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ERROR ESTIMATE FOR A HOMOGENIZATION PROBLEM
INVOLVING THE LAPLACE–BELTRAMI OPERATOR

MICOL AMAR AND ROBERTO GIANNI

In this paper we prove an error estimate for a model of heat conduction in com-
posite materials having a microscopic structure arranged in a periodic array and
thermally active membranes separating the heat-conductive phases.

1. Introduction

Heat and electrical conduction in composite materials has been widely investigated
in recent years in the context of homogenization theory (see among others, e.g.,
[Amar et al. 2017a; 2017b; 2003; 2004; 2006; 2010; Auriault and Ene 1994;
Bunoiu and Timofte 2016; Donato and Monsurrò 2001; Hummel 2000; Jose 2009;
Timofte 2013]). In this paper we will focus on the study of models of heat conduc-
tion in composite materials used for encapsulation of electronic devices. This topic
is attracting increasing interest among researchers, both from the point of view of
applications and also in a more mathematical setting. In our previous paper [Amar
and Gianni 2018b] (to which we refer for a more detailed physical description of
the problem) a composite medium was taken into account, which was made of a
hosting material with inclusions separated from their surroundings by a thermally
active membrane.

Such a situation is consistent with many physical applications in which a ma-
terial must be modified in a way such that its thermal conductivity is enhanced
while preserving other material properties, e.g., ductility. This is, as stated above,
the case of polymer encapsulation of electronic devices as well as, just to give an
example, engine coolants. Specifically, in the first case, ductility of the material
is required to fill the voids and the interstices among the electrical components by
applying a moderate pressure. Polymers and rubbers have this property, but they do
not display a satisfactory heat dissipation which, on the other hand, can be attained

Communicated by Francesco dell’Isola.
We would like to thank R. Lipton and P. Bisegna for some helpful discussions. Amar is a member of
the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of
the Istituto Nazionale di Alta Matematica (INdAM).
MSC2010: 35B27, 35Q79.
Keywords: homogenization, asymptotic expansion, Laplace–Beltrami operator, heat conduction.

41

http://msp.org/memocs
http://dx.doi.org/10.2140/memocs.2018.6-1
http://dx.doi.org/10.2140/memocs.2018.6.41
http://memocs.univaq.it/


42 MICOL AMAR AND ROBERTO GIANNI

by adding highly conductive nanoparticles. In some situations, these nanoparticles
are enclosed in a membrane separating them from the surrounding medium. It is
therefore only natural to investigate the influence of these membranes on the overall
conductivity of the composite medium under different assumptions on the thermal
behavior of these interfaces. The case of perfect or imperfect thermal contact,
though interesting from the point of view of applications, is mathematically well
known; for this reason we focused on the case in which the membrane is thermally
active, e.g., a tangential heat diffusion takes place. In [Amar and Gianni 2018b]
a macroscopic model was deduced, via the unfolding homogenization technique,
assuming the periodicity of the microscopic structure, whose characteristic length
is described by a small parameter ε. We make use of a sensible mathematical
description of the behavior of the interfaces which are modeled by means of the
Laplace–Beltrami operator (see, e.g., [Allaire et al. 1996; Andreucci et al. 2003]).

In this paper we complete the research started in [Amar and Gianni 2018b]
providing an “error estimate” which enables us to evaluate the rate of convergence,
with respect to ε→ 0, of the solution uε of the microscopic (physical) problem to
the solution u0 of the macroscopic one. More precisely, we prove

‖uε − (u0+ εu1)‖L2(0,T ;H1(Ω)) ≤ γ
√
ε,

‖uε − u0‖L2(ΩT ) ≤ γ
√
ε,

for a proper constant γ > 0 independent of ε, where u1 is the so-called first corrector
and is defined in (3-13).

To obtain this estimate we follow the classical approach given by the asymptotic
expansions due to Bensoussan, Lions, and Papanicolaou [Bensoussan et al. 1978]
which, under extra-regularity assumptions, gives an H 1-estimate for this error. The
knowledge of the rate of convergence is a crucial tool for numerical applications.
Moreover, we prove the symmetry and the strict positivity of the matrix describ-
ing the diffusivity of the macroscopic (homogenized) material. This last result is
crucial to guarantee the well-posedness of the parabolic limit equation.

Though the results proved in this paper are along the same lines as other ones
obtained in the framework of the homogenization theory, they are nevertheless of
some mathematical interest due to the presence of the Laplace–Beltrami operator,
which makes the computations a bit tricky.

The paper is organized as follows. In Section 2 we recall the definitions and
some properties of the tangential operators (gradient, divergence, and Laplace–
Beltrami operator), state our geometrical setting, and present our model. In Section 3,
after having proved some energy inequalities, we follow the formal approach by
Bensoussan, Lions, and Papanicolaou in order to introduce the cell functions and to
guess the limit equation, proving the ellipticity of its principal part (see Theorem 3.1).
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Finally, in Section 4 taking advantage of the asymptotic expansions obtained in
Section 3, we provide the error estimate (see Theorem 4.1).

2. Preliminaries

2.1. Tangential derivatives. Let φ be a C2-function, 8 a C2-vector function, and S
a smooth surface with normal unit vector n. We recall that the tangential gradient
of φ is given by

∇
Bφ =∇φ− (n · ∇φ)n (2-1)

and the tangential divergence of 8 is given by

divB 8= div 8− (n · ∇8i )ni − (div n)(n ·8)

= divB(8− (n ·8)n)= div(8− (n ·8)n), (2-2)

where, taking into account the smoothness of S, the normal vector n can be nat-
urally defined in a small neighborhood of S as ∇d/|∇d|, where d is the signed
distance from S. Moreover, we define the Laplace–Beltrami operator as

1Bφ = divB(∇Bφ), (2-3)

so that by (2-1) and (2-2) we get that the Laplace–Beltrami operator can be written as

1Bφ =1φ− nt
∇

2φn− (n · ∇φ) div n

= (δi j − ni n j )∂
2
i jφ− n j∂ jφ∂i ni = (I − n⊗ n)i j∂

2
i jφ− (n · ∇φ) div n, (2-4)

where ∇2φ stands for the Hessian matrix of φ. Finally, we recall that on a regular
surface S with no boundary (i.e., when ∂S =∅) we have∫

S
divB 8 dσ = 0. (2-5)

2.2. Geometrical setting. The typical periodic geometrical setting is displayed in
Figure 1. Here we give, for the sake of clarity, its detailed formal definition.

