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ON THE WELL-POSEDNESS
OF THE GREEN–LINDSAY MODEL

GIA AVALISHVILI, MARIAM AVALISHVILI AND WOLFGANG H. MÜLLER

The present paper is devoted to an investigation of a nonclassical model for
inhomogeneous anisotropic thermoelastic bodies with two constant relaxation
times originally presented by Green and Lindsay. A variational formulation
of the initial-boundary value problem corresponding to the linear dynamical
three-dimensional Green–Lindsay model is applied. The corresponding spaces
of vector-valued distributions with respect to the time variable with values in
Sobolev spaces are defined and the existence and uniqueness of the solution in
these spaces as well as continuous dependence of the solution on the given data
is shown.

1. Introduction

The physically unrealistic feature of classical thermoelasticity, which is based on
Fourier’s law of heat conduction, and according to which heat spreads infinitely
fast, was refuted by several experimental studies, where it was shown that heat
propagates as a thermal wave at finite speed at low temperatures [Ackerman and
Overton 1969; Caviglia et al. 1992; Coleman and Newman 1988; McNelly et al.
1970; Narayanamurti and Dynes 1972]. In various modern engineering construc-
tions, such as high-speed aircraft, nuclear reactors, and recently developed ultrafast
pulsed lasers, temperatures and temperature gradients are extremely high and the
operation time periods are of the order of picoseconds. This results in thermal
shocks and cannot be successfully described by the classical theory of thermoe-
lasticity [Abdallah 2009; Dreyer and Struchtrup 1993; Wang and Xu 2002; Zhu
et al. 1999]. Furthermore, mathematical models of propagation of heat as a thermal
wave are used in order to describe various processes involving heat transfer, such
as during chemotaxis [Dolak and Hillen 2003], in food technology [Saidane et al.
2005], in biological tissues [Afrin et al. 2011], in one of Saturn’s moons [Bargmann
et al. 2008], and in nanofluids [Vadasz et al. 2005].
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One of the theories devoted to eliminating the shortcomings of classical thermoe-
lasticity was presented by Müller [1971] without making any assumptions regard-
ing the form of the heat conduction law, and admitted a finite speed of propagation
of thermal waves. By applying a similar approach and by using the entropy produc-
tion inequality of Green and Laws [1972], a simpler and more explicit version of
nonclassical thermoelasticity was presented by Green and Lindsay [1972], which
also allows for finite speeds of thermal waves. In this theory, the classical forms
of the entropy flux and entropy source are preserved and, as in Müller’s theory,
the temperature rate is included among the constitutive variables. Note that in the
Green–Lindsay theory for materials with a center of symmetry at each point the
classical Fourier law is satisfied.

In the nonclassical theory of thermoelasticity developed by Green and Lindsay,
the constitutive relations for the stress tensor and the entropy are generalized by
introducing two different relaxation times. A uniqueness theorem for the Green–
Lindsay model in the case of a thermoelastic body consisting of a homogeneous
material with an initial center of symmetry requiring only the usual symmetry prop-
erties of the elastic stiffness tensor was obtained by Green [1972]. The continuous
dependence of the classical solution on given data and the existence of a generalized
solution for initial-boundary value problems corresponding to the Green–Lindsay
model (under the assumption that there is a classical solution of the problem) were
proved for homogeneous isotropic thermoelastic bodies by Bem [1983]. By ap-
plying the method of potentials and the theory of integral equations, the problems
of stable and pseudo-oscillations for the Green–Lindsay nonclassical model were
studied by Burchuladze and Gegelia [1985]. For the Green–Lindsay nonclassical
model, the problem of propagation of a thermoelastic wave was studied, and do-
main of influence results were obtained for a thermoelastic body consisting of ho-
mogeneous material with an initial center of symmetry by Carbonaro and Ignaczak
[1987] in classical spaces of twice continuously differentiable functions.

Existence, uniqueness, and continuous dependence of the solution of the initial-
boundary value problem corresponding to the Green–Lindsay model with Dirichlet
boundary conditions for a temperature vanishing on the entire boundary in suitable
function spaces were proved in [Karakostas and Massalas 1991]. For the Green–
Lindsay nonclassical model, problems of wave propagation, methods of solution of
the corresponding initial and initial-boundary value problems, and applications of
the obtained results and related topics have been considered by many researchers
(see [Chandrasekharaiah 1986; 1998; Hetnarski and Ignaczak 2000; Joseph and
Preziosi 1989; Ignaczak and Ostoja-Starzewski 2010; Straughan 2011]).

It should be pointed out that three-dimensional initial-boundary value problems
with general mixed boundary conditions for displacement and temperature cor-
responding to the linear Green–Lindsay dynamical model for an inhomogeneous
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anisotropic thermoelastic body have not been investigated yet. The well-posedness
results are mainly obtained for the case of purely Dirichlet or Neumann types of
boundary conditions. The initial-boundary value problem with mixed boundary
conditions corresponding to the Green–Lindsay linear model for a homogeneous
isotropic thermoelastic plate was investigated in first-order Sobolev spaces in the
paper [Avalishvili et al. 2010] by applying a variational approach. In the present
paper, we investigate the well-posedness of the linear three-dimensional initial-
boundary value problem corresponding to the Green–Lindsay model with general
mixed boundary conditions, provided that on certain parts of the boundary of the
space domain surface force and heat flux along the outward normal vector are
prescribed and on the remaining parts displacement and temperature vanish. We
obtain new existence, uniqueness, and continuous dependence results in the corre-
sponding Sobolev spaces.

In Section 2, we consider a differential formulation of the initial-boundary value
problem corresponding to the Green–Lindsay linear dynamical three-dimensional
model for an inhomogeneous anisotropic thermoelastic body and obtain integral
equations that are equivalent to the original problem in spaces of sufficiently smooth
functions. On the basis of these integral equations, we present a variational formula-
tion of the three-dimensional problem in corresponding spaces of vector-valued dis-
tributions with respect to the time variable with values in Sobolev spaces. Further-
more, we formulate results regarding the existence and uniqueness of the solution
of the three-dimensional initial-boundary value problem, and regard the continuous
dependence of the solution on given data in suitable function spaces.

2. Well-posedness of the Green–Lindsay model

In this paper we denote for each real s ≥ 0 by H s(�) and H s(0̌) the Sobolev
spaces of real-valued functions based on H 0(�) = L2(�) and H 0(0̌) = L2(0̌),
respectively, where � ⊂ Rn , n ∈ N, is a bounded Lipschitz domain and 0̌ is an
element of a Lipschitz dissection of the boundary 0 = ∂� [McLean 2000]. We
refer to the corresponding spaces of vector-valued functions by

Hs(�)= [H s(�)]3, Hs(0̌)= [H s(0̌)]3 (s ≥ 0), Ls1(0̌)= [Ls1(0̌)]3 (s1 ≥ 1)

and by tr : H1(�)→ H1/2(0) and tr : H 1(�)→ H 1/2(0) the trace operators.
C0,1(�) characterizes the space of Lipschitz continuous function on �. For any
measurable set D, (·, ·)L2(D) and (·, ·)L2(D) are the classical scalar products in
L2(D) and L2(D), respectively. For a Banach space X , C([0, T ]; X) is the space
of continuous vector functions on [0, T ] with values in X . Lm(0, T ; X), 1 ≤
m ≤ ∞, is the space of such measurable vector functions g : (0, T )→ X that
‖g‖X ∈ Lm(0, T ), and the generalized derivative of g we denote by g′ = dg/dt ∈
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D′(0, T ; X) [Dautray and Lions 1992]. If g ∈ L1(0, T ; X) and X is a space of
functions of variable x ∈ �, then we identify g with a function g(x, t) and g(t)
denotes the function g(t) : x→ g(x, t), for almost all t ∈ (0, T ). The distributional
derivative dg/dt we identify with the derivative ∂g/∂t of g in D′(�× (0, T )).

Let us consider a thermoelastic body with initial configuration � consisting of
general inhomogeneous anisotropic thermoelastic material, which is described by
the Green–Lindsay linear dynamical three-dimensional model [Green and Lindsay
1972], and whose thermal and elastic properties are characterized by the following
consistently spatially dependent thermoelastic parameters:

(a) an elasticity tensor µi j pq(x), x ∈� (i, j, p, q = 1, 2, 3), which satisfies the
symmetry and positive definiteness conditions

µi j pq(x)= µpqi j (x)= µ j i pq(x) ∀x ∈�, (1)
3∑

i, j,p,q=1

µi j pq(x)εpqεi j ≥ cµ
3∑

i, j=1

(εi j )
2
∀εi j ∈ R, x ∈�, (2)

where cµ is a constant > 0 and εi j = ε j i ;

(b) a mass density ρ(x), x ∈�;

(c) a thermal conductivity tensor λpq(x), x ∈� (p, q = 1, 2, 3), which satisfies
the following symmetry and positive definite conditions:

λpq(x)= λqp(x) ∀x ∈�, (3)
3∑

p,q=1

λpq(x)εpεq ≥ cλ
3∑

p=1

(εp)
2
∀εp ∈ R, x ∈�, (4)

where cλ is a constant > 0;

(d) a thermal capacity ~(x), x ∈�;

(e) a stress-temperature tensor ηpq(x), and thermal coefficients βp(x), x ∈ �
(p, q = 1, 2, 3), such that

ηpq(x)= ηqp(x) ∀x ∈�; (5)

(f) relaxation times τ0 = const> 0 and τ1 = const> 0;

(g) temperature of thermoelastic body in natural state 20 = const> 0, which is
considered as a reference temperature.

It should be noted that the constraint of constant relaxation times will be re-
moved in a forthcoming paper [Avalishvili et al. 2017].

We consider mixed boundary conditions on the boundary 0 = ∂� of the ther-
moelastic body, such that on certain parts of the boundary the displacement or the
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temperature vanishes, and on the remaining parts the stress vector or the heat flux
along the outward normal of the boundary are given. We assume that the body
is clamped along a part 00 ⊂ 0 and that the temperature θ vanishes along a part
0θ0 ⊂ 0. The body is subjected to:

(i) an applied body force with density f = ( fi ) :�× (0, T )→ R3;

(ii) an applied surface force with density g = (gi ) : 01 × (0, T )→ R3 is given
along the part 01 = 0\00 of the boundary of �, where ∂�= 00 ∪001 ∪01,
00 ∩01 =∅, is a Lipschitz dissection of ∂� [McLean 2000];

(iii) a heat source with density f θ :�× (0, T )→ R;

(iv) a heat flux with density gθ : 0θ1 × (0, T )→R along the outward normal vector
of 0, which is given on 0θ1 =0\0

θ
1 , where ∂�=0θ0 ∪0

θ
01∪0

θ
1 , 0θ0 ∩0

θ
1 =∅,

is a Lipschitz dissection of ∂�.

The dynamical linear three-dimensional model for the stress-strain state of a ther-
moelastic body � obtained by Green and Lindsay [1972] is given by the following
initial-boundary value problem in differential form:

ρ
∂2ui

∂t2 =

3∑
j=1

∂

∂x j

( 3∑
p,q=1

µi j pqepq(u)+ηi jθ+ηi jτ1
∂θ

∂t

)
+ fi in �×(0, T ), (6)

~

(
∂θ

∂t
+τ0

∂2θ

∂t2

)
−

3∑
p=1

βp
∂2θ

∂t∂x p
=

3∑
p,q=1

∂

∂x p

(
λpq

∂θ

∂xq

)
+

3∑
p=1

∂

∂x p

(
βp
∂θ

∂t

)
+20

3∑
p,q=1

ηpqepq
∂u
∂t
+ f θ in �×(0, T ), (7)

u(x, 0)= u0(x),
∂u
∂t
(x, 0)= u1(x),

θ(x, 0)= θ0(x),
∂θ

∂t
(x, 0)= θ1(x) in �,

(8)

u = 0 on 00×(0, T ),
3∑

j=1

( 3∑
p,q=1

µi j pqepq(u)+ηi jθ+ηi jτ1
∂θ

∂t

)
ν j = gi on 01×(0, T ), (9)

θ = 0 on 0θ0×(0, T ),

−

3∑
p=1

( 3∑
q=1

λpq
∂θ

∂xq
+βp

∂θ

∂t

)
νp = gθ on 0θ1×(0, T ), (10)

where ei j (v)=
1
2

(
∂iv j + ∂ jvi

)
(i, j = 1, 2, 3), ν = (νi ) is the outward unit normal

to 0, u = (ui ) : � × (0, T ) → R3 is the displacement vector-function of the
thermoelastic body, θ :�×(0, T )→R is the temperature distribution, u0= (u0i )

3
i=1
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and u1 = (u1i )
3
i=1 are the initial displacement and velocity vector-functions, and

θ0 is the initial distribution of temperature.

Remark. If the thermoelastic body consists of a material that initially has a center
of symmetry at each point, then parameters βp (p = 1, 2, 3) vanish.

By multiplying (6) by arbitrary continuously differentiable functions vi :�→ R

(i = 1, 2, 3), which vanish on 00, and (7) by a continuously differentiable function
ϕ : � → R, such that ϕ = 0 on 0θ0 , by using Green’s formula, the symmetry
properties of the tensors µi j pq , ηi j and epq(v), and the boundary conditions (9)
and (10), we obtain the following integral equations:

3∑
i=1

∫
�

ρ
∂2ui

∂t2 vi dx+
3∑

i, j=1

∫
�

3∑
p,q=1

µi j pqepq(u)ei j (v) dx

+

3∑
i, j=1

∫
�

(
ηi jθ+ηi jτ1

∂θ

∂t

)
ei j (v) dx =

3∑
i=1

∫
�

fivi dx+
3∑

i=1

∫
01

givi d0, (11)

∫
�

~

(
∂θ

∂t
+τ0

∂2θ

∂t2

)
ϕ dx−

∫
�

3∑
p=1

βp
∂2θ

∂t∂x p
ϕ dx+

3∑
p,q=1

∫
�

λpq
∂θ

∂xq

∂ϕ

∂x p
dx

+

3∑
p=1

∫
�

βp
∂θ

∂t
∂ϕ

∂x p
dx−20

∫
�

3∑
p,q=1

ηpqepq

(
∂u
∂t

)
ϕ dx

=

∫
�

f θϕ dx−
∫
0θ1

gθϕ d0. (12)

Therefore, if u= (ui )
3
i=1 and θ are solutions to (6) and (7) and satisfy the bound-

ary conditions (9) and (10), then u = (ui )
3
i=1 and θ are solutions to (11) and (12).

Conversely, if u = (ui )
3
i=1 and θ are twice continuously differentiable solutions of

the integral equations (11) and (12), then we use Green’s formula to obtain

3∑
i=1

∫
�

(
ρ
∂2ui

∂t2 −

3∑
j=1

∂

∂x j

( 3∑
p,q=1

µi j pqepq(u)+ηi jθ+ηi jτ1
∂θ

∂t

))
vi dx

+

3∑
i, j=1

∫
01

( 3∑
p,q=1

µi j pqepq(u)+ηi jθ+ηi jτ1
∂θ

∂t

)
viν j d0

=

3∑
i=1

∫
�

fivi dx+
3∑

i=1

∫
01

givi d0, (13)
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∫
�

(
~
(
∂θ

∂t
+τ0

∂2θ

∂t2

)
−

3∑
p=1

βp
∂2θ

∂t∂x p
−

3∑
p,q=1

∂

∂x p

(
λpq

∂θ

∂xq

)

−

3∑
p=1

∂

∂x p

(
βp
∂θ

∂t

)
−20

3∑
p,q=1

ηpqepq

(
∂u
∂t

))
ϕ dx

+

3∑
p=1

∫
0θ1

( 3∑
q=1

λpq
∂θ

∂xq
+βp

∂θ

∂t

)
ϕνp d0

=

∫
�

f θϕ dx−
∫
0θ1

gθϕ d0, (14)

for all continuously differentiable functions v = (vi )
3
i=1 and ϕ vanishing on 00

and 0θ0 , respectively. By letting ϕ ∈ C1
0(�) = {ψ ∈ C1(�) | ψ = 0 on 0} and

v = (vi )
3
i=1 ∈ (C

1
0(�))

3, and by taking into account the density of C1
0(�) in L2(�)

from (13) and (14) we obtain that u and θ satisfy (6) and (7). Now, if we assume that
v= (vi )

3
i=1∈ (C

1
0(01))

3
={v= (vi )

3
i=1∈ (C

1(01))
3
|v=0on001} and ϕ∈C1

0(0
θ
1 )=

{ϕ ∈ C1(0θ1 ) | ϕ = 0 on 0θ01} are arbitrary continuous functions, then by applying
(6) and (7), and the density of C0(01) and C0(0

θ
1 ) being in L2(01) and L2(0θ1 ),

respectively, we infer that u and θ satisfy the boundary conditions (9) and (10).
Hence the initial-boundary value problem (6)–(10) corresponding to the Green–

Lindsay dynamical three-dimensional model is equivalent to the integral equations
(11) and (12), together with the initial conditions (8) in the spaces of twice con-
tinuously differentiable functions. On the basis of these equations we present the
so-called weak or variational formulation of the initial-boundary value problem
(6)–(10), and investigate the existence and uniqueness of a weak solution in suit-
able spaces of vector-valued distributions with values in the corresponding Sobolev
spaces.

Let us introduce the following function spaces, which are used in the variational
formulation of the initial-boundary value problem (6)–(10):

V (�)= {v = (vi )
3
i=1 ∈ H1(�); tr(v)= 0 on 00},

V θ (�)= {ϕ ∈ H 1(�); tr(ϕ)= 0 on 0θ0 }.

Note that V (�) and V θ (�) are Hilbert spaces equipped with the norms ‖ · ‖H1(�)

and ‖ · ‖H1(�), respectively.
We identify the unknown vector function u and the function θ with vector-

functions defined on [0, T ] with values in suitable spaces of functions defined
on �. By applying the integral equations (11) and (12), we consider the following
variational formulation of problem (6)–(10) in the spaces of vector-valued distribu-
tions: find u ∈ C([0, T ]; V (�)), u′ ∈ L∞(0, T ; V (�)), u′′ ∈ L∞(0, T ; L2(�)),
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θ ∈ C([0, T ]; V θ (�)), θ ′ ∈ L∞(0, T ; V θ (�)), θ ′′ ∈ L∞(0, T ; L2(�)), which
satisfy the following equations in the sense of distributions on (0, T ):

(ρu′′, v)L2(�)+a(u, v)+b(θ, v)+τ1b(θ ′, v)

= ( f , v)L2(�)+(g, v)L2(01) ∀v ∈ V (�), (15)

(~θ ′, ϕ)L2(�)+τ0(~θ
′′, ϕ)L2(�)−bθ (θ ′, ϕ)+aθ (θ, ϕ)

+bθ (ϕ, θ ′)−20b(ϕ, u′)= ( f θ , ϕ)L2(�)−(g
θ , ϕ)L2(0θ1 )

∀ϕ ∈ V θ (�), (16)

together with the initial conditions

u(0)= u0, u′(0)= u1, θ(0)= θ0, θ ′(0)= θ1, (17)

where

a(v̂, v)=
∫
�

3∑
i, j,p,q=1

µi j pqepq(v̂)ei j (v) dx ∀v, v̂ ∈ H1(�),

aθ (ϕ̂, ϕ)=
∫
�

3∑
p,q=1

λpq
∂ϕ̂

∂xq

∂ϕ

∂x p
dx ∀ϕ, ϕ̂ ∈ H 1(�),

b(ϕ̃, v)=
∫
�

3∑
i, j=1

ηi j ϕ̃ei j (v) dx,

bθ (ϕ, ϕ̃)=
∫
�

3∑
p=1

βp
∂ϕ

∂x p
ϕ̃ dx ∀ϕ̃ ∈ L2(�), ϕ ∈ H 1(�), v ∈ H1(�).

Note that since u and θ are continuous with respect to the time variable t , the
equations in (17) for u(0) and θ(0) are understood in the sense of the spaces V (�)
and V θ (�), respectively. From the embedding theorem [Dautray and Lions 1992]
it follows that u′ ∈ C([0, T ]; L2(�)), θ ′ ∈ C([0, T ]; L2(�)), and, consequently,
the equations in (17) for u′(0) and θ ′(0) are understood in the sense of the spaces
L2(�) and L2(�), respectively.

For the problem (15)–(17), which is equivalent to the initial-boundary value
problem (6)–(10) in the spaces of classical smooth enough functions, the following
existence, uniqueness, and continuous dependence theorem is valid.

Theorem 2.1. Suppose that parameters characterizing thermal and elastic proper-
ties of thermoelastic body satisfy conditions (1)–(5), τ1 > 0, τ0 > 0 and

ρ(x) > cρ = const> 0, ~(x) > c~ = const> 0 ∀x ∈�,
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and µi j pq , λpq , ηi j , βp ∈ C0,1(�) (i, j, p, q = 1, 2, 3), ρ, ~ ∈ L∞(�). If the
densities of body and surface forces, heat source, and heat flux are such that

f , f ′, f ′′ ∈ L2(0, T ; L6/5(�)), g, g′, g′′ ∈ L2(0, T ; L4/3(01)),

f θ , f θ ′, f θ ′′ ∈ L2(0, T ; L6/5(�)), gθ , gθ ′, gθ ′′ ∈ L2(0, T ; L4/3(0θ1 )),

and initial conditions u0 ∈ H2(�) ∩ V (�), u1 ∈ V (�), θ0 ∈ H 2(�) ∩ V θ (�),
θ1 ∈ V θ (�) satisfy the following compatibility conditions:

gi (0)=
3∑

j=1

( 3∑
p,q=1

µi j pqepq(u0)+ ηi jθ0+ ηi jτ1θ1

)
ν j

∣∣∣∣
01

,

gθ (0)=−
3∑

p=1

( 3∑
q=1

(
λpq

∂θ0

∂xq
+βpθ1

)
νp

)∣∣∣∣
0θ1

,

where i = 1, 2, 3, then the initial-boundary value problem (15)–(17) possesses a
unique solution, which continuously depends on the given data, i.e., the mapping
(u0, u1, θ0, θ1, f, f ′, g, g′, f θ, f θ ′, gθ, gθ ′)→ (u, u′, θ, θ ′) is linear and continuous
from space

V (�)× L2(�)× V θ (�)× L2(�)× L2(0, T ; L6/5(�))× L2(0, T ; L6/5(�))

× L2(0, T ; L4/3(01))× L2(0, T ; L4/3(01))× L2(0, T ; L6/5(�))

× L2(0, T ; L6/5(�))× L2(0, T ; L4/3(0θ1 ))× L2(0, T ; L4/3(0θ1 ))

to space

C([0, T ]; V (�))×C([0, T ]; L2(�))×C([0, T ]; V θ (�))×C([0, T ]; L2(�)).

Further details and extensions will be presented in [Avalishvili et al. 2017].

3. Conclusions

We studied an initial-boundary value problem with general mixed boundary condi-
tions for displacement and temperature corresponding to the Green–Lindsay linear
dynamical three-dimensional model for an inhomogeneous anisotropic thermoelas-
tic body. We obtained a variational formulation of the three-dimensional problem
in the corresponding spaces of vector-valued distributions with respect to the time
variable with values in Sobolev spaces, which is equivalent to the original differen-
tial formulation in spaces of sufficiently smooth functions. We formulated a new
theorem on the existence and uniqueness of the solution of the three-dimensional
initial-boundary value problem, and the continuous dependence of the solution on
given data in suitable function spaces.
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LINEAR PANTOGRAPHIC SHEETS:
ASYMPTOTIC MICRO-MACRO MODELS IDENTIFICATION

CLAUDE BOUTIN, FRANCESCO DELL’ISOLA,
IVAN GIORGIO AND LUCA PLACIDI

In this paper we consider linear pantographic sheets, which in their natural
configuration are constituted by two orthogonal arrays of straight fibers inter-
connected by internal pivots. We introduce a continuous model by means of a
micro-macro identification procedure based on the asymptotic homogenization
method of discrete media. The rescaling of the mechanical properties and of
the deformation measures is calibrated in order to comply with the specific kine-
matics imposed by the quasi-inextensibility of the fibers together with the large
pantographic deformability. The obtained high-order continuum model shows
interesting and exotic features related to its extreme anisotropy and also to the
subcoercivity of its deformation energy. Some initial numerical simulations are
presented, showing that the model can account for experimental uncommon phe-
nomena occurring in pantographic sheets. The paper focuses on the precise anal-
ysis and the understanding of the effective behavior based on a well-calibration
of the extension and bending phenomena arising at the local scale. In an up-
coming work, the analysis will be extended to oblique arrays, some analytical
solutions to proposed equations and some further applications.

