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The minimum properties that allow a dissipation functional to describe a behav-
ior of viscoplastic type are analyzed. It is considered a material model based on
an internal variable description of the irreversible processes and characterized by
the existence of an elastic region. The dissipation functional derived includes the
case of time-independent plasticity in the limit. The complementary dissipation
functional and the flow rule are also stated. The model analyzed leads naturally
to the fulfillment of the maximum dissipation postulate and thus to associative
viscoplasticity. A particular class of models is analyzed, and similarities to and
differences from diffused viscoplastic formats are given.

1. Introduction

Strain-rate-dependent behavior is characteristic of many materials at least beyond
a certain level of stress, temperature or strain rate. Strain-rate sensitivity and time-
temperature superposition effects occur when the time scale of the process is com-
parable with a characteristic relaxation time of the material. In this paper, we
consider the case of a relatively short relaxation time characterizing irreversible
phenomena such as plasticity and damage, leading to a generalized viscoplastic
model. For such processes, irreversible deformations do not develop instanta-
neously, and also the apparent yield stress is modified according to the velocity
of strain. The same observations apply to other phenomena like damage evolution
or hardening, which can be described by additional internal variables in a similar
way to the strain (see [Contrafatto and Cuomo 2002] for more details).

Viscoplasticity, introduced systematically by [Rabotnov 1969; Green and Naghdi
1965; Needleman 1988; Krempl 1975; Valanis 1971], to report only some of the
earliest contributions to the subject, has received renewed attention in conjunc-
tion with the development of advanced models incorporating other phenomena,
like hardening-softening behavior, nonassociative flow rules, anisotropy, etc. [Hall
2005; Phillips and Wu 1973; Zienkiewicz et al. 1975]. In most cases, an evolution
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law for the anelastic variables is postulated, which satisfies the second law of
thermodynamics, like was done for instance in the original Perzyna [1966] or Du-
vaut and Lions [1972] proposals, which are largely employed in numerical models.
Thermodynamic reformulation of the generalized Perzyna and Duvaut–Lions mod-
els were also contributed [Ristinmaa and Ottosen 2000; 1998; Runesson et al. 1999;
Perić 1993]. In these papers, the authors, in an attempt to better fit complex material
behaviors, proposed an extension of the models using a dynamic yield locus, a func-
tion of the internal thermodynamic forces and/or of the viscoplastic strain rates, and
a (complementary) dissipation function based on a decomposition of the conjugated
forces. They showed that the formulation satisfies the dissipation inequality and
that the postulate of maximum dissipation is fulfilled when an associated flow rule
is used. Generalization to nonlocal models of plasticity have been proposed [Aifan-
tis et al. 1999; Voyiadjis et al. 2004; Forest 2009], often as a mean for regularizing
strain localization in softening materials. Gurtin [2003] proposed a framework for
strain gradient small-deformation viscoplasticity. He introduces both polar stresses
(third order) and microstresses (second order). However, both vanish when the
dependency of the constitutive equations on the strain gradient is disregarded.

In this work, it is shown how viscoplastic constitutive relations can be consis-
tently derived from a properly defined dissipation potential of the irreversible strain
rates. The model is implemented within the generalized standard material model,
in the definition given by Germain [1962] and Halphen and Nguyen [1975], which
derives the constitutive laws from the specification of two potential functionals,
the internal energy and the dissipation. Only in the second will an internal time
scale be introduced, in order to model a viscoplastic-like behavior. In this way the
dissipation inequality will be automatically fulfilled. Conjugated to the dissipation
functional, a function of the plastic strain rate, is the complementary dissipation
functional, a function of the internal thermodynamic forces. The latter allows one
to obtain the flow rules for the plastic rates.

The objective of the paper is to state sufficient conditions for the dissipation
functional in order to describe a viscoplastic-type behavior, which in addition
admits the existence of an elastic region. Once these conditions will be stated,
the complementary dissipation functional will be obtained and from it the flow
rule for the internal variables. We will present a case for which the expressions
derived can be obtained in a closed form. The answer to a similar question has
been given in the case of inviscid plasticity [Eve et al. 1990; Romano et al. 1993].
Therefore, we wish for the dissipation potential for viscoplasticity to include the
one for time-independent plasticity as a limit case. The analysis will be carried
out in the hypothesis of small deformations so that the kinematic variables will
be additively split into reversible and irreversible components. The irreversible
component accounts both for time-dependent and time-independent strains.
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The main result of the paper is as follows. While a dissipation function for time-
independent plasticity has to be a positively homogeneous function (hodo) of the
plastic strain rate, that is, the gauge function of a set of irreversible strain rates
(that will be shown to be polar to the set of the elastic stresses), in order to obtain
a time-dependent flow rule, it is necessary to add in the expression of the further
dissipation terms, specifically positively homogeneous functions of degree n > 1
(hodn), which will be recognized to be gauge-like functions. It will be shown that
they are powers of the gauge function of a closed set, which again will be identified
with the polar set of the elastic domain. Then an expression for the complementary
dissipation functional in terms of the gauge function of the elastic domain will be
derived. The result will be an overstress model of viscoplasticity.