Let us introduce a periodic open subset E of RN , so that E + z = E for all
z ∈ ZN . We employ the notation Y = (0, 1)N , and Eint = E ∩Y , Eout = Y \ E , and
Γ = ∂E ∩ Y . We assume that Eout is connected and Γ ∩ ∂Y =∅.

Let Ω be an open connected bounded subset of RN ; for all ε > 0 define Ωε
int =

Ω ∩εE and Ωε
out =Ω \εE , so that Ω =Ωε

int∪Ω
ε
out∪Γ

ε, where Ωε
int and Ωε

out are
two disjoint open subsets of Ω , and Γ ε

= ∂Ωε
int ∩Ω = ∂Ω

ε
out ∩Ω . The regions

Ωε
out and Ωε

int correspond to the outer phase and the inclusions, respectively, while
Γ ε is the interface. We also assume that Ω and E have regular boundary, and we
stipulate that dist(Γ ε, ∂Ω)≥ γ0ε, for a suitable γ0 > 0. To this purpose, for each ε,
we are ready to remove the inclusions in all the cells which are not completely
contained in Ω (see Figure 1). This assumption is in accordance with our previous
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Figure 1. Left: the periodic cell Y . Eint is the shaded region, and
Eout is the white region. Right: the region Ω .

papers [Amar et al. 2004; 2006; 2009a; 2009b; 2010; 2013], and maybe it can be
dropped as in [Allaire and Murat 1993; Cioranescu et al. 2012]; nevertheless, we
will not pursue this line of investigation in this paper.

Moreover, let ν denote the normal unit vector to Γ pointing into Eout, extended
by periodicity to the whole of RN , so that νε(x)= ν(x/ε) denotes the normal unit
vector to Γ ε pointing into Ωε

out.
Finally, given T > 0, we denote ΩT = Ω × (0, T ). More generally, for any

spatial domain G, we denote GT = G× (0, T ).

2.3. Position of the problem. Let µε, λε :Ω→ R be defined as

λε = λint in Ωε
int, λε = λout in Ωε

out,

µε = µint in Ωε
int, µε= µout in Ωε

out.

For every ε > 0, we consider the problem for uε(x, t) given by

µε
∂uε
∂t
− div(λε∇uε)= 0 in (Ωε

int ∪Ω
ε
out)× (0, T ), (2-6)

[uε] = 0 on Γ ε
T , (2-7)

εα
∂uε
∂t
− εβ1Buε = [λε∇uε · νε] on Γ ε

T , (2-8)

uε(x, t)= 0 on ∂Ω × (0, T ), (2-9)

uε(x, 0)= u0(x) in Ω, (2-10)

where we denote
[uε] = uout

ε − uint
ε , (2-11)

and the same notation is employed also for other quantities. We assume that all the
constants µint, µout, λint, λout, α, β involved in (2-6) and (2-8) are strictly positive.

Since problem (2-6)–(2-10) is not standard, in order to define a proper notion
of weak solution, we will need to introduce some suitable function spaces. To
this purpose and for later use, we will denote by H 1

B(Γ
ε) the space of Lebesgue-

measurable functions u : Γ ε
→ R such that u ∈ L2(Γ ε) and ∇Bu ∈ L2(Γ ε). Let
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us also set
X ε

0 (Ω) := H 1
0 (Ω)∩ H 1

B(Γ
ε). (2-12)

Definition 2.1. We say that uε ∈ L2(0, T ;X ε
0 (Ω)) is a weak solution of problem

(2-6)–(2-10) if

−

∫ T

0

∫
Ω

µεuε
∂φ

∂τ
dx dτ +

∫ T

0

∫
Ω

λε∇uε · ∇φ dx dτ

− εα

∫ T

0

∫
Γ ε

uε
∂φ

∂τ
dσ dτ + εβ

∫ T

0

∫
Γ ε
∇

Buε · ∇Bφ dσ dτ

=

∫
Ω

µεu0φ(x, 0) dx + εα
∫
Γ ε

u0φ(x, 0) dσ, (2-13)

for every test function φ ∈ C∞(ΩT ) such that φ has compact support in Ω for every
t ∈ (0, T ) and φ( · , T )= 0 in Ω .

If uε is smooth, by (2-4) it follows that (2-8) can be written in the form

εα
∂uε
∂t
− εβ(1uε− νt

ε∇
2uενε− (νε · ∇uε) div νε)= [λ∇uε · νε] on Γ ε, (2-14)

where, as in (2-4), ∇2uε stands for the Hessian matrix of uε. By [Amar and Gi-
anni 2018a, Theorem 4.2], for every ε > 0, problem (2-6)–(2-10) admits a unique
solution uε ∈ L2(0, T ;X ε

0 (Ω))∩ C0([0, T ]; L2(Ω)∩ L2(Γ ε)), if u0 ∈ H 1
0 (Ω).

Finally, it will be useful in the sequel to also define µ, λ : Y → R as

λ= λint in Eint, λ= λout in Eout,

µ= µint in Eint, µ= µout in Eout.

3. Homogenization of the microscopic problem

In the following, we will assume that the initial data satisfies

u0 ∈ H 1
0 (Ω)∩ H 2(Ω). (3-1)

By the trace inequality [Amar and Gianni 2018b, Proposition 1; Amar et al.
2004, proof of Lemma 7.1] we get that u0 satisfies

ε

∫
Γ ε
|u0|

2 dσ ≤ γ, ε

∫
Γ ε
|∇

Bu0|
2 dσ ≤ γ, (3-2)

where γ > 0 is independent of ε. Notice that, for our purposes, it should be enough
to assume that u0 ∈ H 1

0 (Ω) and satisfies (3-2), but we prefer to assume (3-1) since
it is reasonable to choose u0 not depending on ε.