1. Introduction

In the study of generalized (multiscale or architectured) continua, two different and
complementary approaches can be identified:

(1) A phenomenological approach can be applied at the macroscopic scale: it
gives a general framework and in general it is based on variational principles
and methods [Mindlin 1965; Toupin 1964; Germain 1973; Gouin and De-
bieve 1986; Casal 1966; dell’Isola and Placidi 2011; dell’Isola et al. 2009;
Lekszycki 1991]; however, using this approach it is not possible to make the
influence of microstructure on macrophenomena become explicit. In other
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words, a model is established, but the microstructured material to which it
could be applied is unknown.

(2) Another approach involves a scale change, made possible through a homoge-
nization. This method has been developed in vast literature (see, e.g., [Boutin
and Auriault 1993; Pideri and Seppecher 1997; Bensoussan et al. 2011; Boutin
and Soubestre 2011; Auriault et al. 2009; Allaire 1992; Alibert and Della Corte
2015; dell’Isola et al. 2016b; 2016c]) but has not been applied too often to the
case of multiscale materials, in which a great contrast in physical properties
appears at microlevel (see [Soubestre and Boutin 2012; Boutin et al. 2010]).
Moreover, homogenization methods treat more particular cases and therefore
they are not supposed to cover all situations. However, a careful homogeniza-
tion technique gives the possibility of identifying the micromorphologies that
lead to the macroscopic behavior characteristic of generalized continua.

Recently the attention has been attracted by a particular class of microstructure:
that which produces so-called pantographic continua [dell’Isola et al. 2015b; 2016b;
2016c; 2016d; Giorgio et al. 2016; Madeo et al. 2015]. This kind of structure is
inspired by several natural examples; indeed, some biological tissues present fibers
that can be modeled in a similar way (see, e.g., [Melnik and Goriely 2013; Federico
and Grillo 2012; Grillo et al. 2015] for some possible applications). Their interest
was initially related to the possibility of proving the existence of purely second
gradient continua [Alibert et al. 2003], but subsequently their practical applicability
has been proven for woven fabrics and some “ad hoc” designed metamaterials (see,
e.g., [Del Vescovo and Giorgio 2014; Bîrsan et al. 2012; Eremeyev and Lebedev
2011; Altenbach et al. 2011; dell’Isola et al. 2015b; Eremeyev 2016]). On the other
hand, some interesting theoretical results were presented in [Chesnais et al. 2015;
Boutin et al. 2010; Boutin and Soubestre 2011]. In these papers, some suitable
homogenization methods were introduced to study the dynamics of periodic beam
structures and other evidence was presented concerning the need to introduce sec-
ond gradient continua when a high contrast of mechanical properties is present at
microlevel.

In all considered cases, directional (anisotropic) materials with a high contrast
in properties between shear and extension are studied. This paper, different to what
was done in [Rahali et al. 2015], considers the case of extensible fibers and gives a
more solid foundation to and generalizes the heuristic results presented in [Placidi
et al. 2017] based on an accurate analysis of the different and relative order of
magnitude of the involved physical phenomena.

In this paper we will use a micro-macro asymptotic identification method and
obtain the macroscopic equilibrium equations for pantographic lattices in the neigh-
borhood of a reference configuration. The analysis of the obtained equation is
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Figure 1. Topology of the pantographic lattice. The pivots are
equally distributed on the whole sheet. The black points are indi-
cating specific monitoring points during bias test experiments.

started and some equilibrium problems are solved by means of numerical simula-
tions.

In a forthcoming paper we treat the generalized case of reference configurations
constituted by two oblique arrays of straight beams, some semianalytical solutions
and some further application.

2. Hypotheses and notations

Let us consider a periodic pantograph network of fibers (which we also call a
pantographic lattice or pantographic sheet) formed of two families of continuous
fibers arranged perpendicularly and along the axes x and y. The fibers oriented
along x are identical, as well as those oriented along y. However, the two families
may differ from one another. These fibers are connected by perfect pivots, with
an axis perpendicular to the {x, y} plane. The fibers oriented along x are spaced
periodically by the length `y . Those oriented along y are spaced by `x . This
defines the rectangular mesh, which is constituted by those two elements that are
the portions of the orthogonal fibers that cross a pivot. Each pivot is referenced by
two integers nx and m y , which are simply its discrete coordinates along the axes x
and y, respectively. We will model each segment of fiber between two consequent
nodes as a beam. The four beam elements connected to the pivot {nx ,m y} are
denoted by [nx − 1, nx ] and [nx , nx + 1] for the two elements oriented along x ,
or by [m y − 1,m y] and [m y,m y + 1] for the two elements oriented along y. The
understanding of the reader is helped by Figure 1.

The parameters of the beam elements are their Young’s modulus E j , the area
A j of their sections and the moments of inertia I j of their sections, where j = x, y.
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The dimensions of the sections
√

A j are assumed small with respect to the lengths
` j . Accordingly, the behavior of the interpivot elements can be effectively mod-
eled by the Euler beam model. It is further assumed that the geometrical and the
mechanical parameters of both types of beams are of the same order of magnitude:
to be more precise, the period is characterized by the length ` =

√
`x`y in such

a way that O(`x) = O(`y) = `. We also introduce the following dimensionless
quantities: `?x = `x/` and `?y = `y/` so that `?x`

?
y = 1 and O(`?x)= O(`?y)= O(1).

Note that the specificity of the adopted assumption of beam behavior is that the
length of the arrays is not considered (i.e., the fibers are not treated as beams) but
instead, this is the topology of the pantographic lattice that leads to a local beam
description.

We study in the {x, y} plane the quasistatic small deformations of the lattice
in the neighborhood of its initial equilibrium position where the lattice is periodic
and has a rectangular period. It is also assumed that the spatial variations of the
deformation and placement fields occur at large-scale and have a characteristic
variation length L that is large compared to the size of period `; in other words, to
have a relevant variation of the deformation fields, the space variables must have
a large increment relative to `.

These considerations naturally introduce the small parameter to be used for spec-
ifying scale separation:

ε = `/L � 1.

The macroscopic description of the system, valid at the dominant order, is reached
for ε→ 0.

3. Homogenization method: multiscale asymptotic heuristic approach

Let us construct the global behavior from the local behavior of beam elements
connected by pivots. To do this, the problem is first discretized exactly and then it
is converted into a continuum macroscopic formulation by an asymptotic homoge-
nization procedure.

Using the balance laws of an Euler beam, the contact actions (normal and shear
forces and moments) at the ends of each beam element are explicitly expressed
in terms of the kinematic variables (displacements and rotations) evaluated at the
same ends. The balance of each element is thereby assured. We will consider the
cases in which the beam elements between the nodes deform in a quasistatic regime.
In other words, our treatment will be applicable when, in considered phenomena,
there is a (quasi-)instantaneous equilibrium, at the level of the periodic cell, of the
interconnected beams. Sometimes this assumption is referred to as the assumption
of local microscopic instantaneous equilibrium. This approach is relevant when
dealing with phenomena of slow-time evolution.
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As a consequence of the exact discretization, to specify the conditions of the
global equilibrium conditions, it is necessary and sufficient to focus on the equi-
librium of each one of the pivots, which will play the role of material points of
the homogenized continuum. It is therefore expressed, in each pivot, the balance
of forces and moments applied by the four elements therein connected (belong-
ing to the two orthogonal fibers that intersect at each pivot). This gives an exact
representation of the original problem in a discrete form of finite difference type,
with the variables being the kinematic variables and the actions of each element,
evaluated at the pivot-locations. One has to explicitly remark that in the set of
the aforementioned four elements, one can distinguish two pairs (parallel in the
reference configuration) which are indeed part of the same fiber: moving from one
to the other elements belonging to the same fiber, the displacements and rotations
are continuous (see Figure 1, x-fiber and y-fiber).

Remark also that the action of a pivot on the two continuous fibers which the
pivot itself is interconnecting is modeled here as concentrated (in a point) force
and couple; of course, by the action and reaction principle, the action of the pivot
on the fiber of one array is opposite to the action exerted by the same pivot on the
fiber of the other array.

The passage from the exact discrete formulation to the macroscopic continuous
description, valid at the dominant order, is performed as follows [Caillerie 1984].
We assume that the overall behavior of the system can be described by a set of
macroscopic fields, the generic element of which is denoted by Q(x, y).

Discrete variables q(nx ,m y) at the pivots are considered as the values at these
points of continuous functions Q(x, y).

This procedure has been described in general already in the works by Piola
[2014] (he seems to us to be among the first scientists having introduced such
a heuristic method of homogenization; see [dell’Isola et al. 2016d; Rahali et al.
2015]); however, he applied it specifically only to the case of fluids.

We therefore set

q(nx ,ny) = Q(xn, ym), xn = nx`x , ym = m y`y .

Consistent with the hypothesis of separation of scale, these continuous functions
vary at large scales, such as O(L). Consequently, the increments of the interpivot
distance O(`) can be expressed by the Taylor expansions of macroscopic fields.
Thus, the finite difference of the discrete formulation is converted into series by
introducing successive gradients of the macroscopic functions. As the distances
between the pivots are constant due to the periodicity, the terms of such series are
of the type, for example, `k

x∂
k Q/∂xk

= O(`k
x/Lk)O(Q)= εk O(Q), with a multi-

plication factor. They therefore involve the orders of magnitude in powers of ε. As
we are interested in situations where ε→ 0, we need the following specification for
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the consistency of the orders of magnitude, i.e., we need to represent the functions
Q(x, y) in the form of asymptotic expansions of the type:

Q(x, y)=
∞∑

k=0

εk Q(k)(x, y), O(Q(k))= O(Q(0)).

These asymptotic expansions are to be used in the equations of equilibrium ex-
pressed via Taylor expansions. The dimensionless parameters that emerge from
this formulation must be weighted in powers of ε to translate correctly the dominant
mechanisms in the studied system [Boutin and Hans 2003; Hans and Boutin 2008].
This normalization of the balance equations preserves the same local physics during
the transition to the limit ε→ 0. Consequently, the macroscopic model in the limit
preserves — at the dominant order — the same local physics than that prevailing in
the real system, where the scale ratio `/L takes small but finite values.

After the aforementioned normalization, we obtain a series of equilibrium con-
ditions in terms of the powers of ε, which may be solved term by term. The
macroscopic description, at the dominant order, is constituted by the first nontrivial
differential system on the macroscopic variables.

4. Micromodeling of pantographic lattices

In the literature, much attention has been paid to lattices of beams interconnected
by clamping constraints and to trusses [Németh and Kocsis 2014; Liew et al. 2000;
Noor et al. 1978]. However, the existence of so called “floppy modes” at the mi-
crolevel in the pantographic structures requires the most attentive consideration. To
be more precise: what we call a floppy mode is a deformation of the microstructure
to which is associated a vanishing energy (for more details, see [Alibert et al. 2003;
Seppecher et al. 2011]). An intuitive consequence of the existence of floppy modes
is that for the effective medium, the standard condition of coerciveness is not veri-
fied and therefore this concept needs to be modified or generalized. Actually one
can decompose the space of deformations into a coercive subspace plus the space
of floppy modes and the role of the boundary condition becomes more determinant
in well-posed problems.

We used these microscopic floppy modes to prove that, in general, the class of
first-gradient continua (those introduced by Cauchy and usually considered in con-
tinuum mechanics; see, e.g., [dell’Isola et al. 2016a; 2015c]) is not enough to de-
scribe, at a macrolevel, all conceivable physical systems. In particular, when there
is high contrast (see [Camar-Eddine and Seppecher 2001; Pideri and Seppecher
1997; Hans and Boutin 2008; Boutin and Soubestre 2011; Cecchi and Rizzi 2001])
in physical properties at the microlevel, it may become necessary at the macrolevel
to introduce higher-order continua (see [dell’Isola et al. 2012; 2016e]).
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The analysis which we present adapts the studies presented in [Boutin et al.
2010; Boutin and Soubestre 2011; Hans and Boutin 2008; Soubestre and Boutin
2012] to the case of pantographic lattices to take into account their behavior, which
can be regarded as being somehow exotic.

We start by using the framework of local microscopic instantaneous equilibrium
to formulate a mesolevel model where the lattice is described as a set of nodes (the
pivots) interconnected by beam element.

4.1. Characterization of the mechanical behavior of a beam element. Let the
section of the considered straight (in the reference configuration) beam be A, its
moment of inertia being I , and let the material constituting it be elastic, isotropic
and with Young’s modulus E . We denote (referring to the beam planar reference
configuration) by v the axial displacement, by w the transverse displacement, by
N the normal force, by T the shear force and by M the bending moment (we will
be using the French convention for the orientation of axes). These contact actions
are defined as that of the part s < 0 on part s > 0, where s designates the abscissa
along the axis of the beam. Consider a portion of the beam between two points B
and C , spaced apart by a distance ` that is large enough compared to the size

√
A

of the beam section. The Euler beam theory can therefore be used. Accordingly,
the rotation of the section is related to the transverse displacement via the relation
θ(s)= dw(s)/ds. The constitutive equations of the beam are the following:

N (s)= E A
dv
ds
, M(s)=−E I

d2w

ds2 , (1)

and, in the quasistatic regime, the equilibrium equations in differential form are
expressed by

dN
ds
= 0,

dT
ds
= 0,

dM
ds
+ T = 0. (2)

Suppose that for the point B (and C), the displacements and the rotation are vB ,
wB and θ B (respectively vC , wC and θC ). The forces and moment at B and at C
are determined using the equations of beams. They are expressed as a function of
the kinematic variables as follows:

N B
= N C

=
E A
`
(vB
− vC), (3)

T B
= T C

=
12E I
`3

(
wB
−wC

+
1
2`(θ

B
+ θC)

)
, (4)

M B
=

6E I
`2

(
wB
−wC

+
1
3`(2θ

B
+ θC)

)
, (5)

MC
=−

6E I
`2

(
wB
−wC

+
1
3`(θ

B
+ 2θC)

)
. (6)
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Expressions of N involve the axial E A/` rigidities, while T and M involve bending
12E I/`3 rigidities. The beam’s slenderness hypothesis

√
A� ` implies that such

rigidities differ significantly. In fact, considering beams of regular section (for in-
stance, the rectangular section of length’s sides a and b, with b= O(a)= O(

√
A)),

then A = ab, I = ba3/12 and 12I/A = a2
= O(A), and consequently the rigidity

ratio R is

R =
12E I
`3

`

E A
=

12I
`2 A
= O

(
A
`2

)
� 1. (7)

This strong stiffness contrast plays an essential role in the functioning of the system.
Hereafter we take into account explicitly that the aspect ratio of the elements is
√

A/`= O(ε) which leads to

R =
12E I
`3

`

E A
= O(ε2). (8)

4.2. Discrete kinematic variables and equilibrium at pivots. Because of the op-
erating principle of an internal pivot, the ends of the four elements connected to it
undergo the same displacement ux (u y) along the axis x (y), but rotations of those
elements belonging to fibers with distinct orientations are not identical; the coin-
ciding ends of the two elements oriented along x (y) undergo the same rotation θx

(θy). Thus, each pivot {nx ,m y} is described by four kinematic variables ux(nx ,m y),
u y(nx ,m y), θx(nx ,m y) and θy(nx ,m y).

The equilibrium at a pivot results:

(i) in the balances of force (exerted on the pivot) along x and y, and

(ii) in the continuity of both moment fields arising in the beam elements oriented
either along x or along y.

These four equations expressed at the pivot {nx ,m y} take the following forms:

• balance of force along x :

−T C
[m y−1,m y ]

+ T B
[m y ,m y+1]+ N C

[nx−1,nx ]
− N B

[nx ,nx+1] = 0, (9)

• balance of force along y:

T C
[nx−1,nx ]

− T B
[nx ,nx+1]+ N C

[m y−1,m y ]
− N B

[m y ,m y+1] = 0, (10)

• balance of moments for the elements along x :

MC
[nx−1,nx ]

−M B
[nx ,nx+1] = 0, (11)

• balance of moments for the elements along y:

MC
[m y−1,m y ]

−M B
[m y ,m y+1] = 0. (12)
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Here, we have denoted by the symbol Q D
[p,q] the value of the field Q at the extremity

D=C or D= B of the beam element connecting the node p and the node q , where
p and q are consecutive in either the x or y direction.

The component ux (u y) of the pivot displacement is:

(i) the axial displacement of the ends of the beam element oriented along x (y),
and

(ii) the opposite transverse (direct) displacement of the ends of the beam element
along y (along x). The change of sign results from different orientations of
the global frame and of the local frame of the y-oriented fibers.

Thus, by substituting in (9)–(12) the forces by their expressions in terms of the
displacement fields (3)–(6), the balance of force along x is obtained as

12Ey Iy

`3
y

(
(ux(nx ,m y−1)− 2ux(nx ,m y)+ ux(nx ,m y+1))

+
1
2`y(−θy(nx ,m y−1)+ θy(nx ,m y+1))

)
+

Ex Ax

`x
(ux(nx−1,m y)− 2ux(nx ,m y)+ ux(nx+1,m y))= 0. (13)

The continuity at the nodes of bending moments of the elements oriented along y
(after the simplification by 2Ey Iy/`y) reads

3
`y
(ux(nx ,m y−1)−ux(nx ,m y+1))− (θy(nx ,m y−1)+4θy(nx ,m y)+ θy(nx ,m y+1))= 0, (14)

the balance of force along y reads

12Ex Ix

`3
x

(
(u y(nx−1,m y)− 2u y(nx ,m y)+ u y(nx+1,m y))

+
1
2`x(−θx(nx−1,m y)+ θx(nx+1,m y))

)
+

Ey Ay

`y

(
u y(nx ,m y−1)− 2u y(nx ,m y)+ u y(nx ,m y+1)

)
= 0, (15)

and finally the continuity at the nodes of bending moments of the elements oriented
along x (after the simplification by 2Ex Ix/`x ) reads

3
`x
(−u y(nx−1,m y)+u y(nx+1,m y))−(θx(nx−1,m y)+4θx(nx ,m y)+θx(nx+1,m y))= 0. (16)

These four equations are split into two independent groups of equations: (13)–(14)
couples the variables ux and θy; while (15)–(16) couples the variables u y and θx .
Thus, it is sufficient to treat (13)–(14), being that the results of (15)–(16) are easily
deduced by changing the roles of axes x and y.
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4.3. Continuous formulation and asymptotic expansions. Let us introduce con-
tinuous kinematic descriptors (denoted by uppercase letters) coinciding with the
discrete kinematic variables of the pivots {nx ,m y} with coordinates xn = n`x and
ym = m`y :

ux(nx ,m y) =Ux(xn, ym), θy(nx ,m y) =2y(xn, ym), (17)

u y(nx ,m y) =Uy(xn, ym), θx(nx ,m y) =2x(xn, ym), (18)

and use Taylor series expansions to express the terms of the finite difference equa-
tions (13)–(14). By introducing the dimensionless variables x? = x/L and y? =
y/L , we have (for comparison, see [Piola 2014; Carcaterra et al. 2015])

ux(nx ,m y−1)− 2ux(nx ,m y)+ ux(nx ,m y+1)

= `2
y
∂2Ux

∂y2 (xn, ym)+
2
4!
`4

y
∂4Ux

∂y4 (xn, ym)+ O
(
`6

y
∂6Uy

∂y6

)
= ε2`?2y

∂2Ux

∂y?2
+ ε4`?4y

2
4!
∂4Ux

∂y?4
+ ε6`?6y

2
6!
∂6Ux

∂y?6
+ O(ε8), (19)

ux(nx−1,m y)− 2ux(nx ,m y)+ ux(nx+1,m y)

= ε2`?2x
∂2Ux

∂x?2
+ ε4`?4x

2
4!
∂4Ux

∂x?4
+ ε6`?6x

2
6!
∂6Ux

∂x?6
+ O(ε8), (20)

similarly,

− θy(nx ,m y−1)+ θy(nx ,m y+1)

= 2ε`?y
∂2y

∂y?
+ ε3`?3y

2
3!
∂32y

∂y?3
+ ε5`?5y

2
5!
∂52y

∂y?5
+ O(ε7), (21)

− ux(nx ,m y−1)+ ux(nx ,m y+1)

= 2ε`?y
∂Ux

∂y?
+ ε3`?3y

2
3!
∂3Ux

∂y?3
+ ε5`?5y

2
5!
∂5ux

∂y?5
+ O(ε7), (22)

and finally,

θy(nx ,m y−1)+ 4θy(nx ,m y)+ θy(nx ,m y+1)

= 62y + ε
2`?2y

∂22y

∂y?2
+ ε4`?4y

2
4!
∂42y

∂y?4
+ ε6`?6y

2
6!
∂62y

∂y?6
+ O(ε8). (23)

By construction, the coefficients of the power expansions for ε in (20)–(23) are
of the same dominant order, but also they contain terms of lower order. There-
fore, to really order the relative weight of the different addends, it is necessary to
introduce the asymptotic expansions of the variables Ux , Uy , 2x and 2y . This is
essential to effectively separate the power exponents and to ensure the coherence of
the passage to the limit ε→ 0. It should be noted that consecutive terms of Taylor
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expansions are systematically offset from ε2. It is therefore sufficient to introduce
the developments in the even powers of ε. Consequently, we are looking for fields
Ux , Uy , 2x , 2y in the generic form

Ux =U (0)
x + ε

2U (2)
x + ε

4U (4)
x + O(ε6U (6)

x ).

Thereafter, we will denote with a tilde the correction terms that are physically
observable, e.g.,

Ũ (4)
x = ε

4U (4)
x , 2̃(4)x = ε

42(4)x .

Referring the developments in power of ε2 in (20)–(23), we get

ux(nx ,m y−1)− 2ux(nx ,m y)+ ux(nx ,m y+1)

= ε2`?2y
∂2U (0)

x

∂y?2
+ ε4`?4y

(
∂2U (2)

x

∂y?2
+

2
4!
∂4U (0)

x

∂y?4

)
+ O(ε6),

(24)

ux(nx−1,m y)− 2ux(nx ,m y)+ ux(nx+1,m y)

= ε2`?2x
∂2U (0)

x

∂x?2
+ ε4`?4x

(
∂2U (2)

x

∂x?2
+

2
4!
∂4U (0)

y

∂x?4

)
+ O(ε6),

(25)

− θy(nx ,m y−1)+ θy(nx ,m y+1)

= ε`?y2
∂2

(0)
y

∂y?
+ ε3`?3y

(
2
∂2

(2)
y

∂y?
+

2
3!
∂32

(0)
y

∂y?3

)

+ ε5`?5y

(
2
∂2

(4)
y

∂y?
+

2
3!
∂32

(0)
y

∂y?3
+

2
5!
∂52

(0)
y

∂y?5

)
+ O(ε7),

(26)

− ux(nx ,m y−1)+ ux(nx ,m y+1)

= ε`?y2
∂U (0)

x

∂y?
+ ε3`?3y

(
2
∂U (2)

x

∂y?
+

2
3!
∂3U (0)

x

∂y?3

)

+ ε5`?5y

(
2
∂U (4)

x

∂y?
+

2
3!
∂3U (2)

x

∂y?3
+

2
5!
∂5U (0)

x

∂y?5

)
+ O(ε7),

(27)

θy(nx ,m y−1)+ 4θy(nx ,m y)+ θy(nx ,m y−1)

= 62(0)y + ε
2`?2y

(
2(2)y +

∂22
(0)
y

∂y?2

)

+ ε4`?4y

(
2(4)y +

∂22
(2)
y

∂y?2
+

2
4!
∂42

(0)
y

∂y?4

)
+ O(ε6).

(28)
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The calculations presented in this subsection provides an accurate transformation
of the finite differences into successive derivatives. This step is essential to get the
continuous asymptotic model valid in the limit ε→ 0.

