)

− ux(nx ,m y−1)+ ux(nx ,m y+1)

= 2ε`?y
∂Ux

∂y?
+ ε3`?3y

2
3!
∂3Ux

∂y?3
+ ε5`?5y

2
5!
∂5ux

∂y?5
+ O(ε7), (22)

and finally,

θy(nx ,m y−1)+ 4θy(nx ,m y)+ θy(nx ,m y+1)

= 62y + ε
2`?2y

∂22y

∂y?2
+ ε4`?4y

2
4!
∂42y

∂y?4
+ ε6`?6y

2
6!
∂62y

∂y?6
+ O(ε8). (23)

By construction, the coefficients of the power expansions for ε in (20)–(23) are
of the same dominant order, but also they contain terms of lower order. There-
fore, to really order the relative weight of the different addends, it is necessary to
introduce the asymptotic expansions of the variables Ux , Uy , 2x and 2y . This is
essential to effectively separate the power exponents and to ensure the coherence of
the passage to the limit ε→ 0. It should be noted that consecutive terms of Taylor
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expansions are systematically offset from ε2. It is therefore sufficient to introduce
the developments in the even powers of ε. Consequently, we are looking for fields
Ux , Uy , 2x , 2y in the generic form

Ux =U (0)
x + ε

2U (2)
x + ε

4U (4)
x + O(ε6U (6)

x ).

Thereafter, we will denote with a tilde the correction terms that are physically
observable, e.g.,

Ũ (4)
x = ε

4U (4)
x , 2̃(4)x = ε

42(4)x .

Referring the developments in power of ε2 in (20)–(23), we get

ux(nx ,m y−1)− 2ux(nx ,m y)+ ux(nx ,m y+1)

= ε2`?2y
∂2U (0)

x

∂y?2
+ ε4`?4y

(
∂2U (2)

x

∂y?2
+

2
4!
∂4U (0)

x

∂y?4

)
+ O(ε6),

(24)

ux(nx−1,m y)− 2ux(nx ,m y)+ ux(nx+1,m y)

= ε2`?2x
∂2U (0)

x

∂x?2
+ ε4`?4x

(
∂2U (2)

x

∂x?2
+

2
4!
∂4U (0)

y

∂x?4

)
+ O(ε6),

(25)

− θy(nx ,m y−1)+ θy(nx ,m y+1)

= ε`?y2
∂2

(0)
y

∂y?
+ ε3`?3y

(
2
∂2

(2)
y

∂y?
+

2
3!
∂32

(0)
y

∂y?3

)

+ ε5`?5y

(
2
∂2

(4)
y

∂y?
+

2
3!
∂32

(0)
y

∂y?3
+

2
5!
∂52

(0)
y

∂y?5

)
+ O(ε7),

(26)

− ux(nx ,m y−1)+ ux(nx ,m y+1)

= ε`?y2
∂U (0)

x

∂y?
+ ε3`?3y

(
2
∂U (2)

x

∂y?
+

2
3!
∂3U (0)

x

∂y?3

)

+ ε5`?5y

(
2
∂U (4)

x

∂y?
+

2
3!
∂3U (2)

x

∂y?3
+

2
5!
∂5U (0)

x

∂y?5

)
+ O(ε7),

(27)

θy(nx ,m y−1)+ 4θy(nx ,m y)+ θy(nx ,m y−1)

= 62(0)y + ε
2`?2y

(
2(2)y +

∂22
(0)
y

∂y?2

)

+ ε4`?4y

(
2(4)y +

∂22
(2)
y

∂y?2
+

2
4!
∂42

(0)
y

∂y?4

)
+ O(ε6).

(28)
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The calculations presented in this subsection provides an accurate transformation
of the finite differences into successive derivatives. This step is essential to get the
continuous asymptotic model valid in the limit ε→ 0.

5. Asymptotic macroscopic model

In (24)–(28), the macroscopic continuous fields and their macroscopic derivatives
appear. By substituting them in the equilibrium equations (13)–(14) we may obtain
a macroscopic continuous formulation of the equilibrium of pivots (equilibrium of
force along x and equilibrium of moment for the elements along y). To make
explicit which are the appearing powers of ε, it is convenient to write the obtained
equations in the nondimensional variables x? and y?, where L is the reference
length. As, by hypothesis, `x and `y are of order ε with respect to L , we have
`x = `

?
x`= ε`

?
x L and `y = ε`

?
y L . Thus, by limiting ourselves to the infinitesimals

O(ε6), the continuity of moments of the elements oriented along y (14) gives, after
grouping different terms,

6
(
∂U (0)

x

∂y?
+ L`?y2

(0)
y

)
+ ε2`?2y 6

(
∂U (2)

x

∂y?
+ L`?y2

(2)
y

)
+ε4`?4y

(
6
(
∂U (4)

x

∂y?
+L`?y2

(4)
y

)
+

2
4!

∂4

∂y?4

(
1
5
∂U (0)

x

∂y?
+L`?y2

(0)
y

))
+O(ε6)=0, (29)

and the equilibrium of forces along x (13) gives

Rxε
2`?2y

(
∂

∂y?

(
∂U (0)

x

∂y?
+ L`?y2

(0)
y

)

+ε2`?2y

{
∂

∂y?

(
∂U (2)

x

∂y?
+L`?y2

(2)
y

)
+
∂3

∂y?3

(
2
4!
∂U (0)

x

∂y?
+

1
3!