We are interested in understanding the limiting behavior of the heat potential uε
when ε→ 0; this leads us to look at the homogenization limit of problem (2-6)–
(2-10).
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To this purpose, we first obtain some energy estimates for the heat potential uε.
Multiplying (2-6) by uε and integrating, formally, by parts, we obtain

1
2

∫ t

0

∫
Ω

µε
∂u2

ε

∂τ
dx dτ +

∫ t

0

∫
Ω

λε|∇uε|2 dx dτ

+
εα

2

∫ t

0

∫
Γ ε

∂u2
ε

∂τ
dσ dτ + εβ

∫ t

0

∫
Γ ε
|∇

Buε|2(x) dσ dτ = 0. (3-3)

Then, evaluating the time integral and taking into account the initial condition
(2-10), we obtain, for all 0< t < T ,

1
2

∫
Ω

µεu2
ε(t) dx+

∫ t

0

∫
Ω

λε|∇uε|2 dx dτ+
εα

2

∫
Γ ε

u2
ε(t) dσ+εβ

∫ t

0

∫
Γ ε
|∇

Buε|2 dσ dτ

=
1
2

∫
Ω

µεu2
0 dx +

εα

2

∫
Γ ε

u2
0 dσ. (3-4)

By (3-2) the right-hand side of (3-4) is stable as ε→ 0; hence,

sup
t∈(0,T )

∫
Ω

u2
ε(t) dx +

∫ T

0

∫
Ω

|∇uε|2 dx dτ

+ sup
t∈(0,T )

ε

∫
Γ ε

u2
ε(t) dσ + ε

∫ T

0

∫
Γ ε
|∇

Buε|2 dσ dτ ≤ γ, (3-5)

where γ is a constant independent of ε.
Notice that inequality (3-5) implies that there exists a function u belonging to

L2(0,T ;H 1
0 (Ω)) such that, up to a subsequence, uε⇀u weakly in L2(0,T ;H 1

0 (Ω)).
It will be our purpose to characterize the limit function u.

3.1. The two-scale expansion. We summarize here, to establish the notation, some
well known asymptotic expansions needed in the two-scale method (see, e.g., [Ben-
soussan et al. 1978; Sánchez-Palencia 1980]), when applied to stationary or evolu-
tive problems involving second-order partial differential equations. Introduce the
microscopic variables y ∈ Y and y = x/ε, and assume

uε = uε(x, y, t)= u0(x, y, t)+ εu1(x, y, t)+ ε2u2(x, y, t)+ · · · . (3-6)

Note that u0, u1, u2 are periodic in y, and u1, u2 are assumed to have zero integral
average over Y . Recalling that

div=
1
ε

divy + divx , ∇ =
1
ε
∇y +∇x , (3-7)

we compute

∇uε =
1
ε
∇yu0+ (∇x u0+∇yu1)+ ε(∇yu2+∇x u1)+ · · · , (3-8)
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and

1uε =
1
ε2 A0u0+

1
ε
(A0u1+ A1u0)+ (A0u2+ A1u1+ A2u0)+ · · · , (3-9)

where

A0 =1y, A1 = divy ∇x + divx ∇y, A2 =1x . (3-10)

Moreover, recalling (2-3) and taking into account that the normal vector νε depends
only on the microscopic variable, we also obtain

1Buε =
1
ε2 AB

0 u0+
1
ε
(AB

0 u1+ AB
1 u0)+ (AB

0 u2+ AB
1 u1+ AB

2 u0)+ · · · , (3-11)

where

AB
0 =1

B
y , AB

2 =1
B
x

AB
1 = divB

x ∇
B
y + divB

y ∇
B
x = 2(I − ν⊗ ν)i j∂

2
xi y j
− (divy ν)ν · ∇x .

(3-12)

Substituting in (2-6)–(2-10) the expansion (3-6), and using (3-7)–(3-12), one
readily obtains, by matching corresponding powers of ε, that u0 solves [u0] = 0
on Γ , and

P0[u0] :

{
−λ1yu0 = 0 in Eint, Eout,

β1B
yu0+ [λ∇yu0 · ν] = 0 on Γ .

By the equality

0=
∫

Y
λ|∇yu0|

2 dy+
∫
Γ

[λ∇yu0 · ν]u0 dσ

=

∫
Y
λ|∇yu0|

2 dy−
∫
Γ

β1B
yu0u0 dσ

=

∫
Y
λ|∇yu0|

2 dy+
∫
Γ

β|∇B
y u0|

2 dσ,

we obtain that u0 is independent of y, i.e., u0 = u0(x, t).
Moreover, u1 satisfies [u1] = 0 on Γ , and

P1[u1] :

{
−λ1yu1 = 0 in Eint, Eout,

β1B
yu1+ [λ∇yu1 · ν] = −β(divB

y ∇
B
x u0)− [λ∇x u0 · ν] on Γ .

Following a classical approach, we introduce the factorization

u1(x, y, t)=−χ(y) · ∇x u0(x, t)=−χh(y)
∂u0

∂xh
(x, t), h = 1, . . . , N , (3-13)
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for a vector function χ : Y → RN , whose components χh satisfy

−λ divy(∇yχh − eh)= 0 in Eint, Eout, (3-14)

β1B
y(χh − yh)=−[λ(∇yχh − eh) · ν] on Γ , (3-15)

[χh] = 0 on Γ . (3-16)

The functions χh are also required to be periodic in Y , with zero integral average on
Y (here, eh denotes the h vector of the canonical basis of RN ). We note that [Amar
and Gianni 2018a, Theorem 5.1 and Remark 5.3] assures existence and uniqueness
of the cell functions χh ∈ C∞# (Y ), for h = 1, . . . , N (here and in the following, the
subscript # denotes the Y -periodicity).

Finally, u2 solves [u2] = 0 on Γ , and

P2[u2] :


−λ1yu2 =−µu0t + λ1x u0+ 2λ

∂2u1

∂x j∂y j
in Eint, Eout,

β1B
yu2+ [λ∇yu2 · ν] = αu0t −β1

B
x u0−β divB

x ∇
B
y u1

−β divB
y ∇

B
x u1− [λ∇x u1 · ν] on Γ .

The limiting equation for u0 is finally obtained as a compatibility condition for
P2[u2], and amounts to∫

Y

(
−µu0t + λ1x u0+ 2λ

∂2u1

∂x j∂y j

)
dy =

∫
Γ

[λ∇yu2 · ν] dσ

=

∫
Γ

(αu0t−[λ∇x u1·ν]−β1
B
yu2−β1

B
x u0−β divB

x ∇
B
y u1−β divB

y ∇
B
x u1) dσ. (3-17)

We now replace the factorization (3-13) in the previous equality, and we take into
account that

2
∫

Y
λ
∂2u1

∂x j∂y j
dy =−2

∫
Γ

[λ∇x u1 · ν] dσ, (3-18)

−

∫
Γ

[λ∇x u1 · ν] dσ = div
((∫

Γ

[λ](ν⊗χ) dσ
)
∇u0

)
, (3-19)

−

∫
Γ

β1B
yu2 dσ = 0, (3-20)