5. Asymptotic macroscopic model

In (24)–(28), the macroscopic continuous fields and their macroscopic derivatives
appear. By substituting them in the equilibrium equations (13)–(14) we may obtain
a macroscopic continuous formulation of the equilibrium of pivots (equilibrium of
force along x and equilibrium of moment for the elements along y). To make
explicit which are the appearing powers of ε, it is convenient to write the obtained
equations in the nondimensional variables x? and y?, where L is the reference
length. As, by hypothesis, `x and `y are of order ε with respect to L , we have
`x = `

?
x`= ε`

?
x L and `y = ε`

?
y L . Thus, by limiting ourselves to the infinitesimals

O(ε6), the continuity of moments of the elements oriented along y (14) gives, after
grouping different terms,

6
(
∂U (0)

x

∂y?
+ L`?y2

(0)
y

)
+ ε2`?2y 6

(
∂U (2)

x

∂y?
+ L`?y2

(2)
y

)
+ε4`?4y

(
6
(
∂U (4)

x

∂y?
+L`?y2

(4)
y

)
+

2
4!

∂4

∂y?4

(
1
5
∂U (0)

x

∂y?
+L`?y2

(0)
y

))
+O(ε6)=0, (29)

and the equilibrium of forces along x (13) gives

Rxε
2`?2y

(
∂

∂y?

(
∂U (0)

x

∂y?
+ L`?y2

(0)
y

)

+ε2`?2y

{
∂

∂y?

(
∂U (2)

x

∂y?
+L`?y2

(2)
y

)
+
∂3

∂y?3

(
2
4!
∂U (0)

x

∂y?
+

1
3!

L`?y2
(0)
y

)}
+O(ε4)

)

+ε2`?2x

(
∂2U (0)

x

∂x?2
+ ε2`?2x

{
∂2U (2)

x

∂x?2
+

2
4!
∂4U (0)

x

∂x?4

}

+ε4`?4x

{
∂2U (4)

x

∂x?2
+

2
4!
∂4U (2)

x

∂x?4
+

2
6!
∂6U (0)

x

∂x?6

}
+ O(ε6)

)
= 0, (30)

where

Rx =
12Ey Iy

`3
y

`x

Ex Ax
.

The moment in (29) comes in the form of a series in which the mechanical char-
acteristics of beams do not interfere. The convergence of the series when ε→ 0
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implies that each involved term vanishes. Consequently,

∂U (0)
x

∂y?
+ L`?y2

(0)
y = 0, (31)

∂U (2)
x

∂y?
+ L`?y2

(2)
y = 0, (32)

∂U (4)
x

∂y?
+ L`?y2

(4)
y +

1
3 · 4!

∂4

∂y?4

(
1
5
∂U (0)

x

∂y?
− L`?y2

(0)
y

)
= 0. (33)

This precisely means that the equilibrium of moments for y fibers requires, with an
error being equal to O(ε4), a relationship between their rotation and their transverse
gradient, which is expressed in the dimensional fields as

∂Ux

∂y
+ `?y2y = O(ε4).

At the dominant order, 2y can thus be considered a hidden variable which does not
emerge in the macroscopic description at the leading order. Only by considering
the correction O(ε4) does the rotation differ from the transverse gradient because
we have

∂U (4)
x

∂y?
+ L`?y2

(4)
y =−

2
5!
∂5∂U (0)

x

∂y?5
,

or, in dimensional variables and denoting explicitly the observable corrections
Ũ (4)

x = ε
4U (4)

x , 2̃(4)x = ε
42

(4)
x :

∂Ũ (4)
x

∂y
+ `y2̃

(4)
y =−`

4 2
5!
∂5∂U (0)

x

∂y5 .

Let us now replace (31)–(32) in the balance equation (30). This leads to

Rxε
2`?4y

(
2
4!
∂4U (0)

x

∂y?4
+ O(ε4)

)
= `?2x

(
∂2U (0)

x

∂x?2
+ ε2`?2x

{
∂2U (2)

x

∂x?2
+

2
4!
∂4U (0)

x

∂x?4

})
+ O(ε4). (34)

To exploit this equation, it is necessary to weigh the effects of bending (left-hand
side term) and extension (right-hand side term). These effects are a consequence
of both the mechanical properties of considered system and of the nature of the
admitted kinematics. The mechanical parameters which we choose will introduce
the high contrast condition (8), which is expressed by

Rx = R?xε
2. (35)
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Regarding the nature of the macroscopic kinematics, we are led thus to distinguish
between low or high contrast situations in the axial and the transverse gradient.

5.1. Low contrast between axial and transverse gradient of Ux . We consider here
macroscopic kinematics where axial and transverse components of the displace-
ment gradient Ux are of the same order, i.e.,

∂U (0)
x

∂x?
= O

(
∂U (0)

x

∂y?

)
. (36)

This estimate explicitly means that the axial and transverse variations have as a
common evolution characteristic value O(L). This hypothesis is usually consid-
ered in the case of an elastic composite medium where the terms of the strain
tensor components are assumed to be of the same order. In this case, we obtain
successively (each relative to the orders ε0, ε2, ε4)

∂2U (0)
x

∂x?2
= 0,

∂2U (2)
x

∂x?2
+

2
4!
∂4U (0)

x

∂x?4
= 0,

∂2U (4)
x

∂x?2
+

2
4!
∂4U (2)

x

∂x?4
+

2
6!
∂6U (0)

x

∂x?6
= (`?x)

−2 R?x`
?4
y

2
4!
∂4U (0)

x

∂y?4
.

By simplifying and returning to the dimensional variables and observable correc-
tors, we deduce that

Ex Ax

`y

∂2U (0)
x

∂x2 = 0, (37)

Ex Ax

`y

∂2Ũ (2)
x

∂x2 = 0, (38)

Ex Ax

`y

∂2Ũ (4)
x

∂x2 =
Ey Iy

`x

∂4U (0)
x

∂y4 . (39)

Equations (37)–(38) mean that the tension of the fibers oriented along x is constant
to the accuracy ε4. Only by considering the order 4 of the correctors, the tension
of the beams varies due to the bending of orthogonal beams, as indicated by (39).

The assumption (36) obviously can not cover all cases of loading. In particular,
it is not predictive if the lattice is subjected to a uniaxial extension in a direction
that does not coincide with one of the directions of the fibers’ arrays (see Figure 2).
Indeed, if one considers the “red” fiber in Figure 2 (which presents experimental
evidence), it is clear that its state of tension cannot be constant; its tension is not
vanishing in the clamping but it clearly vanishes at the free end. To describe these
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Figure 2. An example of standard bias extension test, courtesy of
Tomasz Lekszycki, Marek Pawlikowski and Roman Grygoruk.

Figure 3. An example of generalized bias test while imposing a
shear displacement.

situations it is necessary to change the too restrictive hypothesis (36) by allowing
a strong contrast between the axial and transverse components of the gradient of
the macroscopic displacement.

5.2. Strong contrast between axial and transverse gradient of Ux . Thus we are
lead to consider macroscopic kinematics where the transverse gradient ∂U (0)

x /∂y?

dominates in comparison to the axial gradient ∂U (0)
x /∂x?, i.e.,

∂U (0)
x

∂x?
�
∂U (0)

x

∂y?
. (40)

This assumption reflects the fact that the axial characteristic length of variation of
Ux (denoted L x,a) is much larger than the transverse (denoted L x,t ) length (see,
e.g., experimental evidence presented in [dell’Isola et al. 2016d]). This is a conse-
quence of the high shear deformability of the pantographic network compared to
its deformability in the axis of the fibers.
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To assure scale separation, we are thus lead to consider as a reference length the
smaller between the two, i.e., L = L x,t , so that

∂ iU (0)
x

∂x?i
=

O(U (0)
x )

(L x,a/L)i
= O(U (0)

x )

(
L x,t

L x,a

)i

,
∂ jU (0)

x

∂y? j =
O(U (0)

x )

(L x,t/L) j = O(U (0)
x ).

Once we consider L x,t = ε
2L x,a , we have

∂U (0)
x

∂x?
= ε2O

(
∂U (0)

x

∂y?

)
, (41)

∂2U (0)
x

∂x?2
= ε4O

(
∂4U (0)

x

∂y?4

)
. (42)

The presence of a contrast in the components of the strain tensor as given by (41)
is unconventional in elastic composite mediums but arises naturally in the case
of weakly compressible viscous fluid (where the trace of the strain rate tensor is
negligible compared to its deviatoric component) or in beams and plates (where
deformations in the section of the beam — or in the thickness of the plate — are
negligible). This contrast is present also in pantographic sheets.

Replacing the estimate (42) into (34) we get at the leading order

∂2U (0)
x

∂x?2
= (`?x)

−2 R?x`
?4
y

2
4!
∂4U (0)

x

∂y?4
,

or, returning to the dimensional variables and normalizing by introducing the sur-
face of the periodic cell, we have

Ex Ax

`y

∂2U (0)
x

∂x2 =
Ey Iy

`x

∂4U (0)
x

∂y4 . (43)

This equation indicates that the normal force (left-hand side) varies at the first order
in the beams due to the shear force exerted by the orthogonal beams (right-hand
side). This is made possible because the transverse gradient is of two orders of
magnitude higher than that of the extension gradient (see again (41)).

Moreover, we note that (43) is more general than (37) and it is needed in
the considered mechanical system. Moreover, (43) degenerates to the (37) when
∂U (0)

x /∂x � ε2∂U (0)
x /∂y. We will use in what follows the description (43), which

applies to more general kinematics.

5.3. Synthesis of obtained results. The above results, derived from the system
(13)–(14) for the variables U (0)

x and 2(0)y is transposed by a similar analysis of the
system (15)–(16) to the variables U (0)

y and 2(0)x . The description in small defor-
mations of the orthogonal pantographic lattice is therefore obtained by restricting
the analysis to the dominant order (for simplicity, the exponents of order (0) are
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removed):

Ex Ax

`y

∂2Ux

∂x2 =
Ey Iy

`x

∂4Ux

∂y4 , (44)

Ey Ay

`x

∂2Uy

∂y2 =
Ex Ix

`y

∂4Uy

∂x4 , (45)

with the addition of the relationships between the transverse gradients and rotations:

∂Ux

∂y
+

√
`y

`x
2y = 0,

∂Uy

∂x
−

√
`x

`y
2x = 0. (46)

Remark that (44)–(45) can be rewritten by introducing two intrinsic characteristic
lengths ηx and ηy as follows:

∂2Ux

∂x2 = η
2
x
∂4Ux

∂y4 ,
∂2Uy

∂y2 = η
2
y
∂4Uy

∂x4 ,

where

η2
x :=

`y Ey Iy

`x Ex Ax
, η2

y :=
`x Ex Ix

`y Ey Ay
.

It is clear that the physics of the system is governed by these internal intrinsic
lengths which differ from the size of the cell.

The model governed by (44)–(45) is of the type of a conservative generalized
continuum medium having deformation energy that depends on first- and second-
order gradients of displacement (see [Alibert et al. 2003; Seppecher et al. 2011]).
Its evolution is ruled by two displacement fields which are independent and un-
coupled, i.e., Ux and Uy . This particular behavior is within the framework of
the second gradient continua where the internal actions are described by a stress
symmetric tensor T of order two and by a hyperstress tensor T of third order.
To make the identification, we pose (44)–(45) in the following form, where the
differential operator DIV denotes the Lagrangian divergency:

DIV(T −DIV(T))= 0, (47)

and where we used the definitions

T := 1
2C . (∇U +∇U t), T := D .∇∇U (48)

in which the symbol “.” denotes the repeated index saturation between different
order tensors and superscript “t” the transposition of second-order tensors. The
elasticity tensors C and D of order four and six respectively have the particular
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form defined by their components as

Cabcd :=
Ex Ax

`y
δaxδbxδcxδdx +

Ey Ay

`x
δayδbyδcyδdy, (49)

Dabcde f :=
Ey Iy

`x
δaxδbyδcyδdxδeyδ f y +

Ex Ix

`y
δayδbxδcxδdyδexδ f x . (50)

Remark that (separately) the tensors C and D are not coercive. For instance, pure
shear deformations do not have any first gradient energetic content, while any affine
displacement field does not have any second gradient energetic content. This is
consistent with the existence, for pantographic sheets, of floppy modes as nullifiers
of deformations energy, in addition to the standard rigid motions. Nevertheless,
considering both first and second gradient energies together, the system can be
qualified as “subcoercive” when suitable boundary conditions are imposed in such
a way that floppy modes are excluded. In the framework of this requirement, the
set of admissible displacements is restricted if compared to the one needed in first
gradient theory, where only rigid body motions are excluded. We conjecture that
in the set of considered admissible displacements, the total deformation energy is
definite positive and leads to well-posed problems. This seems physically well-
grounded and is confirmed by all the performed numerical simulations presented
in the last section.

To identify the class of physically meaningful boundary conditions, in the next
section we more closely study the structure of the considered energy.

5.4. Energy formulation and boundary conditions for pantographic lattices. The
general framework of second gradient continua (as formulated in [dell’Isola et al.
2015c]) enables, by means of the energy formulation and of the divergence theo-
rem, to specify the boundary conditions which can be consistently considered as
applicable to them.

Let B be a bidimensional medium whose elastic energy depends upon the dis-
placement gradient ∇U acting on the second-order stress tensor T and upon the
second displacement gradient acting on the third-order hyperstress tensor T. In
this case the energy W of B is

2W =
∫

B
(T : ∇U +T

...∇∇U) (51)

Transforming this expression through successive integrations by parts enables us
to make the link between the variation of internal energy and the energy supplied at
the boundary of B (see, e.g., [dell’Isola et al. 2015c]). As the considered system is
bidimensional, the boundary consists of a set of regular edges ∂B with unit normal
n and wedges ∂∂B consisting of the union of a finite number N of vertices SI , i.e.,
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∂∂B = ∪SI = {S}. For our calculations we introduce Levi-Civita tensorial nota-
tion, keeping track of the covariance and contravariance nature of the considered
tensorial quantities and we use Latin indices for Eulerian components and Greek
letters for Lagrangian components. Therefore, we have

δW =
∫

B
(T : ∇δU +T

...∇∇δU)=
∫

B
(T β

i δU
i
,β +T

αβ

i δU
i
,αβ)

=

∫
B
(−T α

i,αδU
i
−T

αβ

i,βδU
i
,α)+

∫
B
(T β

i δU
i
+T

αβ

i δU
i
,α),β

=

∫
B
(−T α

i,αδU
i
−T

αβ

i,βδU
i
,α)+

∫
∂B
(T β

i δU
i
+T

αβ

i δU
i
,α)nβ

=

∫
B
(T

αβ

i,βα − T α
i,α)δU

i
+

∫
∂B

(
(T β

i −T
βα

i,α)δU
i
+T

αβ

i δU
i
,α

)
nβ .

(52)

Using the equilibrium equation (47), the first integral in the right-hand side van-
ishes. Furthermore, the last term of the second integral can be decomposed into a
tangent and a normal contribution. As the considered system is bidimensional, the
boundary ∂B includes a set of regular edges. Thus, introducing the projector on
the tangent direction of ∂B, P = I−n⊗n (hence Pγα = δ

γ
α −nαnγ and P . P = P),

we have

δW =
∫
∂B

(
(T β

i −T
βα

i,α)nβδU
i
+(T

αβ

i nαnβ)δU i
,γ nγ+T

αβ

i nβ PδαδU
i
,γ Pγδ

)
=

∫
∂B

(
(T β

i −T
βα

i,α)nβδU
i
+(T

αβ

i nαnβ)δU i
,γ nγ

+(T
αβ

i nb PδαδU
i ),γ Pγδ −(T

αβ

i nβ Pδα ),γ Pγδ δU
i)

=

∫
∂B

(
(T β

i −T
βα

i,α)nβ−(T
αβ

i nβ Pδα ),γ Pγδ
)
δU i
+

∫
∂B
(T

αβ

i nαnβ)δU i
,γ nγ

+

∫
∂∂B

T
αβ

i nβ Pd
α NδδU i .

(53)

On the last integral on ∂∂B = {S}, the vectors n and N take the values n± and N±

defined on the both sides of the discontinuity of the edges. This is also the case
for T and P . On each side, the vector N is the tangent vector to ∂B which is the
outer pointing normal to the border of ∂B; see Figure 4. Thus P+ . N+ = N+ and
P− . N− = N−. In a condensed way, we can write (where the symbol f refers to
the tangent projection of a tensor on ∂B)∫

B
(T : ∇δU +T

...∇∇δU)

=

∫
∂B
((T−DIV T) . n−DIVf Tf) . δU+(T . n . n)δdU

dn
+

∑
{S}

[T . n . N ] . δU (54)
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n−
N− N+

n+

∂B

Figure 4. Sketch of vectors n and N on the boundaries.

with
[T . n . N ] = (T+ . n+ . N+)+ (T− . n− . N−).

The previous integration by parts implies that in order to have well-posed prob-
lems, one has to suitably assign boundary conditions in a specific way (see, e.g.,
[Mindlin 1964]). In particular, on any regular point belonging to the set of edges
∂B one can assign:

• either a component U i or its dual quantity (T b
i −T

βα

i,α)nβ−(T
αβ

i nβ Pδα ),γ Pγδ . In
the case of the rectilinear edge ∂B the normal and the projector are constants
and this expression simplifies into (T β

i −T
βα

i,α − T
αβ

i,γ (δ
γ
α − nγ nα))nβ ;

• either a component of displacement normal gradient, dU i/dn, or its dual quan-
tity (Tαβ

i nanβ).

Moreover, on vertices constituting ∂∂B = {S} one can assign:

• either a component U i or its dual quantity [Tαβ

i nb Nα] which expresses the
discontinuity of the wedge on the vertices (see Figure 4).

Therefore the weak condition for equilibrium is given by

δW =
∫
∂B

f ext
i δU i

+ τ ext
i δU i

,γ nγ +
∫
∂∂B

Fext
i δU i, (55)

where external actions are given by forces per unit line f ext
i but also by concentrated

forces on vertices Fext
i and by double forces per unit line τ ext

i (see [Germain 1973]).
One can apply these results to the particular pantographic lattice considered,

where the preferred orthogonal directions x and y coincide with the array of ma-
terial fibers. In the context of small deformations, the Lagrangian and Eulerian
coordinate systems can be identified. In the pantographic case given by (49) and
(50) the deformation energy is given by

2W =
∫

B

(
Ex Ax

`y
(U x

,x)
2
+

Ey Ay

`x
(U y

,y)
2
+

Ey Iy

`x
(U x

,yy)
2
+

Ex Ix

`y
(U y

,xx)
2
)

dx dy (56)
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so we have that, as T = ∂W/∂∇U and T = ∂W/∂∇∇U , the only nonvanishing
components of stress and hyperstress are

T x
x =

Ex Ax

`y
U x
,x , T y

y =
Ey Ay

`x
U y
,y,

Txx
y =

Ex Ix

`y
U y
,xx , Tyy

x =
Ey Iy

`x
U x
,yy .

Thus, for the pantographic sheet, the two types of kinematic and static (more
often called natural) boundary conditions which apply to a straight line edge of
normal n= nx ex + ny ey take the following form:

U x dual of T x
x nx + (−Tyy

x,y(1+ n2
x)+Tyy

x,x nx ny)ny,
dU x

dn
dual of Tyy

x n2
y,

U y dual of T y
y ny + (−Txx

y,x(1+ n2
y)+Txx

y,ynx ny)nx ,
dU y

dn
dual of Txx

y n2
x .

On the vertices, noting that n and N are orthogonal, the flux dual to the dis-
placement components U x and U y are respectively T

−yy
x n−x n−y −T

+yy
x n+x n+y and

T−xx
y n−x n−y −T+xx

y n+x n+y . Remark that they vanish when the vertex angle is 1
2π

and the boundary is parallel to the fibers.
For a better physical insight, consider for instance a straight edge oriented along

the direction x , then n= ey and the boundary condition simplifies to

U x dual of −Tyy
x,y =−

Ey Iy

`x
U x
,yyy,

dU x

dy
dual of Tyy

x =
Ey Iy

`x
U x
,yy,

U y dual of T y
y =

Ey Ay

`x
U y
,y,

dU y

dy
dual of Txx

y n2
x = 0.

These boundary conditions on the lattice can be easily understood by recalling
standard beam theory. They show this:

• A virtual displacement tangent to the fiber materializing the edge develops
energy due to the shear forces in the orthogonal fibers.

• A virtual displacement normal to the edge fiber develops energy due to the
tension forces in the orthogonal fibers.

• A rotation of the edge fiber develops energy due to the couple in the orthogonal
fibers.

• No energy is developed (in small deformations) by the extension of the or-
thogonal fibers associated with the couple of the edge fiber.

If the vertex at the end of the edge along x presents an internal angle α, the static
quantities dual to the components U x and U y are respectively the weighted couples
T
+yy
x

1
2 sin(2α) and −T+xx

y
1
2 sin(2α). No energy is developed if the vertex angle is

1
2π with edges oriented along the fibers.
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A similar interpretation applies when the straight edge presents an angle with the
fiber orientation; however, due to the coupling between the forces and couples in
different directions, the physical interpretation of the boundary condition becomes
more difficult.

In this paper, for the sake of simplicity, we consider only imposed boundary
conditions on displacements and displacement gradients and we consider weak
form (55) of equilibrium conditions, so that no dual boundary conditions (on forces
or double forces) are assigned. In further papers, we will consider more general
situations.

6. Some equilibrium shapes of linear pantographic sheets:
numerical simulations

Pantographic sheets have an exotic behavior which is not only characterized by
their anisotropy as evidenced by:

(1) their vanishing resistance to shear deformation, and

(2) their significant resistance to elongation along fibers, and also by their capacity
to resist variations in their so-called “geodesic curvature” (see [dell’Isola and
Steigmann 2015; Steigmann and dell’Isola 2015; Giorgio et al. 2015; Giorgio
et al. 2016]), i.e., the changes of curvature of material curves induced by in-
plane displacements.

Moreover, in their deformation patterns one can observe the onset of inner bound-
ary layers where bending of constituting beams is concentrated, as suggested by
the existence of the intrinsic characteristic lengths ηx and ηy .

The aim of this section is to provide numerical illustrations of the theoretical de-
velopments presented in the previous sections. The considered examples may seem
purely academic or dictated simply by the taste of investigating mathematical struc-
tures (see [Dieudonné 1987]). Although we indeed consider that scientific knowl-
edge is based on the study of exemplary cases; see [Russo 2004; Hero/Woodcroft
1851; Heath 1921a; 1921b; Archimedes/Heath 1897; 1912]. In addition, a poten-
tial application of the presented results concern the forming of fiber reinforced
composites (see, e.g., [Cao et al. 2008; Launay et al. 2008; d’Agostino et al. 2015;
Harrison 2016; Abdiwi et al. 2013; Nikopour and Selvadurai 2014]).

All the presented numerical simulations are obtained by a code created using
COMSOL Multiphysics. The homogenized energy introduced in this paper (56) is
minimized by using the package “Weak Form PDE” and by introducing standard
third-order Hermite finite elements. While the used code is surely not optimized
for the introduced problem (we believe that the recently developed numerical meth-
ods would be more efficient, see, e.g., [Cazzani et al. 2016a; 2016b; Greco and
Cuomo 2013; 2014; 2015; 2016; Turco and Aristodemo 1998; Beirão da Veiga
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et al. 2008; Della Corte et al. 2016]), its rate of convergence seems satisfactory
for getting preliminary results concerning the behavior of the simplest structures;
actually, it is based on the introduction of an auxiliary tensor field which appears
in the deformation energy and is equated to the displacement gradient by means of
suitable fields of Lagrange multipliers. Remark also that all presented numerical
simulations are really and intrinsically mesh-independent, because of the properties
of the introduced continuum model, where the second gradient of displacement is at
the same time modeling the relevant physical properties and supplies a regularizing
effect on equilibrium equations.

In the presented simulations we have chosen a lattice made of square cells, so
that `x = `y = ` and we have imposed that the x and y fibers have identical
rectangular sections (having sides a and b) and elastic moduli so that Ey = Ex ,
Ix = Iy =

1
12 ba3 and Ax = Ay = ab. As a consequence we have that

η2
= η2

x = η
2
y =

Ix

Ax
=

Iy

Ay
=

1
12a2.

The values a = 0.9 mm and b = 1.6 mm are used for pantographic structures,
following experimental measurements (see [dell’Isola et al. 2015b]) having rectan-
gular sections. Young’s modulus is 1600 MPa. We remark that the elastica model
for beams is applicable in the considered situation as `= 4.95 mm and the number
of cells is sufficiently large (L = 42.42× `) to apply the homogenized model.