L`?y2
(0)
y

)}
+O(ε4)

)

+ε2`?2x

(
∂2U (0)

x

∂x?2
+ ε2`?2x

{
∂2U (2)

x

∂x?2
+

2
4!
∂4U (0)

x

∂x?4

}

+ε4`?4x

{
∂2U (4)

x

∂x?2
+

2
4!
∂4U (2)

x

∂x?4
+

2
6!
∂6U (0)

x

∂x?6

}
+ O(ε6)

)
= 0, (30)

where

Rx =
12Ey Iy

`3
y

`x

Ex Ax
.

The moment in (29) comes in the form of a series in which the mechanical char-
acteristics of beams do not interfere. The convergence of the series when ε→ 0
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implies that each involved term vanishes. Consequently,

∂U (0)
x

∂y?
+ L`?y2

(0)
y = 0, (31)

∂U (2)
x

∂y?
+ L`?y2

(2)
y = 0, (32)

∂U (4)
x

∂y?
+ L`?y2

(4)
y +

1
3 · 4!

∂4

∂y?4

(
1
5
∂U (0)

x

∂y?
− L`?y2

(0)
y

)
= 0. (33)

This precisely means that the equilibrium of moments for y fibers requires, with an
error being equal to O(ε4), a relationship between their rotation and their transverse
gradient, which is expressed in the dimensional fields as

∂Ux

∂y
+ `?y2y = O(ε4).

At the dominant order, 2y can thus be considered a hidden variable which does not
emerge in the macroscopic description at the leading order. Only by considering
the correction O(ε4) does the rotation differ from the transverse gradient because
we have

∂U (4)
x

∂y?
+ L`?y2

(4)
y =−

2
5!
∂5∂U (0)

x

∂y?5
,

or, in dimensional variables and denoting explicitly the observable corrections
Ũ (4)

x = ε
4U (4)

x , 2̃(4)x = ε
42

(4)
x :

∂Ũ (4)
x

∂y
+ `y2̃

(4)
y =−`

4 2
5!
∂5∂U (0)

x

∂y5 .

Let us now replace (31)–(32) in the balance equation (30). This leads to

Rxε
2`?4y

(
2
4!
∂4U (0)

x

∂y?4
+ O(ε4)

)
= `?2x

(
∂2U (0)

x

∂x?2
+ ε2`?2x

{
∂2U (2)

x

∂x?2
+

2
4!
∂4U (0)

x

∂x?4

})
+ O(ε4). (34)

To exploit this equation, it is necessary to weigh the effects of bending (left-hand
side term) and extension (right-hand side term). These effects are a consequence
of both the mechanical properties of considered system and of the nature of the
admitted kinematics. The mechanical parameters which we choose will introduce
the high contrast condition (8), which is expressed by

Rx = R?xε
2. (35)



140 CLAUDE BOUTIN, FRANCESCO DELL’ISOLA, IVAN GIORGIO AND LUCA PLACIDI

Regarding the nature of the macroscopic kinematics, we are led thus to distinguish
between low or high contrast situations in the axial and the transverse gradient.

5.1. Low contrast between axial and transverse gradient of Ux . We consider here
macroscopic kinematics where axial and transverse components of the displace-
ment gradient Ux are of the same order, i.e.,

∂U (0)
x

∂x?
= O

(
∂U (0)

x

∂y?

)
. (36)

This estimate explicitly means that the axial and transverse variations have as a
common evolution characteristic value O(L). This hypothesis is usually consid-
ered in the case of an elastic composite medium where the terms of the strain
tensor components are assumed to be of the same order. In this case, we obtain
successively (each relative to the orders ε0, ε2, ε4)

∂2U (0)
x

∂x?2
= 0,

∂2U (2)
x

∂x?2
+

2
4!
∂4U (0)

x

∂x?4
= 0,

∂2U (4)
x

∂x?2
+

2
4!
∂4U (2)

x

∂x?4
+

2
6!
∂6U (0)

x

∂x?6
= (`?x)

−2 R?x`
?4
y

2
4!
∂4U (0)

x

∂y?4
.

By simplifying and returning to the dimensional variables and observable correc-
tors, we deduce that

Ex Ax

`y

∂2U (0)
x

∂x2 = 0, (37)

Ex Ax

`y

∂2Ũ (2)
x

∂x2 = 0, (38)

Ex Ax

`y

∂2Ũ (4)
x

∂x2 =
Ey Iy

`x

∂4U (0)
x

∂y4 . (39)

Equations (37)–(38) mean that the tension of the fibers oriented along x is constant
to the accuracy ε4. Only by considering the order 4 of the correctors, the tension
of the beams varies due to the bending of orthogonal beams, as indicated by (39).

The assumption (36) obviously can not cover all cases of loading. In particular,
it is not predictive if the lattice is subjected to a uniaxial extension in a direction
that does not coincide with one of the directions of the fibers’ arrays (see Figure 2).
Indeed, if one considers the “red” fiber in Figure 2 (which presents experimental
evidence), it is clear that its state of tension cannot be constant; its tension is not
vanishing in the clamping but it clearly vanishes at the free end. To describe these
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Figure 2. An example of standard bias extension test, courtesy of
Tomasz Lekszycki, Marek Pawlikowski and Roman Grygoruk.

Figure 3. An example of generalized bias test while imposing a
shear displacement.

situations it is necessary to change the too restrictive hypothesis (36) by allowing
a strong contrast between the axial and transverse components of the gradient of
the macroscopic displacement.