−

∫
Γ

β1B
x u0 dσ =−β|Γ |1u0+ div

((∫
Γ

β(ν⊗ ν) dσ
)
∇u0

)
, (3-21)

−

∫
Γ

β divB
x ∇

B
y u1 dσ = div

((∫
Γ

β(I − ν⊗ ν)∇yχ dσ
)
∇u0

)
, (3-22)

−

∫
Γ

β divB
y ∇

B
x u1 dσ = 0, (3-23)



ERROR ESTIMATE FOR A HOMOGENIZATION PROBLEM 49

where (3-23) follows from (2-5), since Γ has no boundary. Hence, we obtain for
the homogenized solution u0 the parabolic equation

µ̃u0t − div((λ0 I + Ahom)∇u0)= 0 in ΩT , (3-24)

where

µ̃= µint|Eint| +µout|Eout| +α|Γ |,

λ0 = λint|Eint| + λout|Eout|,

Ahom
=

∫
Γ

[λ](ν⊗χ) dσ +β
∫
Γ

((I − ν⊗ ν)+ (ν⊗ ν)∇yχ −∇yχ) dσ

=

∫
Γ

[λ](ν⊗χ) dσ −β
∫
Γ

∇
B
y (χ − y) dσ.

(3-25)

Clearly, (3-24) must be complemented with a boundary and an initial condition
which are u0= 0 on ∂Ω×(0, T ) and u0(x, 0)= u0(x) inΩ , respectively, as follows
from the microscopic problem (2-6)–(2-10). Indeed, by (3-5) we obtain that {uε}
converges weakly in L2(0, T ; H 1

0 (Ω)), which implies the weak convergence of the
trace on ∂Ω , while the initial data is already included in the weak formulation of
the problem.

Theorem 3.1. The matrix λ0 I + Ahom is symmetric and positive-definite.

Proof. We first prove the symmetry. By (2-1), we have

−

∫
Γ

∇
B
y yh · ∇

B
y χ j dσ =−

∫
Γ

(eh − νhν) · ∇
B
y χ j dσ =−

∫
Γ

(∇B
y χ j )h dσ ; (3-26)

then, taking into account (3-14)–(3-16), we obtain

0=−
∫

Y
λ1y(χh − yh)χ j dy

=

∫
Y
λ∇y(χh − yh) · ∇yχ j dy−β

∫
Γ

1B
y(χh − yh)χ j dσ

=

∫
Y
λ∇yχh · ∇yχ j dy−

∫
Y
λeh · ∇yχ j dy+β

∫
Γ

∇
B
y (χh − yh) · ∇

B
y χ j dσ

=

∫
Y
λ∇yχh · ∇yχ j dy+

∫
Γ

[λ]νhχ j dσ

+β

∫
Γ

∇
B
y χh∇

B
y χ j dσ −β

∫
Γ

∇
B
y yh∇

B
y χ j dσ

=

∫
Y
λ∇yχh · ∇yχ j dy+

∫
Γ

[λ]νhχ j dσ

+β

∫
Γ

∇
B
y χh∇

B
y χ j dσ −β

∫
Γ

(∇B
y χ j )h dσ. (3-27)
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From (3-25) and (3-27), we can rewrite

Ahom
=

∫
Γ

β(I − ν⊗ ν) dσ −
∫

Y
λ(∇yχ ⊗∇yχ) dy−

∫
Γ

β(∇B
y χ ⊗∇

B
y χ) dσ,

which gives the symmetry of the matrix Ahom and hence the symmetry of the whole
matrix λ0 I + Ahom.

Let us now prove that it is also positive-definite. Firstly, we observe that, using
(3-26) and (3-27), we obtain

∫
Y
λ∇(χh − yh) · ∇(χ j − y j ) dy+β

∫
Γ

∇
B
y (χh − yh)∇

B
y (χ j − y j ) dσ

=

∫
Y
λ∇χh · ∇χ j dy+

∫
Y
λeh · e j dy−

∫
Y
λ∇χh · e j dy−

∫
Y
λ∇χ j · eh dy

+β

∫
Γ

∇
Bχh · ∇

Bχ j dσ +β
∫
Γ

∇
B yh · ∇

B y j dσ

−β

∫
Γ

∇
Bχh · ∇

B y j dσ −β
∫
Γ

∇
Bχ j · ∇

B yh dσ

=

∫
Y
λ∇χh · ∇χ j dy+

∫
Y
λδhj dy+

∫
Γ

[λ]χhν j dσ +
∫
Γ

[λ]χ jνh dσ

+β

∫
Γ

∇
Bχh · ∇

Bχ j dσ +β
∫
Γ

∇
B yh · ∇

B y j dσ

−β

∫
Γ

(∇B
y χh) j dσ −β

∫
Γ

(∇B
y χ j )h dσ

=

∫
Y
λ∇χh · ∇χ j dy+

∫
Y
λδhj dy+β

∫
Γ

∇
Bχh · ∇

Bχ j dσ +β
∫
Γ

∇
B yh · ∇

B y j dσ

− 2
∫

Y
λ∇χh · ∇χ j dy− 2β

∫
Γ

∇
Bχh∇

Bχ j dσ

=

∫
Y
λδhj dy−

∫
Y
λ∇χh · ∇χ j dy+β

∫
Γ

(δhj − νhν j ) dσ −β
∫
Γ

∇
Bχh∇

Bχ j dσ.

Then, we can rewrite

(λ0 I + Ahom)hj =

∫
Y
λδhj dy+

∫
Γ

βδhj dσ −
∫
Γ

βνhν j dσ

−

∫
Y
λ∇χh · ∇χ j dy−

∫
Γ

β∇Bχh · ∇
Bχ j dσ

=

∫
Y
λ∇(χh − yh) · ∇(χ j − y j ) dy+

∫
Γ

β∇B(χh − yh) · ∇
B(χ j − y j ) dσ.
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Finally, setting λmin =min(λint, λout) and using Jensen’s inequality, we obtain

N∑
h, j=1

(λ0 I + Ahom)hjξhξ j =

∫
Y

N∑
h, j=1

λ(∇χhξh − ehξh) · (∇χ jξ j − e jξ j ) dy

+

∫
Γ

N∑
h, j=1

β∇B(χhξh − yhξh) · ∇
B(χ jξ j − y jξ j ) dσ

≥ λmin

∫
Y

∣∣∣∣ N∑
h=1

(∇χhξh − ehξh)

∣∣∣∣2 dy+β
∫
Γ

∣∣∣∣ N∑
h=1

∇
B(χhξh − yhξh)

