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THE GENERAL FORM OF THE RELAXATION OF A PURELY
INTERFACIAL ENERGY FOR STRUCTURED DEFORMATIONS

MIROSLAV ŠILHAVÝ

This paper deals with the relaxation of energies of media with structured de-
formations introduced by Del Piero and Owen (1993; 1995). Structured defor-
mations provide a multiscale geometry that captures the contributions at the
macrolevel of both smooth and nonsmooth geometrical changes (disarrange-
ments) at submacroscopic levels. The paper examines the special case of Choksi
and Fonseca’s (1997) energetics of structured deformations in which the unre-
laxed energy does not contain the bulk contribution. Thus, the energy is purely
interfacial but of a general form. New formulas for the relaxed bulk and inter-
facial energies are proved. The bulk relaxed energy is shown to coincide with
the subadditive envelope of the unrelaxed interfacial energy while the relaxed
interfacial energy is the restriction of the envelope to rank-1 tensors. Moreover,
it is shown that the minimizing sequence required to define the bulk energy in
the relaxation scheme of Choksi and Fonseca (1997) can be realized in the more
restrictive class required in the relaxation scheme of Baía, Matias and Santos
(2012), thus establishing the equality of relaxed energies of the two approaches
for general purely interfacial energies. The relaxations of the specific interfacial
energies of Owen and Paroni (2015) and Barroso, Matias, Morandotti and Owen
(2017) are simple consequences of our general results.

1. Introduction

This paper deals with the relaxation of nonclassical continua modeled as media
with structured deformations introduced by Del Piero and Owen [1993; 1995].1 In
their original setting, a structured deformation is a triplet (K, g,G) of objects of the
following nature. The set K⊂ R3, the crack site, is a subset of vanishing Lebesgue
measure of the reference region �, the map g : � \ K → R3, the deformation
map, is piecewise continuously differentiable and injective, and G is a piecewise

Communicated by Gianpietro Del Piero.
MSC2010: primary 49J45; secondary 74A60, 74G65, 15A99.
Keywords: structured deformations, relaxation, subadditive envelope, interfacial energy, bulk
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1The reader is referred to the proceedings [Del Piero and Owen 2004] and to the recent survey

[Baía et al. 2011] for additional references and for further developments.
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continuous map from � \K to the set of invertible second-order tensors describing
deformation without disarrangements.

Within this context, simple deformations are triples (K, g,∇g) where g is a
piecewise smooth injective map with jump discontinuities describing partial or full
separation of pieces of the body. In view of this, in the general case of a structured
deformation (K, g,G), the tensor

H =∇g−G,

the deformation due to disarrangements, measures the departure of (K, g,G) from
the simple deformation (K, g,∇g).

Choksi and Fonseca [1997] introduced into the theory of structured deforma-
tions energy considerations and the ideas of relaxation. For further studies in
one- and multidimensional settings, see [Del Piero 2001; 2004]. It is well-known
that the existing techniques of relaxation of the calculus of variations and con-
tinuum mechanics are unable to cope with injectivity requirements. Accordingly,
Choksi and Fonseca neglect the injectivity requirement; in addition, they assume
weaker regularity. In their interpretation, structured deformations are pairs (g,G)
where g : �→ Rn is a special Rn-valued map of bounded variation from the
space SBV(�) and G : �→ Lin is an integrable Lin-valued map from the space
Ł1(�,Lin).2 Thus,

SD(�) := SBV(�)×Ł1(�,Lin)

is the set of all structured deformations. Structured deformations of the form (g,∇g)
with g ∈ SBV(�) are called simple deformations in this paper.

The relaxation starts from the energy

E(g)=
∫
�

W (∇g) dV +
∫

J (g)
ψ([[g]], νg) dA (1)

of a simple deformation g ∈ SBV(�). Here V and A are the Lebesgue measure
and the (n − 1)-dimensional Hausdorff measure in Rn and ∇g is the absolutely
continuous part of the derivative (= gradient) Dg of g, while the singular part

Dsg := [[g]]⊗ νgA x J (g)

is a tensor-valued singular measure describing the discontinuities of g; that part is
formed from the jump set J (g)⊂� of g, the jump [[g]] of g on J (g) and the normal
νg to J (g). The reader is referred to (24), below, for a detailed description of these
objects. The material is characterized by the bulk energy density W : Lin→ R and

2For brevity of notation, we omit the target spaces and write SBV(�) ≡ SBV(�, Rn) and
Ł1(�,Lin)≡ L1(�,Lin). See Section 3 for more notation and detailed definitions.
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by the interfacial (or cohesion) energy ψ : Dn→ R, where we denote

Dn = Rn
× Sn−1.

The approximation theorem of Del Piero and Owen [1993, Theorem 5.8] says
that every structured deformation is a well-defined limit of simple deformations. In
the framework of Choksi and Fonseca [1997] (see also [Šilhavý 2015]), this means
that corresponding to each structured deformation (g,G) ∈ SD(�) there exists a
sequence (gk,∇gk) ∈ SD(�) (i.e., with gk in SBV(�)) such that

gk→ g in Ł1(�, Rn),

∇gk ⇀
∗ G in M(�,Lin), (2)

sup{|∇gk |Ł1(�,Rn) : k = 1, . . . }<∞.

The relaxed energy of a structured deformation (g,G) ∈ SD(�) is defined by

I (g,G)= inf
{
lim inf
k→∞

E(gk) : gk ∈ SBV(�) satisfies (2)
}
. (3)

Thus, a sequence approaching the above infimum realizes the most economical
way to build up the deformation (g,G) using approximations in SBV . The relax-
ation theorem of Choksi and Fonseca [1997, Theorems 2.6 and 2.17, Remark 3.3]
says that, under some assumptions on W and ψ (a particular case of which are
Assumptions 2.1, below), the relaxed energy admits the integral representation

I (g,G)=
∫
�

H(∇g,G) dV +
∫

J (g)
h([[g]], νg) dA (4)

where H and h are some functions determined explicitly in the cited theorems
(Theorem 2.2 presents formulas for H and h for a particular case).