In the framework of the thermomechanics of dissipative materials [Maugin 1999],
the derivation of the constitutive equations from appropriate energy functionals is a
standard procedure. However, especially in the case of time-dependent irreversible
behavior, usually some specific form of the dissipation potential is postulated, de-
rived from a known rheological model, like in [Houlsby and Puzrin 2002]. The re-
sult of this paper relative to a general form of a dissipation functional that gives rise
to an overstress viscoplastic model appears new. Although the model is only suffi-
cient for a time-dependent plastic evolution model, there are indications that it may
be a general result. For instance, in a recent series of papers, Goddard [2014; Kam-
rin and Goddard 2014] derived viscoplastic dissipation potential for granular mate-
rials starting from Edelen’s work [1973] on nonlinear generalization of the classical
Rayleigh–Onsager dissipation potentials. In addition to prove a general form of
symmetry relations, he presented a form of dissipation potentials for viscoplastic
laws that turned out to be a homogeneous function of degree n > 1. He also derived
a complementary dissipation functional that is analogous to the one obtained in this
work in the particular case that the dissipation function is given by only one term.

The theory in this paper is presented for the case of local models of deformation
only. Its extension to higher gradient theories like those proposed in [dell’Isola
et al. 2015; Placidi 2016; Neff et al. 2014] is possible although there are technical
details that need to be carefully analyzed.

In the following section, the results anticipated in Section 1 will be systemati-
cally derived. Then a uniaxial example will be presented. Numerical results are not
included in this work. The model obtained, also in the case when an explicit form
of the flow rule cannot be stated, is amenable to a simple numerical treatment.
A detailed examination of the numerical algorithm, which takes advantages of
some results established in an earlier work [Contrafatto and Cuomo 2005] will
be presented elsewhere.

The paper makes consistent use of convex analysis. Only sporadically are the
introduced definitions explicitly stated. The reader can refer to standard texts of
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convex analysis for the details [Rockafellar 1970]. However, the most important
mathematical definitions used in the paper are briefly reviewed in Appendices A
and B.

2. Phenomenological constitutive model

The viscoplastic material considered is characterized by the existence of an elastic
domain such that no irreversible deformation is associated to stress states belonging
to it. Plastic deformations occur otherwise. We consider the case that stresses
beyond the elastic limit are allowed (overstress), in which case delayed plastic
strains occur. Thus, the description does not cover all the models proposed for
viscoplasticity, like power law models, etc.

The standard generalized material model introduced by [Germain 1962; Halphen
and Nguyen 1975] is adopted, which can be synthetically described by the follow-
ing assumptions.

(1) The equilibrium state of the system is described by a set of state variables,
which include internal variables in addition to strain. The former account
phenomenologically for the modification of the internal structure of the mate-
rial and rule hardening, damage and other phenomena. In the present paper,
the kinematic variables describing the state of the system will be collected
in the vector η, which in general includes the macroscopic strain, and other
variables, as described in [Contrafatto and Cuomo 2002]. In the present work,
no specific constitutive model will be analyzed, so the variable η will be left
undefined.

(2) Each kinematic variable is decomposed into a reversible (elastic) and an irre-
versible part. In the paper, the linearized deformation theory is used so that
an additive decomposition into an elastic recoverable part and an inelastic
irrecoverable (plastic) strain is considered: η = ηe+ ηp.

(3) The state of the system is determined by the functionals of the free energy
and of the specific dissipation, e(ηe) and d(η̇p), the first a function of the
reversible part of the internal variables and the second a function of the rate
of their irreversible part only.

(4) By standard thermodynamic arguments, the internal driving forces, which in
the paper are indicated by τ and which in general include stress and other
thermodynamic forces dual to the internal variables, are obtained by differen-
tiating the free energy,

τ = ∂ηe e(ηe), (1)

where the symbol ∂ denotes subdifferentiation, in order to account for the
common case of nonsmooth energy functionals. The internal forces are dual
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to the kinematic variables in the sense of the virtual power

Pi = 〈τ, η̇〉, (2)

where the brackets denote the inner product in the appropriate vector space.

(5) Conjugated potentials are derivable through a Fenchel transformation. The
dual potentials are indicated by the index “c”:

e(ηe)+ ec(τ )= 〈τ, ηe〉, τ ∈ ∂ηe e(ηe), ηe ∈ ∂τ ec(τ ),

d(η̇p)+ dc(τ )= 〈τ, η̇p〉, τ ∈ ∂η̇p d(η̇p), η̇p ∈ ∂τdc(τ ).
(3)

Sometimes in the paper, following a consolidated tradition in mathematical
papers, instead of the index “c”, the conjugated function to f (x) : X→R will
be indicated by f ∗(x∗) : X∗→ R. In the previous expressions, X and X∗ are
dual vector spaces.