In the following subsections, we present the numerical simulation of bias tests
in different configurations. First, we consider rectangular specimens undergoing
standard bias test in extension, but also in shear and bending. The results demon-
strate the ability of the model to catch the occurrence of highly nonhomogeneous
deformation patterns with inner boundary layer, and illustrate the dependance of the
pattern on the different imposed deformations. Second, the same type of bias tests
are performed on circular specimens in order to investigate the role of the sample
geometry on the equilibrium shape and on the elastic energy distribution. Finally,
extension and bending bias tests on circular specimens with a central squared of
different orientations are simulated. The comparison with the previous cases evi-
dence the effect of different boundary conditions.

In all the following figures, the black lines indicate the local actual orientation
of the material fibers (which are orthogonal in the reference configuration), and the
deformed shape is displayed together with the map of the stored energy density. All
the calculations are performed in the framework of small deformations; however,
for a better insight, the deformation is magnified in the figures.

6.1. Bias tests on rectangular pantographic sheet. We start by considering a pan-
tographic sheet having a rectangular initial shape with the long side three times
longer than the short one.
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u0
u0 q0

Figure 5. Equilibrium shapes of rectangular specimens submitted
to extension (left) shear (center) and bending (right) displacement.
The colors indicate the levels of stored energy density.

In the standard extension bias test the short sides are rigidly displaced in the
direction of the long side. Figure 5, left, shows the small deformation pattern.
Remark that the deformation energy is concentrated along the material lines con-
stituted by some fibers and that, while the fibers are extensible in the present case,
the structure of the deformed shape is similar to the one described by Pipkin [1980;
1981] in the case of inextensible fibers. Notice also that the distribution of defor-
mation is strongly nonhomogeneous while respecting the symmetry of the loading.
The simulation enables the identification of several zones with different kinematics.
The partitioning of the specimen can be described as follows:

– The clamping zones that consists of two “isosceles triangles” with bases on
the short sides. These areas do not sustain any significant deformation, neither
in extension nor in shear, so the first gradient description (37) applies. The
vanishing stored energy results here from the quasirigid body motion of these
regions.

– The deformed zones outside of the aforementioned triangles, in which large
shear deformations arise. In this highly sheared domain, the behavior is gov-
erned by the second gradient description (44)–(45). One distinguishes a cen-
tral and four lateral subdomains of vanishing stored energy delimited by tran-
sition zones. The different subdomains correspond to the occurrence of local
“floppy” modes. Indeed, because of the specific boundary condition, “floppy”
modes on the whole specimen are forbidden. Nevertheless, the minimum of
energy is attained by activating local floppy modes, far from the boundary
conditions. This results in large parts of the body where the deformation
energy is very close to vanishing.

– The transition zones between the different domains (of quasifloppy modes or
quasimonolithic type) consist in the inner boundary layers where the bending
of the fibers is concentrated to accommodate the different kinematics that
prevails in the two regions in contact. Such layers, which concentrate the
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u0
u0 q0

Figure 6. Equilibrium shapes of circular specimens submitted to
extension (left) shear (center) and bending (right) displacement.
The colors indicate the levels of stored energy density.

elastic energy, take place along material lines constituted by fibers and are
characterized by large gradients of shear deformation. These specific features
are the direct signature of the second gradient effects: a standard Cauchy
continuum description (i.e., simple gradient description, as in (37)) would
lead to a homogeneous deformation pattern and avoid the development of
shear bands.

Furthermore, the qualitative and quantitative comparison of the numerical simu-
lations plotted on Figure 5, left, and the experimental data presented in [dell’Isola
et al. 2015b] clearly argue in favor of the second gradient description (44)-(45) for
two reasons. First, the experimental deformation pattern is obviously nonhomoge-
neous with inner boundary layers whose structure presents a similar geometry as
that observed in the simulation. Second, by making a best fit of the experimental
data [dell’Isola et al. 2015b], the effective parameters of the second gradient con-
tinuum model have been identified. It happens that this “blind” procedure supplies
exactly the same values of the effective parameters as the one calculated from the
micro-macro upscaling procedure, once the geometric and mechanical properties
of the cell beams of the sheet tested experimentally are taken.

In addition, simulations of shear bias tests with uniform lateral displacement im-
posed on the top side and bending bias tests with rotational displacement imposed
on the top side (corresponding to a rigid body rotation centered in the middle of the
specimen) have been done. The results are displayed in Figure 5, center and right,
respectively. Similar general comments as done for the extension test still apply;
however, the geometry of the shear bands and the energy distribution is modified.
In particular, the partitioning of the specimen submitted to bending shows only one
subdomain of quasifloppy mode which is confined between two quasimonolithic
zones.

6.2. Bias test on circular pantographic sheets. Consider now the same bias test
as the previous one, except that the rectangular pantographic sheet is replaced by a
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sheet of circular initial shape. The imposed deformations are obtained by clamping
one circular arc and imposing a rigid displacement on the opposite one.

In Figure 6, left, we consider the extension imposed by a relative rigid translation
of the two arcs in the direction of the common bisecting diameter. Note the great
similarity of the deformation pattern obtained with rectangular and circular sheets,
when focusing on the internal rectangular domain considered in the standard bias
test. This means that, independently of rectangular or circular geometry of the
sheet, the structure of the deformation pattern is kept (almost) unchanged when
identical kinematic boundary conditions are imposed. Remark also that the largest
lateral dimension of the circular sheet enables the inner boundary layers to extend
and intersect. Thus the partitioning of the specimen is complemented by the ap-
pearance of two additional lateral subdomains.

These observations indicate that in the considered cases, the structure of the
inner boundary layer (hence of the partitioning) mostly results from the geometry
of the boundary conditions, while the extension of the shear bands depends on the
geometry of the whole body. Furthermore, in the circular case, the activation of
the deformation outside of the rectangle implies additional energy. Therefore, to
reach the same displacement imposed at the boundaries, a larger force is required
in the circular case than in the rectangular case.

In Figure 6, center, the relative rigid displacement is in the direction orthogonal
to the bisecting diameter and imposes a shear to the specimen. The resulting shear
deformation pattern is similar to the one activated in extension (Figure 6, left), but
with different orientations of the inner boundary layers. The comparison with the
case of rectangular sheet leads to similar comments as above.

In Figure 6, right, the relative displacement of the two arcs is obtained by fixing
one arc and by rotating the second one with respect the center of the circle. Remark
that the partitioning of the specimen is similar as in the rectangular case but here
the boundary layers invade the whole body.

6.3. Bias test on initially circular pantographic sheets with central holes. In the
same body considered in the previous subsection, a square hole (of 14×14 cells)
is now carved in its central part. The initial orientation of the hole relative to the
fibers varies from zero (i.e., the sides of the square are along the fibers) to 1

8π

and 1
4π (i.e., the edges of the square are along and orthogonal to the extension

displacement). These different cases enable the investigation of the effect of the
hole on the deformation pattern and on the onset of inner boundary layers.

One may expect that when a hole is carved in a subdomain corresponding to
quasifloppy modes, its influence should be negligible since in both cases the hole
or floppy modes deformation occurs with no energy expense. However, if a hole
intersects the deformation boundary layers in which the energy would be localized
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u0 u0 u0

Figure 7. Equilibrium shapes for extension bias test of a circular
sample with a squared hole: left, whose edges are oriented along
fibers; center, rotated at an angle of 1

8π ; right, rotated at an angle
of 1

4π . The colors indicate the levels of stored energy density.

q0 q0 q0

Figure 8. Equilibrium shapes for bending test of a circular sample
with a squared hole: left, whose edges are oriented along fibers;
center, rotated of an angle of π/8; right, rotated of an angle of 1

4π .
The colors indicate the levels of stored energy density.

in absence of a hole, then the energy distribution is necessarily modified and so
does the deformation patterns.

This is what is observed in the simulations. The edges of the carved hole are
such that when oriented along the fibers, the hole almost belongs to the central
floppy mode subdomain that arises in the noncarved sheet, while when rotated,
two corners of the hole may cross the boundary layers of the intact sheet. In
extension tests presented in Figures 7, left and right, the intersection of the carved
hole with the deformation boundary layers of the intact body is relatively small
and the deformation patterns are weakly disturbed. This is not the case in Figure 7,
center, where the hole cuts the material lines, i.e., fibers in which the energy would
be concentrated in an intact body. As a consequence, the deformation response
and the partitioning of the specimen change significantly. The same trends are
observed for the bending test: weak perturbations arise in Figure 8, left, but large
and dramatic change appears in Figure 8, center and right, respectively.
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7. Conclusions

Pantographic sheets belong to the specific class of architectured materials whose
mechanical behavior is characterized by:

• very high contrast of extensional and bending stiffness at microscopic level
(see (35));

• very high contrasted gradients of displacement in the axial and transverse
direction at the macrolevel (see (40));

• a microstructure which produces a discretely oriented, orthotropic material
exhibiting an extreme anisotropy leading to the presence of two preferred
material directions having very high extensional stiffness; this circumstance
causes the onset of internal boundary layers where gradients of deformation
may arise.

The standard (Cauchy or first gradient) continuum models were conceived under
some implicit assumptions which do not allow for the description of all above
listed extreme mechanical properties [dell’Isola et al. 2015a]. For this reason, it
is needed to introduce, for pantographic sheets, a generalized continuum model
by reconsidering, at the very beginning, the standard modeling procedure. Indeed
a consistent model should allow for, in particular, the description of deformation
gradient concentrations induced by imposed boundary displacements. To be driven
in the construction of the most suitable model we use the asymptotic homogeniza-
tion method extensively presented in [Boutin and Auriault 1993]. It allows for the
rigorous construction of a description able to encompass all mentioned atypical
properties.

Even if we limit ourselves to the case of linearized models in statics (and in
the absence of body forces), we still get a nonstandard second gradient continuum
model. Moreover, the advantage of used micro-macro upscaling procedure is that
it allows us to determine firstly the atypical structure of the constitutive and balance
equations and secondly all relative constitutive parameters (i.e., those specifying
the first gradient and second gradient terms in deformation energy). This is done
explicitly in terms of the microscopic properties of the elementary cells constitut-
ing the pantographic sheet. Furthermore, the presented micro-macro identification
provides a design rule for pantographic bidimensional continua.

The main advances provided by this paper compared to some previous works
on pantographic sheets lie in the three following points:

• The homogenization method leads to a clear and rigorous micro-macro iden-
tification procedure. Hence, the structure of the homogenized description and
its parameters are explicitly deduced from the cell. This differs from the a
priori variational approaches where a macroscopic description is proposed
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but its applicability to specific microstructures can only be postulated. Be-
sides, compared to direct numerical simulations at the microscale [dell’Isola
et al. 2016b], the established model presents a great advantage, in terms of
computational cost and also of in terms of physical understanding of the actual
behavior.

• The description enables us to account for the low extensibility and the high
bending deformability. It thus enables us to overcome the drawback of the
studies that consider inextensible fibers [dell’Isola et al. 2016c].

• The physical insight of pantographic systems is improved by a simple interpre-
tation of the macroscopic description: the tension in a fiber varies because of
the shear forces transferred through the pivots by the orthogonal fibers. Even if
the paper focuses on small deformations, this mechanism remains essentially
the same (albeit complicated by the nonorthogonality of the fibers) at large
deformation [dell’Isola et al. 2016d].

Note that we only consider small in-plane deformations. However, the same
homogenization method can be extended to investigate buckling and out-plane
deformation as discussed in [Giorgio et al. 2015; 2016].

The obtained models can be framed in the context of generalized continuum
theories and immediately allows for the explicit determination of the deformation
energy and related boundary conditions. The atypical features of the described
continuum model for pantographic sheets are reflected by its atypical mathematical
properties. That is:

• the PDEs determining the equilibrium configurations involve second and forth-
order partial derivatives terms which may have a comparable order of magni-
tude; in the studied case of orthogonal fibers, the displacement fields along
the fibers are governed by uncoupled PDEs;

• the deformation energy is not coercive in the standard sense. However, using
specific boundary conditions, consistently established from the found expres-
sion for deformation energy, we establish the definite positiveness of the de-
formation energy functional, which simultaneously involves first- and second-
order of displacement gradients; we conjecture that such formulated problems
are well-posed.

The corresponding atypical physical properties of pantographic sheets consist in
the following circumstances:

• the extensional forces along a fiber are balanced by the shear forces due to the
bending of its transverse fibers (see (44), (45)),
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• the balance of couples is separately valid for the two arrays of orthogonal
fibers, so that the fiber rotation is proportional to the axial gradient of trans-
verse displacement; see (46).

The numerical simulations which we have presented are aimed at illustrating the
performances of the obtained model. Indeed, pantographic sheets show very pe-
culiar deformation patterns exhibiting regions of concentrated deformation energy.
In particular, when applied to rectangular specimen the model:
• it allows for the determination, already in the linear case, of the region where

the deformation energy is localized without any further a priori assumptions;

• it shows that the diffusion patterns of deformation inside the specimen differ
notably from those shown in first gradient material. In particular, they are
canalized in a way determined by the material symmetry and boundary condi-
tions, while their thickness is determined by the characteristic length specified
by the competition between the first and second gradient stiffnesses;

• the described features are confirmed by considering a specimen of circular
shape with rectangular holes.

All these features and predictions match at least qualitatively the experimental ev-
idence, e.g., [dell’Isola et al. 2015b]. It then appears that the pantographic sheet
is an archetypical-oriented material in which second gradient effect plays a crucial
role and for which it is possible to get a close description of the underlying actual
physical mechanism.

There are many worthy issues that may be investigated concerning the complex
structure here analyzed:
• a linearized analysis of pantographic structures with nonorthogonal and un-

even fibers (this case is also relevant as it may give a tangent model for large
deformations) and the determination of some analytical solutions of found
PDEs;

• the comparison of the presented theory with further experimental evidence for
possible improvement in the idealized model;

• the exploration of the application of the model to the mechanics of fabrics,
the analysis of the dissipation that can arise from the interaction of the fibers
or from internal friction (see, e.g., [Nadler and Steigmann 2003]) and the
extension to three-dimensional deformations;

• buckling phenomena which can produce wrinkling (see, e.g., [Giorgio et al.
2016; Rizzi and Varano 2011; Rizzi et al. 2013; Gabriele et al. 2012; Caras-
sale and Piccardo 2010; Piccardo et al. 2015]) and damage detection and its
evolution (see, e.g., [Yang et al. 2011; Misra and Singh 2013; Andreaus and
Casini 2016; Placidi 2015; Placidi 2016]).
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Finally, as future and more challenging lines develop, considering biological
applications, it is conceivable that a morphoelastic pantographic continuum can
be employed as a “smart” prosthesis (see, e.g., [McMahon et al. 2011]). In this
context, it is possible also to equip the pantographic structure with transducers that
can act both as sensors or actuators in order to induce some functional adaptation
capabilities (see, e.g., [D’Annibale et al. 2015a; D’Annibale et al. 2015b; Andreaus
and Porfiri 2007]).
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In this paper we derive explicit formulas for disarrangement densities of sub-
macroscopic separations, switches, and interpenetrations in the context of first-
order structured deformations. Our derivation employs relaxation within one
mathematical setting for structured deformations of a specific, purely interfacial
density, and the formula we obtain agrees with one obtained earlier in a different
setting for structured deformations. Coincidentally, our derivation provides an
alternative method for obtaining the earlier result, and we establish new explicit
formulas for other measures of disarrangements that are significant in applica-
tions.
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1. Introduction

Structured deformations provide a multiscale geometry that captures the contribu-
tions at the macrolevel of both smooth geometrical changes and nonsmooth geo-
metrical changes (disarrangements) at submacroscopic levels. For each (first-order)
structured deformation (g,G) of a continuous body, the tensor field G is known
to be a measure of deformations without disarrangements, and M := ∇g−G is
known to be a measure of deformations due to disarrangements. The tensor fields G
and M together deliver not only standard notions of plastic deformation, but M and
its curl deliver the Burgers vector field associated with closed curves in the body
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and the dislocation density field used in describing geometrical changes in bodies
with defects. Recently, Owen and Paroni [2015] explicitly evaluated some relaxed
energy densities arising in Choksi and Fonseca’s [1997] energetics of structured
deformations and thereby showed (1) (tr M)+, the positive part of tr M , is a vol-
ume density of disarrangements due to submacroscopic separations, (2) (tr M)−,
the negative part of tr M , is a volume density of disarrangements due to submacro-
scopic switches and interpenetrations, and (3) |tr M |, the absolute value of tr M , is
a volume density of all three of these nontangential disarrangements: separations,
switches, and interpenetrations. The main contribution of the present research is
to show that a different approach to the energetics of structured deformations, that
due to Baía, Matias, and Santos [Baía et al. 2012], confirms the roles of (tr M)+,
(tr M)−, and |tr M | established by Owen and Paroni. In doing so, we give an
alternative, shorter proof of Owen and Paroni’s results, and we establish additional
explicit formulas for other measures of disarrangements.

To motivate our study and to provide necessary background, we briefly discuss
in the following subsections of this introduction some concepts and results from
the multiscale geometry of structured deformations. (Readers familiar with this
material may wish to skip to Section 1E, where our main results are summarized.)

1A. Structured deformations and disarrangement densities in the setting of Del
Piero and Owen. The need in continuum mechanics to include the effects of multi-
scale geometrical changes led Del Piero and Owen [1993] to a notion of structured
deformations as triples (κ, g,G), where

• the injective, piecewise continuously differentiable field g maps the points of
a continuous body into physical space and describes macroscopic changes in
the geometry of the body,

• the piecewise continuous tensor field G maps the body into the space of linear
mappings on the translation space of physical space and satisfies the “accom-
modation inequality”

0< C < det G(x)≤ det∇g(x) at each point x, (1-1)

where ∇ denotes the classical gradient operator, and

• κ is a surface-like subset of the body that describes preexisting, unopened
macroscopic cracks.

A geometrical interpretation of the field G is provided by the approximation the-
orem [Del Piero and Owen 1993]: for each structured deformation (κ, g,G), there
exists a sequence of injective, piecewise smooth deformations fn and a sequence
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of surface-like subsets κn of the body such that

g = lim
n→∞

fn, (1-2)

G = lim
n→∞
∇ fn, (1-3)

and

κ =

∞⋃
n=1

∞⋂
p=n

κp.

The limits in (1-2) and (1-3) are taken in the sense of L∞ convergence. A sequence
n 7→ fn of piecewise smooth, injective functions satisfying (1-2) and (1-3) is called
a determining sequence for the pair (g,G), and each term fn is interpreted as
describing the body divided into tiny pieces that may individually undergo smooth
geometrical changes and that also may undergo disarrangements, i.e., may separate
or slide relative to each other. In this context, we write fn  (g,G). From (1-3)
we see that G captures the effects at the macrolevel of smooth geometrical changes
at submacroscopic levels, and we call G the deformation without disarrangements.

Del Piero and Owen [1995] proved that for every structured deformation (κ, g,G),
for every determining sequence n 7→ fn for (g,G), and for every point x where g
is differentiable and where G is continuous there holds

lim
r→0

lim
n→∞

∫
J ( fn)∩Br (x)

[ fn](y)⊗ ν(y) dHN−1(y)

|Br (x)|
= ∇g(x)−G(x). (1-4)

Here, HN−1 denotes the (N − 1)-dimensional Hausdorff measure on RN , Br (x)
denotes the open ball centered at x of radius r , |Br (x)| denotes its volume (i.e., its
N -dimensional Lebesgue measure), J ( fn) denotes the jump set of fn (i.e., points
where fn can suffer jump discontinuities), and [ fn](y)⊗ ν(y) is the tensor product
of the jump [ fn] of fn with the normal ν to the jump set. This result permits us to
call the tensor

M(x) := ∇g(x)−G(x) (1-5)

the deformation due to disarrangements because it captures, in the limit as n tends
to infinity, the volume density of separations and slips between pieces of the body
as described by the approximating deformations fn . We may then regard the
tensor field M as a tensorial disarrangement density that, for every determining
sequence n 7→ fn for (g,G), reflects the limits of interfacial discontinuities of the
approximating deformations fn . Moreover, (1-2) and (1-3) along with the defini-
tion of M (1-5) yield the alternative formula for the disarrangement density:

M =∇
(

lim
n→∞

fn

)
− lim

n→∞
∇ fn.
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Consequently, M quantitatively measures the lack of commutativity of the classical
gradient ∇ and the limit operator limn→∞ for L∞ convergence.

The trivial algebraic relation

∇g = G+M (1-6)

together with the identification relations (1-3) and (1-4) shows that the macroscopic
deformation gradient ∇g has an additive decomposition into its part G without
disarrangements and its part M due to disarrangements. Because G has invertible
values, (1-6) leads immediately to two multiplicative decompositions for ∇g:

∇g = G(I +G−1 M)= (I +MG−1)G.

The disarrangement density M and the deformation without disarrangements G
have an additional property significant in the description of defects and dislocations
in a continuous body in three dimensions. We consider a smooth surface S with
smooth bounding closed curve γ , both contained in a region in the body where g
and G are smooth. The relation (1-6) and the smoothness of g imply

0=
∮
γ

∇g(x) dx =
∮
γ

G(x) dx +
∮
γ

M(x) dx .

The vector
∮
γ

M(x) dx measures the displacement due to disarrangements along γ
and may be called the Burgers vector [Del Piero and Owen 1993] for γ arising from
the given structured deformation. Application of Stokes’ theorem to

∮
γ

G(x) dx
and

∮
γ

M(x) dx and use of the previous relation yield the formulas for the Burgers
vector: ∮

γ

M(x) dx =
∫

S
curl M(x)ν(x) d Ax =−

∫
S

curl G(x)ν(x) d Ax .

The second-order tensor field curl M =− curl G thus determines the Burgers vector
associated with γ for every closed curve and corresponds to familiar measures of
dislocation density [Kröner 1958; Nye 1953]. In this manner, the disarrangement
density tensor M determines both the Burgers vector and the dislocation density
tensor, both basic tools in modeling the effects of submacroscopic defects on the
response of solids.

The tensorial relations (1-5) and (1-4) yield upon application of the trace oper-
ator the scalar relation

lim
r→0

lim
n→∞

∫
J ( fn)∩Br (x)

[ fn](y) · ν(y) dHN−1(y)

|Br (x)|
= tr M(x) (1-7)

in which [ fn](y) ·ν(y) is the scalar product of the jump and of the normal at y. The
formula (1-7) tells us that tr M is a scalar (bulk) disarrangement density that cap-
tures the components of the jumps of fn that are normal to the jump set. Moreover,
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this scalar disarrangement density at x , tr M(x), allows for cancellation of positive
and negative contributions of [ fn](y) · ν(y) at points y near x to the integral on
the left-hand side of (1-7). Thus, tr M(x) does not distinguish between jumps with
[ fn](y) · ν(y) > 0 that pull apart small pieces of the body near x and jumps with
[ fn](y) · ν(y) < 0 that cause small pieces near x to switch places. Because the
approximating fn are injective, the possibility for the case [ fn](y) · ν(y) < 0 that
fn can cause adjacent small pieces of the body to interpenetrate is ruled out.