This paper deals with the relaxation of energy functions E for which the bulk
contribution vanishes, i.e., with energy functions of the form

E(g)=
∫

J (g)
ψ([[g]], νg) dA (5)

for each g ∈ SBV(�). The main result, Theorem 2.3, below, gives explicit descrip-
tions of the functions H and h from (4) and applies them to give simplified proofs
of two particular cases Examples 2.5 and 2.6 given previously in [Owen and Paroni
2015; Barroso et al. 2017].

2. The main result and examples

We make the following standing hypotheses about ψ .

2.1. Assumptions. (i) The function ψ : Dn→ R is continuous.
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(ii) We have ψ(−a,−b)= ψ(a, b) and

0≤ ψ(a, b)≤ C1|a| (6)

for every (a, b) ∈ Dn and some C1 > 0.

(iii) The function ψ( · , ν) is subadditive and positively homogeneous for each
ν ∈ Sn−1.

To ease the statements of the results, we extend any function ζ : Dn→[0,∞) to an
identically denoted function ζ : Rn

× Rn
→ [0,∞) by homogeneity with respect

to the second variable, i.e., by assuming that the extended function satisfies

ζ(a, tb)= tζ(a, b) (7)

for any t ≥ 0 and (a, b) ∈ Rn
× Rn . This convention applies in particular to the

functions ψ and h.
We need some notation to formulate the main results. Let Q = (− 1

2 ,
1
2)

n , and
for every M ∈ Lin, let wM : ∂Q→ Rn be given by

wM(x)= Mx for every x ∈ ∂Q. (8)

Furthermore, if (a, b) ∈ Dn , let Qb be any cube with unit edge, center at 0 ∈ Rn

and two faces normal to b, and let za,b : Qb→ Rn be the map defined by

za,b(x)= 1
2a(sgn(x · b)+ 1), x ∈ Qb. (9)

Finally, if u ∈ SBV(�), let us put

9(Dsu) :=
∫

J (u)
ψ([[u]], νu) dA. (10)

The following statement is a particular case W = 0 of the relaxation theorem of
Choksi and Fonseca [1997, Theorems 2.6 and 2.17, Remark 3.3].

2.2. Theorem. The effective energies H and h are given by

H(A, B)= inf
{
9(Dsu) : u ∈ SBV(Q), u = wA on ∂Q,

∫
Q
∇u dV = B

}
(11)

for each A, B ∈ Lin and

h(a, b)= inf{9(Dsu) : u ∈ SBV(Qb), u = za,b on ∂Qb, ∇u = 0 on Qb} (12)

for each (a, b) ∈ Dn .

The following theorem, the main result of this paper, shows that the functions H
and h admit a much more explicit description in terms of a single function 8.
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2.3. Theorem. The functions H and h in Theorem 2.2 are given by

H(A, B)=8(A− B), (13a)

h(a, b)=8(a⊗ b) (13b)

for every A, B ∈ Lin and (a, b) ∈ Dn , where 8 is a subadditive and positively ho-
mogeneous function on Lin defined by each of the following equivalent Assertions
(i)–(iv); moreover, for dyadic arguments, we have an additional Assertion (v).

(i) 8 is the biggest subadditive function on Lin satisfying

8(a⊗ b)≤ ψ(a, b) for every (a, b) ∈ Dn; (14)

i.e.,

8(M)= sup
{
2(M) :2 is subadditive on Lin

and 2(a⊗ b)≤ ψ(a, b) for every (a, b) ∈ Dn
}
. (15)

(ii) For every M ∈ Lin,3

8(M)= inf
{ m∑

i=1

ψ(ai , bi ) : (ai , bi )∈ Dn, i = 1, . . . ,m,
m∑

i=1

ai⊗bi = M
}
. (16)

(iii) For every M ∈ Lin,

8(M)= inf{9(Dsu) : u ∈ SBV(Q), u = wM on ∂Q, ∇u = 0 on Q}. (17)

(iv) For every M ∈ Lin,

8(M)= inf
{
9(Dsu) : u ∈ SBV(Q), u = wM on ∂Q,

∫
Q
∇udV = 0

}
. (18)

(v) For arguments of the form a⊗ b, where (a, b) ∈ Dn ,

8(a⊗ b)= inf{9(Dsu) : u ∈ SBV(Qb), u = za,b on ∂Qb, ∇u = 0 on Qb}. (19)

The proof of Theorem 2.3 is given in Sections 5 and 6, below.

2.4. Remarks. (a) Since the pointwise supremum of any family of subadditive
functions is subadditive (e.g., [Hille and Phillips 1957, Theorem 7.2.2]), (15)
really defines a subadditive function.

(b) Among the above characterizations of 8, the closely related novel forms (i)
and (ii) must be considered as the most important. The main advantage of (i)
and (ii) is that they establish connections to the wealth of results of the convex-
ity theory. These will be employed to analyze the examples to be formulated
below.

3 Throughout the paper, the letter m denotes any positive integer.
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(c) In one dimension, one can orient the normals to jumps to be always the vector
+1 (rather than −1) and hence the dependence of ψ on the second variable
can be suppressed: ψ = ψ(a), a ∈ R. Assumption 2.1(iii) then says that ψ is
subadditive and positively homogeneous. Thus, the subadditive envelope 8
of ψ is ψ itself, and all mentions of a subadditive envelope can be avoided.
This is not the case if Assumption 2.1(iii) is relaxed. Indeed, working in one
dimension, Del Piero [2001; 2004] calculated the relaxation of the energy (1)
with the interfacial energy ψ of a general form, avoiding Assumption 2.1(iii).
His main result contains the subadditive envelope of ψ also. In light of the
above discussion, this envelope plays a different but related role. The relax-
ation of a purely interfacial energy of a more general form than that postulated
in Assumptions 2.1 in arbitrary dimension will be treated in a future paper.

(d) The expressions in (iii)–(v) already occurred previously, albeit without noting
that they are mutually equivalent and equivalent to (i) and (ii), except for
some particular cases to be mentioned below. The formula for H in (13a)
with 8 defined in (iv) and the formula for h in (13b) with 8 defined in (v)
are direct consequences of Choksi and Fonseca’s expressions in (11) and (12).
The formula for H with 8 given by (iii) crops up in the relaxation schemes
by Baía, Matias and Santos [Baía et al. 2012, (3.2)] and by Barroso, Matias,
Morandotti and Owen [Barroso et al. 2017, Theorem 3.2]. The relaxation
schemes in the last two papers require among other things higher regularity
of structured deformations and are not strictly comparable with that of Choksi
and Fonseca described above.