3. The dissipation potential

The main results of the paper are presented in this section. First the case of rate-
independent plasticity is examined, recalling classic results concerning the dissipa-
tion functional. Then they are generalized to the case of overstress models, in the
hypotheses stated in Section 1. Throughout the paper, it will be assumed that the
dissipation functional as well as the internal energy potential are convex functions.
Nonconvex energy potentials, which have been introduced for several phenom-
ena, are therefore excluded from the present treatment. The minimum properties
required for a dissipation functional for reproducing a time-independent plastic
behavior were stated in [Romano et al. 1993]; see also [Eve et al. 1990]. The key
feature for obtaining time-independent plasticity is that the dissipation function,
in addition to being subadditive, be positively homogeneous of degree 1. It has
been suggested that a characteristic relaxation time is introduced if the dissipation
function is homogeneous of degree 2 in its argument [Maugin 1990]. The aim of
this section is to analyze the requisites that give rise to a time-dependent dissipation.

The inviscid case. In order to examine the rate-independent case, the following
statements are needed. Their proofs can be found in [Romano et al. 1993]. They
follow from the results that a hodo proper convex function f (x) is the support
function of the set C◦, the polar of the closed convex set C = {x : f (x) ≤ 1},
and that, since for a hodo function f (0) = 0, the former set coincides with the
subdifferential of the function at 0.

Statement. If the dissipation function is sublinear (hodo and subadditive), then
the thermodynamic forces τ given by (1) are such that

τ ∈ ∂d(η̇p)⊂ K = ∂d(0) (4)



222 MASSIMO CUOMO

and
d(η̇p)= sup

τ∈k
〈τ, η̇p〉 = supp K .

= ψK ; (5)

consequently, the conjugate dissipation potential is (K is convex and closed)

dc(τ )= ind K . (6)

In the previous statement, supp and ind denote the support and the indicator
function of a convex set, respectively, and they are defined in Appendix B. In the
paper, the support function is also denoted by ψ . A consequence of the above
theorem is the following:

Corollary. For all elastic stress states, dc(τ )= 0.

Proof. From Fenchel’s equality, one has, assuming η̇p = 0,

〈τ, η̇p〉 = 0= d(0)+ dc(τ ),

where the thermodynamic force is conjugated to the strain rate, that is, τ ∈ ∂d(0).
The conclusion follows immediately recalling that d(0)= 0. �

It is useful to recall some results of convex analysis that apply to a convex hodo
function, as is the case examined in this section.

First the concept of gauge is recalled. A gauge γ (x |C) of a set C is the function

γ (x | C)= inf{µ≥ 0 : x ∈ µC}. (7)

It can also be thought of as the positively convex hodo function generated by
ind C(x) + 1 (Figure 1, left). A gauge function is any function k(x) such that
k(x) = γ (x | C) for some C . The set C for which k(x) is a gauge is exactly
C = {x : k(x)≤ 1}.

Taking the conjugate of gauge functions of convex sets establishes a polarity
correspondence between closed convex sets. A set C◦ is called the polar of C if

C◦ = {x∗ : supp C(x∗)≤ 1} = {x∗ : 〈x, x∗〉 ≤ 1 for all x ∈ C}. (8)

It is easy to see that, if C is closed, convex and containing the origin, then the
polar set C◦ is also closed, convex and contains the origin, and the gauge function
of C is the support function of C◦ and vice versa.

In order to extend the polarity correlation to more general convex functions, it
is convenient to define the polar of a generic gauge k(x) as

k◦(x∗)= inf{µ∗ ≥ 0 : x∗ ∈ µ∗C◦} = inf{µ∗ ≥ 0 : 〈x, x∗〉 ≤ µ∗k(x) for all x}

= sup
x 6=0

〈x, x∗〉
k(x)

. (9)
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ind K

γK ≡ supp C

τ
K ≡ C0

1

°

γC ≡ supp K

η̇p
C

1

Figure 1. Gauge functions of the polar sets C and C◦ and the
indicator function of the set K . Left: the support function of the
set C . Its level set at 1 defines the polar set C◦. Right: the support
function of the set K ≡C◦. Its level set at 1 defines the polar set C .

Then, denoting by C and C◦ two closed polar sets containing the origin, we
have the following polarity correspondences:

spaces C ⊂ X C◦ ⊂ X∗

gauge functions k(x) k◦(x∗)
gauges γ (x | C)= supp C◦(x) γ (x∗ | C◦)= supp C(x∗)

The connection to the plastic potential is readily established by the following:

Statement. The set C ={η̇p : d(η̇p)≤ 1}= {η̇p : 〈τ, η̇p〉 ≤ 1 for all τ ∈ K } is polar
to K = ∂d(0).