∣∣∣∣2 dσ

≥ λmin

∣∣∣∣∫
Y

N∑
h=1

(∇χhξh − ehξh) dy
∣∣∣∣2+β|Γ |∣∣∣∣ 1

|Γ |

∫
Γ

N∑
h=1

∇
B(χhξh − yhξh) dσ

∣∣∣∣2

≥ λmin

N∑
j=1

( N∑
h=1

(
ξh

∫
Y

∂χh

∂y j
dy− δhjξh

))2

+
β

|Γ |

∣∣∣∣ N∑
h=1

∫
Γ

∇
B(χhξh − yhξh) dσ

∣∣∣∣2

≥ λmin

N∑
j=1

( N∑
h=1

ξh

∫
∂Y
χhn j dσ − ξ j

)2

= λmin|ξ |
2

where we have denoted by n = (n1, . . . , nN ) the outward unit normal to ∂Y . More-
over, we remark that the last integral vanishes because of the periodicity of the cell
function χh .

This proves that the homogenized matrix is positive-definite. �

Remark 3.2. We note that the homogenized matrix is positive-definite indepen-
dently of the strict positivity of β.

Once Theorem 3.1 has been proved, the existence of a unique solution for (3-24)
complemented with suitable initial and boundary conditions is standard. The next
proposition states the regularity of this solution, which is a property needed in order
to obtain the error estimate.

Proposition 3.3. Assume u0 ∈ C∞c (Ω) (i.e., u0 has compact support in Ω). Then,
the solution u0 to (3-24) satisfying the homogeneous boundary condition on ∂Ω ×
[0, T ] and the initial condition u(x, 0)= u0(x) in Ω belongs to C∞(Ω ×[0, T ]).

Proof. The result can be obtained applying [Friedman 1964, Theorem 12 in §5]. �

Remark 3.4. Actually, the asserted C∞-regularity of the homogenized solution u0

is far from being optimal in order to obtain the error estimate proved in Section 4.
Indeed, to this purpose, it is enough to have that u0 ∈ C0([0, T ]; C3(Ω)) and this is
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guaranteed if, for instance, u0 ∈ C4(Ω) and satisfies the compatibility conditions

Lhomu0(x)= 0, L2
homu0(x) := Lhom(Lhomu0(x))= 0 on ∂Ω, (3-28)

where Lhom=− div((λ0 I+Ahom)∇), with λ0 and Ahom defined in (3-25). However,
we prefer the simpler assumptions of Proposition 3.3, since we are not interested in
stating which are the minimal conditions to be satisfied by the initial data in order
to obtain the optimal regularity of the homogenized solution.

For further use (taking into account the system satisfied by u2 and (3-24)), we
introduce the factorization of the function u2 in terms of the homogenized solution
u0; i.e.,

u2(x, y, t)= χ̃i j (y)
∂2u0

∂xi∂x j
(x, t), i, j = 1, . . . , N , (3-29)

where the functions χ̃i j : Y → R satisfy

−λ1yχ̃i j =−
µ

µ̃
(λ0δi j + ahom

i j )+ λδi j − 2λ
∂χi

∂y j
=: F in Eint, Eout, (3-30)

β1B
y χ̃i j + [λ∇yχ̃i j · ν] =

α

µ̃
(λ0δi j + ahom

i j )−β(δi j − (ν⊗ ν)i j )

+ 2β(I − (ν⊗ ν))i · ∇χ j −βν jχi div ν+ [λνi ]χ j =: G on Γ , (3-31)

[χ̃i j ] = 0 on Γ . (3-32)

The functions χ̃i j are also required to be periodic in Y , with zero integral average
on Y . In order to obtain (3-30)–(3-32) we have taken into account (3-12), which
gives

divB
x (∇

B
y φ)+ divB

y (∇
B
x φ)= 2(δi j − νiν j )

∂2φ

∂xi∂y j
− ν j

∂νi

∂yi

∂φ

∂x j
,

with φ(x, y, t) = u1(x, y, t) = −χ(y) · ∇x u0(x, t) and the usual summation con-
vention for repeated indexes. By [Amar and Gianni 2018a, Theorem 5.1 and
Remark 5.3], problem (3-30)–(3-32) admits a unique solution χ̃i j ∈ C∞# (Y ), for
i, j = 1, . . . , N , since it is easy to check that∫

Y
F dy =

∫
Γ

G dσ.

4. Error estimate

In this section we prove that the limit u of the sequence {uε} of the solutions of
problem (2-6)–(2-10) coincides with the solution u0 of (3-24). In order to achieve
this result, we will state an error estimate for the sequence {uε}, which gives the
rate of convergence of such a sequence to the homogenized function u0, in a suit-
able norm, thus obtaining a stronger convergence result with respect to the one
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obtained in our previous paper [Amar and Gianni 2018b]. However, this result
needs extra-regularity assumptions on the initial data u0(x) (see Proposition 3.3
and Remark 3.4), which assure more regularity of the homogenized solution u0.

Theorem 4.1. Assume that u0 ∈ C∞c (Ω). Let u0 be the smooth solution of (3-24),
satisfying the initial condition u0(x, 0)= u0(x) in Ω and the boundary condition
u0(x, t) = 0 on ∂Ω × (0, T ); moreover, let u1 be the function defined in (3-13).
Then

‖uε − (u0+ εu1)‖L2(0,T ;H1(Ω)) ≤ γ
√
ε, (4-1)

‖uε − u0‖L2(ΩT ) ≤ γ
√
ε, (4-2)

for a proper constant γ > 0, independent of ε.

Proof. Let us define the rest function

rε(x, t)= (uε(x, t)− u0(x, t)− εu1(x, x/ε, t))ε−1, x ∈Ω, t > 0.

Separately in Ωε
int and in Ωε

out, we get

µε
∂rε
∂t
− div(λε∇rε)=

1
ε

{
−µε

∂u0

∂t
+ div(λε∇u0)−µ

εε
∂u1

∂t
+ ε div(λε∇u1)

}
=

1
ε

{
−µε

∂u0

∂t
+ λε1x u0+ 2λεu1xh yh

}
−µε

∂u1

∂t
+ λε1x u1+

1
ε2λ

ε1yu1

=−
1
ε
λε1yu2−µ

ε ∂u1

∂t
+ λε1x u1 =: Eε −µε

∂u1

∂t
.