(e) The infimum (iii) could be, in principle, bigger than (iv). Nevertheless, the in-
fima are generally the same. This has been established previously in [Barroso
et al. 2017] for the special choices of ψ described in the following examples,
which motivated the present study.

2.5. Example [Owen and Paroni 2015, Theorem 4, particular case L = I ]. If

ψ| · |(a, b)= |a · b| and ψ±(a, b)= {a · b}± (20)

for every (a, b) ∈ Dn , where { · }+ and { · }− denote the positive and negative parts
of a real number, then

8| · |(M)= |tr M |, (21a)

8±(M)= {tr M}± (21b)

for every M ∈ Lin. The effective energies H| · |, H±, h| · | and h± are determined
through 8| · | and 8± by (13).

As shown in [Owen and Paroni 2015], {tr M}+ is a volume density of disar-
rangements due to submacroscopic separations, {tr M}− is a volume density of
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disarrangements due to submacroscopic switches and interpenetrations, and |tr M |
is a volume density of all three of these nontangential disarrangements: separations,
switches and interpenetrations. The evaluation in [Owen and Paroni 2015] of H
(equivalently, of 8) for (21) is rather complicated; a recent paper by Barroso, Ma-
tias, Morandotti and Owen [Barroso et al. 2017] presents some simplification and
the realization of the minimizing sequence in the narrower class (iv) in Theorem 2.3
mentioned earlier. Our version of the derivation, which includes the minimizing
sequence from (iv) via Theorem 2.3 also, is given in Section 7.

2.6. Example [Barroso et al. 2017, (5.3)]. If

ψ(a, b)= |a · p| (22)

for (a, b) ∈ Dn , where p ∈ Rn is a fixed vector, then

8(M)= |MT p| (23)

for any M ∈ Lin.

3. Notation and functions of bounded variation

We denote by Z the set of integers, by N the set of positive integers, by Sn−1 the
unit sphere in Rn and by Lin the set of all linear transformations from Rn into
itself, often identified with the set of n× n matrices with real elements. We use the
symbols “ · ” and “| · |” to denote the scalar product and the euclidean norm on Rn

and on Lin. The latter are defined by A · B := tr(ABT) and |A| =
√

A · A where
AT
∈ Lin is the transpose of A and tr denotes the trace.

A real-valued function f defined on a vector space X is said to be subadditive
if f (x + y) ≤ f (x) + f (y) for every x, y ∈ X and positively homogeneous if
f (t x)= t f (x) for every t ≥ 0 and x ∈ X.

If � is an open subset of Rn , we denote by Ł1(�,Lin) the space of Lin-valued
integrable maps on �. We denote by M(�,Lin) the set of all (finite) Lin-valued
measures on �. If µ ∈M(�,Lin), we denote by µ x B the restriction of µ to a
Borel set B ⊂�. If G,Gk ∈ Ł1(�,Lin), k = 1, 2, . . . , we say that Gk converges
to G in the sense of measures, and write

Gk ⇀
∗ G in M(�,Lin),

if
∫
�

Gk · H dV →
∫
�

G · H dV for every continuous map H : Rn
→ Lin which

vanishes outside �.
We state some basic definitions and properties of the space BV(�)=BV(�, Rn)

of maps of bounded variation and of the space SBV(�) = SBV(�, Rn), special
maps of bounded variation. For more details, see [Ambrosio et al. 2000; Evans
and Gariepy 1992; Ziemer 1989; Federer 1969].
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We define the set BV(�) as the set of all u ∈ L1(�)= L1(�, Rn) such that there
exists a measure Du ∈M(�,Lin) satisfying∫

�

u · div T dV =−
∫
�

T · dDu

for each infinitely differentiable map T : Rn
→ Rn×n which vanishes outside some

compact subset of �. Here div T is an Rn-valued map on � given by (div T )i =∑n
j=1 Ti j, j , where the comma followed by an index j denotes the partial derivative

with respect to j-th variable. The measure Du is uniquely determined and called
the weak (or generalized) derivative of u. We shall need the following form of the
Gauss–Green theorem for BV: if � is a domain with lipschitzian boundary and
u ∈ BV(�), then there exists an A integrable map u∂� : ∂�→ Rn such that

Du(�)≡
∫
�

dDu =
∫
∂(�)

u∂�⊗ ν� dA,

where ν� is the outer normal to ∂�. The map u∂� is determined within a change
on a set of A measure 0 and is called the trace of u.

We define the set SBV(�) as the set of all u ∈ BV(�) for which Du has the form

Du =∇u V x�+ [[u]]⊗ νuA x J (u) (24)

where ∇u, the absolutely continuous part of Du, is a map in Ł1(�,Lin) and the
term

Dsu := [[u]]⊗ νuA x J (u)

on the right-hand side of (24) is called the jump (or singular) part of Du. The
objects J (u)⊂�, [[u]] : J (u)→ Rn and νu : J (u)→ Sn−1 are called the jump set
of u, the jump of u and the normal to J (u), respectively. Here J (u) is the set of
all x ∈ � for which there exist νu(x) ∈ Sn−1 and u±(x) ∈ Rn such that we have
the approximate limits

u±(x)= ap lim
y→x

y∈H±(x,νu(x))

u(x),

where H±(x, νu(x))= {y ∈ Rn
: ±(y− x) · νu(x) > 0}. For a given x ∈�, either

the triplet (νu, u+, u−) = (νu(x), u+(x), u−(x)) does not exist or it is uniquely
determined to within the change (νu, u+, u−) 7→ (−νu, u−, u+). With one of these
choices, one puts [[u]] = u+− u− and notes that [[u]]⊗ νu is unique.