Proof. Let τ ∈ K = ∂d(0). Then 〈τ, η̇p〉 ≤ d(η̇p) for all η̇p. In particular for η̇p ∈C ,
d(η̇p)≤ 1, so τ ∈ C◦. �

The situation is represented in Figure 1 The gauge function of the set K is
the support function of the set C whose level set at 1 is the elastic domain, and
the gauge function of the set C is the support function of the set K , that is, the
dissipation function. The level set at 1 of the dissipation function is the set C .
Therefore, for all the plastic strain rates belonging to the boundary of the set C , the
rate of dissipation is the same. In the case of associated plasticity with a smooth
yield function g(τ )− σ0 ≤ 0, the plastic strain rate is given by λ∇g(τ ), and it is
easy to see that the plastic strain rates belonging to C are η̇p ≤ ∇g/σ0.

The viscoplastic case. The statements above describe a model of inviscid plasticity
with a yield function for the generalized stresses. In this section, we shall derive
a form of the dissipation function that generalizes the one given in the previous
section for inviscid plasticity. The derivation, whose technical details need some
care, will be built in several steps. First it will be assumed that it can be assumed for
the dissipation function a positively homogeneous function of degree larger than 1.



224 MASSIMO CUOMO

It will be shown that this kind of function is compatible with the mechanical model
of a rate-dependent material, but it doesn’t admit the existence of elastic states.
A convenient form for this function will also be given. Then it will be shown
that taking the dissipation function as the sum of a hodo function plus a function
homogeneous of degree n > 1 leads to describing the mechanical dissipation of a
viscoplastic material with an elastic nucleus. Finally a general form for this class
of dissipation functions will be proposed.

As stated above, let’s assume that the dissipation function is convex and posi-
tively homogeneous of degree n > 1 (hodn). Preliminarily, we prove the following:

Statement. For hodn (closed proper convex) dissipation functions dn , with n > 1,
the set ∂dn(0) contains only the zero element.

Proof. By definition,

τ ∈ ∂dn(0) ⇐⇒ 〈τ, η̇p〉 ≤ dn(η̇p) for all η̇p. (10)

Taking η̇p = µη̇p0, µ≥ 0, one has from (10)

µ〈τ, η̇p0〉 ≤ µ
ndn(η̇p0) for all µ (11)

and taking the limit as µ→ 0, it follows that τ = 0. �

The opposite implication is true only for a strictly convex dissipation function:

Statement. If the dissipation potential, in addition to hodn, is strictly convex, then

0 ∈ ∂dn(η̇p) =⇒ η̇p = 0.

Proof. If 0 ∈ ∂dn(η̇p), then 0≤ dn(η̇p0)−d(η̇p) for all η̇p0; that means that dn(η̇p)

is a minimum for dn , and since d(η̇p) ≥ 0 for all η̇p, the statement follows from
the strict convexity of dn . �

A nonnegative convex hodn function is in general not a gauge, so the results
of the previous section related to the inviscid case do not apply. Therefore, more
general convex functions conjugate to each other have to be introduced. A real-
valued function f is said to be gauge-like if f (0)= 0 and the various level sets

{x : f (x)≤ α}, f (0) < α <+∞,

are all proportional, that is, are positive scalar multiples of a single set.

Lemma. A function fn , positively homogeneous of degree n, n > 1, is a gauge-like
function.

Proof. Since fn is positively homogeneous of degree n, (a) fn(0) = 0 = inf fn;
introducing the notations Cn = {x : fn(x)≤ 1} and Cnp = {x : fn(x)≤ p},

Cnp = {x : fn(x)≤ p} = {x : p−1 fn(x)≤ 1} = {x : fn(p−1/nx)≤ 1}, (12)
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that is, (b) Cnp = p1/nCn . Properties (a) and (b) ensure that fn is a gauge-like
function. �

A theorem of convex analysis [Rockafellar 1970, §13] states that a closed convex
hodn function f can always be expressed in the form

f (x)=
1
n

k(x)n, (13)

where k is the gauge of the closed set C = {x : k(x)≤ 1} containing the origin, also
known as the Minkowski function (as we have seen it is positively homogeneous,
convex and such that k(0)= 0).

Before proceeding further, it is convenient to introduce some definitions that
allow us to use dimensionless quantities. Let d0 = τ0ν, with τ0 a characteristic
stress (which may be thought of as an equivalent limit stress), and ν = η̇p0 be
the inverse of a characteristic time (with η̇p0 an equivalent strain rate). Setting
τ̂ = τ/τ0, ˆ̇ηp = η̇p/η̇p0 and d̂ = d/d0, it follows that C = { ˆ̇ηp : d̂( ˆ̇ηp) ≤ 1} =
{η̇p : d(η̇p) ≤ d0}. With these notations, the gauge function of C , kC(η̇p), which
as observed on page 223 is equal to the support function of the polar set to C ,
C◦ = {τ̂ : 〈τ̂ , ˆ̇ηp〉 ≤ 1 for all ˆ̇ηp ∈ C} = {τ : 〈τ, η̇p〉 ≤ d0 for all η̇p ∈ C}, which is
equal to the elastic domain K (see the statement on page 223), becomes

kC(η̇p)= supp C◦ = sup
τ̂∈C◦
〈τ̂ , ˆ̇ηp〉 = sup

τ∈C◦

〈τ, η̇p〉

d0
=

supp K
d0

.
=
ψK (η̇p)

d0
, (14)

where the symbol ψK denoting the support function of the set K has been in-
troduced for brevity. Similarly, the polar gauge k◦(τ ) to C◦ will be denoted by
jK (τ )= supp C , which with the notations introduced is equal to

jK (τ )= sup
η̇p∈C

1
d0
〈τ, η̇p〉. (15)