Owen and Paroni [2015] refined the scalar disarrangement density tr M by re-
placing [ fn](y) · ν(y) by its positive part throughout the jump set of fn or by its
negative part throughout the jump set:

([ fn](y) · ν(y))+ = 1
2(|[ fn](y) · ν(y)| + [ fn](y) · ν(y)), (1-8)

([ fn](y) · ν(y))− = 1
2(|[ fn](y) · ν(y)| − [ fn](y) · ν(y)). (1-9)

The field ([ fn] · ν)
+ on the jump set is a scalar (interfacial) disarrangement den-

sity that measures separations of pieces of the body caused by fn while the field
([ fn] · ν)

− is a scalar (interfacial) disarrangement density that measures the switch-
ing of pieces of the body caused by fn . Since

|[ fn](y) · ν(y)| = ([ fn](y) · ν(y))++ ([ fn](y) · ν(y))−,

the field |[ fn](y) · ν(y)| is a scalar disarrangement density that measures both
separations and switches. We fix a part P of the body, integrate (1-8) or (1-9)
over J ( fn)∩P, and use the formula (1-7) to obtain the relations

lim inf
n→∞

∫
J ( fn)∩P

([ fn](y) · ν(y))± dHN−1(y)

=
1
2 lim inf

n→∞

∫
J ( fn)∩P

|[ fn](y) · ν(y)| dHN−1(y)

±
1
2 lim inf

n→∞

∫
J ( fn)∩P

[ fn](y) · ν(y) dHN−1(y)

=
1
2 lim inf

n→∞

∫
J ( fn)∩P

|[ fn](y) · ν(y)| dHN−1(y)± 1
2

∫
P

tr M(x) dLN (x). (1-10)

Consequently, the limiting behavior of the integral of ([ fn](y) · ν(y))± in (1-10) as
n tends to∞ is determined by the behavior of the integral of |[ fn](y) · ν(y)|, and
we restrict our attention to the latter. We expect that

lim inf
n→∞

∫
J ( fn)∩P

|[ fn](y) · ν(y)| dHN−1(y),

unlike

lim inf
n→∞

∫
J ( fn)∩P

[ fn](y) · ν(y) dHN−1(y),
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will depend upon the choice of determining sequence for (g,G). Therefore, we
are led to consider the most economical manner in which separations and switches
can arise among the determining sequences for (g,G):

V| · |(g,G;P)

:= inf
{

lim inf
n→∞

∫
J ( fn)∩P

|[ fn](y) · ν(y)| dHN−1(y) : fn  (g,G)
}
. (1-11)

The number V| · |(g,G;P) so defined has the dimension of volume, and we call
V| · |(g,G;P) the (minimal) volume swept out by disarrangements in P for (g,G).
If we replace | · | everywhere in (1-11) by “+” or everywhere by “−”, then we
call the number V+(g,G;P) the (minimal) volume swept out by separations in P

for (g,G) and the number V−(g,G;P) the (minimal) volume swept out by switches
in P for (g,G). The formulas (1-10) imply the simple formulas

V±(g,G;P)= 1
2 V| · |(g,G;P)± 1

2

∫
P

tr M(x) dLN (x)

and, in view of the form of the second term on the right-hand side, raise the follow-
ing basic question: does the volume swept out by disarrangements V| · |(g,G;P) as
defined in (1-11) have an associated disarrangement density which, when integrated
over P, recovers V| · |(g,G;P)? If so, what specific information can be obtained
about the dependence of the integrand upon the structured deformation (g,G)?

While the setting for structured deformations described in this subsection is quite
suitable for formulating refined field equations in continuum mechanics [Deseri
and Owen 2003] that reflect the influence of submacroscopic geometrical changes
in a body, this setting has not provided answers to questions such as the ones just
raised. Part of the difficulty with the setting provided in [Del Piero and Owen
1993] lies in the choice of smoothness placed on g and its approximates fn while
another part lies in the requirement that g and fn be injective. An alternative
setting provided by Choksi and Fonseca [1997] was proposed for dealing with
such questions and is described briefly in the next subsection.

1B. Structured deformations and disarrangement densities in Choksi and Fon-
seca’s setting. We describe here a few essential elements of the treatment of struc-
tured deformations by Choksi and Fonseca [1997]. The articles [Choksi et al. 1999;
Baía et al. 2012; 2011; Šilhavý 2015] also provide summaries of that treatment, and
[Baía et al. 2012; 2011; Šilhavý 2015] provide alternative settings for structured
deformations. The summary in [Choksi et al. 1999] is intended for those interested
in immediate applications in continuum mechanics while [Baía et al. 2012] sets
the stage for applications of structured deformations to thin bodies [Matias and
Santos 2014]. The article [Šilhavý 2015] reexamines the results of [Choksi and
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Fonseca 1997] in a broader setting while providing refinements of counterparts of
the approximation theorem and the identification relation (1-4).

According to Choksi and Fonseca, a structured deformation is a pair (g,G) in
which g : �→ RN , with � an open subset of the space RN of N -tuples of real
numbers, and G :�→ RN×N , with RN×N the space of N×N matrices with real
entries. The mapping G is assumed to be integrable on �, G ∈ L1(�;RN×N ),
and g is assumed to be in the space SBV(�;RN ), i.e., is a function of bounded
variation with the additional property that its distributional derivative Dg, as a
bounded measure, has zero Cantor part:

Dg =∇g LN
+ [g]⊗ νHN−1. (1-12)

Here the integrable mapping ∇g is the density of the absolutely continuous part
∇g LN of Dg with respect to N -dimensional Lebesgue measure LN , and [g]⊗ ν
is the density of the singular part [g] ⊗ νHN−1 of Dg with respect to (N − 1)-
dimensional Hausdorff measure HN−1. The singular part is concentrated on J (g),
the jump set of g, and as usual, [g] denotes the jump in g and ν denotes the normal
to the jump set J (g). It is important to note that ∇g in the present setting is no
longer the classical gradient of a smooth field and, consequently, need not be curl-
free. Nevertheless, ∇g satisfies an integral version of the property of approximation
by linear mappings that defines the classical gradient of smooth fields.

Choksi and Fonseca [1997] prove a version of the approximation theorem with
approximating deformations fn also in SBV(�;RN ) and with (1-2) and (1-3) re-
placed respectively by

fn→ g in L1(�;RN ) (1-13)
and

∇ fn ⇀ G weakly in the sense of measures. (1-14)

We note that no restriction in the form of the accommodation inequality (1-1) or in
the form of a requirement of injectivity of g or fn is imposed in the present context.
We again use the term determining sequence to describe a sequence n 7→ fn satisfy-
ing (1-13) and (1-14) for a given structured deformation (g,G), and we again write
fn  (g,G) when (1-13) and (1-14) both hold. The properties of distributional
derivatives along with relations (1-12), (1-13), and (1-14) justify the calculation

∇g LN
+ [g]⊗ νHN−1

= D lim
n→∞

fn = lim
n→∞

D fn

= lim
n→∞

(∇ fn LN
+ [ fn]⊗ νHN−1)

= GLN
+ lim

n→∞
([ fn]⊗ νHN−1),

where the convergence indicated in the last three lines is weak convergence in
the sense of measures. We conclude that the singular parts [ fn] ⊗ νHN−1 of the
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approximating deformations fn converge in the same sense and that their limit
satisfies

lim
n→∞

([ fn]⊗ νHN−1)= (∇g−G)LN
+ [g]⊗ νHN−1. (1-15)

In particular, the restriction of the limiting measure limn→∞([ fn] ⊗ νHN−1) to
the complement of the jump set J (g) agrees with the corresponding restriction of
(∇g − G)LN

= MLN . Consequently, the tensor field M = ∇g − G retains in
this broader setting for structured deformations its identity as a tensor density of
disarrangements for (g,G). The formula (1-15) shows that when M =∇g−G 6= 0,
while all of the measures [ fn]⊗νHN−1 are supported on sets J ( fn) of LN -measure
zero and so have LN -parts zero, the limit measure limn→∞([ fn] ⊗ νHN−1) has
LN -part MLN nonzero. This observation points to the fact that the jump sets
J ( fn) can diffuse in the limit throughout the domain � so that the limiting measure
limn→∞([ fn]⊗ νHN−1) is supported in part on sets of positive LN -measure. This
provides a counterpart in the SBV-setting to the relation (1-4) in which the limit
of jumps on the left-hand side delivers the LN -density M . (See [Šilhavý 2015] for
a detailed derivation of a counterpart of (1-4) in a somewhat broader setting for
structured deformations than SBV .)

We briefly note that the scalar density of disarrangements tr M = tr(∇g−G)
that counts only normal components of jumps and that emerged in the previous
setting also appears in the present setting when one takes the trace of every member
of (1-15): if fn  (g,G), then

lim
n→∞

([ fn] · νHN−1)= tr(∇g−G)LN
+ [g] · νHN−1.

However, as was the case in the setting of Del Piero and Owen, replacement of
[ fn] · ν by ([ fn] · ν)

± or by |[ fn] · ν| need not yield a limit of the corresponding
measures and, if a limit exists, the limit may depend upon the choice of determining
sequence n 7→ fn . The setting of Choksi and Fonseca was formulated as a means
of resolving these difficulties, and we summarize some aspects of that resolution
in the next subsection.

1C. Relaxation of energies for structured deformations. In Section 1A we intro-
duced the optimal function

V| · |(g,G;P)= inf
{

lim inf
n→∞

∫
J ( fn)∩P

|[ fn](y) · ν(y)| dHN−1(y) : fn  (g,G)
}
.

Optimal functions arising from structured deformations can be analyzed using the
results of Choksi and Fonseca [1997] on “relaxation of energies” for structured
deformations. In that approach, the integral

∫
J ( fn)∩P|[ fn](y) · ν(y)| dHN−1(y) is
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replaced by an initial energy functional

E( fn)=

∫
�

W (∇ fn(y)) dLN (y)+
∫

J ( fn)∩�

ψ([ fn](y), ν(y)) dHN−1(y)

defined for fn ∈ SBV(�;RN ). By imposing conditions on the initial bulk energy
density W and on the initial interfacial energy density ψ , the goal is to obtain for
the relaxed energy I (g,G) defined by

I (g,G) := inf
{

lim inf
n→∞

(∫
�

W (∇ fn(y)) dLN (y)

+

∫
J ( fn)∩�

ψ([ fn](y), ν(y)) dHN−1(y)
)
: fn  (g,G)

}
a representation of the form

I (g,G)=
∫
�

H(∇g(y),G(y)) dLN (y)+
∫

J (g)∩�
h([g](y), ν(y)) dHN−1(y)

and to deduce properties of the relaxed bulk energy density H and the relaxed
interfacial energy density h. Because our present interest lies in the case of dis-
arrangement densities, and not on the full energetics of structured deformations,
we shall restrict our attention to the case W = 0, and we record the following
adaptation for the case W = 0 of results from [Choksi and Fonseca 1997] (see
[Owen and Paroni 2015, Theorem 3] for further comments and other adaptations).

Theorem 1.1. Let SN−1
= {ν ∈ RN

: |ν| = 1}. Let � be a bounded open subset
of RN and assume ψ : RN

× SN−1
→ [0,+∞) satisfies the following conditions:

(H1) There exists a constant C > 0 such that, for all (ξ, ν) ∈ RN
× SN−1,

0≤ ψ(ξ, ν)≤ C |ξ |.

(H2) ψ( · , ν) is positively homogeneous of degree 1: for all t > 0 and (ξ, ν) ∈
RN
× SN−1, we have

ψ(tξ, ν)= tψ(ξ, ν).

(H3) ψ( · , ν) is subadditive; i.e., for all ξ1, ξ2 ∈ RN and ν ∈ SN−1,

ψ(ξ1+ ξ2, ν)≤ ψ(ξ1, ν)+ψ(ξ2, ν).

Then, for any p > 1, if we define
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I (g,G) := inf
{

lim inf
n→∞

∫
J (un)∩�

ψ([un], ν) dHN−1
:

un ∈ SBV(�;RN ), un→ g in L1(�;RN ),

∇un
∗

⇀ G, sup
n
(|∇un|L p(�;RN×N )+ |Dun|(�)) <+∞

}
,

we have

I (g,G)=
∫
�

H(∇g(x),G(x)) dLN
+

∫
J (g)∩�

h([g](x), ν(x)) dHN−1(x),

where

H(A, B) := inf
{∫

J (u)∩Q
ψ([u], ν) dHN−1

:

u ∈ SBV(Q;RN ), u|∂Q = Ax,

|∇u| ∈ L p(Q),
∫

Q
∇u dLN

= B
}

(1-16)

and

h(ξ, η) := inf
{∫

J (u)∩Qη

ψ([u], ν) dHN−1
:

u ∈ SBV(Qη;R
N ), u|∂Qη

= uξ,η, ∇u = 0 a.e.
}

(1-17)

with

uξ,η(x) :=
{

0 if − 1
2 ≤ x · η < 0,

ξ if 0≤ x · η < 1
2 .

(1-18)

Here, Q = (− 1
2 ,

1
2)

N and Qη denotes the unit cube centered at the origin and with
two faces normal to η.

On the right side of (1-17), we have corrected an inconsequential misprint that
is present in the corresponding formula in Theorem 3 of [Owen and Paroni 2015].

Another approach to relaxation of energies for structured deformations in the
full BV setting is provided in [Baía et al. 2012]. A structured deformation in [Baía
et al. 2012] is a pair

(g,G) ∈ BV2(�;RN )×BV(�;RN×N ),

where

BV2(�;RN ) := {u ∈ BV(�;RN ) : ∇u ∈ BV(�;RN×N )}.

The counterpart of the approximation theorem in this context asserts that there
exists a sequence fn ∈ BV2(�;RN ) such that both fn→ g and ∇ fn→ G in the
L1-norm. In this case, we write fn  (g,G).
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The energy functional considered in [Baía et al. 2012], under assumptions on the
initial bulk and surface energy densities similar to the ones in [Choksi and Fonseca
1997], reads

E( fn)=

∫
�

W (∇ fn(y),∇2 fn(y)) dLN y+
∫

J ( fn)

ψ([ fn](y), ν(y)) dHN−1(y)

+

∫
J (∇ fn)

ψ1([∇ fn](y), ν(y)) dHN−1(y),

and the relaxed energy I (g,G) is defined by

I (g,G) := inf
{

lim inf
n→∞

E( fn) : fn  (g,G)
}
. (1-19)

A crucial result in [Baía et al. 2012] is that (1-19) can be divided into two
first-order relaxed energies, namely, I (g,G)= I1(g,G)+ I2(G), where the term
I1(g,G) captures the structured deformation whereas I2(G) only depends on the
deformation without disarrangements G. In the relevant case for the present paper,
i.e., W = ψ1 = 0, the results in [Baía et al. 2012] give I2 = 0 and

I1(g,G) := inf
{

lim inf
n→∞

∫
J ( fn)∩�

ψ([ fn](y), ν(y)) dHN−1(y) : fn  (g,G)
}
.

Defining SBV2(�;RN ) := {u ∈ SBV(�;RN ) : ∇u ∈ SBV(�;RN×N )}, the fol-
lowing representation theorem holds

Theorem 1.2 [Baía et al. 2012, Theorem 3.2]. For every (g,G) ∈ SBV2(�;RN )×

SBV(�;RN×N ), given ψ under the same hypotheses (H1)–(H3) of Theorem 1.1,

I (g,G)=
∫
�

H(G(x)−∇g(x)) dLN
+

∫
J (g)∩�

h([g](x), ν(x)) dHN−1(x),

where, given A ∈ RN×N , ξ ∈ RN , and η ∈ SN−1,

H(A) := inf
{∫

J (u)∩Q
ψ([u], ν) dHN−1

:

u ∈ SBV2(Q;RN ), u|∂Q = 0,∇u = A a.e. in Q
}

(1-20)

and

h(ξ, η) := inf
{∫

J (u)∩Qη

ψ([u], ν) dHN−1
:

u ∈ SBV2(Qη;R
N ), u|∂Qη

= uξ,η,∇u = 0 a.e. in Q
}
, (1-21)

with uξ,η defined as in (1-18).
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Remark 1.3. It is worth noticing that the minimum problems defining (1-20) and
(1-21) are formally performed in SBV2(�;RN ), but the result is the same if SBV2

is replaced in these relations by SBV , due to the requirement that ∇u be constant.

1D. Explicit formulas for relaxed disarrangement densities. Owen and Paroni
[2015] applied Theorem 1.1 to the specific disarrangement densities |[ fn](y) ·ν(y)|
and ([ fn](y) ·ν(y))± introduced in Section 1A and obtained for each of these densi-
ties an explicit formula for the corresponding relaxed disarrangement densities H
in (1-16) and h in (1-17). Among their results [Owen and Paroni 2015, Theorem 4]
is the following (obtained by setting L(x)= I in their Theorem 4):

Theorem 1.4. The initial disarrangement densities

ψ | · |(ξ, ν) := |ξ · ν|,

ψ±(ξ, ν) := (ξ · ν)±

(1-22)

satisfy the hypotheses (H1)–(H3) in Theorem 1.1 and have relaxed disarrangement
densities given by

H | · |(A, B)= |tr(A− B)|, h| · |(ξ, ν)= |ξ · ν| = ψ | · |(ξ, ν),

H±(A, B)= (tr(A− B))±, h±(ξ, ν)= (ξ · ν)± = ψ±(ξ, ν).

(1-23)

Specifically, when the minimal volume that is swept out by disarrangements
V| · |(g,G;P) is defined in the Choksi–Fonseca setting by (1-11), then (1-23) yields
the explicit formula

V| · |(g,G;P)

=

∫
P
|tr(∇g(x)−G(x))| dLN (x)+

∫
J (g)∩P

|[g](x) · ν(x)| dHN−1(x) (1-24)

for the (minimal) volume swept out by separations and switches among approxima-
tions fn that determine (g,G). Relation (1-24) provides answers in the setting of
Choksi and Fonseca to the questions raised at the end of Section 1A: V| · |(g,G;P)
has both a bulk disarrangement density |tr(∇g−G)| = |tr M | and an interfacial
disarrangement density |[g] · ν|. Similarly, Theorem 1.4 shows that the (minimal)
volume swept out by separations alone, V+(g,G;P), has the bulk disarrangement
density (tr M)+ and the interfacial disarrangement density ([g] · ν)+, with a cor-
responding result for V−(g,G;P), the (minimal) volume swept out by switches
and interpenetrations (the approximations fn in the Choksi–Fonseca setting are
not required to be injective so that interpenetrations can arise there, unlike in the
setting of Del Piero–Owen).
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1E. Summary of the research presented in the present article. In the proof of
Theorem 1.4 given in [Owen and Paroni 2015], the significant part of the argument
addresses the verification of the inequality

H | · |(A, B)≤ |tr(A− B)|, (1-25)

where H | · |(A, B) is given by the right-hand side of (1-16) with ψ([u], νu) replaced
by ψ | · |([u], ν) = |[u] · ν|. This inequality was proved in [Owen and Paroni 2015]
by constructing a family uε of piecewise affine mappings on the unit cube Q, each
of whose jump set J (uε) is formed by two (planar) ends and by a lateral surface
constructed from solution curves of the differential equation ẋ = (A− B)x . The
lateral surface, by construction, contributes nothing to

∫
J (u)∩Qη

|[u] · ν| dHN−1, and
the contributions of the two ends can be calculated explicitly for A− B lying in
a dense subset of RN×N . Proposition 5.2 of [Choksi and Fonseca 1997] provides
sufficient regularity of H | · |(A, B) to establish (1-25) for all A− B ∈ RN×N .

As one of the main results in this article, we provide an alternate, shorter proof
of (1-25) that employs a different family uε of piecewise affine mappings that does
not involve solution curves of ẋ = (A−B)x . Our approach is based on the following
observation. With A, B ∈ RN×N , p > 1, and Q = (− 1

2 ,
1
2)

N ,

|tr(A− B)| ≤ inf
{∫

J (u)
|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV(Q;RN ),

u(x)= Ax on ∂Q, ∇u ∈ L p(Q),
∫

Q
∇u(x) dLN (x)= B

}
≤ inf

{∫
J (u)
|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV(Q;RN ),

u(x)= 0 on ∂Q, ∇u = B− A a.e.
}
. (1-26)

The first inequality follows by moving the absolute value outside the integral and
using the Gauss–Green theorem for the space SBV(Q;RN ) of special functions of
bounded variation while the second follows by noting that, if u satisfies the last set
of conditions, then the function x 7→ u(x)+ Ax satisfies the first set of conditions.
In this paper, we wish to show that

inf
{∫

J (u)
|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV(Q;RN ),

u(x)= 0 on ∂Q,∇u = B− A a.e.
}
≤ |tr(A− B)| (1-27)

so that the two infima in (1-26) have common value |tr(A− B)|.
The second main contribution of the present research concerns the alternative

approach to structured deformations and to relaxed energies due to Baía, Matias,
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and Santos [Baía et al. 2012] discussed at the end of Section 1C. According to that
discussion, the second infimum in (1-26) (see (1-20) and Remark 1.3)

inf
{∫

J (u)
|[u](x) · ν(x)| dHN−1(x) :

u ∈ SBV(Q; RN ), u(x)= 0 on ∂Q, ∇u = B− A a.e. in Q
}

is the bulk disarrangement density for the same interfacial disarrangement den-
sity ψ | · |([u], ν) (1-22) studied by Owen and Paroni in the setting of Choksi and
Fonseca. Consequently, our proof of (1-27) establishes the equality of the bulk
disarrangement densities obtained in two different settings for structured deforma-
tions. Thus, the geometrical significance of the expression |tr(A− B)| described
in [Owen and Paroni 2015], namely, a volume density of volume swept out by
nonsmooth, submacroscopic geometrical changes, is strengthened by the fact that
the same expression arises from two different schemes of relaxation. We note
that the two different schemes of relaxation also deliver the same formula for the
(relaxed) interfacial disarrangement density h: h = ψ | · | (see [Owen and Paroni
2015] for the routine verification that applies to both schemes).

The explicit formulas for disarrangement densities considered here in the context
of structured deformations will provide scalar fields that can enter as variables in
constitutive relations for the response of three-dimensional bodies. For this pur-
pose, frame-indifferent variants of the specific fields obtained here are available
through known factorizations of structured deformations in which the factor that
tracks disarrangements is unchanged under changes in frame [Del Piero and Owen
1993]. Our explicit formulas are also starting points for the study of examples in
other contexts involving structured deformations: second-order structured deforma-
tions [Owen and Paroni 2000] in which second gradients and their limits enter into
submacroscopic changes in geometry as well as processes for dimension reduction
[Matias and Santos 2014] in the presence of disarrangements that describe thin
structures undergoing submacroscopic slips, separations, and switches.

In Section 2, we provide a “tilted cube” construction for the family uε of func-
tions employed in proving (1-27). The common orientation of the tilted cubes
is determined in Section 3 by means of a known result on the isotropic vectors
of symmetric linear mappings. The proof of (1-27) is completed in Section 4,
and the paper concludes with Section 5 with some additional explicit formulas for
disarrangement densities.

During the review of this article, the research of [Šilhavý 2016] was brought
to our attention, in which explicit formulas for the bulk and interfacial relaxed
energies are established for a broad class of purely interfacial initial energies that
includes the ones studied here.
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2. Proof of the upper-bound inequality

In what follows, a proof of (1-27) is given. The proof requires the following in-
stance of Lemma 4.3 in [Matias 2007].

Lemma 2.1. Let M ∈ RN×N and a bounded open set � ⊂ RN be given, with �
having Lipshitz boundary. There exist a number C(N ) > 0, independent of M
and �, and u ∈ SBV(�;RN ) such that

(1) u|∂� = 0,

(2) ∇u = M , LN -a.e. on �, and

(3) |Dsu|(�)≤ C(N )‖M‖LN (�).

Here, ∇u and Dsu denote the absolutely continuous and the singular parts of
the distributional derivative Du =∇u LN

+ Dsu of u, and |Dsu| denotes the total
variation of the singular part. In addition, ‖M‖ := (tr(MT M))1/2 is the Euclidean
norm of the matrix M . We shall now use the lemma to verify (1-27) for M = A−B.
To this end, let an integer n ≥ 1 be given and consider the frame

Fn := Q \ (1− 2
n+2)Q.

We may apply the lemma to obtain an SBV function u(n) : Fn→ RN such that

• u(n)|∂Fn = 0,

• ∇u(n) = M , LN -a.e. on Fn , and

• the total variation
∫

J (u(n))|[u
(n)
]|(x) dHN−1(x) of u(n) satisfies∫

J (u(n))
|[u(n)]|(x) dHN−1(x)≤ C(N )‖M‖(1− (1− 2

n+2)
N ). (2-1)

In preparation for defining an appropriate function u on Q \Fn = (1− 2
n+2)Q,

we write M̂ := 1
2(M +MT ) for the symmetric part of M , and we choose an or-

thonormal basis ei , i = 1, . . . , N , of RN that consists of eigenvectors of M̂ :

M̂ei = λi ei , i = 1, . . . , N .