Finally, we denote by 〈r〉 the integral part of r ∈ R. Clearly,

r − 1≤ 〈r〉 ≤ r, (25a)

0≤ r −〈r〉 ≤ 1. (25b)
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Writing r = kt , where t ∈ R and k > 0, and dividing by k, we obtain

0≤ t −〈kt〉/k ≤ 1/k (26)

and hence
〈kt〉/k→ t as k→∞ (27)

uniformly in t ∈ R.

4. Preliminary results

We put

C(M) := {u ∈ SBV(Q) : u = wM on ∂Q, ∇u = 0 on Q},

B(M) :=
{

u ∈ SBV(Q) : u = wM on ∂Q,
∫

Q
∇u dV = 0

}
for any M ∈ Lin. We start with the following preliminary results.

4.1. Proposition. If A, B ∈Lin and u ∈B(A) and v ∈B(B), then u+v ∈B(A+B)
and

9(Dsu+Dsv)≤9(Dsu)+9(Dsv); (28)

if (J (u)∩ J (v))= 0, then we have the equality sign in (28).

Proof. We have
J (u+ v)= Ku ∪ Kv ∪ L (29)

where

L = J (u)∩ J (v), Ku = J (u) \ K , Kv = J (v) \ K .

Next, we observe that on L we have νu(x) = ±νv(x) for A-almost every x ∈ L;
since we have a freedom in the choice of the sign of νv , we assume νu(x)= νv(x)
and denote µ= νu on L . Then

[u+ v]⊗ νu+v =


[u]⊗ νu on Ku,

[v]⊗ νv on Kv,

([u] + [v])⊗µ on L.
(30)

By the subadditivity of ψ ,

ψ([u] + [v], µ)≤ ψ([u], µ)+ψ([v], µ)= ψ([u], νu)+ψ([v], νv)

and hence (30) provides

ψ([u+ v], νu+v)


= ψ([u], νu) on Ku,

= ψ([v], νv) on Kv,

≤ ψ([u], νu)+ψ([v], νv) on L.
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Integrating over J (u+ v) and using (29), we obtain

9(Dsu+Dsv)=

∫
J (u+v)

ψ([u+ v], νu+v) d

≤

∫
Ku

ψ([u], νu) d +
∫

Kv

ψ([v], νv) d

+

∫
L
ψ([u], νu) d +

∫
L
ψ([v], νv) d

=9(Dsu)+9(Dsv),

which completes the proof of (28). �

4.2. Remark. If the interfacial energy density ψ has the special form

ψ(a, b)=3(a⊗ b) (31)

where 3 : Lin→ [0,∞) is a subadditive and positively homogeneous function,
then 9(Dsu) is given by

9(Dsu)=3(Dsu)

where Dsu := [[u]]⊗ νu x J (u) is the singular part of the derivative Du of u and

3(Dsu) :=
∫

J (u)
3([[u]]⊗ νu) d

is an instance of Reshetnyak’s [1968] functional µ 7→ 3(µ) of a measure µ ∈
M(Q,Lin); see, e.g., [Ambrosio et al. 2000, (2.29)]. The subadditivity and posi-
tive homogeneity of 8 (asserted in Theorem 2.3) is then an instance of the general
result [Ambrosio et al. 2000, Proposition 2.37] asserting the same properties of
the functional µ 7→ 3(µ). Indeed, if Mi ∈ Lin and ui ∈ A(Mi ), i = 1, 2, then
u1+ u2 ∈A(M1+M2) and therefore

8(M1+M2)≤3(Ds(u1+ u2))=3(Dsu1+Dsu2)≤3(Dsu1)+3(Dsu2);

taking the infimum over all u1 ∈A(M1) and u2 ∈A(M2) gives

8(M1+M2)≤8(M1)+8(M2).

The positive homogeneity follows similarly. We note that the interfacial energies
in Examples 2.5 and 2.6 have the form (31), but this is not the case generally.

The following elementary result records some formulas to be employed below.

4.3. Remark. Let �⊂ Rn be an open bounded set with lipschitzian boundary. A
countable family �α, α ∈ N , of pairwise disjoint subsets of � with lipschitzian
boundaries is said to be a partition of � if one can write �=

⋃
∞

α=1�α to within a
set of null Lebesgue measure. Let us agree to say that ϕ ∈ L1(�, R) is piecewise
constant if there exists a partition �α such that ϕ is constant on each �α. If να is
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the outer normal to �α and if aα is the value of ϕ on �α, then ϕ ∈ BV(�, R) if
and only if ∑

(α,β)∈I

∫
∂�α∩∂�β

|aα − aβ | dA<∞, (32)

where
I = {(α, β) ∈ N2

: α < β, (∂�α ∩ ∂�β) > 0}.

If this is the case, we have the formulas

J (ϕ)=
⋃

(α,β)∈I

(∂�α ∩ ∂�β),

[[ϕ]]νϕ = (aα − aβ)νβ on ∂�α ∩ ∂�β for any (α, β) ∈ I,
Dϕ = [[ϕ]]νϕ x J (ϕ) (33)

to within changes on sets of null A measure. The total variation (mass) M(Dϕ) of
Dϕ is equal to the sum in (32).

Proof. Assume that (32) holds, and prove that ϕ ∈ BV(�, R) and that the three
formulas above hold. We note that if (32) holds then µ := [[ϕ]]νϕ x J (ϕ) is a
(“finite”) measure in M(�, Rn). Let us prove that µ is the weak derivative of ϕ,
which will also prove ϕ ∈ BV(�, R). Thus, we have to prove that∫

�

ϕ∇ f dV =−
∫

J (ϕ)
f [[ϕ]] dA (34)

for every class-infinity function f with support in �. The application of the Gauss–
Green theorem to each of the sets �α provides∫

�α

ϕ∇ f dV ≡ aα

∫
�α

∇ f dV = aα

∫
∂�α

f να dA.

Summing these equations over all α and using that να =−νβ , one obtains (34) and
hence we have ϕ ∈ BV(�, R), (33) and all the remaining assertions of the remark.
The converse implication is proved by reversing the above arguments. �

5. The function 8

The goal of this section is to prove that the functions defined in items (i)–(iv) of
Theorem 2.3 coincide. We denote these functions by 81, 82, 83 and 84, respec-
tively, and prove that they are the same by establishing the cycle of relations

81 ≥82 ≥83 ≥84 =81.