Moreover,

[rε]= 0, rε(x, 0)=−u1(x, x/ε, 0)=χ(x/ε)·∇x u0(x, 0)=χ(x/ε)·∇x u0(x, 0),

and

εα
∂rε
∂t
−εβ1Brε=

1
ε

{
εα
∂uε
∂t
−εβ1Buε−εα

∂u0

∂t
+εβ1Bu0

}
−

{
εα
∂u1

∂t
−εβ1Bu1

}
=

1
ε
[λε∇uε · νε] −α

∂u0

∂t
+β1B

x u0+β divB
x ∇

B
y u1+β divB

y ∇
B
x u1

− εα
∂u1

∂t
+εβ1B

x u1+
1
ε
(β1B

yu1+β divB
y ∇

B
x u0+β divB

x ∇
B
y u0)+

1
ε2β1

B
yu0

=
1
ε
[λε∇uε · νε] − [λε(∇x u1+∇yu2) · νε] −β1

B
yu2

− ε

(
α
∂u1

∂t
−β1B

x u1

)
−

1
ε
[λε(∇x u0+∇yu1) · νε]

= [λε∇rε · νε] − ε
(
α
∂u1

∂t
−β1B

x u1

)
− [λε∇yu2 · νε] −β1

B
yu2,
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where we have taken into account the problems satisfied by u1 and u2 (u1 and u2

are defined in Section 3.1) and the fact that divB
x ∇

B
y u0 = 0 and 1B

yu0 = 0.
Let us now introduce the corrected rest function

r̃ε = rε + u1φε,

where φε is a cut-off function equal to 1 in a neighborhood of ∂Ω , and such that

φε(x)= 0 if dist(x, ∂Ω)≥ γ0ε.

Clearly, φε ≡ 0 on Γ ε (since dist(Γ ε, ∂Ω) ≥ γ0ε, by the assumptions made in
Section 2.2), so that rε = r̃ε on Γ ε. We may assume 0≤ φε ≤ 1, |∇φε| ≤ γ /ε. The
function r̃ε satisfies [r̃ε] = 0 on Γ ε and

µε
∂ r̃ε
∂t
− λε1r̃ε = Eε −µε

∂u1

∂t
+µεφε

∂u1

∂t
− λε1(u1φε) in Ωε

int,Ω
ε
out, (4-3)

r̃ε(x, 0)= χ(x/ε) · ∇x u0(x, 0)(1−φε) on Ω, (4-4)

r̃ε = 0 on ∂Ω, (4-5)

and on Γ ε

εα
∂ r̃ε
∂t
− εβ1B r̃ε = [λε∇rε · νε] − ε

(
α
∂u1

∂t
−β1B

x u1

)
− [λε∇yu2 · νε] −β1

B
yu2

= [λε∇r̃ε · νε] − ε
(
α
∂u1

∂t
−β1B

x u1

)
− [λε∇yu2 · νε] −β1

B
yu2. (4-6)

Note that the correction u1φε has been introduced precisely in order to guarantee
(4-5). Multiply (4-3) by r̃ε and integrate by parts; by virtue of (4-5), we get∫ t

0

∫
Ω

{Eε − λε1(u1φε)}r̃ε dx dτ −
∫ t

0

∫
Ω

{
µε
∂u1

∂τ
(1−φε)

}
r̃ε dx dτ

=
1
2

∫ t

0

∫
Ω

µε
∂ r̃2
ε

∂τ
dx dτ +

∫ t

0

∫
Ω

λε|∇r̃ε|2 dx dτ +
∫ t

0

∫
Γ ε
[λε∇r̃ε · νε]r̃ε dσ dτ

=
1
2

∫
Ω

µεr̃2
ε (x, t) dx −

1
2

∫
Ω

µεr̃2
ε (x, 0) dx +

∫ t

0

∫
Ω

λε|∇r̃ε|2 dx dτ

+
ε

2

∫
Γ ε
αr̃2
ε (x, t) dσ −

ε

2

∫
Γ ε
αr̃2
ε (x, 0) dσ + εβ

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ

+ ε

∫ t

0

∫
Γ ε

(
α
∂u1

∂t
−β1B

x u1

)
r̃ε dσ dτ +

∫ t

0

∫
Γ ε
(β1B

yu2+ [λ∇yu2 · νε])r̃ε dσ dτ.

(4-7)
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This implies

1
2

∫
Ω

µεr̃2
ε (x, t) dx +

ε

2

∫
Γ ε
αr̃2
ε (x, t) dσ +

∫ t

0

∫
Ω

λε|∇r̃ε|2 dx dτ

+ εβ

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ

=
1
2

∫
Ω

µεr̃2
ε (x, 0) dx +

ε

2

∫
Γ ε
αr̃2
ε (x, 0) dσ

− ε

∫ t

0

∫
Γ ε

(
α
∂u1

∂τ
−β1B

x u1

)
r̃ε dσ dτ

−

∫ t

0

∫
Γ ε
(β1B

yu2+ [λ
ε
∇yu2 · νε])r̃ε dσ dτ

+

∫ t

0

∫
Ω

{Eε − λε1(u1φε)}r̃ε dx dτ −
∫ t

0

∫
Ω

{
µε
∂u1

∂τ
(1−φε)

}
r̃ε dx dτ.

Next, compute

∫ t

0

∫
Ω

Eεr̃ε dx dτ =
∫ t

0

∫
Ω

λε
{
−

1
ε
1yu2+1x u1

}
r̃ε dx dτ

=

∫ t

0

∫
Ω

λε
{
−

1
ε
1yu2− divx(∇yu2)

}
r̃ε dx dτ

+

∫ t

0

∫
Ω

λε{divx(∇yu2)+1x u1}r̃ε dx dτ

=−

∫ t

0

∫
Ω

div(λε∇yu2)r̃ε dx dτ

+

∫ t

0

∫
Ω

{λε divx(∇yu2)+ λ
ε1x u1}r̃ε dx dτ

=

∫ t

0

∫
Γ ε
[λε∇yu2 · νε]r̃ε dσ dτ +

∫ t

0

∫
Ω

λε∇yu2 · ∇r̃ε dx dτ

+

∫ t

0

∫
Ω

{λε divx(∇yu2)+ λ
ε1x u1}r̃ε dx dτ. (4-8)

Note that the last integral in (4-8) can be bounded in the following way:

∫ t

0

∫
Ω

{λε divx(∇yu2)+ λ
ε1x u1}r̃ε dx dτ ≤ γ (δ)+ δ

∫ t

0

∫
Ω

r̃2
ε dx dτ,
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where δ > 0 will be chosen in the following. We exploit here the estimate