Based on the above lemma, the characterization of the dissipation and of the
complementary dissipation functionals is given in the following statement.

Statement. A positively homogeneous of degree n, n > 1, dissipation function (that
is, gauge-like), is given by the form

dn(η̇p)=
1
n
[ψK (η̇p)]

n

dn−1
0

, (16)

and the conjugated complementary dissipation function is

dc
n(τ )=

n− 1
n

d0[ jK (τ )]
n/(n−1). (17)
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Proof. The form (16) follows directly from (13) and (14), the latter giving the
gauge function of the set C . In order to prove (17), preliminarily the conjugated
function to (1/n)ψn

K is evaluated. By definition,(1
n
ψn

K

)c
= sup

η̇p

{
〈τ, η̇p〉−

1
n
[ψk(η̇p)]

n
}

= sup
η̇p

{
〈τ, η̇p〉−

1
n

[
inf
µ≥0

µ : d(η̇p)≤ µd0

]n}
= sup

η̇p

{
〈τ, η̇p〉−

1
n

[
inf
µ≥0

µ : η̇p ∈ µC
]n}
= sup
µ≥0

sup
η̇p∈µC

{
〈τ, η̇p〉−

1
n
µn
}

= sup
µ≥0

{
µ
(

sup
η̇p∈C
〈τ, η̇p〉

)
−

1
n
µn
}
= sup
µ≥0

{
µjK (τ )−

1
n
µn
}

=
n− 1

n
jn/(n−1)
K . (18)

Next, observing that (λ f (x))c = λ f c(x∗/λ) and the fact that ψK is a positively
homogeneous function, we finally obtain

dc
n =

(
1
n
ψn

K

dn−1
0

)c

=
1

dn−1
0

n− 1
n
[ jK (τdn−1

0 )n/(n−1)
]

=
n− 1

n
d0[ jK (τ )]

n/(n−1). �

So if the dissipation potential dn is positively homogeneous of degree n, its
conjugate is positively homogeneous of degree m = n/(n−1), with 1/n+1/m = 1.

Summarizing, it has been found that, if the dissipation function is a positively
hodn, the only stress state conjugated to zero dissipation is zero, that is, the elastic
domain reduces to the zero element alone. For any other stress state, the rate of
plastic deformation is given by

η̇p ∈ ∂τ
n− 1

n
[k◦(τ )]n/(n−1)

= [k◦(τ )]1/(n−1)∂τ k◦(τ ), (19)

that is, the rate of plastic deformation is proportional to a gauge; therefore, an
overstress effect is found. The larger n is, the smaller the plastic rate is. From
Fenchel’s identity, it can also be obtained that, if τ and η̇p are a conjugated pair,
the strain rate associated to an internal force pτ is p1/(n−1)η̇p. Only the case n = 2
yields proportional strain rates; in this case, both the dissipation function and the
conjugated dissipation dc

n are positively homogeneous of degree 2.
In order to obtain a viscoplastic model with a threshold value for the stress and

that reduces to inviscid plasticity as the relaxation time vanishes, the dissipation
functional may then be taken as a sum of closed convex proper hodn functions for
increasing values of n ≥ 1. In this way, the dissipation function and, according
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to (17), also the complementary dissipation function are expressed as series expan-
sions. In consideration of the finding that, if dn is positively homogeneous of degree
n, dc

n is positively homogeneous of degree n/(n − 1), two series expansions are
considered for the dissipation functional, which can both be expressed in the form

d(η̇p)= ψK (η̇p)+

N∑
n=2

1
n

1
(τ0ν)q−1 [ψK (η̇p)]

q (20)

with

q = n or q =
n

n− 1
. (21)

In the following development, the choice will be left unspecified, and only in the fi-
nal example will the two cases be differentiated. In the expression of the dissipation
appears the sum of a hodo sublinear functional, and of other hodn terms, with n> 1.

Remark. For the dissipation function defined by (20), ∂d(0)= ∂ψK (0)= K .