We let m be a positive integer and cover (1− 2
n+2)Q by a collection Cn,m of congru-

ent, nonoverlapping open cubes Ck
n,m , k = 1, . . . , Kn,m , each of edge-length 1/m

and each with the i-th pair of opposite faces orthogonal to the unit vector Rei , for
i = 1, . . . , N . Here, R is an orthogonal N × N matrix, R RT

= RT R = I , to be
determined presently. We require in addition that each cube Ck

n,m satisfies

(1− 2
n+2)Q ∩Ck

n,m 6=∅.
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We denote by ck
n,m the center of Ck

n,m , and we define un,m : (1− 2
n+2)Q→ RN by

un,m(x) :=

{
M(x − ck

n,m) if x ∈ (1− 2
n+2)Q ∩Ck

n,m for some k = 1, . . . , Kn,m,

0 if x ∈ (1− 2
n+2)Q \

⋃Kn,m
k=1 Ck

n,m .

Using standard reasoning, we conclude that un,m ∈ SBV((1− 2
n+2)Q;R

N ) with
∇un,m =M , LN -a.e. on (1− 2

n+2)Q. Moreover, the trace of un,m on ∂((1− 2
n+2)Q)

is bounded pointwise by (
√

N/2m)‖M‖. Consequently, the function u(n)m : Q→RN

defined by

u(n)m (x) :=
{

u(n)(x) for x ∈ Fn,

un,m(x) for x ∈ (1− 2
n+2)Q

belongs to SBV(Q;RN ), has gradient M , LN -a.e., and has zero trace on ∂Q. More-
over, the jump set of u(n)m satisfies

J (u(n)m )⊂ J (u(n))∪ ∂((1− 2
n+2)Q)∪ J (un,m). (2-2)

Since u(n)m has outer trace 0 on ∂(1− 2
n+2)Q, for HN−1-a.e. x in ∂((1− 2

n+2)Q)

|[u(n)m ](x)| ≤

√
N

m
‖M‖

and, consequently,∫
∂((1−2/(n+2))Q)

|[u(n)m ](x) · ν(x)| dHN−1(x)≤

√
N

m
‖M‖2N (1− 2

n+2)
N−1. (2-3)

We note from (2-1) that∫
J (u(n))
|[u(n)m ](x) · ν(x)| dHN−1(x)≤ C(N )‖M‖(1− (1− 2

n+2)
N ) (2-4)

and we seek a corresponding estimate for
∫

J (un,m)
|[u(n)m ](x) · ν(x)| dHN−1(x). To

this end, we note that

J (un,m)⊂

Kn,m⋃
k=1

∂Ck
n,m,

and we shall seek an upper bound for
∫⋃Kn,m

k=1 ∂Ck
n,m
|[u(n)m ](x) · ν(x)| dHN−1(x). For

each k = 1, . . . , Kn,m and i = 1, . . . , N , we denote by φk,i+
n,m and φk,i−

n,m the two
faces of the cube Ck

n,m ∈ Cn,m orthogonal to Rei . We note that one face φk,i+
n,m of

Ck
n,m has outer normal ν+i,k = +Rei while the opposite face φk,i−

n,m has outer normal
ν−i,k = −Rei .

We suppose now that the face φk,i+
n,m of Ck

n,m ∈ Cn,m satisfies

φk,i+
n,m ⊂ (1−

2
n+2)Q. (2-5)
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Then there is a cube Ck′
n,m ∈Cn,m that shares the given face with Ck

n,m , and we have
at each point x ∈ φk,i+

n,m the equality

[u(n)m ](x) · ν(x)= (M(x − ck′
n,m)−M(x − ck

n,m)) · ν
+

i,k(x)

= M(ck
n,m − ck′

n,m) · ν
+

i,k(x)

= M
(
−

1
m ν
+

i,k(x)
)
· ν+i,k(x)=−

1
m M̂ Rei · Rei

so that∫
φ

k,i+
n,m

|[u(n)m ](x) · ν(x)| dHN−1(x)=
∫
φ

k,i+
n,m

1
m
|M̂ Rei · Rei | dHN−1(x)

=
1

m N |M̂ Rei · Rei |. (2-6)

The same argument shows that if

φk,i−
n,m ⊂ (1−

2
n+2)Q

then ∫
φ

k,i−
n,m

|[u(n)m ](x) · ν(x)| dHN−1(x)=
1

m N |M̂ Rei · Rei |. (2-7)

If (2-5) holds for i = 1, . . . , N , then we may sum the last relation over i to conclude
that

N∑
i=1

∫
φ

k,i+
n,m

|[u(n)m ](x) · ν(x)| dHN−1(x)=
1

m N

N∑
i=1

|M̂ Rei · Rei |

≥
1

m N

∣∣∣∣ N∑
i=1

M̂ Rei · Rei

∣∣∣∣
=

1
m N

∣∣∣∣ N∑
i=1

RT M̂ Rei · ei

∣∣∣∣
=

1
m N |tr(R

T M̂ R)| =
1

m N |tr M |. (2-8)

In (2-8), equality holds if and only if all of the numbers M̂ Rei · Rei , i = 1, . . . , N ,
have the same sign:

(M̂ Rei · Rei )(M̂ Re j · Re j )≥ 0 for i, j = 1, . . . , N . (2-9)

The last two inequalities lead us to consider the problem

find min
R RT=I

N∑
i=1

|M̂ Rei · Rei | ≥ |tr M̂ | = |tr M |, (2-10)

with equality holding if and only if there is an orthogonal matrix R satisfying (2-9).
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3. Aside on isotropic vectors

We note that the sign inequality (2-9) suggests looking for unit vectors v such that

M̂v · v = 0, (3-1)

the isotropic vectors for M̂ [Ciblak and Lipkin 1998]. In particular, in the special
case tr M̂ = 0, the existence of N mutually orthogonal isotropic vectors v1, . . . , vN

would ensure that the matrix R defined by Rei = vi for i = 1, . . . , N would satisfy
(2-10) in the form 0 = 0. More generally, even when tr M̂ 6= 0, the existence of
isotropic vectors is useful. In fact, the symmetric matrix M̂ − 1

N (tr M̂)I has zero
trace, so we suppose that there exist N mutually orthogonal isotropic unit vectors
v1, . . . , vN for M̂− 1

N (tr M̂)I . The relation (3-1) with M̂ replaced by M̂− 1
N (tr M̂)I

then becomes

0= (M̂ − 1
N (tr M̂)I )vi · vi = M̂vi · vi −

1
N tr M̂

so that M̂vi ·vi =
1
N tr M̂ for i=1, . . . , N . Again, if we define a linear mapping R on

RN by Rei =vi for i =1, . . . , N , then R is orthogonal, it satisfies the sign inequality
for M̂ (2-9), and it delivers equality in (2-10) in the form

∑N
i=1

∣∣ 1
N tr M̂

∣∣= |tr M̂ |.
The following result [Ciblak and Lipkin 1998, Corollary 15] provides the desired

existence of complete orthonormal sets of isotropic vectors.

Theorem 3.1. A symmetric matrix A ∈ RN×N possesses an orthonormal set of N
isotropic vectors if and only if tr A = 0.

This theorem and the preceding discussion permit us to conclude: for every
matrix M ∈ RN×N ,

min
R RT=I

N∑
i=1

|M Rei · Rei | = min
R RT=I

N∑
i=1

|M̂ Rei · Rei |

= |tr M̂ | = |tr M |,

and a minimizing rotation matrix R is one carrying the orthonormal basis of RN

consisting of eigenvectors of M̂ into an orthonormal basis of RN consisting of
isotropic vectors of M̂ − 1

N (tr M̂)I . For this minimizing rotation matrix, we have

|M̂ Rei · Rei | =
1
N |tr M | for i = 1, . . . , N . (3-2)

We remark that minimizers are not unique, in general, even when one eliminates
trivial permutations of isotropic vectors. In fact, for N = 3, there are examples of
minimizers for which two of the three terms in

∑3
i=1|M̂ Rei · Rei | vanish, while the

third equals |tr M |, so that only two of the three vectors Rei are isotropic vectors
for M̂ .
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For the convenience of the reader, we provide the recursive step used in proving
the existence of orthonormal bases made up of isotropic vectors for a traceless
symmetric matrix A ∈ RN×N . We interpret A in the usual way as a linear mapping
on RN , endowed with the standard inner product. Then the nullspace Ker A of A
and its orthogonal complement (Ker A)⊥ are complementary A-invariant subspaces
of RN , and all vectors in Ker A are isotropic vectors for A. If (Ker A)⊥ is the zero
subspace, then A = 0 and every vector in RN is an isotropic vector for A, and
every orthonormal basis of RN meets the desired requirement. If (Ker A)⊥ is not
the zero subspace, then we seek additional isotropic vectors for A in (Ker A)⊥.
To this end, the traceless symmetric linear mapping A 6= 0 has both positive and
negative eigenvalues so that

min
|u|=1

Au · u < 0< max
|u|=1

Au · u,

and since the unit sphere in RN is connected and since the quadratic form u 7→ Au ·u
is continuous, there exists a unit vector v1 ∈ RN such that Av1 · v1 = 0. Writing
v1 as a sum of two orthogonal vectors, one in Ker A and the other in (Ker A)⊥,
and using the invariance of (Ker A)⊥ under A shows that we may without loss of
generality assume that v1 ∈ (Ker A)⊥. The linear span Lsp(Ker A ∪ {v1}) has di-
mension one larger than that of Ker A and consists solely of isotropic vectors for A.
Consequently, we need to search for isotropic vectors of A in (Lsp(Ker A∪ {v1}))

⊥

which has dimension one less than (Ker A)⊥. To proceed further, we define a linear
mapping A1 on RN by

A1 = A− v1⊗ Av1− Av1⊗ v1

where the formula (a⊗ b)v := (b · v)a, for all a, b, v ∈ RN , defines the standard
tensor product a⊗ b ∈ Lin(RN

;RN ). From the fact that v1 is an isotropic vector
for A and from the formula tr(a⊗ b)= a · b, it is easy to see that A1 is traceless;
because (a ⊗ b)T = b ⊗ a, it follows that A1 is symmetric. In addition, if v ∈
(Lsp(Ker A∪{v1}))

⊥ is an isotropic vector for A1, then we not only have v ·v1 = 0
but also

0= A1v · v

= (Av− (Av1 · v)v1− (v1 · v)Av1) · v

= Av · v− (Av1 · v)(v1 · v)− (v1 · v)(Av1 · v)

= Av · v.

Thus, every isotropic vector for A1 that is in (Lsp(Ker A∪ {v1}))
⊥ is an isotropic

vector for A, and dim((Lsp(Ker A∪{v1}))
⊥)= dim((Ker A)⊥)−1. To be able to ap-

ply the foregoing considerations to A1, we need only show that (Lsp(Ker A∪ {v1}))
⊥

is invariant under A1. To this end, let v ∈ (Lsp(Ker A∪ {v1}))
⊥, vκ ∈ Ker A, and
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α ∈ R be given, and consider

A1v · (vκ +αv1)= A1v · vκ + A1v ·αv1

= v · A1vκ +αv · A1v1

= 0+αv · (Av1− (Av1⊗ v1)v1− (v1⊗ Av1)v1)

= αv · (Av1− (v1 · v1)Av1− (Av1 · v1)v1)

= αv · (Av1− Av1− 0)= 0.

We may conclude that A1v ∈ (Lsp(Ker A∪ {v1}))
⊥ as desired. In the third line of

the above computation, we have used the side calculation

v · A1vκ = v · (A− v1⊗ Av1− Av1⊗ v1)vκ

= v · Avκ − (Av1 · vκ)(v · v1)− (v1 · vκ)(v · Av1)= 0.

The first term on the last line vanishes because vκ ∈ Ker A, the second vanishes
because v ∈ (Lsp(Ker A∪ {v1}))

⊥, and the third vanishes because v1 ∈ (Ker A)⊥.
The search for isotropic vectors for A on the A-invariant subspace (Ker A)⊥ may
now be replaced by the search for isotropic vectors for A1 on the A1-invariant
subspace (Lsp(Ker A∪ {v1}))

⊥ of dimension one less than that of (Ker A)⊥.

4. Completion of the proof of the upper-bound inequality

We may use (3-2) and the formulas (2-6) and (2-7) to conclude: if Ck
n,m has a face

φk,i±
n,m ⊂ (1−

2
N+2)Q, then∫

φ
k,i±
n,m

|[u(n)m ](x) · ν(x)| dHN−1(x)=
|tr M |
Nm N =

|tr M |
N

LN (Ck
n,m). (4-1)

On the other hand, if a face φk,i±
n,m of Ck

n,m ∈Cn,m fails to satisfy φk,i±
n,m ⊂ (1−

2
N+2)Q,

then the argument used to verify (4-1) may be applied to φk,i±
n,m ∩ (1−

2
n+2)Q to

conclude that∫
φ

k,i±
n,m ∩(1−2/(n+2))Q

|[u(n)m ](x) · ν(x)| dHN−1(x)≤
|tr M |

N
LN (Ck

n,m). (4-2)

We now consider the cube C1
n,m ∈ Cn,m and choose V 1

n,m , one of its 2N vertices.
Exactly N faces φ1, j , j = 1, . . . , N , of C1

n,m meet at V 1
n,m . Because each cube

Ck
n,m ∈ Cn,m for k = 1, . . . , Kn,m can be obtained from C1

n,m by a unique transla-
tion Tk , the choices C1

n,m and V 1
n,m induce via Tk an assignment of N faces φk, j ,

j = 1, . . . , N , to Ck
n,m . It is easy to show that for all k, k ′ = 1, . . . , Kn,m

k ′ 6= k =⇒ {φk′, j
: j = 1, . . . , N } ∩ {φk, j

: j = 1, . . . , N } =∅,
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i.e., the set of N faces assigned to different cubes are disjoint. If we now apply the
mapping

Ck
n,m 7→ {φ

k, j
: j = 1, . . . , N }

to each cube in the collection

Cint
n,m := {C

k
n,m ∈ Cn,m : Ck

n,m ⊂ (1−
2

N+2)Q}

then all of the faces φk, j so obtained will be included in (1− 2
N+2)Q, and we may

apply (4-1) to each such face to obtain for each Ck
n,m ∈ Cint

n,m

N∑
j=1

∫
φk, j
|[u(n)m ](x) · ν(x)| dHN−1(x)= N

|tr M |
N

LN (Ck
n,m)= |tr M |LN (Ck

n,m).

We may sum both sides over the cubes Ck
n,m ∈ Cint

n,m to obtain

∑
Ck

n,m∈Cint
n,m

N∑
j=1

∫
φk, j
|[u(n)m ](x) · ν(x)| dHN−1(x)= |tr M |LN

( ⋃
Ck

n,m∈Cint
n,m

Ck
n,m

)
.

The faces represented on the left-hand side need not include all of J (un,m) ⊂⋃Kn,m
k=1 ∂Ck

n,m , because some faces of cubes Ck
n,m ∈Cint

n,m that are also faces of cubes
Ck′

n,m ∈ Cn,m \Cint
n,m are left out, while proper subsets φk,i±

n,m ∩ (1−
2

n+2)Q of faces
φk,i±

n,m also are left out. However, for those parts of J (un,m), we may use (4-1) and
(4-2) to estimate the integrals

∫
φ

k,i±
n,m ∩(1−2/(n+2))Q |[u

(n)
m ](x) · ν(x)| dHN−1(x), along

with the fact that the cubes whose faces contain these parts of J (un,m) all must
contain points of ∂(1− 2

n+2)Q and must together cover ∂(1− 2
n+2)Q. Combining

all of these contributions to
∫

J (un,m)
|[u(n)m ](x) · ν(x)| dHN−1(x), we obtain

0≤
∫

J (un,m)

|[u(n)m ](x) · ν(x)| dHN−1(x)− |tr M |LN
( ⋃

Ck
n,m∈Cint

n,m

Ck
n,m

)

≤ 2|tr M |LN
( ⋃

Ck
n,m∈(Cn,m\Cint

n,m)

Ck
n,m

)
. (4-3)

The factor of 2= 2N/N in the last expression reflects the fact that the LN -measure
of some of the cubes in the collection Cn,m \Cint

n,m has been counted more than once
but no more than 2N times through the use of the bound (4-2). The relations (4-3),
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(2-2), (2-3), and (2-4) now yield the relation

0≤
∫

J (u(n)m )

|[u(n)m ](x) · ν(x)| dHN−1(x)− |tr M |LN
( ⋃

Ck
n,m∈Cint

n,m

Ck
n,m

)

≤ 2|tr M |LN
( ⋃

Ck
n,m∈(Cn,m\Cint

n,m)

Ck
n,m

)
+

√
N

m
‖M‖2N (1− 2

n+2)
N−1

+C(N )‖M‖(1− (1− 2
n+2)

N ). (4-4)

We in turn use (4-4) to obtain an upper bound for∫
J (u(n)m )

|[u(n)m ](x) · ν(x)| dHN−1(x).

Let ε > 0 be given, choose n so large that C(N )‖M‖(1 − (1 − 2
n+2)

N ) < ε,
and for such an n, choose m so large that (

√
N/m)‖M‖2N (1 − 2

n+2)
N−1 < ε.

Because (1 − 2
n+2)Q has finite LN -measure, we may choose m larger if nec-

essary so that the cover Cn,m of (1 − 2
n+2)Q satisfies LN

(⋃
Ck

n,m∈Cn,m
Ck

n,m
)
<

LN ((1− 2
n+2)Q)+ ε < 1+ ε. Finally, because ∂(1− 2

n+2)Q has zero LN -measure
and is covered by Cn,m \Cint

n,m , we may again choose m larger, if necessary, so that
2|tr M |LN

(⋃
Ck

n,m∈(Cn,m\Cint
n,m)

Ck
n,m
)
< ε. We conclude that for n and m so chosen∫

J (u(n)m )

|[u(n)m ](x) · ν(x)| dHN−1(x) < |tr M |(1+ ε)+ 3ε = |tr M | + (|tr M | + 3)ε

and, since ε > 0 was arbitrary, that (1-27) holds. �

5. Additional explicit formulas for disarrangement densities

Our discussion above shows that the particular choice of interfacial measure of
disarrangements ∫

J (u)∩�
|[u] · ν| dHN−1 (5-1)

for deformations u of a region �⊂RN leads in both the Choksi–Fonseca relaxation
scheme [1997] and in the Baía–Matias–Santos relaxation scheme [Baía et al. 2012]
to the same bulk density of disarrangements∫

�

|tr(∇g−G)| dLN

for structured deformations (g,G) of that region. Moreover, our analysis here
provides an alternative to the proof of this result given in [Owen and Paroni 2015].
In that article, it was observed that replacement of |[u] · ν| by its positive part
([u] · ν)+ = 1

2(|[u] · ν|+ [u] · ν) results in the replacement of |tr(∇g − G)| by
its positive part (tr(∇g − G))+ = 1

2(|tr(∇g − G)|+ tr(∇g − G)) in the relaxed
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bulk disarrangement density. (An analogous result holds for the negative parts,
obtained by replacing “+” by “−” in the definition of the positive parts.) As
pointed out in [Owen and Paroni 2015], (tr(∇g−G)(x))+ may now be interpreted
as the minimum volume fraction at a point x ∈ � that can be swept out by sub-
macroscopic separations associated with deformations un approximating the struc-
tured deformation (g,G). Moreover, (tr(∇g−G)(x))− is the minimum volume
fraction at x swept out by submacroscopic switches and interpenetrations so that
|tr(∇g−G)(x)| = (tr(∇g−G)(x))++ (tr(∇g−G)(x))− is the minimum volume
fraction swept out by submacroscopic separations, switches, and interpenetrations.

The presence of the inner product [u] · ν in the initial interfacial density (5-1)
tells us that only normal components of jumps will contribute and that alternative
initial interfacial densities are required in order to capture contributions of tan-
gential components of jumps. In the remainder of this section, we shall provide
alternative initial interfacial densities that not only capture contributions of tangen-
tial components of jumps but also lead to specific formulas for the relaxed bulk
disarrangement density via the “tilted cube” construction provided in Sections 2
and 4 above.

Let a ∈ RN be given, and consider the replacement for (5-1)∫
J (u)∩�

|[u] · a| dHN−1 (5-2)

in which the normal component [u]·ν of the jump in u is replaced by the component
[u] · a in the direction of a. To again follow the relaxation scheme in [Baía et al.
2012], we let A, B ∈ RN×N be given and require not only u ∈ SBV(Q,RN ) but
also

u|∂Q = 0, ∇u = B− A, LN -a.e. in Q. (5-3)

We now may use the Gauss–Green formula and (5-3) to write∫
J (u)∩Q

|[u] · a| dHN−1
=

∫
J (u)∩Q

|([u · a])ν| dHN−1

≥

∣∣∣∣∫
J (u)∩Q

([u · a])ν dHN−1
∣∣∣∣

=

∣∣∣∣− ∫
Q
∇(u · a) dLN

+

∫
∂Q
(u · a)ν dHN−1

∣∣∣∣
=

∣∣∣∣− ∫
Q
(∇u)T a dLN

+

∫
∂Q
(0 · a)ν dHN−1

∣∣∣∣
= |(B− A)T a|.
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For the “tilted-cube” construction provided in Sections 2 and 4, we replace the
matrix M by B− A, and the relation (2-6) here has the counterpart∫

φ
k,i+
n,m

|[u(n)m ](x) · a| dHN−1(x)=
∫
φ

k,i+
n,m

|([u(n)m ](x) · a)ν(x)| dHN−1(x)

=

∫
φ

k,i+
n,m

1
m
|((B− A)Rei · a)Rei | dHN−1(x)

=
1

m N |(Rei · (B− A)T a)Rei |,

and this formula leads to the counterpart of (2-8)

N∑
i=1

∫
φ

k,i+
n,m

|[u(n)m ](x) · a| dHN−1(x)=
1

m N

N∑
i=1

|(Rei · (B− A)T a)Rei |

≥
1

m N

∣∣∣∣ N∑
i=1

(Rei · (B− A)T a)Rei

∣∣∣∣
=

1
m N |(B− A)T a|. (5-4)

The method employed in Sections 2 and 4 (where the symbol M was used in place
of B − A) then requires the choice of a rotation R for which equality holds in
the second line of (5-4). If (B − A)T a 6= 0, we may choose R to be any rotation
satisfying Re1= (B− A)T a/|(B− A)T a|, and this requirement is then met because
(Rei · (B − A)T a)Rei = 0 for i = 2, . . . , N . If (B − A)T a = 0, then R can be
chosen arbitrarily; for example, R = I suffices.

These observations show that the analysis in Section 4 for (5-1) may be carried
out step by step for the alternative initial density (5-2), provided that everywhere
in Section 4 we replace |tr M | = |tr(B− A)| by |(B− A)T a|, the Euclidean norm
of the vector (B− A)T a. If we now define

H(A, B, a) := inf
{∫

J (u)
|[u](x) · a| dHN−1(x) : u ∈ SBV(Q;RN ),

u|∂Q = 0, ∇u = B− A a.e.
}
,

then our observations amount to the formula

H(A, B, a)= |(B− A)T a| (5-5)

for the relaxed bulk energy density corresponding to the initial interfacial energy (5-2)
and arising from the scheme in [Baía et al. 2012]. Moreover, an argument similar
to that used in establishing (1-26) shows that the formula (5-5) also holds for the
relaxed bulk disarrangement density according to [Choksi and Fonseca 1997]. In
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the context of a given structured deformation (g,G) on a region �, (5-5) implies
that the particular choice of initial interfacial disarrangement∫

J (u)∩�
|[u] · a| dHN−1

for deformations u of a region �⊂RN leads in both the Choksi–Fonseca relaxation
scheme [1997] and in the Baía–Matias–Santos relaxation scheme [Baía et al. 2012]
to the same relaxed bulk disarrangement density∫

�

|(∇g−G)T a| dLN (5-6)

for structured deformations (g,G) of that region. The integral in (5-6) represents
the most economical way of introducing jumps in the direction of a while approach-
ing in the limit the given structured deformation (g,G), including both jumps nor-
mal and tangential to the discontinuity surfaces of approximating deformations u.