5.1. Proposition. 81 ≥82.
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Proof. It is easy to show that 82 is a subadditive function. Thus, the definition of
81 gives the assertion. �

The proof of the following lemma contains a construction of the central mini-
mizing sequence uk ∈ C(M) for Theorem 2.3(iii). This sequence will be defined as
the superposition of (a slight modification of) the sequence of step deformations
sk , k = 1, . . . , defined on Q by

sk(x)= k−1a〈kx · b〉,

x ∈ Q. Clearly, ∇sk = 0, and in view of (27),

sk(x)→ a(x · b) on Q

as k →∞. Thus, sk satisfies the boundary condition sk = wa⊗b on ∂Q in the
asymptotic sense; however, the definition of C(a⊗ b) requires the exact form of
that boundary condition. For this reason, we have to slightly modify sk near the
boundary ∂Q without violating the equation ∇sk = 0.

5.2. Lemma. If M ∈ Lin and (ai , bi ) ∈ Dn , i = 1, . . . ,m, satisfy

M =
m∑

i=1

ai ⊗ bi , (35)

then there exists a sequence uk ∈ C(M), k = 1, . . . , such that

lim sup
k→∞

9(Dsuk)≤

m∑
i=1

ψ(ai , bi ). (36)

We refer to Remark 5.3 for a mild condition on the sequence (ai , bi ) that guar-
antees that the lim sup in (36) strengthens to lim and the inequality sign to the
equality sign.

Proof. We shall first construct the sequence uk for the particular case when M =
a⊗ b is a dyad and then superimpose the sequences corresponding to the dyads
ai⊗bi , i = 1, . . . ,m, to obtain the general case. Thus, let (a, b)∈ Dn and construct
a sequence uk ∈ C(a⊗ b), k = 1, . . . , such that

lim
k→∞

9(Dsuk)= ψ(a, b). (37)

Introduce the sets

Ck = (1− k−2)Q, L l = (1− (l + 1)−2)Q \ (1− l−2)Q, (38)

k, l ∈ N , and observe that

Q = Ck ∪

∞⋃
l=k

L l (39)
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with mutually disjoint summands for any k ∈ N . Here the product t S of a set
S ⊂ Rn and a real number t is defined by t S = {t x : x ∈ S}. Equation (39) presents
a decomposition of Q into the main set Ck , which is a large subset of Q for large k,
while Lk, Lk+1, . . . present infinitely many rectangular layers filling the gap Q \Ck

and becoming more and more refined towards the boundary of Q.
We use these sets Ck, Lk, Lk+1, . . . to define a sequence of scalar functions

ϕk : Q→ R, k = 2, . . . , by

ϕk(x)=
{
(k− 1)−2

〈(k− 1)2x · b〉 if x ∈ Ck,

l−2
〈l2x · b〉 if x ∈ L l for some l ≥ k.

(40)

Let us use Remark 4.3 to prove that ϕk ∈ BV(Q, R). Clearly, ϕk is a piecewise
constant function in the sense of that remark. Using (25a), one finds that x ·b−1≤
ϕk(x)≤ x · b; hence, |ϕk | is bounded on Q and thus ϕk ∈ L1(Q, R). It remains to
verify (32). Let us show that in the present case (32) reads∫

J (ϕk)

|[[ϕk]]| dA<∞, (41)

where

J (ϕk)= C◦k ∪
∞⋃

l=k

(L◦l ∪ L∂l ) (42)

is the jump set, with

C◦k = {x ∈ Ck : k2x · b ∈ Z}, (43)

L◦l = {x ∈ L l : l2x · b ∈ Z}, L∂l = (1− l−2)∂Q, (44)

and on J (ϕk)

[[ϕk]]νϕk =


(k− 1)−2b on C◦k ,
l−2b on L◦l where l ≥ k,
ηlνk on L∂l where l ≥ k

(45)

is the jump and normal to the jump set, with

ηl(x)= l−2
〈l2x · b〉− (l − 1)−2

〈(l − 1)2x · b〉 (46)

and with νk denoting the outer normal to the scaled cube (1−k−2)Q. Equations (42)
and (45) follow from the identities given in Remark 4.3. One has to enumerate the
regions of constancy of ϕk in an arbitrary way to obtain the system of sets �α,
α = 1, . . . , and use the formulas of that remark. The details are left to the reader.
This establishes the equivalence of the inequalities (32) and (41). To prove that
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(41) really holds, one finds from (45) that∫
J (uk)

|[[ϕk]]| dA= (k− 1)−2A(C◦k )+
∞∑

l=k

l−2A(L◦l )+
∞∑

l=k

∫
L∂l

|ηl | dA. (47)

We estimate the terms A(C◦k ), A(L◦l ) and
∫

L∂l
|ηl(x)| dA as follows. First, prove

that

|A(C◦k )− (k− 1)2Ln(Ck)| ≤ 2n, (48a)

|A(L◦l )− l2Ln(L l)| ≤ 4n (48b)

and hence

A(C◦k )≤ 2n+ (k− 1)2Ln(Ck), A(L◦l )≤ 4n+ l2Ln(L l). (49)

Let us prove (48b); the proof of (48a) is similar. Let ω : L l→ R be defined by

ω(x)= l2x · b−〈l2x · b〉, x ∈ L l .

Then ω ∈ BV(L l, R), Dω = l2b− bA x L◦l , and hence the Gauss–Green theorem
yields

Dω(L l)= l2Ln(L l)b− bA(L◦l )=
∫
∂Ll

ωνLl dA, (50)

from which

|mLn(L l)−A(L◦l )| ≤
∫
∂Ll

|ω| dA.

We now observe that |ω| ≤ 1 on ∂L l and ∂L l = L∂l+1 ∪ L∂l . Thus,∫
∂Ll

|ω| dA≤A(L∂l+1)+A(L∂l )≤ 4n

since, elementarily, A(L∂l+1) ≤ 2n and A(L∂l ) ≤ 2n. Thus, we have (48b). Next
prove that

|ηl(x)| ≤ 2(l − 1)−2 on L∂l .