Proof. The observation follows from the fact that the functional (20) is the sum of
proper convex functions, the relative interior of the domain of which have common
points. In these hypotheses, one has ∂d(0) = ∂ψK (0) ∪ ∂ψ2

K (0) ∪ c ∪ · · · , but
∂ψn

K (0)= {0}, n > 1. �

It is now possible to proceed to evaluate the conjugate dissipation function.
Since the relative interiors of the domains of the addends of the dissipation function
have obviously common points, the subgradient of the function (20) is given by the
infimal convolution of the addends. Recalling that ψc

K = ind K , using (17),

dc(τ )= inf
{

ind K (τ1)+

N∑
n=2

τ0ν
q − 1

q
[ jK (τn)]

q/(q−1)
:

N∑
n=1

τn = τ

}
. (22)

Some particular cases are examined. If N = 2 and q = n, (22) becomes

dc(τ )= inf{ind K (τ1)+
1
2τ0ν jK (τ2)

2
: τ1+τ2= τ }=

1
2τ0ν inf{ jK (τ−τ1)

2
: τ1 ∈ K }.

(23)
The infimum in (23) is the square of the minimum distance between the vector

of the internal forces and the admissible domain in the norm induced by jK .
In the case when N = p and q = n and all terms but the first and the p-th are

null, one has

dc(τ )= inf
{

ind K (τ1)+ τ0ν
p− 1

p
jK (τ2)

p/(p−1)
: τ1+ τ2 = τ

}
= τ0ν

p− 1
p

inf{ jK (τ − τ1)
p/(p−1)

: τ1 ∈ K }. (24)
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In the general case, (22) can be rewritten as

dc(τ )= inf
{ N∑

n=2

τ0ν
q − 1

q
jK (τn)

q/(q−1)
:

N∑
n=2

τn = τ = τ − τ1 τ1 ∈ K
}
, (25)

where τ is the overstress.

The flow rule. The next step is to obtain an explicit form for the flow rule, which is
done through the evaluation of the subgradient of the complementary dissipation
function, which gives the set of the irreversible strain rates compatible with the
constitutive equation.

In order to be specific, we examine the particular case that the function dc is
given by (23) or (24). Since the function inside the infimum operation is positive,
it is possible to interchange the power with the infimum operation so that, applying
the chain rule of subdifferentiation,

η̇p ∈ ∂dc(τ )= τ0ν inf{ jK (τ − τ1)
1/(p−1)

: τ1 ∈ K } ∂ξ(τ ), (26)

having indicated with ξ the infimum of the gauge function

ξ(τ )= inf{ jK (τ − τ1) : τ1 ∈ K }. (27)

For evaluating its subdifferential, it is first observed that, if τ ∈ K , ξ(τ ) = 0;
hence, ∂ξ(τ )= 0. If τ /∈ K , then one has jk(τ )= µτ ≥ 1. Set τ10 = µ

−1
τ τ so that

jK (τ10)= 1, τ10 ∈ ∂K , the boundary of K . The infimum operation in (27) can then
be rewritten as

inf{ jK (µτ τ10− τ10− τ 1) : τ10+ τ 1 ∈ K }, (28)

where the vector τ 1 must be such that

〈τ 1, η̇p〉 ≤ 0 for all η̇p ∈ NK (µ
−1
τ τ)= Nµτ K (τ ),

NK being the tangent cone to K at the point τ10.
From the convexity of K , it follows that the infimum in (28) is attained for τ 1= 0

so that inf{ jK (τ − τ1 : τ1 ∈ K } = jK (µτ τ10− τ10)= µτ − 1.

Statement. The subdifferential of the function ξ(τ ) is given by

∂ξ(τ )=
1
τ0
γ, γ ∈ NK (µ

−1
τ τ), (29)

where NK (µ
−1
τ τ) is the normal cone to K at the point τ/µτ .

Proof. The normal cone to K at µ−1
τ τ is

NK (µ
−1
τ τ)=

{
η̇p :

〈
η̇p, τ −

τ

µτ

〉
≤ 0 for all τ ∈ K

}
. (30)
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By definition, the subdifferential of ξ is

∂ξ(τ )=
{ 1
τ0
ˆ̇ηp : 〈 ˆ̇ηp, τ − τ̂ 〉 ≤ ξ(τ )− ξ(τ )= µτ −µτ

}
. (31)

Dividing by µτ , one has

µ−1
τ 〈
ˆ̇ηp, τ − τ 〉 ≤ µτ/µτ − 1

and the last difference is smaller than 0 if τ/µτ ∈ K . �

Then from (26), the rate of plastic deformation can be represented as

η̇p = ν(µτ − 1)1/(p−1)γ, γ ∈ NK (µ
−1
τ τ). (32)

In this way, the flow rule has been characterized.

Corollary. The plastic strain rates in the case when the function dc is given by (23)
or (24) are elements of the normal cone to K at the point τ/µτ .

A similar conclusion holds for the more general expressions of the dissipation
potential as a power expansion, similar to what has been suggested by Goddard
[2014]. The general case will be examined in a forthcoming paper.