We also note the formula

max
i=1,...,N

H(A, B, δi )= ‖B− A‖row max

where on the left δ1, . . . , δN denote the standard basis of RN and on the right
‖B− A‖row max denotes the maximum of the Euclidean norms of the rows of B− A.
The mapping ‖ · ‖row max : R

N×N
→ R turns out to be a norm on RN×N , and our

interpretation of the integral in (5-6) leads us to interpret the integral∫
�

‖(∇g−G)(x)‖row max dLN (x)

as a bulk measure of disarrangements that takes into account at each x ∈� the di-
rection δi(x) that maximizes the relaxed bulk energy densities H(∇g(x),G(x), δi )

for i = 1, . . . , N . The bulk disarrangement density maxi=1,...,N H(A, B, δi ) =

‖B− A‖row max satisfies

max
i=1,...,N

H(A, B, δi )≤ inf
{

max
i=1,...,N

∫
J (u)
|[u](x) · δi | dHN−1(x) : u ∈ SBV(Q;RN ),

u|∂Q = 0, ∇u = B− A a.e.
}

and need not be the relaxed bulk energy density corresponding to the initial inter-
facial energy maxi=1,...,N

∫
J (u)|[u](x) · δi | dHN−1(x).
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THE GENERAL FORM OF THE RELAXATION OF A PURELY
INTERFACIAL ENERGY FOR STRUCTURED DEFORMATIONS

MIROSLAV ŠILHAVÝ

This paper deals with the relaxation of energies of media with structured de-
formations introduced by Del Piero and Owen (1993; 1995). Structured defor-
mations provide a multiscale geometry that captures the contributions at the
macrolevel of both smooth and nonsmooth geometrical changes (disarrange-
ments) at submacroscopic levels. The paper examines the special case of Choksi
and Fonseca’s (1997) energetics of structured deformations in which the unre-
laxed energy does not contain the bulk contribution. Thus, the energy is purely
interfacial but of a general form. New formulas for the relaxed bulk and inter-
facial energies are proved. The bulk relaxed energy is shown to coincide with
the subadditive envelope of the unrelaxed interfacial energy while the relaxed
interfacial energy is the restriction of the envelope to rank-1 tensors. Moreover,
it is shown that the minimizing sequence required to define the bulk energy in
the relaxation scheme of Choksi and Fonseca (1997) can be realized in the more
restrictive class required in the relaxation scheme of Baía, Matias and Santos
(2012), thus establishing the equality of relaxed energies of the two approaches
for general purely interfacial energies. The relaxations of the specific interfacial
energies of Owen and Paroni (2015) and Barroso, Matias, Morandotti and Owen
(2017) are simple consequences of our general results.

1. Introduction

This paper deals with the relaxation of nonclassical continua modeled as media
with structured deformations introduced by Del Piero and Owen [1993; 1995].1 In
their original setting, a structured deformation is a triplet (K, g,G) of objects of the
following nature. The set K⊂ R3, the crack site, is a subset of vanishing Lebesgue
measure of the reference region �, the map g : � \ K → R3, the deformation
map, is piecewise continuously differentiable and injective, and G is a piecewise

Communicated by Gianpietro Del Piero.
MSC2010: primary 49J45; secondary 74A60, 74G65, 15A99.
Keywords: structured deformations, relaxation, subadditive envelope, interfacial energy, bulk

energy, functions of measures.
1The reader is referred to the proceedings [Del Piero and Owen 2004] and to the recent survey

[Baía et al. 2011] for additional references and for further developments.
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continuous map from � \K to the set of invertible second-order tensors describing
deformation without disarrangements.

Within this context, simple deformations are triples (K, g,∇g) where g is a
piecewise smooth injective map with jump discontinuities describing partial or full
separation of pieces of the body. In view of this, in the general case of a structured
deformation (K, g,G), the tensor

H =∇g−G,

the deformation due to disarrangements, measures the departure of (K, g,G) from
the simple deformation (K, g,∇g).

Choksi and Fonseca [1997] introduced into the theory of structured deforma-
tions energy considerations and the ideas of relaxation. For further studies in
one- and multidimensional settings, see [Del Piero 2001; 2004]. It is well-known
that the existing techniques of relaxation of the calculus of variations and con-
tinuum mechanics are unable to cope with injectivity requirements. Accordingly,
Choksi and Fonseca neglect the injectivity requirement; in addition, they assume
weaker regularity. In their interpretation, structured deformations are pairs (g,G)
where g : �→ Rn is a special Rn-valued map of bounded variation from the
space SBV(�) and G : �→ Lin is an integrable Lin-valued map from the space
Ł1(�,Lin).2 Thus,

SD(�) := SBV(�)×Ł1(�,Lin)

is the set of all structured deformations. Structured deformations of the form (g,∇g)
with g ∈ SBV(�) are called simple deformations in this paper.

The relaxation starts from the energy

E(g)=
∫
�

W (∇g) dV +
∫

J (g)
ψ([[g]], νg) dA (1)

of a simple deformation g ∈ SBV(�). Here V and A are the Lebesgue measure
and the (n − 1)-dimensional Hausdorff measure in Rn and ∇g is the absolutely
continuous part of the derivative (= gradient) Dg of g, while the singular part

Dsg := [[g]]⊗ νgA x J (g)

is a tensor-valued singular measure describing the discontinuities of g; that part is
formed from the jump set J (g)⊂� of g, the jump [[g]] of g on J (g) and the normal
νg to J (g). The reader is referred to (24), below, for a detailed description of these
objects. The material is characterized by the bulk energy density W : Lin→ R and

2For brevity of notation, we omit the target spaces and write SBV(�) ≡ SBV(�, Rn) and
Ł1(�,Lin)≡ L1(�,Lin). See Section 3 for more notation and detailed definitions.
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by the interfacial (or cohesion) energy ψ : Dn→ R, where we denote

Dn = Rn
× Sn−1.

The approximation theorem of Del Piero and Owen [1993, Theorem 5.8] says
that every structured deformation is a well-defined limit of simple deformations. In
the framework of Choksi and Fonseca [1997] (see also [Šilhavý 2015]), this means
that corresponding to each structured deformation (g,G) ∈ SD(�) there exists a
sequence (gk,∇gk) ∈ SD(�) (i.e., with gk in SBV(�)) such that

gk→ g in Ł1(�, Rn),

∇gk ⇀
∗ G in M(�,Lin), (2)

sup{|∇gk |Ł1(�,Rn) : k = 1, . . . }<∞.

The relaxed energy of a structured deformation (g,G) ∈ SD(�) is defined by

I (g,G)= inf
{
lim inf
k→∞

E(gk) : gk ∈ SBV(�) satisfies (2)
}
. (3)

Thus, a sequence approaching the above infimum realizes the most economical
way to build up the deformation (g,G) using approximations in SBV . The relax-
ation theorem of Choksi and Fonseca [1997, Theorems 2.6 and 2.17, Remark 3.3]
says that, under some assumptions on W and ψ (a particular case of which are
Assumptions 2.1, below), the relaxed energy admits the integral representation

I (g,G)=
∫
�

H(∇g,G) dV +
∫

J (g)
h([[g]], νg) dA (4)

where H and h are some functions determined explicitly in the cited theorems
(Theorem 2.2 presents formulas for H and h for a particular case).

This paper deals with the relaxation of energy functions E for which the bulk
contribution vanishes, i.e., with energy functions of the form

E(g)=
∫

J (g)
ψ([[g]], νg) dA (5)

for each g ∈ SBV(�). The main result, Theorem 2.3, below, gives explicit descrip-
tions of the functions H and h from (4) and applies them to give simplified proofs
of two particular cases Examples 2.5 and 2.6 given previously in [Owen and Paroni
2015; Barroso et al. 2017].

2. The main result and examples

We make the following standing hypotheses about ψ .

2.1. Assumptions. (i) The function ψ : Dn→ R is continuous.



194 MIROSLAV ŠILHAVÝ

(ii) We have ψ(−a,−b)= ψ(a, b) and

0≤ ψ(a, b)≤ C1|a| (6)

for every (a, b) ∈ Dn and some C1 > 0.

(iii) The function ψ( · , ν) is subadditive and positively homogeneous for each
ν ∈ Sn−1.

To ease the statements of the results, we extend any function ζ : Dn→[0,∞) to an
identically denoted function ζ : Rn

× Rn
→ [0,∞) by homogeneity with respect

to the second variable, i.e., by assuming that the extended function satisfies

ζ(a, tb)= tζ(a, b) (7)

for any t ≥ 0 and (a, b) ∈ Rn
× Rn . This convention applies in particular to the

functions ψ and h.
We need some notation to formulate the main results. Let Q = (− 1

2 ,
1
2)

n , and
for every M ∈ Lin, let wM : ∂Q→ Rn be given by

wM(x)= Mx for every x ∈ ∂Q. (8)

Furthermore, if (a, b) ∈ Dn , let Qb be any cube with unit edge, center at 0 ∈ Rn

and two faces normal to b, and let za,b : Qb→ Rn be the map defined by

za,b(x)= 1
2a(sgn(x · b)+ 1), x ∈ Qb. (9)

Finally, if u ∈ SBV(�), let us put

9(Dsu) :=
∫

J (u)
ψ([[u]], νu) dA. (10)

The following statement is a particular case W = 0 of the relaxation theorem of
Choksi and Fonseca [1997, Theorems 2.6 and 2.17, Remark 3.3].

2.2. Theorem. The effective energies H and h are given by

H(A, B)= inf
{
9(Dsu) : u ∈ SBV(Q), u = wA on ∂Q,

∫
Q
∇u dV = B

}
(11)

for each A, B ∈ Lin and

h(a, b)= inf{9(Dsu) : u ∈ SBV(Qb), u = za,b on ∂Qb, ∇u = 0 on Qb} (12)

for each (a, b) ∈ Dn .

The following theorem, the main result of this paper, shows that the functions H
and h admit a much more explicit description in terms of a single function 8.
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2.3. Theorem. The functions H and h in Theorem 2.2 are given by

H(A, B)=8(A− B), (13a)

h(a, b)=8(a⊗ b) (13b)

for every A, B ∈ Lin and (a, b) ∈ Dn , where 8 is a subadditive and positively ho-
mogeneous function on Lin defined by each of the following equivalent Assertions
(i)–(iv); moreover, for dyadic arguments, we have an additional Assertion (v).

(i) 8 is the biggest subadditive function on Lin satisfying

8(a⊗ b)≤ ψ(a, b) for every (a, b) ∈ Dn; (14)

i.e.,

8(M)= sup
{
2(M) :2 is subadditive on Lin

and 2(a⊗ b)≤ ψ(a, b) for every (a, b) ∈ Dn
}
. (15)

(ii) For every M ∈ Lin,3

8(M)= inf
{ m∑

i=1

ψ(ai , bi ) : (ai , bi )∈ Dn, i = 1, . . . ,m,
m∑

i=1

ai⊗bi = M
}
. (16)

(iii) For every M ∈ Lin,

8(M)= inf{9(Dsu) : u ∈ SBV(Q), u = wM on ∂Q, ∇u = 0 on Q}. (17)

(iv) For every M ∈ Lin,

8(M)= inf
{
9(Dsu) : u ∈ SBV(Q), u = wM on ∂Q,

∫
Q
∇udV = 0

}
. (18)

(v) For arguments of the form a⊗ b, where (a, b) ∈ Dn ,

8(a⊗ b)= inf{9(Dsu) : u ∈ SBV(Qb), u = za,b on ∂Qb, ∇u = 0 on Qb}. (19)

The proof of Theorem 2.3 is given in Sections 5 and 6, below.

2.4. Remarks. (a) Since the pointwise supremum of any family of subadditive
functions is subadditive (e.g., [Hille and Phillips 1957, Theorem 7.2.2]), (15)
really defines a subadditive function.

(b) Among the above characterizations of 8, the closely related novel forms (i)
and (ii) must be considered as the most important. The main advantage of (i)
and (ii) is that they establish connections to the wealth of results of the convex-
ity theory. These will be employed to analyze the examples to be formulated
below.

3 Throughout the paper, the letter m denotes any positive integer.
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(c) In one dimension, one can orient the normals to jumps to be always the vector
+1 (rather than −1) and hence the dependence of ψ on the second variable
can be suppressed: ψ = ψ(a), a ∈ R. Assumption 2.1(iii) then says that ψ is
subadditive and positively homogeneous. Thus, the subadditive envelope 8
of ψ is ψ itself, and all mentions of a subadditive envelope can be avoided.
This is not the case if Assumption 2.1(iii) is relaxed. Indeed, working in one
dimension, Del Piero [2001; 2004] calculated the relaxation of the energy (1)
with the interfacial energy ψ of a general form, avoiding Assumption 2.1(iii).
His main result contains the subadditive envelope of ψ also. In light of the
above discussion, this envelope plays a different but related role. The relax-
ation of a purely interfacial energy of a more general form than that postulated
in Assumptions 2.1 in arbitrary dimension will be treated in a future paper.

(d) The expressions in (iii)–(v) already occurred previously, albeit without noting
that they are mutually equivalent and equivalent to (i) and (ii), except for
some particular cases to be mentioned below. The formula for H in (13a)
with 8 defined in (iv) and the formula for h in (13b) with 8 defined in (v)
are direct consequences of Choksi and Fonseca’s expressions in (11) and (12).
The formula for H with 8 given by (iii) crops up in the relaxation schemes
by Baía, Matias and Santos [Baía et al. 2012, (3.2)] and by Barroso, Matias,
Morandotti and Owen [Barroso et al. 2017, Theorem 3.2]. The relaxation
schemes in the last two papers require among other things higher regularity
of structured deformations and are not strictly comparable with that of Choksi
and Fonseca described above.

(e) The infimum (iii) could be, in principle, bigger than (iv). Nevertheless, the in-
fima are generally the same. This has been established previously in [Barroso
et al. 2017] for the special choices of ψ described in the following examples,
which motivated the present study.

2.5. Example [Owen and Paroni 2015, Theorem 4, particular case L = I ]. If

ψ| · |(a, b)= |a · b| and ψ±(a, b)= {a · b}± (20)

for every (a, b) ∈ Dn , where { · }+ and { · }− denote the positive and negative parts
of a real number, then

8| · |(M)= |tr M |, (21a)

8±(M)= {tr M}± (21b)

for every M ∈ Lin. The effective energies H| · |, H±, h| · | and h± are determined
through 8| · | and 8± by (13).

As shown in [Owen and Paroni 2015], {tr M}+ is a volume density of disar-
rangements due to submacroscopic separations, {tr M}− is a volume density of
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disarrangements due to submacroscopic switches and interpenetrations, and |tr M |
is a volume density of all three of these nontangential disarrangements: separations,
switches and interpenetrations. The evaluation in [Owen and Paroni 2015] of H
(equivalently, of 8) for (21) is rather complicated; a recent paper by Barroso, Ma-
tias, Morandotti and Owen [Barroso et al. 2017] presents some simplification and
the realization of the minimizing sequence in the narrower class (iv) in Theorem 2.3
mentioned earlier. Our version of the derivation, which includes the minimizing
sequence from (iv) via Theorem 2.3 also, is given in Section 7.

2.6. Example [Barroso et al. 2017, (5.3)]. If

ψ(a, b)= |a · p| (22)

for (a, b) ∈ Dn , where p ∈ Rn is a fixed vector, then

8(M)= |MT p| (23)

for any M ∈ Lin.

3. Notation and functions of bounded variation

We denote by Z the set of integers, by N the set of positive integers, by Sn−1 the
unit sphere in Rn and by Lin the set of all linear transformations from Rn into
itself, often identified with the set of n× n matrices with real elements. We use the
symbols “ · ” and “| · |” to denote the scalar product and the euclidean norm on Rn

and on Lin. The latter are defined by A · B := tr(ABT) and |A| =
√

A · A where
AT
∈ Lin is the transpose of A and tr denotes the trace.

A real-valued function f defined on a vector space X is said to be subadditive
if f (x + y) ≤ f (x) + f (y) for every x, y ∈ X and positively homogeneous if
f (t x)= t f (x) for every t ≥ 0 and x ∈ X.

If � is an open subset of Rn , we denote by Ł1(�,Lin) the space of Lin-valued
integrable maps on �. We denote by M(�,Lin) the set of all (finite) Lin-valued
measures on �. If µ ∈M(�,Lin), we denote by µ x B the restriction of µ to a
Borel set B ⊂�. If G,Gk ∈ Ł1(�,Lin), k = 1, 2, . . . , we say that Gk converges
to G in the sense of measures, and write

Gk ⇀
∗ G in M(�,Lin),

if
∫
�

Gk · H dV →
∫
�

G · H dV for every continuous map H : Rn
→ Lin which

vanishes outside �.
We state some basic definitions and properties of the space BV(�)=BV(�, Rn)

of maps of bounded variation and of the space SBV(�) = SBV(�, Rn), special
maps of bounded variation. For more details, see [Ambrosio et al. 2000; Evans
and Gariepy 1992; Ziemer 1989; Federer 1969].



198 MIROSLAV ŠILHAVÝ

We define the set BV(�) as the set of all u ∈ L1(�)= L1(�, Rn) such that there
exists a measure Du ∈M(�,Lin) satisfying∫

�

u · div T dV =−
∫
�

T · dDu

for each infinitely differentiable map T : Rn
→ Rn×n which vanishes outside some

compact subset of �. Here div T is an Rn-valued map on � given by (div T )i =∑n
j=1 Ti j, j , where the comma followed by an index j denotes the partial derivative

with respect to j-th variable. The measure Du is uniquely determined and called
the weak (or generalized) derivative of u. We shall need the following form of the
Gauss–Green theorem for BV: if � is a domain with lipschitzian boundary and
u ∈ BV(�), then there exists an A integrable map u∂� : ∂�→ Rn such that

Du(�)≡
∫
�

dDu =
∫
∂(�)

u∂�⊗ ν� dA,

where ν� is the outer normal to ∂�. The map u∂� is determined within a change
on a set of A measure 0 and is called the trace of u.

We define the set SBV(�) as the set of all u ∈ BV(�) for which Du has the form

Du =∇u V x�+ [[u]]⊗ νuA x J (u) (24)

where ∇u, the absolutely continuous part of Du, is a map in Ł1(�,Lin) and the
term

Dsu := [[u]]⊗ νuA x J (u)

on the right-hand side of (24) is called the jump (or singular) part of Du. The
objects J (u)⊂�, [[u]] : J (u)→ Rn and νu : J (u)→ Sn−1 are called the jump set
of u, the jump of u and the normal to J (u), respectively. Here J (u) is the set of
all x ∈ � for which there exist νu(x) ∈ Sn−1 and u±(x) ∈ Rn such that we have
the approximate limits

u±(x)= ap lim
y→x

y∈H±(x,νu(x))

u(x),

where H±(x, νu(x))= {y ∈ Rn
: ±(y− x) · νu(x) > 0}. For a given x ∈�, either

the triplet (νu, u+, u−) = (νu(x), u+(x), u−(x)) does not exist or it is uniquely
determined to within the change (νu, u+, u−) 7→ (−νu, u−, u+). With one of these
choices, one puts [[u]] = u+− u− and notes that [[u]]⊗ νu is unique.

Finally, we denote by 〈r〉 the integral part of r ∈ R. Clearly,

r − 1≤ 〈r〉 ≤ r, (25a)

0≤ r −〈r〉 ≤ 1. (25b)
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Writing r = kt , where t ∈ R and k > 0, and dividing by k, we obtain

0≤ t −〈kt〉/k ≤ 1/k (26)

and hence
〈kt〉/k→ t as k→∞ (27)

uniformly in t ∈ R.

4. Preliminary results

We put

C(M) := {u ∈ SBV(Q) : u = wM on ∂Q, ∇u = 0 on Q},

B(M) :=
{

u ∈ SBV(Q) : u = wM on ∂Q,
∫

Q
∇u dV = 0

}
for any M ∈ Lin. We start with the following preliminary results.

4.1. Proposition. If A, B ∈Lin and u ∈B(A) and v ∈B(B), then u+v ∈B(A+B)
and

9(Dsu+Dsv)≤9(Dsu)+9(Dsv); (28)

if (J (u)∩ J (v))= 0, then we have the equality sign in (28).

Proof. We have
J (u+ v)= Ku ∪ Kv ∪ L (29)

where

L = J (u)∩ J (v), Ku = J (u) \ K , Kv = J (v) \ K .

Next, we observe that on L we have νu(x) = ±νv(x) for A-almost every x ∈ L;
since we have a freedom in the choice of the sign of νv , we assume νu(x)= νv(x)
and denote µ= νu on L . Then

[u+ v]⊗ νu+v =


[u]⊗ νu on Ku,

[v]⊗ νv on Kv,

([u] + [v])⊗µ on L.
(30)

By the subadditivity of ψ ,

ψ([u] + [v], µ)≤ ψ([u], µ)+ψ([v], µ)= ψ([u], νu)+ψ([v], νv)

and hence (30) provides

ψ([u+ v], νu+v)


= ψ([u], νu) on Ku,

= ψ([v], νv) on Kv,

≤ ψ([u], νu)+ψ([v], νv) on L.
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Integrating over J (u+ v) and using (29), we obtain

9(Dsu+Dsv)=

∫
J (u+v)

ψ([u+ v], νu+v) d

≤

∫
Ku

ψ([u], νu) d +
∫

Kv

ψ([v], νv) d

+

∫
L
ψ([u], νu) d +

∫
L
ψ([v], νv) d

=9(Dsu)+9(Dsv),

which completes the proof of (28). �

4.2. Remark. If the interfacial energy density ψ has the special form

ψ(a, b)=3(a⊗ b) (31)

where 3 : Lin→ [0,∞) is a subadditive and positively homogeneous function,
then 9(Dsu) is given by

9(Dsu)=3(Dsu)

where Dsu := [[u]]⊗ νu x J (u) is the singular part of the derivative Du of u and

3(Dsu) :=
∫

J (u)
3([[u]]⊗ νu) d

is an instance of Reshetnyak’s [1968] functional µ 7→ 3(µ) of a measure µ ∈
M(Q,Lin); see, e.g., [Ambrosio et al. 2000, (2.29)]. The subadditivity and posi-
tive homogeneity of 8 (asserted in Theorem 2.3) is then an instance of the general
result [Ambrosio et al. 2000, Proposition 2.37] asserting the same properties of
the functional µ 7→ 3(µ). Indeed, if Mi ∈ Lin and ui ∈ A(Mi ), i = 1, 2, then
u1+ u2 ∈A(M1+M2) and therefore

8(M1+M2)≤3(Ds(u1+ u2))=3(Dsu1+Dsu2)≤3(Dsu1)+3(Dsu2);

taking the infimum over all u1 ∈A(M1) and u2 ∈A(M2) gives

8(M1+M2)≤8(M1)+8(M2).

The positive homogeneity follows similarly. We note that the interfacial energies
in Examples 2.5 and 2.6 have the form (31), but this is not the case generally.

The following elementary result records some formulas to be employed below.

4.3. Remark. Let �⊂ Rn be an open bounded set with lipschitzian boundary. A
countable family �α, α ∈ N , of pairwise disjoint subsets of � with lipschitzian
boundaries is said to be a partition of � if one can write �=

⋃
∞

α=1�α to within a
set of null Lebesgue measure. Let us agree to say that ϕ ∈ L1(�, R) is piecewise
constant if there exists a partition �α such that ϕ is constant on each �α. If να is
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the outer normal to �α and if aα is the value of ϕ on �α, then ϕ ∈ BV(�, R) if
and only if ∑

(α,β)∈I

∫
∂�α∩∂�β

|aα − aβ | dA<∞, (32)

where
I = {(α, β) ∈ N2

: α < β, (∂�α ∩ ∂�β) > 0}.

If this is the case, we have the formulas

J (ϕ)=
⋃

(α,β)∈I

(∂�α ∩ ∂�β),

[[ϕ]]νϕ = (aα − aβ)νβ on ∂�α ∩ ∂�β for any (α, β) ∈ I,
Dϕ = [[ϕ]]νϕ x J (ϕ) (33)

to within changes on sets of null A measure. The total variation (mass) M(Dϕ) of
Dϕ is equal to the sum in (32).

Proof. Assume that (32) holds, and prove that ϕ ∈ BV(�, R) and that the three
formulas above hold. We note that if (32) holds then µ := [[ϕ]]νϕ x J (ϕ) is a
(“finite”) measure in M(�, Rn). Let us prove that µ is the weak derivative of ϕ,
which will also prove ϕ ∈ BV(�, R). Thus, we have to prove that∫

�

ϕ∇ f dV =−
∫

J (ϕ)
f [[ϕ]] dA (34)

for every class-infinity function f with support in �. The application of the Gauss–
Green theorem to each of the sets �α provides∫

�α

ϕ∇ f dV ≡ aα

∫
�α

∇ f dV = aα

∫
∂�α

f να dA.