Indeed, writing

|ηl(x)| =
∣∣(l−2
〈l2x · b〉− x · b)− ((l − 1)−2

〈(l − 1)2x · b〉− x · b)
∣∣,

using the triangle inequality and the inequality (26) twice, with t = x · b and k = l2

and k = (l − 1)2, one obtains

|ηl(x)| ≤ l−2
+ (l − 1)−2

≤ 2(l − 1)−2

and hence ∫
L∂l

|ηl | dA≤ 2(l − 1)−2A(L∂l )≤ 4n(l − 1)−2. (51)
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The estimates (49) and (51) and the formula (47) provide∫
J (uk)

|[[ϕk]]| dA≤ 2n(k− 1)−2
+Ln(Ck)

+

∞∑
l=k

(4nl−2
+Ln(L l))+

∞∑
l=k

4n(l − 1)−2

≤ 1+ 2n(k− 1)−2
+ 8n

∞∑
l=k

(l − 1)−2 <∞,

where we have used

Ln(Ck)+

∞∑
l=k

Ln(L l)= Ln(Q)= 1.

Thus, we have (41); hence, ϕk ∈ BV(�, R) for every k and

Dϕk = [[ϕk]]νϕkA x J (ϕk)

and

∇ϕk = 0. (52)

Finally, note that the boundary trace ϕ∂k of ϕk on ∂Q satisfies

ϕ∂k (x)= x · b for every x ∈ ∂Q. (53)

While a rigorous proof of this can be given by using the essential limit of ϕk at x ∈Q,
we here only note that the definition of ϕk yields that

lim
j→∞

ϕk(x j )= x · b (54)

for any x ∈ ∂Q and any sequence x j ∈ Q converging to x . For this it suffices to note
that in view of (39) one finds that x j must belong to some L l for some l = l( j)≥ k.
The limit x j → x then implies that l(k)→∞, and then the definition (40) and the
formula (27) provide (54).

We define the sequence uk : Q→ Rn , k = 2, . . . , by

uk(x)= aϕk(x)

for every x ∈ Q. By ϕk ∈ SBV(Q, R) and by (52) and (53), we have uk ∈ C(a⊗b).
Further, [[uk]] = [[ϕk]]a⊗ νϕk ; consequently, by (45),

ψ([[uk]], νuk )=


(k− 1)−2ψ(a, b) on C◦k ,
l−2ψ(a, b) on L◦l for any l ≥ k,
ψ(ηla, νl) on L∂l for any l ≥ k
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and hence

9(Dsuk)=

∫
J (uk)

ψ([[uk]], νuk ) dA= (k− 1)−2ψ(a, b)A(C◦k )+ ρk, (55)

where

ρk =

∞∑
l=k

l−2ψ(a, b)A(L◦l )+
∞∑

l=k

∫
L∂l

ψ(ηla, νl) dA.

Dividing (48a) by (k− 1)2, we obtain

(k− 1)−2A(C◦k )→ 1 (56)

since Ln(Ck)→ 1. Using (6), we obtain that the nonnegative number ρk is bounded
by (a constant multiple of) the quantity

dk =

∞∑
l=k

l−2A(L◦l )+
∞∑

l=k

∫
L∂l

|ηl | dA

≤

∞∑
l=k

Ln(L l)+ 2n(k− 1)−2
+ 4n

∞∑
l=k

(l − 1)−2

≤ k−2
+ 2n(k− 1)−2

+ 4n
∞∑

l=k

(l − 1)−2

and hence ρk→ 0. Equations (55) and (56) then yield (37).
We now complete the proof in the general case. By the preceding part of the

proof, for each i ∈ {1, . . . ,m}, there exists a sequence ui
k ∈ C(ai⊗bi , 0), k = 1, . . . ,

such that
9(Dsui

k)→ ψ(ai , bi ) (57)

as k→∞. Define uk :=
∑m

i=1 ui
k for every k. By (28),

9(Dsuk)≤

m∑
i=1

9(Dsui
k). (58)

Hence,

lim sup
k→∞

9(Dsuk)≤ lim
k→∞

m∑
i=1

9(Dsui
k)=

m∑
i=1

ψ(ai , bi )

by (57). �

5.3. Remark. If the sequence (ai , bi ) satisfies the condition

bi 6= b j and bi 6= −b j whenever 1≤ i < j ≤ m, (59)
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then the sequence uk can be chosen as to satisfy, instead of the inequality (36), the
equality

lim
k→∞

9(Dsuk)=

m∑
i=1

ψ(ai , bi ).

Indeed, the inspection of the proof of Lemma 5.2 shows that the source of the
inequality (36) is the subadditivity in (58) which cannot be replaced by the equality
unless the discontinuity sets J (ui ) pairwise intersect on a set of null A measure
(see Proposition 4.1). Condition (59) guarantees that. However, inequality (36)
suffices for our purposes.

5.4. Proposition. 82 ≥83 ≥84.

Proof. To prove 82 ≥83, we take any sequence (ai , bi ) ∈ Dn , i = 1, . . . ,m, such
that

∑m
i=1 ai ⊗ bi = M and consider the infimum as in the definition of 82 in (16).

Hence, for the given sequence (ai , bi ) ∈ Dn , we construct a sequence of maps
uk ∈ C(M), k = 1, . . . , as in Lemma 5.2. Then

83(M)≤9(Dsuk)

by the definition of 83. Letting k→∞ and using (36), we obtain

83(M)≤
m∑

i=1

ψ(ai , bi ).

Taking the infimum over all sequences ai and bi , one obtains from the definition
of 82 the inequality 83(M)≤82(M). The inequality 83 ≥84 is immediate. �

5.5. Proposition. 84 =81.

Proof. We seek to prove that 84 is the biggest subadditive function satisfying
84(a ⊗ b) ≤ ψ(a, b) for any (a, b) ∈ Dn . To prove the subadditivity of 84, let
A, B ∈ Lin and u ∈ B(A) and v ∈ B(B). Proposition 4.1 and (17) yield u + v ∈
B(A+ B) and

84(A+ B)≤9(Dsu+Dsv)≤9(Dsu)+9(Dsv).