Remark. According to (26) and (31), the viscoplastic strain rate is normal to the
static yield surface at the closest point projection of the current stress state, where
the definition of the closest point projection is in the sense of the Minkowski norm.
This model, thus, does not include the generalization of the Duvaut–Lions model
proposed by Simo [Simo and Govindjee 1991; Simo et al. 1988], which uses as
the norm the complementary elastic energy ec(τ − τ1), τ1 ∈ K .

Remark. The model obtained is associative, in the sense of the above corollary.
Furthermore, it can be immediately applied to the case of hardening plasticity
coupled with damage, once a generalized yield domain is defined, as proposed
in [Contrafatto and Cuomo 2002]. The choice of the dissipation potential is com-
pletely independent of that of the internal energy. Notice that in the present model
the same viscosity constant applies to the plastic strain rate and to the rate of the
hardening variable. In order to model different time scales for the two phenomena,
it would be necessary to introduce two different dissipation functions, both of the
type (20): one for the plastic strain rate and the other for the rate of the plastic
hardening. Investigating this case is however beyond the limits of this work.

Remark. In the case when the elastic domain K has corner points, they are re-
flected in the flow rule as indicated by the inclusion of (31). The case of inviscid
plasticity is naturally recovered when the relaxation time vanishes.
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In order to obtain an explicit expression for the complementary dissipation po-
tential and for the flow rule to be more convenient for algorithmic developments,
we introduce the classical yield function. In the continuum mechanics practice, the
elastic domain K , rather than being defined as the polar set to C = { ˆ̇ηp : d̂( ˆ̇ηp)≤ 1},
is directly introduced as the level set of a function g(τ ), which possesses the prop-
erties

(1) inf g = g(0) and

(2) the level sets {τ : g(τ )≤ c}, g(0)≤ c ≤+∞, are all proportional.

Properties (1) and (2), using the result of the lemma on page 224, ensure that the
yield function is a gauge-like function, so it has to be of the form h(k(τ )), with k(τ )
the gauge function. In particular it can be obtained as the composition of the gauge
function of K and of a nondecreasing, nonnegative, convex, lower semicontinuous
function h [Rockafellar 1970, Theorem 15.3]. However, it is convenient to take
the function g to be positively homogeneous, that is,

K = {τ : jK (τ )≤ 1} = {τ : g(τ )≤ τ0} =⇒ g(τ )= τ0 jK (τ ), (33)

where τ0 is the level of g corresponding to the boundary of the set K . Then

ξ(τ )= inf{g(τ − τ1)/τ0 : τ1 ∈ K } = (g(τ )/τ0− 1)+ (34)

with (x)+ = (x + |x |)/2. The subgradient ∂ξ(τ ) can then be evaluated as ∂ξ(τ )=
∂g(τ )/τ0 so that, if the function g is differentiable at τ , then the subgradient is com-
posed by a unique vector, representing the outward normal to µτ K in τ , coinciding
with the normal to K in τ/µτ . More generally, if g(τ )= supi gi (τ ), with each gi

supposed differentiable, then if τ/µτ is a corner point of K , the subgradient is the
convex combination of the normals ∂gi to µτ K in τ .

The flow rule, in the case when the dissipation function is given by (24), is then
expressed as

η̇p = ∂dc
n(τ )= ν

[
g(τ )− τ0

τ0

]1/(p−1)

+

∂g(τ ). (35)

Remark. Equation (35) in the case p=2 coincides with the formulation of Perzyna,
the contents of the brackets being the overstress function.

Remark. From (35) it is observed that, using for the dissipation a power function
greater than 2 of the support function of K , the complementary functional is a
power function less than 2 of the Minkowski distance from the admissible domain.
This can be interpreted as a stress dependency for the relaxation time (viscosity
parameter).
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Figure 2. Dissipation function (36) for subsequent truncations of
the series expansion.

4. Uniaxial exemplification

The main results of the previous section are now summarized and graphically il-
lustrated in reference to the uniaxial case.

A slightly different expression for the dissipation function with respect to (20)
is considered:

d(η̇p)= ψK (η̇p)+

N∑
n=2

1
n!

1
(τ0ν)n−1 [ψK (η̇p)]

n. (36)

The motivation for introducing the factorial of n lies in the fact that the form (36)
is the series expansion of exp[ψK ] − 1.

q = n/(n− 1)
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Figure 3. Dissipation function (20), q = n/(n−1), for subsequent
truncations of the series expansion.
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Figure 4. Comparison of the dissipation functions, (36) (solid
lines) and (20) for q = n/(n− 1) (dashed lines).

Figure 2 shows the dissipation in an uniaxial case with τ0= 1. It can be observed
that, adding terms to the series for larger N , the dissipation function tends to con-
verge to a limit value. The case given by (20) with q = n/(n− 1) is represented
in Figure 3. In this case, adding terms to the series, the dissipation increases and
tends toward a linear form, that is, the viscosity parameter tends to diverge, and a
sort of inviscid plasticity is recovered for a wider elastic domain.