5.2. Strong contrast between axial and transverse gradient of Ux . Thus we are
lead to consider macroscopic kinematics where the transverse gradient ∂U (0)

x /∂y?

dominates in comparison to the axial gradient ∂U (0)
x /∂x?, i.e.,

∂U (0)
x

∂x?
�
∂U (0)

x

∂y?
. (40)

This assumption reflects the fact that the axial characteristic length of variation of
Ux (denoted L x,a) is much larger than the transverse (denoted L x,t ) length (see,
e.g., experimental evidence presented in [dell’Isola et al. 2016d]). This is a conse-
quence of the high shear deformability of the pantographic network compared to
its deformability in the axis of the fibers.
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To assure scale separation, we are thus lead to consider as a reference length the
smaller between the two, i.e., L = L x,t , so that

∂ iU (0)
x

∂x?i
=

O(U (0)
x )

(L x,a/L)i
= O(U (0)

x )

(
L x,t

L x,a

)i

,
∂ jU (0)

x

∂y? j =
O(U (0)

x )

(L x,t/L) j = O(U (0)
x ).

Once we consider L x,t = ε
2L x,a , we have

∂U (0)
x

∂x?
= ε2O

(
∂U (0)

x

∂y?

)
, (41)

∂2U (0)
x

∂x?2
= ε4O

(
∂4U (0)

x

∂y?4

)
. (42)

The presence of a contrast in the components of the strain tensor as given by (41)
is unconventional in elastic composite mediums but arises naturally in the case
of weakly compressible viscous fluid (where the trace of the strain rate tensor is
negligible compared to its deviatoric component) or in beams and plates (where
deformations in the section of the beam — or in the thickness of the plate — are
negligible). This contrast is present also in pantographic sheets.

Replacing the estimate (42) into (34) we get at the leading order

∂2U (0)
x

∂x?2
= (`?x)

−2 R?x`
?4
y

2
4!
∂4U (0)

x

∂y?4
,

or, returning to the dimensional variables and normalizing by introducing the sur-
face of the periodic cell, we have

Ex Ax

`y

∂2U (0)
x

∂x2 =
Ey Iy

`x

∂4U (0)
x

∂y4 . (43)

This equation indicates that the normal force (left-hand side) varies at the first order
in the beams due to the shear force exerted by the orthogonal beams (right-hand
side). This is made possible because the transverse gradient is of two orders of
magnitude higher than that of the extension gradient (see again (41)).

Moreover, we note that (43) is more general than (37) and it is needed in
the considered mechanical system. Moreover, (43) degenerates to the (37) when
∂U (0)

x /∂x � ε2∂U (0)
x /∂y. We will use in what follows the description (43), which

applies to more general kinematics.

5.3. Synthesis of obtained results. The above results, derived from the system
(13)–(14) for the variables U (0)

x and 2(0)y is transposed by a similar analysis of the
system (15)–(16) to the variables U (0)

y and 2(0)x . The description in small defor-
mations of the orthogonal pantographic lattice is therefore obtained by restricting
the analysis to the dominant order (for simplicity, the exponents of order (0) are
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removed):

Ex Ax

`y

∂2Ux

∂x2 =
Ey Iy

`x

∂4Ux

∂y4 , (44)

Ey Ay

`x

∂2Uy

∂y2 =
Ex Ix

`y

∂4Uy

∂x4 , (45)

with the addition of the relationships between the transverse gradients and rotations:

∂Ux

∂y
+

√
`y

`x
2y = 0,

∂Uy

∂x
−

√
`x

`y
2x = 0. (46)

Remark that (44)–(45) can be rewritten by introducing two intrinsic characteristic
lengths ηx and ηy as follows:

∂2Ux

∂x2 = η
2
x
∂4Ux

∂y4 ,
∂2Uy

∂y2 = η
2
y
∂4Uy

∂x4 ,

where

η2
x :=

`y Ey Iy

`x Ex Ax
, η2

y :=
`x Ex Ix

`y Ey Ay
.

It is clear that the physics of the system is governed by these internal intrinsic
lengths which differ from the size of the cell.

The model governed by (44)–(45) is of the type of a conservative generalized
continuum medium having deformation energy that depends on first- and second-
order gradients of displacement (see [Alibert et al. 2003; Seppecher et al. 2011]).
Its evolution is ruled by two displacement fields which are independent and un-
coupled, i.e., Ux and Uy . This particular behavior is within the framework of
the second gradient continua where the internal actions are described by a stress
symmetric tensor T of order two and by a hyperstress tensor T of third order.
To make the identification, we pose (44)–(45) in the following form, where the
differential operator DIV denotes the Lagrangian divergency:

DIV(T −DIV(T))= 0, (47)

and where we used the definitions

T := 1
2C . (∇U +∇U t), T := D .∇∇U (48)

in which the symbol “.” denotes the repeated index saturation between different
order tensors and superscript “t” the transposition of second-order tensors. The
elasticity tensors C and D of order four and six respectively have the particular
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form defined by their components as

Cabcd :=
Ex Ax

`y
δaxδbxδcxδdx +

Ey Ay

`x
δayδbyδcyδdy, (49)

Dabcde f :=
Ey Iy

`x
δaxδbyδcyδdxδeyδ f y +

Ex Ix

`y
δayδbxδcxδdyδexδ f x . (50)

Remark that (separately) the tensors C and D are not coercive. For instance, pure
shear deformations do not have any first gradient energetic content, while any affine
displacement field does not have any second gradient energetic content. This is
consistent with the existence, for pantographic sheets, of floppy modes as nullifiers
of deformations energy, in addition to the standard rigid motions. Nevertheless,
considering both first and second gradient energies together, the system can be
qualified as “subcoercive” when suitable boundary conditions are imposed in such
a way that floppy modes are excluded. In the framework of this requirement, the
set of admissible displacements is restricted if compared to the one needed in first
gradient theory, where only rigid body motions are excluded. We conjecture that
in the set of considered admissible displacements, the total deformation energy is
definite positive and leads to well-posed problems. This seems physically well-
grounded and is confirmed by all the performed numerical simulations presented
in the last section.