∫ t

0

∫
Ω

(u2
2xi yi
+ u2

1xi xi
) dx dτ ≤ γ, (4-9)

which is a consequence of the regularity of the cell functions χ and χ̃ (recall
(3-13)–(3-16) and (3-29)–(3-32)) and of the homogenized function u0. Similarly,
for δ′ =min(λint, λout)/2,

−

∫ t

0

∫
Ω

λε1(u1φε)r̃ε dx dτ =
∫ t

0

∫
Ω

λε∇(u1φε) · ∇r̃ε dx dτ

≤ δ′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ +
γ (δ′)

ε2 |{x ∈Ω | dist(x, ∂Ω)≤ γ0ε}|

≤ δ′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ +
γ (δ′)

ε
, (4-10)

where, again due to the stated regularity of χ and u0, we used

sup
x∈Ω, y∈Y, 0<t<T

{|u1| + |∇x u1| + |∇yu1|}(x, y, t) <+∞. (4-11)

Moreover, for δ′′ which will be chosen later, we obtain

∫ t

0

∫
Γ ε
(β1B

yu2)r̃ε dσ dτ = εβ
∫ t

0

∫
Γ ε

(
1
ε

divB
y ∇

B
y u2+ divB

x ∇
B
y u2

)
r̃ε dσ dτ

− εβ

∫ t

0

∫
Γ ε
(divB

x ∇
B
y u2)r̃ε dσ dτ

=−εβ

∫ t

0

∫
Γ ε
∇

B
y u2∇

B r̃ε dσ dτ − εβ
∫ t

0

∫
Γ ε
(divB

x ∇
B
y u2)r̃ε dσ dτ

= γ (δ′′)+ δ′′ε

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ + γ (δ′′)+ δ′′ε
∫ t

0

∫
Γ ε

r̃2
ε dσ dτ.

Here, we use

ε

∫ t

0

∫
Γ ε
(|∇B

y u2|
2
+ |divB

x ∇
B
y u2|

2) dσ dτ ≤ γ,

which is again a consequence of the regularity of χ̃ and u0.
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Combining the previous estimates, we have

1
2

∫
Ω

µεr̃2
ε (x, t) dx +

ε

2

∫
Γ ε
αr̃2
ε (x, t) dσ +

∫ t

0

∫
Ω

λε|∇r̃ε|2 dx dτ

+ εβ

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ

≤
1
2

∫
Ω

µεr̃2
ε (x, 0) dx +

ε

2

∫
Γ ε
αr̃2
ε (x, 0) dσ − ε

∫ t

0

∫
Γ ε

(
α
∂u1

∂τ
−β1B

x u1

)
r̃ε dσ dτ

+ γ (δ′′)+ δ′′ε

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ + δ′′ε
∫ t

0

∫
Γ ε

r̃2
ε dσ dτ

−

∫ t

0

∫
Γ ε
[λε∇yu2 · νε]r̃ε dσ dτ +

∫ t

0

∫
Γ ε
[λε∇yu2 · νε]r̃ε dσ dτ

+

∫ t

0

∫
Ω

λε∇yu2 · ∇r̃ε dx dτ + γ (δ)+ δ
∫ t

0

∫
Ω

r̃2
ε dx dτ

+ δ′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ +
γ (δ′)

ε
−

∫ t

0

∫
Ω

{µε
∂u1

∂τ
(1−φε)}r̃ε dx dτ

≤ γ + γ (δ′′′)+ εδ′′′
∫ t

0

∫
Γ ε

r̃2
ε dσ dτ

+ γ (δ′′)+ δ′′ε

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ + δ′′ε
∫ t

0

∫
Γ ε

r̃2
ε dσ dτ

+ γ (δ′′′)+ δ′′′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ + γ (δ)+ δ
∫ t

0

∫
Ω

r̃2
ε dx dτ

+ δ′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ +
γ (δ′)

ε
+ γ (δ′′′)+ δ′′′

∫ t

0

∫
Ω

r̃2
ε dx dτ, (4-12)

where δ′′′ will be chosen later. Finally, using Poincaré’s inequality, Gronwall’s
lemma, and absorbing the gradient term in (4-12) into the left-hand side (which is
possible choosing δ, δ′, δ′′, δ′′′ sufficiently small), we get∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ ≤
γ

ε
. (4-13)

On recalling the definition of r̃ε, and invoking Poincaré’s inequality again, we
obtain ∫ t

0

∫
Ω

(uε − u0− εu1(1−φε))2 dx dτ ≤ γ ε. (4-14)

Moreover, taking into account that rε = r̃ε− u1φε and using (4-13), it follows that∫ t

0

∫
Ω

|∇rε|2 dx dτ≤γ
[∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ+
∫ t

0

∫
Ω

|∇(u1φε)|
2 dx dτ

]
≤
γ

ε
, (4-15)
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where we recall the estimate for ∇(u1φε) done in (4-10). Hence, by (4-14) and
(4-15), we obtain (4-1). Finally, (4-2) can be obtained making use of (4-14) and
taking into account that∫ t

0

∫
Ω

(εu1(1−φε))2 dx dτ ≤ γ ε2. �

References

[Allaire and Murat 1993] G. Allaire and F. Murat, “Homogenization of the Neumann problem with
nonisolated holes”, Asymptotic Anal. 7:2 (1993), 81–95.

[Allaire et al. 1996] G. Allaire, A. Damlamian, and U. Hornung, “Two-scale convergence on pe-
riodic surfaces and applications”, pp. 15–25 in Mathematical modelling of flow through porous
media: proceedings of the conference (Saint-Étienne, France, 1995), edited by A. P. Bourgeat et al.,
World Scientific, 1996.

[Amar and Gianni 2018a] M. Amar and R. Gianni, “Existence, uniqueness and concentration for a
system of PDEs involving the Laplace–Beltrami operator”, preprint, 2018. Submitted.

[Amar and Gianni 2018b] M. Amar and R. Gianni, “Laplace–Beltrami operator for the heat con-
duction in polymer coating of electronic devices”, preprint, 2018. To appear in Discrete Cont. Dyn.
Sys. B.

[Amar et al. 2003] M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, “Evolution and memory
effects in the homogenization limit for electrical conduction in biological tissues: the 1-d case”, in
Proceedings of the 16th AIMETA Congress of Theoretical and Applied Mechanics (Ferrara, Italy,
2003), 2003.