Taking the infimum over all u and v then gives the subadditivity

84(A+ B)≤84(A)+84(B).

Next we note that the biggest subadditive function 2 such that

2(a⊗ b)≤ ψ(a, b) (60)

for any (a, b) ∈ Dn is automatically positively homogeneous; thus, it suffices to
prove the maximality of 84 among all subadditive and positively homogeneous
functions satisfying (60). Thus, let 2 be such a function and let M ∈ Lin and
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u ∈ B(M). Then by (60) and by Jensen’s inequality for positively homogeneous
subadditive functions,

9(Dsu) :=
∫

J (u)
ψ([[u]], νu) dA

≥

∫
J (u)

2([[u]]⊗ νu) dA

≥2

(∫
J (u)
[[u]]⊗ νu dA

)
. (61)

We now combine the boundary condition u=wM on ∂Q and relation
∫

Q ∇u dLn
= 0

with the Gauss–Green theorem to obtain∫
J (u)
[[u]]⊗ νu dA=

∫
J (u)
[[u]]⊗ νu dA+

∫
Q
∇u dLn

=

∫
Q

1 dDu

=

∫
∂Q

Mx ⊗ νQ dA= M.

Thus, (61) yields
9(Dsu)≥2(M).

Taking the infimum over all u ∈ B(M), we obtain 84(M)≥2(M). �

This proves 81 =82 =83 =84. We define the function 8 by 8=81.

6. Completion of the proof of Theorem 2.3

For this section, we put, for every (a, b) ∈ Dn ,

C(a, b) := {u ∈ SBV(Qb) : u = za,b on ∂Qb, ∇u = 0 on Qb}

and denote by 85(a, b) the infimum in (19). We then extend 85 to Rn
× Rn by

homogeneity in the second variable.

6.1. Proposition. We have H(A, B)=8(A− B) for every A, B ∈ Lin.

Proof. We employ Theorem 2.2 and the definition of 8 in (18). Invoking (11), we
take any u ∈ SBV(Q) satisfying u=wA on ∂Q, and

∫
Q ∇u dLn

= B. Then v, given
by v(x)= u(x)− Bx , x ∈ Q, satisfies v ∈ B(A− B) and 9(Dsu)=9(Dsv). �

6.2. Lemma. We have 85(a, b)≤8(a⊗ b) for every (a, b) ∈ Dn .

Proof. Let (a, b)∈ Dn , and let (ai , bi )∈ Dn , i = 1, . . . ,m, be a sequence satisfying

a⊗ b =
m∑

i=1

ai ⊗ bi . (62)
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Our goal is to construct a sequence uk ∈ C(a, b), k = 1, . . . , such that

lim sup
k→∞

∫
J (uk)

ψ([[uk]], νuk ) dA≤
m∑

i=1

ψ(ai , bi ). (63)

To define uk , let
P = {x ∈ Rn

: x · b = 0}

be the plane through the origin perpendicular to b, let 5 be the projection from Rn

onto P , let
F = P ∩ Qb,

and put
Bk = {x ∈ Rn

:5(x) ∈ (1− k−1)F, 0≤ x · b < k−1
}

for any k ∈ N . Define uk : Qb→ Rn by

uk(x)=
{
vk(x) if x ∈ Bk,

za,b(x) else,

x ∈ Qb, where

vk(x)=
m∑

i=1

k−1ai 〈k2x · bi 〉 for any x ∈ Rn and k ∈ N.

Employing Remark 4.2, we see that uk ∈ SBV(Qb); furthermore, clearly, uk = za,b

on ∂Qb and ∇uk = 0 on Qb; hence, uk ∈ C(a, b).
We proceed to prove (63). We have

J (uk)= Nk ∪Mk ∪ Lk ∪ Sk, (64)

where
Nk = F \ (1− k−1)F,

Mk = {x ∈ ∂B : 0< x · b < k−1
},

Sk = {x ∈ Rn
:5(x) ∈ (1− k−1)F, x · b = k−1

},

Lk =

m⋃
i=1

L i
k where L i

k = {x ∈ Bk : k2x · bi ∈ Z}.

(65)

The jump of uk and the normal to the jump set are

[[uk]](x)νuk (x)=


k−1∑m

i=1 ai ⊗ bi 1L i
k
(x) if x ∈ Lk,

a⊗ b if x ∈ Nk,

(a− vk(x))⊗ νk if x ∈ Mk,

(a− vk(x))⊗ b if x ∈ Sk,

(66)
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x ∈ J (uk), where νk is the outer normal to Bk and 1L i
k

is the characteristic function
of the set L i

k . Hence, the subadditivity of ψ in the first variable yields∫
Lk

ψ([[uk]], νuk ) dA≤ k−1
m∑

i=1

ψ(ai , bi )A(L i
k);

consequently∫
J (uk)

ψ([[uk]], νuk ) dA≤ k−1
m∑

i=1

ψ(ai , bi )A(L i
k)+ψ(a, b)A(Nk)

+

∫
Mk

ψ(a− vk(x)), νk) dA

+

∫
Sk

ψ(a− vk(x)), b) dA. (67)

Let us now analyze the terms on the right-hand side of (67). Using the considera-
tions as in the proof of Lemma 5.2 (see (48) and (49)), one finds that

k−1A(L i
k)→ 1

as k→∞ for every i = 1, . . . ,m. Thus,

k−1
m∑

i=1

ψ(ai , bi )A(L i
k)→

m∑
i=1

ψ(ai , bi ). (68)

Further,

ψ(a, b)A(Nk)→ 0 (69)

since, obviously,

A(Nk)→ 0.