To identify the class of physically meaningful boundary conditions, in the next
section we more closely study the structure of the considered energy.

5.4. Energy formulation and boundary conditions for pantographic lattices. The
general framework of second gradient continua (as formulated in [dell’Isola et al.
2015c]) enables, by means of the energy formulation and of the divergence theo-
rem, to specify the boundary conditions which can be consistently considered as
applicable to them.

Let B be a bidimensional medium whose elastic energy depends upon the dis-
placement gradient ∇U acting on the second-order stress tensor T and upon the
second displacement gradient acting on the third-order hyperstress tensor T. In
this case the energy W of B is

2W =
∫

B
(T : ∇U +T

...∇∇U) (51)

Transforming this expression through successive integrations by parts enables us
to make the link between the variation of internal energy and the energy supplied at
the boundary of B (see, e.g., [dell’Isola et al. 2015c]). As the considered system is
bidimensional, the boundary consists of a set of regular edges ∂B with unit normal
n and wedges ∂∂B consisting of the union of a finite number N of vertices SI , i.e.,
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∂∂B = ∪SI = {S}. For our calculations we introduce Levi-Civita tensorial nota-
tion, keeping track of the covariance and contravariance nature of the considered
tensorial quantities and we use Latin indices for Eulerian components and Greek
letters for Lagrangian components. Therefore, we have

δW =
∫

B
(T : ∇δU +T

...∇∇δU)=
∫

B
(T β

i δU
i
,β +T

αβ

i δU
i
,αβ)

=

∫
B
(−T α

i,αδU
i
−T

αβ

i,βδU
i
,α)+

∫
B
(T β

i δU
i
+T

αβ

i δU
i
,α),β

=

∫
B
(−T α

i,αδU
i
−T

αβ

i,βδU
i
,α)+

∫
∂B
(T β

i δU
i
+T

αβ

i δU
i
,α)nβ

=

∫
B
(T

αβ

i,βα − T α
i,α)δU

i
+

∫
∂B

(
(T β

i −T
βα

i,α)δU
i
+T

αβ

i δU
i
,α

)
nβ .

(52)

Using the equilibrium equation (47), the first integral in the right-hand side van-
ishes. Furthermore, the last term of the second integral can be decomposed into a
tangent and a normal contribution. As the considered system is bidimensional, the
boundary ∂B includes a set of regular edges. Thus, introducing the projector on
the tangent direction of ∂B, P = I−n⊗n (hence Pγα = δ

γ
α −nαnγ and P . P = P),

we have

δW =
∫
∂B

(
(T β

i −T
βα

i,α)nβδU
i
+(T

αβ

i nαnβ)δU i
,γ nγ+T

αβ

i nβ PδαδU
i
,γ Pγδ

)
=

∫
∂B

(
(T β

i −T
βα

i,α)nβδU
i
+(T

αβ

i nαnβ)δU i
,γ nγ

+(T
αβ

i nb PδαδU
i ),γ Pγδ −(T

αβ

i nβ Pδα ),γ Pγδ δU
i)

=

∫
∂B

(
(T β

i −T
βα

i,α)nβ−(T
αβ

i nβ Pδα ),γ Pγδ
)
δU i
+

∫
∂B
(T

αβ

i nαnβ)δU i
,γ nγ

+

∫
∂∂B

T
αβ

i nβ Pd
α NδδU i .

(53)

On the last integral on ∂∂B = {S}, the vectors n and N take the values n± and N±

defined on the both sides of the discontinuity of the edges. This is also the case
for T and P . On each side, the vector N is the tangent vector to ∂B which is the
outer pointing normal to the border of ∂B; see Figure 4. Thus P+ . N+ = N+ and
P− . N− = N−. In a condensed way, we can write (where the symbol f refers to
the tangent projection of a tensor on ∂B)∫

B
(T : ∇δU +T

...∇∇δU)

=

∫
∂B
((T−DIV T) . n−DIVf Tf) . δU+(T . n . n)δdU

dn
+

∑
{S}

[T . n . N ] . δU (54)
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n−
N− N+

n+

∂B

Figure 4. Sketch of vectors n and N on the boundaries.

with
[T . n . N ] = (T+ . n+ . N+)+ (T− . n− . N−).

The previous integration by parts implies that in order to have well-posed prob-
lems, one has to suitably assign boundary conditions in a specific way (see, e.g.,
[Mindlin 1964]). In particular, on any regular point belonging to the set of edges
∂B one can assign:

• either a component U i or its dual quantity (T b
i −T

βα

i,α)nβ−(T
αβ

i nβ Pδα ),γ Pγδ . In
the case of the rectilinear edge ∂B the normal and the projector are constants
and this expression simplifies into (T β

i −T
βα

i,α − T
αβ

i,γ (δ
γ
α − nγ nα))nβ ;

• either a component of displacement normal gradient, dU i/dn, or its dual quan-
tity (Tαβ

i nanβ).

Moreover, on vertices constituting ∂∂B = {S} one can assign:

• either a component U i or its dual quantity [Tαβ

i nb Nα] which expresses the
discontinuity of the wedge on the vertices (see Figure 4).