[Amar et al. 2004] M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, “Evolution and memory
effects in the homogenization limit for electrical conduction in biological tissues”, Math. Models
Methods Appl. Sci. 14:9 (2004), 1261–1295.

[Amar et al. 2006] M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, “On a hierarchy of models
for electrical conduction in biological tissues”, Math. Methods Appl. Sci. 29:7 (2006), 767–787.

[Amar et al. 2009a] M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, “Exponential asymptotic
stability for an elliptic equation with memory arising in electrical conduction in biological tissues”,
European J. Appl. Math. 20:5 (2009), 431–459.

[Amar et al. 2009b] M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, “Stability and memory
effects in a homogenized model governing the electrical conduction in biological tissues”, J. Mech.
Mater. Struct. 4:2 (2009), 211–223.

[Amar et al. 2010] M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, “Homogenization limit and
asymptotic decay for electrical conduction in biological tissues in the high radiofrequency range”,
Commun. Pure Appl. Anal. 9:5 (2010), 1131–1160.

[Amar et al. 2013] M. Amar, D. Andreucci, P. Bisegna, and R. Gianni, “A hierarchy of models
for the electrical conduction in biological tissues via two-scale convergence: the nonlinear case”,
Differential Integral Equations 26:9–10 (2013), 885–912.

[Amar et al. 2017a] M. Amar, D. Andreucci, and D. Bellaveglia, “The time-periodic unfolding oper-
ator and applications to parabolic homogenization”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.
28:4 (2017), 663–700.

[Amar et al. 2017b] M. Amar, D. Andreucci, and D. Bellaveglia, “Homogenization of an alternating
Robin–Neumann boundary condition via time-periodic unfolding”, Nonlinear Anal. Theory Meth.
Appl. 153 (2017), 56–77.

http://dx.doi.org/10.3233/ASY-1993-7201
http://dx.doi.org/10.3233/ASY-1993-7201
http://dx.doi.org/10.1142/9789814531955
http://dx.doi.org/10.1142/9789814531955
http://dx.doi.org/10.1142/S0218202504003623
http://dx.doi.org/10.1142/S0218202504003623
http://dx.doi.org/10.1002/mma.709
http://dx.doi.org/10.1002/mma.709
http://dx.doi.org/10.1017/S0956792509990052
http://dx.doi.org/10.1017/S0956792509990052
http://dx.doi.org/10.2140/jomms.2009.4.211
http://dx.doi.org/10.2140/jomms.2009.4.211
http://dx.doi.org/10.3934/cpaa.2010.9.1131
http://dx.doi.org/10.3934/cpaa.2010.9.1131
https://projecteuclid.org/euclid.die/1372858555
https://projecteuclid.org/euclid.die/1372858555
http://dx.doi.org/10.4171/RLM/781
http://dx.doi.org/10.4171/RLM/781
http://dx.doi.org/10.1016/j.na.2016.05.018
http://dx.doi.org/10.1016/j.na.2016.05.018


ERROR ESTIMATE FOR A HOMOGENIZATION PROBLEM 59

[Andreucci et al. 2003] D. Andreucci, P. Bisegna, and E. DiBenedetto, “Homogenization and con-
centrated capacity for the heat equation with non-linear variational data in reticular almost discon-
nected structures and applications to visual transduction”, Ann. Mat. Pura Appl. (4) 182:4 (2003),
375–407.

[Auriault and Ene 1994] J.-L. Auriault and H. I. Ene, “Macroscopic modelling of heat transfer in
composites with interfacial thermal barrier”, Int. J. Heat Mass. Tran. 37:18 (1994), 2885–2892.

[Bensoussan et al. 1978] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for
periodic structures, Studies in Mathematics and its Applications 5, North-Holland, 1978.

[Bunoiu and Timofte 2016] R. Bunoiu and C. Timofte, “Homogenization of a thermal problem with
flux jump”, Netw. Heterog. Media 11:4 (2016), 545–562.

[Cioranescu et al. 2012] D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki, “The
periodic unfolding method in domains with holes”, SIAM J. Math. Anal. 44:2 (2012), 718–760.

[Donato and Monsurrò 2001] P. Donato and S. Monsurrò, “Homogenization of two heat conductors
with an interfacial contact resistance”, Ric. Mat. 50 (2001), 115–144.

[Friedman 1964] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, 1964.

[Hummel 2000] H.-K. Hummel, “Homogenization for heat transfer in polycrystals with interfacial
resistances”, Appl. Anal. 75:3-4 (2000), 403–424.

[Jose 2009] E. C. Jose, “Homogenization of a parabolic problem with an imperfect interface”, Rev.
Roumaine Math. Pures Appl. 54:3 (2009), 189–222.

[Sánchez-Palencia 1980] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lec-
ture Notes in Physics 127, Springer, 1980.

[Timofte 2013] C. Timofte, “Multiscale analysis of diffusion processes in composite media”, Com-
put. Math. Appl. 66:9 (2013), 1573–1580.

Received 25 Sep 2017. Revised 27 Dec 2017. Accepted 17 Feb 2018.

MICOL AMAR: micol.amar@sbai.uniroma1.it
Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Roma,
Italy

ROBERTO GIANNI: roberto.gianni@unifi.it
Dipartimento di Matematica e Informatica, Università di Firenze, Firenze, Italy

MM ∩
msp

http://dx.doi.org/10.1007/s10231-003-0072-6
http://dx.doi.org/10.1007/s10231-003-0072-6
http://dx.doi.org/10.1007/s10231-003-0072-6
http://dx.doi.org/10.1016/0017-9310(94)90342-5
http://dx.doi.org/10.1016/0017-9310(94)90342-5
http://dx.doi.org/10.3934/nhm.2016009
http://dx.doi.org/10.3934/nhm.2016009
http://dx.doi.org/10.1137/100817942
http://dx.doi.org/10.1137/100817942
http://dx.doi.org/10.1080/00036810008840857
http://dx.doi.org/10.1080/00036810008840857
http://dx.doi.org/10.1007/3-540-10000-8
http://dx.doi.org/10.1016/j.camwa.2012.12.003
mailto:micol.amar@sbai.uniroma1.it
mailto:roberto.gianni@unifi.it
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org



	1. Introduction
	2. Preliminaries
	2.1. Tangential derivatives
	2.2. Geometrical setting
	2.3. Position of the problem

	3. Homogenization of the microscopic problem
	3.1. The two-scale expansion

	4. Error estimate
	References