A comparison of the two forms is shown in Figure 4. The “exponential expan-
sion” appears to yield lower values for the dissipation for the same N .
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Figure 5. Complementary dissipation function (22) for the case
q = n/(n − 1) for increasing number of functions in the series
expansion.
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The complementary dissipation for the case (36) is given by

dc(τ )= inf
{

ind K (τ1)+

N∑
n=2

τ0ν
n− 1

n
[(n−1)!]n/(n−1)

[ jK (τn)]
n/(n−1)

:

N∑
n=1

τn= τ

}
.

(37)
It is represented in the uniaxial case in Figure 5, where also the case of inviscid
plasticity has been represented. Larger values of N appear to act as mollifying
parameters for the indicator function of the elastic domain.

5. Conclusions

The main results of the paper can be summarized as follows.

(1) We have given a formulation for the dissipation functional of a time-dependent
dissipating material within the framework of the standard generalized material
model; it has been shown that for the model to include an elastic domain the
dissipation functional must be at least the sum of a positively homogeneous
functional plus other hodn terms, with n > 1. A form of the dissipation po-
tential has been proposed, based on a sum of powers of the support function
of the elastic domain, which degenerates into the dissipation function of time-
independent models when a viscosity parameter tends to 0. This form is not
unique, but it seems to be the simplest one compatible with the standard gener-
alized material model that guarantees fulfillment of the dissipation inequality
and that preserves all the essential properties of time-independent plasticity.

(2) The complementary dissipation functional, useful for the numerical imple-
mentation of the model, has been derived in a general form as the infimal con-
volution of gauge functions of the elastic domain. For the case that only two
terms appear in the dissipation functional, and particularly for the commonly
employed case that the second one is homogeneous of degree 2, the infimal
convolution has been solved explicitly. Similarly, the relevant expressions for
the flow rule have been derived.

(3) The general case of the dissipation function obtained as a power expansion
of the support function of the elastic domain will be treated in a future paper.
However, from a uniaxial exemplification, it seems that the series eventually
converges to a limit form of the function.

Appendix A: Homogeneous functions

A function f (x) is called positively homogeneous (of degree 1) (hodo) if

f (αx)= α f (x), α ≥ 0. (38)
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A function is called positively homogeneous of degree n > 1 (hodn) if

f (αx)= αn f (x), α ≥ 0. (39)

In the text, the term “positively” will often be omitted for brevity.

Appendix B: Review of some results of convex analysis

Let {x ∈ X} be a linear vector space. A function f (x) : X→ R is called convex if

f ((1− λ)x1+ λx2)≤ (1− λ) f (x1)+ λ f (x2), λ ∈ (0, 1). (40)

If the inequality in (40) is fulfilled strictly, the function is said to be strictly convex.
The domain of f is

dom f = {x ∈ X : f (x) <+∞}. (41)

The function f is said to be proper if dom f 6=∅ and f (x) >−∞ for all x ∈ X .
Let X be a topological real reflexive Banach space. The topological dual space

to X , X∗, is the space of the linear functionals defined on X . The value of a
functional x∗ ∈ X∗ at x is denoted by 〈x∗, x〉. If X is a Hilbert space, then 〈x∗, x〉
is a scalar product and X∗∗ = X .

Let f1, f2, . . . , fn be proper functions on a linear space X . The function

f (x) := inf{ f1(x1)+· · ·+ fn(xn) : x1+· · ·+ xn = x, xi ∈ X, i = 1, . . . , n} (42)

is called the infimal convolution, and it is convex.
The support function of a convex set K ⊂ X is the element of X∗

supp K = sup
y∈K
{〈y, x〉}. (43)

The indicator function of a set A is

ind A =
{

0 if x ∈ A,
+∞ if x /∈ A.

(44)

Given a set C , a gauge of the set C is defined as

γC(x)= γ (x | C)= inf{µ : x ∈ µC, µ≥ 0}, (45)

also called the Minkowski gauge functional.
A functional f : X→ R is said to be sublinear if

(i) f (αx)= α f (x) when α ≥ 0 (positive homogeneity) and

(ii) f (x + y)≤ f (x)+ f (y) (subadditivity).

A sublinear functional is a generalization of a norm on a linear space.
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A function f (x) is said to be lower semicontinuous at x0 if there exists a neigh-
borhood U0(x) such that

there exists ε > 0 such that f (x)− f (x0) > ε for all x ∈U0(x). (46)

Subdifferential and conjugacy. Let f : X→ R be a proper convex function. The
subdifferential of f at x is the set

∂ f (x)= {x∗ ∈ X∗ : f (y)− f (x)≥ 〈x∗, y− x〉 for all y ∈ X}. (47)

The function f ∗(x∗) : X∗→ R is called conjugate to f (x) : X→ R if

f ∗(x∗)= sup
x∈X
{〈x, x∗〉− f (x)}. (48)

From the definition, it follows that

f (x)+ f ∗(x∗)≥ 〈x, x∗〉. (49)

The equality sign in (49) holds only if x∗ ∈ ∂ f (x).
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