Therefore the weak condition for equilibrium is given by

δW =
∫
∂B

f ext
i δU i

+ τ ext
i δU i

,γ nγ +
∫
∂∂B

Fext
i δU i, (55)

where external actions are given by forces per unit line f ext
i but also by concentrated

forces on vertices Fext
i and by double forces per unit line τ ext

i (see [Germain 1973]).
One can apply these results to the particular pantographic lattice considered,

where the preferred orthogonal directions x and y coincide with the array of ma-
terial fibers. In the context of small deformations, the Lagrangian and Eulerian
coordinate systems can be identified. In the pantographic case given by (49) and
(50) the deformation energy is given by

2W =
∫

B

(
Ex Ax

`y
(U x

,x)
2
+

Ey Ay

`x
(U y

,y)
2
+

Ey Iy

`x
(U x

,yy)
2
+

Ex Ix

`y
(U y

,xx)
2
)

dx dy (56)
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so we have that, as T = ∂W/∂∇U and T = ∂W/∂∇∇U , the only nonvanishing
components of stress and hyperstress are

T x
x =

Ex Ax

`y
U x
,x , T y

y =
Ey Ay

`x
U y
,y,

Txx
y =

Ex Ix

`y
U y
,xx , Tyy

x =
Ey Iy

`x
U x
,yy .

Thus, for the pantographic sheet, the two types of kinematic and static (more
often called natural) boundary conditions which apply to a straight line edge of
normal n= nx ex + ny ey take the following form:

U x dual of T x
x nx + (−Tyy

x,y(1+ n2
x)+Tyy

x,x nx ny)ny,
dU x

dn
dual of Tyy

x n2
y,

U y dual of T y
y ny + (−Txx

y,x(1+ n2
y)+Txx

y,ynx ny)nx ,
dU y

dn
dual of Txx

y n2
x .

On the vertices, noting that n and N are orthogonal, the flux dual to the dis-
placement components U x and U y are respectively T

−yy
x n−x n−y −T

+yy
x n+x n+y and

T−xx
y n−x n−y −T+xx

y n+x n+y . Remark that they vanish when the vertex angle is 1
2π

and the boundary is parallel to the fibers.
For a better physical insight, consider for instance a straight edge oriented along

the direction x , then n= ey and the boundary condition simplifies to

U x dual of −Tyy
x,y =−

Ey Iy

`x
U x
,yyy,

dU x

dy
dual of Tyy

x =
Ey Iy

`x
U x
,yy,

U y dual of T y
y =

Ey Ay

`x
U y
,y,

dU y

dy
dual of Txx

y n2
x = 0.

These boundary conditions on the lattice can be easily understood by recalling
standard beam theory. They show this:

• A virtual displacement tangent to the fiber materializing the edge develops
energy due to the shear forces in the orthogonal fibers.

• A virtual displacement normal to the edge fiber develops energy due to the
tension forces in the orthogonal fibers.

• A rotation of the edge fiber develops energy due to the couple in the orthogonal
fibers.

• No energy is developed (in small deformations) by the extension of the or-
thogonal fibers associated with the couple of the edge fiber.

If the vertex at the end of the edge along x presents an internal angle α, the static
quantities dual to the components U x and U y are respectively the weighted couples
T
+yy
x

1
2 sin(2α) and −T+xx

y
1
2 sin(2α). No energy is developed if the vertex angle is

1
2π with edges oriented along the fibers.
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A similar interpretation applies when the straight edge presents an angle with the
fiber orientation; however, due to the coupling between the forces and couples in
different directions, the physical interpretation of the boundary condition becomes
more difficult.

In this paper, for the sake of simplicity, we consider only imposed boundary
conditions on displacements and displacement gradients and we consider weak
form (55) of equilibrium conditions, so that no dual boundary conditions (on forces
or double forces) are assigned. In further papers, we will consider more general
situations.

6. Some equilibrium shapes of linear pantographic sheets:
numerical simulations

Pantographic sheets have an exotic behavior which is not only characterized by
their anisotropy as evidenced by:

(1) their vanishing resistance to shear deformation, and

(2) their significant resistance to elongation along fibers, and also by their capacity
to resist variations in their so-called “geodesic curvature” (see [dell’Isola and
Steigmann 2015; Steigmann and dell’Isola 2015; Giorgio et al. 2015; Giorgio
et al. 2016]), i.e., the changes of curvature of material curves induced by in-
plane displacements.

Moreover, in their deformation patterns one can observe the onset of inner bound-
ary layers where bending of constituting beams is concentrated, as suggested by
the existence of the intrinsic characteristic lengths ηx and ηy .

The aim of this section is to provide numerical illustrations of the theoretical de-
velopments presented in the previous sections. The considered examples may seem
purely academic or dictated simply by the taste of investigating mathematical struc-
tures (see [Dieudonné 1987]). Although we indeed consider that scientific knowl-
edge is based on the study of exemplary cases; see [Russo 2004; Hero/Woodcroft
1851; Heath 1921a; 1921b; Archimedes/Heath 1897; 1912]. In addition, a poten-
tial application of the presented results concern the forming of fiber reinforced
composites (see, e.g., [Cao et al. 2008; Launay et al. 2008; d’Agostino et al. 2015;
Harrison 2016; Abdiwi et al. 2013; Nikopour and Selvadurai 2014]).

All the presented numerical simulations are obtained by a code created using
COMSOL Multiphysics. The homogenized energy introduced in this paper (56) is
minimized by using the package “Weak Form PDE” and by introducing standard
third-order Hermite finite elements. While the used code is surely not optimized
for the introduced problem (we believe that the recently developed numerical meth-
ods would be more efficient, see, e.g., [Cazzani et al. 2016a; 2016b; Greco and
Cuomo 2013; 2014; 2015; 2016; Turco and Aristodemo 1998; Beirão da Veiga



LINEAR PANTOGRAPHIC SHEETS: MICRO-MACRO MODELS IDENTIFICATION 149

et al. 2008; Della Corte et al. 2016]), its rate of convergence seems satisfactory
for getting preliminary results concerning the behavior of the simplest structures;
actually, it is based on the introduction of an auxiliary tensor field which appears
in the deformation energy and is equated to the displacement gradient by means of
suitable fields of Lagrange multipliers. Remark also that all presented numerical
simulations are really and intrinsically mesh-independent, because of the properties
of the introduced continuum model, where the second gradient of displacement is at
the same time modeling the relevant physical properties and supplies a regularizing
effect on equilibrium equations.