Summing these equations over all α and using that να =−νβ , one obtains (34) and
hence we have ϕ ∈ BV(�, R), (33) and all the remaining assertions of the remark.
The converse implication is proved by reversing the above arguments. �

5. The function 8

The goal of this section is to prove that the functions defined in items (i)–(iv) of
Theorem 2.3 coincide. We denote these functions by 81, 82, 83 and 84, respec-
tively, and prove that they are the same by establishing the cycle of relations

81 ≥82 ≥83 ≥84 =81.

5.1. Proposition. 81 ≥82.
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Proof. It is easy to show that 82 is a subadditive function. Thus, the definition of
81 gives the assertion. �

The proof of the following lemma contains a construction of the central mini-
mizing sequence uk ∈ C(M) for Theorem 2.3(iii). This sequence will be defined as
the superposition of (a slight modification of) the sequence of step deformations
sk , k = 1, . . . , defined on Q by

sk(x)= k−1a〈kx · b〉,

x ∈ Q. Clearly, ∇sk = 0, and in view of (27),

sk(x)→ a(x · b) on Q

as k →∞. Thus, sk satisfies the boundary condition sk = wa⊗b on ∂Q in the
asymptotic sense; however, the definition of C(a⊗ b) requires the exact form of
that boundary condition. For this reason, we have to slightly modify sk near the
boundary ∂Q without violating the equation ∇sk = 0.

5.2. Lemma. If M ∈ Lin and (ai , bi ) ∈ Dn , i = 1, . . . ,m, satisfy

M =
m∑

i=1

ai ⊗ bi , (35)

then there exists a sequence uk ∈ C(M), k = 1, . . . , such that

lim sup
k→∞

9(Dsuk)≤

m∑
i=1

ψ(ai , bi ). (36)

We refer to Remark 5.3 for a mild condition on the sequence (ai , bi ) that guar-
antees that the lim sup in (36) strengthens to lim and the inequality sign to the
equality sign.

Proof. We shall first construct the sequence uk for the particular case when M =
a⊗ b is a dyad and then superimpose the sequences corresponding to the dyads
ai⊗bi , i = 1, . . . ,m, to obtain the general case. Thus, let (a, b)∈ Dn and construct
a sequence uk ∈ C(a⊗ b), k = 1, . . . , such that

lim
k→∞

9(Dsuk)= ψ(a, b). (37)

Introduce the sets

Ck = (1− k−2)Q, L l = (1− (l + 1)−2)Q \ (1− l−2)Q, (38)

k, l ∈ N , and observe that

Q = Ck ∪

∞⋃
l=k

L l (39)
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with mutually disjoint summands for any k ∈ N . Here the product t S of a set
S ⊂ Rn and a real number t is defined by t S = {t x : x ∈ S}. Equation (39) presents
a decomposition of Q into the main set Ck , which is a large subset of Q for large k,
while Lk, Lk+1, . . . present infinitely many rectangular layers filling the gap Q \Ck

and becoming more and more refined towards the boundary of Q.
We use these sets Ck, Lk, Lk+1, . . . to define a sequence of scalar functions

ϕk : Q→ R, k = 2, . . . , by

ϕk(x)=
{
(k− 1)−2

〈(k− 1)2x · b〉 if x ∈ Ck,

l−2
〈l2x · b〉 if x ∈ L l for some l ≥ k.

(40)

Let us use Remark 4.3 to prove that ϕk ∈ BV(Q, R). Clearly, ϕk is a piecewise
constant function in the sense of that remark. Using (25a), one finds that x ·b−1≤
ϕk(x)≤ x · b; hence, |ϕk | is bounded on Q and thus ϕk ∈ L1(Q, R). It remains to
verify (32). Let us show that in the present case (32) reads∫

J (ϕk)

|[[ϕk]]| dA<∞, (41)

where

J (ϕk)= C◦k ∪
∞⋃

l=k

(L◦l ∪ L∂l ) (42)

is the jump set, with

C◦k = {x ∈ Ck : k2x · b ∈ Z}, (43)

L◦l = {x ∈ L l : l2x · b ∈ Z}, L∂l = (1− l−2)∂Q, (44)

and on J (ϕk)

[[ϕk]]νϕk =


(k− 1)−2b on C◦k ,
l−2b on L◦l where l ≥ k,
ηlνk on L∂l where l ≥ k

(45)

is the jump and normal to the jump set, with

ηl(x)= l−2
〈l2x · b〉− (l − 1)−2

〈(l − 1)2x · b〉 (46)

and with νk denoting the outer normal to the scaled cube (1−k−2)Q. Equations (42)
and (45) follow from the identities given in Remark 4.3. One has to enumerate the
regions of constancy of ϕk in an arbitrary way to obtain the system of sets �α,
α = 1, . . . , and use the formulas of that remark. The details are left to the reader.
This establishes the equivalence of the inequalities (32) and (41). To prove that
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(41) really holds, one finds from (45) that∫
J (uk)

|[[ϕk]]| dA= (k− 1)−2A(C◦k )+
∞∑

l=k

l−2A(L◦l )+
∞∑

l=k

∫
L∂l

|ηl | dA. (47)

We estimate the terms A(C◦k ), A(L◦l ) and
∫

L∂l
|ηl(x)| dA as follows. First, prove

that

|A(C◦k )− (k− 1)2Ln(Ck)| ≤ 2n, (48a)

|A(L◦l )− l2Ln(L l)| ≤ 4n (48b)

and hence

A(C◦k )≤ 2n+ (k− 1)2Ln(Ck), A(L◦l )≤ 4n+ l2Ln(L l). (49)

Let us prove (48b); the proof of (48a) is similar. Let ω : L l→ R be defined by

ω(x)= l2x · b−〈l2x · b〉, x ∈ L l .

Then ω ∈ BV(L l, R), Dω = l2b− bA x L◦l , and hence the Gauss–Green theorem
yields

Dω(L l)= l2Ln(L l)b− bA(L◦l )=
∫
∂Ll

ωνLl dA, (50)

from which

|mLn(L l)−A(L◦l )| ≤
∫
∂Ll

|ω| dA.

We now observe that |ω| ≤ 1 on ∂L l and ∂L l = L∂l+1 ∪ L∂l . Thus,∫
∂Ll

|ω| dA≤A(L∂l+1)+A(L∂l )≤ 4n

since, elementarily, A(L∂l+1) ≤ 2n and A(L∂l ) ≤ 2n. Thus, we have (48b). Next
prove that

|ηl(x)| ≤ 2(l − 1)−2 on L∂l .

Indeed, writing

|ηl(x)| =
∣∣(l−2
〈l2x · b〉− x · b)− ((l − 1)−2

〈(l − 1)2x · b〉− x · b)
∣∣,

using the triangle inequality and the inequality (26) twice, with t = x · b and k = l2

and k = (l − 1)2, one obtains

|ηl(x)| ≤ l−2
+ (l − 1)−2

≤ 2(l − 1)−2

and hence ∫
L∂l

|ηl | dA≤ 2(l − 1)−2A(L∂l )≤ 4n(l − 1)−2. (51)
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The estimates (49) and (51) and the formula (47) provide∫
J (uk)

|[[ϕk]]| dA≤ 2n(k− 1)−2
+Ln(Ck)

+

∞∑
l=k

(4nl−2
+Ln(L l))+

∞∑
l=k

4n(l − 1)−2

≤ 1+ 2n(k− 1)−2
+ 8n

∞∑
l=k

(l − 1)−2 <∞,

where we have used

Ln(Ck)+

∞∑
l=k

Ln(L l)= Ln(Q)= 1.

Thus, we have (41); hence, ϕk ∈ BV(�, R) for every k and

Dϕk = [[ϕk]]νϕkA x J (ϕk)

and

∇ϕk = 0. (52)

Finally, note that the boundary trace ϕ∂k of ϕk on ∂Q satisfies

ϕ∂k (x)= x · b for every x ∈ ∂Q. (53)

While a rigorous proof of this can be given by using the essential limit of ϕk at x ∈Q,
we here only note that the definition of ϕk yields that

lim
j→∞

ϕk(x j )= x · b (54)

for any x ∈ ∂Q and any sequence x j ∈ Q converging to x . For this it suffices to note
that in view of (39) one finds that x j must belong to some L l for some l = l( j)≥ k.
The limit x j → x then implies that l(k)→∞, and then the definition (40) and the
formula (27) provide (54).

We define the sequence uk : Q→ Rn , k = 2, . . . , by

uk(x)= aϕk(x)

for every x ∈ Q. By ϕk ∈ SBV(Q, R) and by (52) and (53), we have uk ∈ C(a⊗b).
Further, [[uk]] = [[ϕk]]a⊗ νϕk ; consequently, by (45),

ψ([[uk]], νuk )=


(k− 1)−2ψ(a, b) on C◦k ,
l−2ψ(a, b) on L◦l for any l ≥ k,
ψ(ηla, νl) on L∂l for any l ≥ k
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and hence

9(Dsuk)=

∫
J (uk)

ψ([[uk]], νuk ) dA= (k− 1)−2ψ(a, b)A(C◦k )+ ρk, (55)

where

ρk =

∞∑
l=k

l−2ψ(a, b)A(L◦l )+
∞∑

l=k

∫
L∂l

ψ(ηla, νl) dA.

Dividing (48a) by (k− 1)2, we obtain

(k− 1)−2A(C◦k )→ 1 (56)

since Ln(Ck)→ 1. Using (6), we obtain that the nonnegative number ρk is bounded
by (a constant multiple of) the quantity

dk =

∞∑
l=k

l−2A(L◦l )+
∞∑

l=k

∫
L∂l

|ηl | dA

≤

∞∑
l=k

Ln(L l)+ 2n(k− 1)−2
+ 4n

∞∑
l=k

(l − 1)−2

≤ k−2
+ 2n(k− 1)−2

+ 4n
∞∑

l=k

(l − 1)−2

and hence ρk→ 0. Equations (55) and (56) then yield (37).
We now complete the proof in the general case. By the preceding part of the

proof, for each i ∈ {1, . . . ,m}, there exists a sequence ui
k ∈ C(ai⊗bi , 0), k = 1, . . . ,

such that
9(Dsui

k)→ ψ(ai , bi ) (57)

as k→∞. Define uk :=
∑m

i=1 ui
k for every k. By (28),

9(Dsuk)≤

m∑
i=1

9(Dsui
k). (58)

Hence,

lim sup
k→∞

9(Dsuk)≤ lim
k→∞

m∑
i=1

9(Dsui
k)=

m∑
i=1

ψ(ai , bi )

by (57). �

5.3. Remark. If the sequence (ai , bi ) satisfies the condition

bi 6= b j and bi 6= −b j whenever 1≤ i < j ≤ m, (59)
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then the sequence uk can be chosen as to satisfy, instead of the inequality (36), the
equality

lim
k→∞

9(Dsuk)=

m∑
i=1

ψ(ai , bi ).

Indeed, the inspection of the proof of Lemma 5.2 shows that the source of the
inequality (36) is the subadditivity in (58) which cannot be replaced by the equality
unless the discontinuity sets J (ui ) pairwise intersect on a set of null A measure
(see Proposition 4.1). Condition (59) guarantees that. However, inequality (36)
suffices for our purposes.

5.4. Proposition. 82 ≥83 ≥84.

Proof. To prove 82 ≥83, we take any sequence (ai , bi ) ∈ Dn , i = 1, . . . ,m, such
that

∑m
i=1 ai ⊗ bi = M and consider the infimum as in the definition of 82 in (16).

Hence, for the given sequence (ai , bi ) ∈ Dn , we construct a sequence of maps
uk ∈ C(M), k = 1, . . . , as in Lemma 5.2. Then

83(M)≤9(Dsuk)

by the definition of 83. Letting k→∞ and using (36), we obtain

83(M)≤
m∑

i=1

ψ(ai , bi ).

Taking the infimum over all sequences ai and bi , one obtains from the definition
of 82 the inequality 83(M)≤82(M). The inequality 83 ≥84 is immediate. �

5.5. Proposition. 84 =81.

Proof. We seek to prove that 84 is the biggest subadditive function satisfying
84(a ⊗ b) ≤ ψ(a, b) for any (a, b) ∈ Dn . To prove the subadditivity of 84, let
A, B ∈ Lin and u ∈ B(A) and v ∈ B(B). Proposition 4.1 and (17) yield u + v ∈
B(A+ B) and

84(A+ B)≤9(Dsu+Dsv)≤9(Dsu)+9(Dsv).

Taking the infimum over all u and v then gives the subadditivity

84(A+ B)≤84(A)+84(B).

Next we note that the biggest subadditive function 2 such that

2(a⊗ b)≤ ψ(a, b) (60)

for any (a, b) ∈ Dn is automatically positively homogeneous; thus, it suffices to
prove the maximality of 84 among all subadditive and positively homogeneous
functions satisfying (60). Thus, let 2 be such a function and let M ∈ Lin and
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u ∈ B(M). Then by (60) and by Jensen’s inequality for positively homogeneous
subadditive functions,

9(Dsu) :=
∫

J (u)
ψ([[u]], νu) dA

≥

∫
J (u)

2([[u]]⊗ νu) dA

≥2

(∫
J (u)
[[u]]⊗ νu dA

)
. (61)

We now combine the boundary condition u=wM on ∂Q and relation
∫

Q ∇u dLn
= 0

with the Gauss–Green theorem to obtain∫
J (u)
[[u]]⊗ νu dA=

∫
J (u)
[[u]]⊗ νu dA+

∫
Q
∇u dLn

=

∫
Q

1 dDu

=

∫
∂Q

Mx ⊗ νQ dA= M.

Thus, (61) yields
9(Dsu)≥2(M).

Taking the infimum over all u ∈ B(M), we obtain 84(M)≥2(M). �

This proves 81 =82 =83 =84. We define the function 8 by 8=81.

6. Completion of the proof of Theorem 2.3

For this section, we put, for every (a, b) ∈ Dn ,

C(a, b) := {u ∈ SBV(Qb) : u = za,b on ∂Qb, ∇u = 0 on Qb}

and denote by 85(a, b) the infimum in (19). We then extend 85 to Rn
× Rn by

homogeneity in the second variable.

6.1. Proposition. We have H(A, B)=8(A− B) for every A, B ∈ Lin.

Proof. We employ Theorem 2.2 and the definition of 8 in (18). Invoking (11), we
take any u ∈ SBV(Q) satisfying u=wA on ∂Q, and

∫
Q ∇u dLn

= B. Then v, given
by v(x)= u(x)− Bx , x ∈ Q, satisfies v ∈ B(A− B) and 9(Dsu)=9(Dsv). �

6.2. Lemma. We have 85(a, b)≤8(a⊗ b) for every (a, b) ∈ Dn .

Proof. Let (a, b)∈ Dn , and let (ai , bi )∈ Dn , i = 1, . . . ,m, be a sequence satisfying

a⊗ b =
m∑

i=1

ai ⊗ bi . (62)
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Our goal is to construct a sequence uk ∈ C(a, b), k = 1, . . . , such that

lim sup
k→∞

∫
J (uk)

ψ([[uk]], νuk ) dA≤
m∑

i=1

ψ(ai , bi ). (63)

To define uk , let
P = {x ∈ Rn

: x · b = 0}

be the plane through the origin perpendicular to b, let 5 be the projection from Rn

onto P , let
F = P ∩ Qb,

and put
Bk = {x ∈ Rn

:5(x) ∈ (1− k−1)F, 0≤ x · b < k−1
}

for any k ∈ N . Define uk : Qb→ Rn by

uk(x)=
{
vk(x) if x ∈ Bk,

za,b(x) else,

x ∈ Qb, where

vk(x)=
m∑

i=1

k−1ai 〈k2x · bi 〉 for any x ∈ Rn and k ∈ N.

Employing Remark 4.2, we see that uk ∈ SBV(Qb); furthermore, clearly, uk = za,b

on ∂Qb and ∇uk = 0 on Qb; hence, uk ∈ C(a, b).
We proceed to prove (63). We have

J (uk)= Nk ∪Mk ∪ Lk ∪ Sk, (64)

where
Nk = F \ (1− k−1)F,

Mk = {x ∈ ∂B : 0< x · b < k−1
},

Sk = {x ∈ Rn
:5(x) ∈ (1− k−1)F, x · b = k−1

},

Lk =

m⋃
i=1

L i
k where L i

k = {x ∈ Bk : k2x · bi ∈ Z}.

(65)

The jump of uk and the normal to the jump set are

[[uk]](x)νuk (x)=


k−1∑m

i=1 ai ⊗ bi 1L i
k
(x) if x ∈ Lk,

a⊗ b if x ∈ Nk,

(a− vk(x))⊗ νk if x ∈ Mk,

(a− vk(x))⊗ b if x ∈ Sk,

(66)
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x ∈ J (uk), where νk is the outer normal to Bk and 1L i
k

is the characteristic function
of the set L i

k . Hence, the subadditivity of ψ in the first variable yields∫
Lk

ψ([[uk]], νuk ) dA≤ k−1
m∑

i=1

ψ(ai , bi )A(L i
k);

consequently∫
J (uk)

ψ([[uk]], νuk ) dA≤ k−1
m∑

i=1

ψ(ai , bi )A(L i
k)+ψ(a, b)A(Nk)

+

∫
Mk

ψ(a− vk(x)), νk) dA

+

∫
Sk

ψ(a− vk(x)), b) dA. (67)

Let us now analyze the terms on the right-hand side of (67). Using the considera-
tions as in the proof of Lemma 5.2 (see (48) and (49)), one finds that

k−1A(L i
k)→ 1

as k→∞ for every i = 1, . . . ,m. Thus,

k−1
m∑

i=1

ψ(ai , bi )A(L i
k)→

m∑
i=1

ψ(ai , bi ). (68)

Further,

ψ(a, b)A(Nk)→ 0 (69)

since, obviously,

A(Nk)→ 0.

Next note that, by (62) and (26),

|ka(x · b)− vk(x)| =
∣∣∣∣ka(x · b)−

m∑
i=1

k−1ai 〈k2x · bi 〉

∣∣∣∣
=

∣∣∣∣k m∑
i=1

ai (x · bi )− k−2ai 〈k2x · bi 〉

∣∣∣∣
≤

∣∣∣∣k m∑
i=1

|ai ||(x · bi )− k−2
〈k2x · bi 〉|

∣∣∣∣
≤ k−1

m∑
i=1

|ai |.
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Then if x ∈ Mk ,

|a− vk(x)| ≤ |a− ka(x · b)| + |ka(x · b)− vk(x)|

≤ |a| + k|a||x · b| + k−1
m∑

i=1

|ai |

≤ |a| + |a| + k−1
m∑

i=1

|ai |

since k|x · b| ≤ 1 on Mk . Thus, |a − vk(x)| ≤ c < ∞ for any x ∈ Mk and any
k = 1, . . . . A combination with (6) and

A(Mk)→ 0

then provides ∫
Mk

ψ(a− vk(x)), νk) dA→ 0. (70)

Similarly, if x ∈ Sk , then kx · b = 1 and hence

|a− vk(x)| ≤ |ka(x · b)− vk(x)| ≤ k−1
m∑

i=1

|ai | → 0.

Thus, (6) yields ∫
Sk

ψ(a− vk(x)), b) dA→ 0 (71)

since A(Sk) ≤ 1 for all k. Consequently, a combination of (67) with (68)–(71)
provides (63) and hence the definition of 85 gives

85(a, b)≤
m∑

i=1

ψ(ai , bi )

for any sequence (ai , bi ) satisfying (62). Taking the infimum of the right-hand
side over all such sequences and using the definition of 82 ≡ 8, we obtain the
assertion. �

6.3. Lemma. We have 85(a, b)≥8(a⊗ b) for every (a, b) ∈ Dn .

Proof. Let u ∈ C(a, b). Then, by Jensen’s inequality,∫
J (u)

ψ([[u]], νu) dA≥
∫

J (u)
8([[u]]⊗ νu) dA

≥8

(∫
J (u)
[[u]]⊗ νu dA

)
=8(a⊗ b)
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since the boundary condition u = za,b on ∂Qb implies∫
J (u)
[[u]]⊗ νu dA= a⊗ b.

That is, we have ∫
J (u)

ψ([[u]], νu) dA≥8(a⊗ b)

for every u ∈ C(a, b). Taking the infimum, we obtain 85(a, b)≥8(a⊗ b). �

6.4. Proposition. We have h(a, b)=8(a⊗ b) for every (a, b) ∈ Dn .

Proof. This follows immediately from (12) and (19). �

This completes the proof of Theorem 2.3.

7. Derivation of the examples

Derivation of Example 2.5 and (21). We consider ψ| · |(a, b)= |a ·b| first and prove
(21a). Clearly, the function 2(M)= |tr M | is a subadditive function satisfying (14)
with ψ = ψ| · | and hence (16) gives 8| · |(M)≥ |tr M | for any M ∈ Lin. To prove
the opposite inequality, we note that the definition (15) of 8| · | gives

ψ| · |(a, b)=2(a⊗ b)≤8| · |(a⊗ b)≤ ψ| · |(a, b)

for every (a, b) ∈ Dn and hence

8| · |(a⊗ b)= |a · b| and in particular 8| · |(a⊗ b)= 0 if a · b = 0,

which determines 8| · | on tensor products a⊗ b. As a consequence, if N ∈ Lin can
be written as

N =
m∑

i=1

ai ⊗ bi (72)

where (ai , bi ) ∈ Rn
× Rn , i = 1, . . . ,m, where

ai · bi = 0 for all i = 1, . . . ,m, (73)

then 8| · |(N )= 0 since

0≤8| · |(N )≤
m∑

i=1

8| · |(ai ⊗ bi )≤

m∑
i=1

ψ(ai , bi )=

m∑
i=1

|ai · bi | = 0.

To determine 8| · | on a general M ∈ Lin, we write M = A+W where A and W
are the symmetric and skew parts of M . Let e1, . . . , en be an orthonormal basis of
eigenvectors of A with the eigenvalues λi ; hence, A =

∑n
i=1 λi ei ⊗ ei . Then

M = B+ N
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where
B = (tr M)e1⊗ e1,

N =W +
n∑

i=2

λi
(
ei ⊗ e1− e1⊗ ei − (e1+ ei )⊗ (e1− ei )

)
.

Since W is a linear combination of the dyads ei ⊗ e j , 1≤ i 6= j ≤ n, one sees that
N is of the form (72)–(73) and hence 8| · |(N )= 0; consequently

8| · |(M)≤8| · |(B)+8| · |(N )=8| · |(B)= ψ((tr M)e1, e1)= |tr M |.

Equations 13 complete the proof of (21a).
To prove the two equations in (21b), we employ (21a) and (21b) as follows. One

has ψ±(a, b) = 1
2(|a · b| ± a · b), and hence, if (ai , bi ) ∈ Dn and M ∈ Lin satisfy∑m

i=1 ai ⊗ bi = M , then
m∑

i=1

ψ±(ai , bi )=
1
2

( m∑
i=1

ψ| · |(ai , bi )± tr M
)
.

Taking the infimum as in (16) and using the above evaluation of 8| · | gives

8±(M)= 1
2(8| · |(M)± tr M)= 1

2(|tr M | ± tr M)= {tr M}±,

which is (21b). �

Derivation of Example 2.6 and (23). The function 2(M) = |MT p| is a subaddi-
tive function satisfying (14), and we obtain in the same way as in the proof of
Example 2.5 that 8(M)≥ |MT p| for any M ∈ Lin and

8(a⊗ b)= |a · p| and in particular 8(a⊗ b)= 0 if a · p = 0. (74)

To prove 8(M) ≤ |MT p|, we assume without loss of generality that |p| = 1 and
let {p, e2, . . . en} be any orthonormal basis. In view of 1= p⊗ p+

∑n
i=2 ei ⊗ ei ,

M = 1M = p⊗MT p+
n∑

i=2

ei ⊗MTei ;

normalizing the second members of the dyads, we obtain

M = |MT p|p⊗ sgn(MT p)+
n∑

i=2

|MTei |ei ⊗ sgn(MTei ).

The subadditivity of 8 provides

8(M)≤8
(
|MT p|p⊗ sgn(MT p)

)
+

n∑
i=2

8
(
|MTei |ei ⊗ sgn(MTei )

)
= |MT p|

by (74). Thus, 8(M)≤ |MT p| and the proof of (23) is complete. �
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