Next note that, by (62) and (26),

|ka(x · b)− vk(x)| =
∣∣∣∣ka(x · b)−

m∑
i=1

k−1ai 〈k2x · bi 〉

∣∣∣∣
=

∣∣∣∣k m∑
i=1

ai (x · bi )− k−2ai 〈k2x · bi 〉

∣∣∣∣
≤

∣∣∣∣k m∑
i=1

|ai ||(x · bi )− k−2
〈k2x · bi 〉|

∣∣∣∣
≤ k−1

m∑
i=1

|ai |.
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Then if x ∈ Mk ,

|a− vk(x)| ≤ |a− ka(x · b)| + |ka(x · b)− vk(x)|

≤ |a| + k|a||x · b| + k−1
m∑

i=1

|ai |

≤ |a| + |a| + k−1
m∑

i=1

|ai |

since k|x · b| ≤ 1 on Mk . Thus, |a − vk(x)| ≤ c < ∞ for any x ∈ Mk and any
k = 1, . . . . A combination with (6) and

A(Mk)→ 0

then provides ∫
Mk

ψ(a− vk(x)), νk) dA→ 0. (70)

Similarly, if x ∈ Sk , then kx · b = 1 and hence

|a− vk(x)| ≤ |ka(x · b)− vk(x)| ≤ k−1
m∑

i=1

|ai | → 0.

Thus, (6) yields ∫
Sk

ψ(a− vk(x)), b) dA→ 0 (71)

since A(Sk) ≤ 1 for all k. Consequently, a combination of (67) with (68)–(71)
provides (63) and hence the definition of 85 gives

85(a, b)≤
m∑

i=1

ψ(ai , bi )

for any sequence (ai , bi ) satisfying (62). Taking the infimum of the right-hand
side over all such sequences and using the definition of 82 ≡ 8, we obtain the
assertion. �

6.3. Lemma. We have 85(a, b)≥8(a⊗ b) for every (a, b) ∈ Dn .

Proof. Let u ∈ C(a, b). Then, by Jensen’s inequality,∫
J (u)

ψ([[u]], νu) dA≥
∫

J (u)
8([[u]]⊗ νu) dA

≥8

(∫
J (u)
[[u]]⊗ νu dA

)
=8(a⊗ b)
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since the boundary condition u = za,b on ∂Qb implies∫
J (u)
[[u]]⊗ νu dA= a⊗ b.

That is, we have ∫
J (u)

ψ([[u]], νu) dA≥8(a⊗ b)

for every u ∈ C(a, b). Taking the infimum, we obtain 85(a, b)≥8(a⊗ b). �

6.4. Proposition. We have h(a, b)=8(a⊗ b) for every (a, b) ∈ Dn .

Proof. This follows immediately from (12) and (19). �

This completes the proof of Theorem 2.3.

7. Derivation of the examples

Derivation of Example 2.5 and (21). We consider ψ| · |(a, b)= |a ·b| first and prove
(21a). Clearly, the function 2(M)= |tr M | is a subadditive function satisfying (14)
with ψ = ψ| · | and hence (16) gives 8| · |(M)≥ |tr M | for any M ∈ Lin. To prove
the opposite inequality, we note that the definition (15) of 8| · | gives

ψ| · |(a, b)=2(a⊗ b)≤8| · |(a⊗ b)≤ ψ| · |(a, b)

for every (a, b) ∈ Dn and hence

8| · |(a⊗ b)= |a · b| and in particular 8| · |(a⊗ b)= 0 if a · b = 0,

which determines 8| · | on tensor products a⊗ b. As a consequence, if N ∈ Lin can
be written as

N =
m∑

i=1

ai ⊗ bi (72)

where (ai , bi ) ∈ Rn
× Rn , i = 1, . . . ,m, where

ai · bi = 0 for all i = 1, . . . ,m, (73)

then 8| · |(N )= 0 since

0≤8| · |(N )≤
m∑

i=1

8| · |(ai ⊗ bi )≤

m∑
i=1

ψ(ai , bi )=

m∑
i=1

|ai · bi | = 0.

To determine 8| · | on a general M ∈ Lin, we write M = A+W where A and W
are the symmetric and skew parts of M . Let e1, . . . , en be an orthonormal basis of
eigenvectors of A with the eigenvalues λi ; hence, A =

∑n
i=1 λi ei ⊗ ei . Then

M = B+ N
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where
B = (tr M)e1⊗ e1,

N =W +
n∑

i=2

λi
(
ei ⊗ e1− e1⊗ ei − (e1+ ei )⊗ (e1− ei )

)
.

Since W is a linear combination of the dyads ei ⊗ e j , 1≤ i 6= j ≤ n, one sees that
N is of the form (72)–(73) and hence 8| · |(N )= 0; consequently

8| · |(M)≤8| · |(B)+8| · |(N )=8| · |(B)= ψ((tr M)e1, e1)= |tr M |.

Equations 13 complete the proof of (21a).
To prove the two equations in (21b), we employ (21a) and (21b) as follows. One

has ψ±(a, b) = 1
2(|a · b| ± a · b), and hence, if (ai , bi ) ∈ Dn and M ∈ Lin satisfy∑m

i=1 ai ⊗ bi = M , then
m∑

i=1

ψ±(ai , bi )=
1
2

( m∑
i=1

ψ| · |(ai , bi )± tr M
)
.

Taking the infimum as in (16) and using the above evaluation of 8| · | gives

8±(M)= 1
2(8| · |(M)± tr M)= 1

2(|tr M | ± tr M)= {tr M}±,

which is (21b). �

Derivation of Example 2.6 and (23). The function 2(M) = |MT p| is a subaddi-
tive function satisfying (14), and we obtain in the same way as in the proof of
Example 2.5 that 8(M)≥ |MT p| for any M ∈ Lin and

8(a⊗ b)= |a · p| and in particular 8(a⊗ b)= 0 if a · p = 0. (74)

To prove 8(M) ≤ |MT p|, we assume without loss of generality that |p| = 1 and
let {p, e2, . . . en} be any orthonormal basis. In view of 1= p⊗ p+

∑n
i=2 ei ⊗ ei ,

M = 1M = p⊗MT p+
n∑

i=2

ei ⊗MTei ;

normalizing the second members of the dyads, we obtain

M = |MT p|p⊗ sgn(MT p)+
n∑

i=2

|MTei |ei ⊗ sgn(MTei ).

The subadditivity of 8 provides

8(M)≤8
(
|MT p|p⊗ sgn(MT p)

)
+

n∑
i=2

8
(
|MTei |ei ⊗ sgn(MTei )

)
= |MT p|

by (74). Thus, 8(M)≤ |MT p| and the proof of (23) is complete. �
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