In the presented simulations we have chosen a lattice made of square cells, so
that `x = `y = ` and we have imposed that the x and y fibers have identical
rectangular sections (having sides a and b) and elastic moduli so that Ey = Ex ,
Ix = Iy =

1
12 ba3 and Ax = Ay = ab. As a consequence we have that

η2
= η2

x = η
2
y =

Ix

Ax
=

Iy

Ay
=

1
12a2.

The values a = 0.9 mm and b = 1.6 mm are used for pantographic structures,
following experimental measurements (see [dell’Isola et al. 2015b]) having rectan-
gular sections. Young’s modulus is 1600 MPa. We remark that the elastica model
for beams is applicable in the considered situation as `= 4.95 mm and the number
of cells is sufficiently large (L = 42.42× `) to apply the homogenized model.

In the following subsections, we present the numerical simulation of bias tests
in different configurations. First, we consider rectangular specimens undergoing
standard bias test in extension, but also in shear and bending. The results demon-
strate the ability of the model to catch the occurrence of highly nonhomogeneous
deformation patterns with inner boundary layer, and illustrate the dependance of the
pattern on the different imposed deformations. Second, the same type of bias tests
are performed on circular specimens in order to investigate the role of the sample
geometry on the equilibrium shape and on the elastic energy distribution. Finally,
extension and bending bias tests on circular specimens with a central squared of
different orientations are simulated. The comparison with the previous cases evi-
dence the effect of different boundary conditions.

In all the following figures, the black lines indicate the local actual orientation
of the material fibers (which are orthogonal in the reference configuration), and the
deformed shape is displayed together with the map of the stored energy density. All
the calculations are performed in the framework of small deformations; however,
for a better insight, the deformation is magnified in the figures.

6.1. Bias tests on rectangular pantographic sheet. We start by considering a pan-
tographic sheet having a rectangular initial shape with the long side three times
longer than the short one.



150 CLAUDE BOUTIN, FRANCESCO DELL’ISOLA, IVAN GIORGIO AND LUCA PLACIDI

u0
u0 q0

Figure 5. Equilibrium shapes of rectangular specimens submitted
to extension (left) shear (center) and bending (right) displacement.
The colors indicate the levels of stored energy density.

In the standard extension bias test the short sides are rigidly displaced in the
direction of the long side. Figure 5, left, shows the small deformation pattern.
Remark that the deformation energy is concentrated along the material lines con-
stituted by some fibers and that, while the fibers are extensible in the present case,
the structure of the deformed shape is similar to the one described by Pipkin [1980;
1981] in the case of inextensible fibers. Notice also that the distribution of defor-
mation is strongly nonhomogeneous while respecting the symmetry of the loading.
The simulation enables the identification of several zones with different kinematics.
The partitioning of the specimen can be described as follows:

– The clamping zones that consists of two “isosceles triangles” with bases on
the short sides. These areas do not sustain any significant deformation, neither
in extension nor in shear, so the first gradient description (37) applies. The
vanishing stored energy results here from the quasirigid body motion of these
regions.

– The deformed zones outside of the aforementioned triangles, in which large
shear deformations arise. In this highly sheared domain, the behavior is gov-
erned by the second gradient description (44)–(45). One distinguishes a cen-
tral and four lateral subdomains of vanishing stored energy delimited by tran-
sition zones. The different subdomains correspond to the occurrence of local
“floppy” modes. Indeed, because of the specific boundary condition, “floppy”
modes on the whole specimen are forbidden. Nevertheless, the minimum of
energy is attained by activating local floppy modes, far from the boundary
conditions. This results in large parts of the body where the deformation
energy is very close to vanishing.

– The transition zones between the different domains (of quasifloppy modes or
quasimonolithic type) consist in the inner boundary layers where the bending
of the fibers is concentrated to accommodate the different kinematics that
prevails in the two regions in contact. Such layers, which concentrate the
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u0
u0 q0

Figure 6. Equilibrium shapes of circular specimens submitted to
extension (left) shear (center) and bending (right) displacement.
The colors indicate the levels of stored energy density.

elastic energy, take place along material lines constituted by fibers and are
characterized by large gradients of shear deformation. These specific features
are the direct signature of the second gradient effects: a standard Cauchy
continuum description (i.e., simple gradient description, as in (37)) would
lead to a homogeneous deformation pattern and avoid the development of
shear bands.

Furthermore, the qualitative and quantitative comparison of the numerical simu-
lations plotted on Figure 5, left, and the experimental data presented in [dell’Isola
et al. 2015b] clearly argue in favor of the second gradient description (44)-(45) for
two reasons. First, the experimental deformation pattern is obviously nonhomoge-
neous with inner boundary layers whose structure presents a similar geometry as
that observed in the simulation. Second, by making a best fit of the experimental
data [dell’Isola et al. 2015b], the effective parameters of the second gradient con-
tinuum model have been identified. It happens that this “blind” procedure supplies
exactly the same values of the effective parameters as the one calculated from the
micro-macro upscaling procedure, once the geometric and mechanical properties
of the cell beams of the sheet tested experimentally are taken.

In addition, simulations of shear bias tests with uniform lateral displacement im-
posed on the top side and bending bias tests with rotational displacement imposed
on the top side (corresponding to a rigid body rotation centered in the middle of the
specimen) have been done. The results are displayed in Figure 5, center and right,
respectively. Similar general comments as done for the extension test still apply;
however, the geometry of the shear bands and the energy distribution is modified.
In particular, the partitioning of the specimen submitted to bending shows only one
subdomain of quasifloppy mode which is confined between two quasimonolithic
zones.

6.2. Bias test on circular pantographic sheets. Consider now the same bias test
as the previous one, except that the rectangular pantographic sheet is replaced by a
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sheet of circular initial shape. The imposed deformations are obtained by clamping
one circular arc and imposing a rigid displacement on the opposite one.

In Figure 6, left, we consider the extension imposed by a relative rigid translation
of the two arcs in the direction of the common bisecting diameter. Note the great
similarity of the deformation pattern obtained with rectangular and circular sheets,
when focusing on the internal rectangular domain considered in the standard bias
test. This means that, independently of rectangular or circular geometry of the
sheet, the structure of the deformation pattern is kept (almost) unchanged when
identical kinematic boundary conditions are imposed. Remark also that the largest
lateral dimension of the circular sheet enables the inner boundary layers to extend
and intersect. Thus the partitioning of the specimen is complemented by the ap-
pearance of two additional lateral subdomains.

These observations indicate that in the considered cases, the structure of the
inner boundary layer (hence of the partitioning) mostly results from the geometry
of the boundary conditions, while the extension of the shear bands depends on the
geometry of the whole body. Furthermore, in the circular case, the activation of
the deformation outside of the rectangle implies additional energy. Therefore, to
reach the same displacement imposed at the boundaries, a larger force is required
in the circular case than in the rectangular case.

In Figure 6, center, the relative rigid displacement is in the direction orthogonal
to the bisecting diameter and imposes a shear to the specimen. The resulting shear
deformation pattern is similar to the one activated in extension (Figure 6, left), but
with different orientations of the inner boundary layers. The comparison with the
case of rectangular sheet leads to similar comments as above.

In Figure 6, right, the relative displacement of the two arcs is obtained by fixing
one arc and by rotating the second one with respect the center of the circle. Remark
that the partitioning of the specimen is similar as in the rectangular case but here
the boundary layers invade the whole body.

6.3. Bias test on initially circular pantographic sheets with central holes. In the
same body considered in the previous subsection, a square hole (of 14×14 cells)
is now carved in its central part. The initial orientation of the hole relative to the
fibers varies from zero (i.e., the sides of the square are along the fibers) to 1

8π

and 1
4π (i.e., the edges of the square are along and orthogonal to the extension

displacement). These different cases enable the investigation of the effect of the
hole on the deformation pattern and on the onset of inner boundary layers.

One may expect that when a hole is carved in a subdomain corresponding to
quasifloppy modes, its influence should be negligible since in both cases the hole
or floppy modes deformation occurs with no energy expense. However, if a hole
intersects the deformation boundary layers in which the energy would be localized



LINEAR PANTOGRAPHIC SHEETS: MICRO-MACRO MODELS IDENTIFICATION 153

u0 u0 u0

Figure 7. Equilibrium shapes for extension bias test of a circular
sample with a squared hole: left, whose edges are oriented along
fibers; center, rotated at an angle of 1

8π ; right, rotated at an angle
of 1

4π . The colors indicate the levels of stored energy density.

q0 q0 q0

Figure 8. Equilibrium shapes for bending test of a circular sample
with a squared hole: left, whose edges are oriented along fibers;
center, rotated of an angle of π/8; right, rotated of an angle of 1

4π .
The colors indicate the levels of stored energy density.

in absence of a hole, then the energy distribution is necessarily modified and so
does the deformation patterns.

This is what is observed in the simulations. The edges of the carved hole are
such that when oriented along the fibers, the hole almost belongs to the central
floppy mode subdomain that arises in the noncarved sheet, while when rotated,
two corners of the hole may cross the boundary layers of the intact sheet. In
extension tests presented in Figures 7, left and right, the intersection of the carved
hole with the deformation boundary layers of the intact body is relatively small
and the deformation patterns are weakly disturbed. This is not the case in Figure 7,
center, where the hole cuts the material lines, i.e., fibers in which the energy would
be concentrated in an intact body. As a consequence, the deformation response
and the partitioning of the specimen change significantly. The same trends are
observed for the bending test: weak perturbations arise in Figure 8, left, but large
and dramatic change appears in Figure 8, center and right, respectively.
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7. Conclusions

Pantographic sheets belong to the specific class of architectured materials whose
mechanical behavior is characterized by:

• very high contrast of extensional and bending stiffness at microscopic level
(see (35));

• very high contrasted gradients of displacement in the axial and transverse
direction at the macrolevel (see (40));

• a microstructure which produces a discretely oriented, orthotropic material
exhibiting an extreme anisotropy leading to the presence of two preferred
material directions having very high extensional stiffness; this circumstance
causes the onset of internal boundary layers where gradients of deformation
may arise.

The standard (Cauchy or first gradient) continuum models were conceived under
some implicit assumptions which do not allow for the description of all above
listed extreme mechanical properties [dell’Isola et al. 2015a]. For this reason, it
is needed to introduce, for pantographic sheets, a generalized continuum model
by reconsidering, at the very beginning, the standard modeling procedure. Indeed
a consistent model should allow for, in particular, the description of deformation
gradient concentrations induced by imposed boundary displacements. To be driven
in the construction of the most suitable model we use the asymptotic homogeniza-
tion method extensively presented in [Boutin and Auriault 1993]. It allows for the
rigorous construction of a description able to encompass all mentioned atypical
properties.

Even if we limit ourselves to the case of linearized models in statics (and in
the absence of body forces), we still get a nonstandard second gradient continuum
model. Moreover, the advantage of used micro-macro upscaling procedure is that
it allows us to determine firstly the atypical structure of the constitutive and balance
equations and secondly all relative constitutive parameters (i.e., those specifying
the first gradient and second gradient terms in deformation energy). This is done
explicitly in terms of the microscopic properties of the elementary cells constitut-
ing the pantographic sheet. Furthermore, the presented micro-macro identification
provides a design rule for pantographic bidimensional continua.

The main advances provided by this paper compared to some previous works
on pantographic sheets lie in the three following points:

• The homogenization method leads to a clear and rigorous micro-macro iden-
tification procedure. Hence, the structure of the homogenized description and
its parameters are explicitly deduced from the cell. This differs from the a
priori variational approaches where a macroscopic description is proposed
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but its applicability to specific microstructures can only be postulated. Be-
sides, compared to direct numerical simulations at the microscale [dell’Isola
et al. 2016b], the established model presents a great advantage, in terms of
computational cost and also of in terms of physical understanding of the actual
behavior.

• The description enables us to account for the low extensibility and the high
bending deformability. It thus enables us to overcome the drawback of the
studies that consider inextensible fibers [dell’Isola et al. 2016c].

• The physical insight of pantographic systems is improved by a simple interpre-
tation of the macroscopic description: the tension in a fiber varies because of
the shear forces transferred through the pivots by the orthogonal fibers. Even if
the paper focuses on small deformations, this mechanism remains essentially
the same (albeit complicated by the nonorthogonality of the fibers) at large
deformation [dell’Isola et al. 2016d].

Note that we only consider small in-plane deformations. However, the same
homogenization method can be extended to investigate buckling and out-plane
deformation as discussed in [Giorgio et al. 2015; 2016].

The obtained models can be framed in the context of generalized continuum
theories and immediately allows for the explicit determination of the deformation
energy and related boundary conditions. The atypical features of the described
continuum model for pantographic sheets are reflected by its atypical mathematical
properties. That is:

• the PDEs determining the equilibrium configurations involve second and forth-
order partial derivatives terms which may have a comparable order of magni-
tude; in the studied case of orthogonal fibers, the displacement fields along
the fibers are governed by uncoupled PDEs;

• the deformation energy is not coercive in the standard sense. However, using
specific boundary conditions, consistently established from the found expres-
sion for deformation energy, we establish the definite positiveness of the de-
formation energy functional, which simultaneously involves first- and second-
order of displacement gradients; we conjecture that such formulated problems
are well-posed.

The corresponding atypical physical properties of pantographic sheets consist in
the following circumstances:

• the extensional forces along a fiber are balanced by the shear forces due to the
bending of its transverse fibers (see (44), (45)),
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• the balance of couples is separately valid for the two arrays of orthogonal
fibers, so that the fiber rotation is proportional to the axial gradient of trans-
verse displacement; see (46).

The numerical simulations which we have presented are aimed at illustrating the
performances of the obtained model. Indeed, pantographic sheets show very pe-
culiar deformation patterns exhibiting regions of concentrated deformation energy.
In particular, when applied to rectangular specimen the model:
• it allows for the determination, already in the linear case, of the region where

the deformation energy is localized without any further a priori assumptions;

• it shows that the diffusion patterns of deformation inside the specimen differ
notably from those shown in first gradient material. In particular, they are
canalized in a way determined by the material symmetry and boundary condi-
tions, while their thickness is determined by the characteristic length specified
by the competition between the first and second gradient stiffnesses;

• the described features are confirmed by considering a specimen of circular
shape with rectangular holes.

All these features and predictions match at least qualitatively the experimental ev-
idence, e.g., [dell’Isola et al. 2015b]. It then appears that the pantographic sheet
is an archetypical-oriented material in which second gradient effect plays a crucial
role and for which it is possible to get a close description of the underlying actual
physical mechanism.

There are many worthy issues that may be investigated concerning the complex
structure here analyzed:
• a linearized analysis of pantographic structures with nonorthogonal and un-

even fibers (this case is also relevant as it may give a tangent model for large
deformations) and the determination of some analytical solutions of found
PDEs;

• the comparison of the presented theory with further experimental evidence for
possible improvement in the idealized model;

• the exploration of the application of the model to the mechanics of fabrics,
the analysis of the dissipation that can arise from the interaction of the fibers
or from internal friction (see, e.g., [Nadler and Steigmann 2003]) and the
extension to three-dimensional deformations;

• buckling phenomena which can produce wrinkling (see, e.g., [Giorgio et al.
2016; Rizzi and Varano 2011; Rizzi et al. 2013; Gabriele et al. 2012; Caras-
sale and Piccardo 2010; Piccardo et al. 2015]) and damage detection and its
evolution (see, e.g., [Yang et al. 2011; Misra and Singh 2013; Andreaus and
Casini 2016; Placidi 2015; Placidi 2016]).
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Finally, as future and more challenging lines develop, considering biological
applications, it is conceivable that a morphoelastic pantographic continuum can
be employed as a “smart” prosthesis (see, e.g., [McMahon et al. 2011]). In this
context, it is possible also to equip the pantographic structure with transducers that
can act both as sensors or actuators in order to induce some functional adaptation
capabilities (see, e.g., [D’Annibale et al. 2015a; D’Annibale et al. 2015b; Andreaus
and Porfiri 2007]).
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